广东省汕头2011年九年级数学 一元二次方程单元试题 人教新课标版
人教版数学九年级 一元二次方程 单元检测题1 含答案
九年级数学人教版上册第21章检测题1一. 精心选一选:(每题3分,18共分)1.有下列关于x 的方程:①ax 2+bx+c=0,②3 x (x-4)=0③x 2+y-3=0④21x +x=2⑤x 3-3x+8=0⑥12x 2-5x+7=0.其中是一元二次方程的有( ) A .2 B 。
3 C.4 D.52.如果关于x 的方程(a-5) x 2-4 x-1=0有实数根,则a 满足条件是( )A .a ≠5B 。
a >1且a ≠5C 。
a ≥1且a ≠5D 。
a ≥13.用配方法解方程x 2-2x-5=0,原方程应变为( )A .(x+1)2=6B 。
(x+2)2=9C 。
(x-1)2=6D 。
(x -2)2=9。
4.方程3 x (x-1)=5(x-1)的根为( )A .x =53B 。
x =1C 。
x 1 =1 x 2 =53 D. x 1 =1 x 2 =355.近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价a ﹪后,现售价为625元,则根据题意列方程,正确的是( )A .484(1+ a ﹪)=625. B. 484(1+ a 2﹪)=625.C.484(1- a ﹪)=625.D.484(1+ a ﹪)2=625.6. 。
如图, ABCD ,AE⊥BC 与E ,AE=EB=EC=a ,且a 是一元二次方程x2+x-2=0的一个根,则 ABCD 的周长为( )。
A.4+2B. 4+22C.8+22D.2+2二.细心填一填:(每题3分,共30分)7. 一元二次方程3x 2=7x+1的二次项系数,一次项系数,及常数项依次是 . 8.关于x 方程(m 2- m-2)x 2+ m x- m=0是一元二次方程的条件 。
9.关于x 方程ax 2+2x +1=0 有两个不相等的实数根。
实数a 的取值范围是 .10.请你给出一元二次方程x 2-4x + =0的常数项,使该方程无实数解。
新人教版九年级数学上册 :《一元二次方程》习题精选及答案解析
《一元二次方程》姓名 得分一、填空题(每空2分,共32分) 1.把一元二次方程(x -2)(x +3)=1化为一般形式是 . 2.用配方法解方程2250x x --=时,配方后得到的方程是 ;当x = 时,分式2926x x --的值为零;一元二次方程2x (x -1)=x -1的解是 ;3.方程(x-1)2=4的解是 ;方程2x =x 的解是 .4.足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场。
共举行比赛210场,则参加比赛的球队共有 支。
5.一个菱形的两条对角线的和是14cm ,面积是24 cm 2,则这个菱形的周长是___ _______。
6.当m 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根,此时这两个实数根是 .7.请你写出一个有一根为1的一元二次方程: .8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设 平均每月降价的百分率为x ,根据题意列出的方程是 . 9.在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则, 方程(2)50*x +=的解为.10.李娜在一幅长90cm 、宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制 成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm ,根据题 意,所列方程为: 。
11.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为 . 12.设a b ,是方程220110x x +-=的两个实数根,则22a a b ++的值为 . 二、选择题(每小题3分,共24分)1.下列方程中,是一元二次方程的是( ) A .221x x y ++=B .2110x x+-= C .20x = D .2(1)(3)1x x x ++=- 2.一元二次方程x 2-3x +4=0的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .74.直角三角形两条直角边的和为7,面积为6,则斜边为( )AB .5 C.75.若a+b+c=0,则关于x 的一元二次方程ax 2+bx+c=0(a≠0)有一根是( ).A .1B .-1C .0D .无法判断6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色 纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=7.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( ) A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=8.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .25三、解答题(共64分) 1.解下列方程(10分)(1)解方程:2420x x ++= (2) 解方程2220x x --=2.(8分)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由。
《一元二次方程》广东汕头2011年九年级上学期(人教版)试题
xx年第x次模拟考试试卷x x 科试题考试注意事项:一、考试开始前15分钟考生凭学生证和有效身份证件(身份证等)进入规定考场对号入座,并将有效证件放在考桌左上角,以便监考人员查验。
考试开始指令发出后,考生才能开始答卷。
二、考生进入考场必须关闭各种通讯工具。
参加闭卷考试考生在入场时除携带必要的文具外,不准携带其它物品(如:书籍、资料、笔记本和自备草稿纸以及具有收录、储存、记忆功能的电子工具等)。
已携带入场的应按要求指定位置存放。
参加非闭卷考试的考生除携带必要的文具外,可携带该考试科目规定允许的相关资料。
三、考试开始30分钟后,考生停止进入考场(听力考试开始至结束,考生不得进出考场)。
开考30分钟后考生方可交卷离开考场。
考生交卷后应立即退场,不得在考场附近逗留、交谈,不得再返回考场续考。
四、考生领到试卷后,应清点试卷是否齐全,检查试卷有无缺损、错印等情况,若发现试卷差错应举手向监考人员报告。
五、考生答卷前,在试卷密封线内填写指定内容(如姓名、学号等)。
凡漏写姓名、学生证号、座位号或字迹模糊无法辨认,以及在试卷密封线外填写学生证号、姓名或作其他标记的试卷一律按零分处理。
六、考生答卷时只允许用黑、蓝色钢笔或圆珠笔书写。
特殊要求的科目(如使用答题卡)按具体要求执行。
七、考生不得询问试题题意,若发现试题字迹模糊或试题有误,可举手向监考人员询问,不准询问其他考生。
八、考生必须服从监考人员的监督管理。
不准交头接耳,左顾右盼,传递物品,打手势,做暗号;不准擅自借用其他考生文具;不准偷看、抄袭他人答卷或允许他人抄袭自己的答卷;严禁夹带;严禁换卷、替考,以及其他违纪、舞弊行为。
九、在考试期间原则上不允许上厕所,若遇特殊情况,须由工作人员陪同出入考场。
十、考试结束指令发出后,考生立即停止答卷,将答卷(答题卡)反扣在桌面上,并按监考人员要求退离考场。
严禁将试卷、答卷(答题卡)和考场统一发放的草稿纸带出考场。
十一、留考考生必须服从考试工作人员和监考人员的安排,不得与其他考生或场外人员接触。
人教版九年级数学单元测试卷:一元二次方程单元测验题及答案
一元二次方程单元测验题一.填空题(每小题2分,共24分)1。
方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 . 2.方程)0(02≠=++a c bx ax 的判别式是 ,求根公式是 .3.把一元二次方程x x x 2)1)(1(=-+化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;4。
一元二次方程12)1(2=-+mx x m 的一个根是3,则=m ;5.方程022=-x x 的根是 ,方程05022=-x 的根是 ;6.已知方程032=+-mx x 的两个实根相等,那么=m ; 7.+-x x 222 =2)(-x , 22)(41)(-=+-x x x8.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .9.方程)34(342-=x x 中,⊿= ,根的情况是 .10.已知322--x x 与7+x 的值相等,则x 的值是 .11.关于x 的方程03)3(12=+---x x m m 是一元二次方程,则=m .12.设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为 .二、选择题(每小题3分,共30分)1.方程5)3)(1(=-+x x 的解是( )A. 3,121-==x xB. 2,421-==x xC. 3,121=-=x xD. 2,421=-=x x2.关于x 的一元二次方程02322=-+-m x x 的根的情况是 ( )A. 有两个不相等的实根B. 有两个相等的实根C. 无实数根D. 不能确定 3.方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次程是 ( )A. ①和②B. ②和③C. ③和④D. ①和③4.一元二次方程0624)2(2=-+--m mx x m 只有一个实数根,则m 等于( )A. 6-B. 1C. 6-或1D. 25.关于x 的方程0)(242=---ab x b a x 的判别式是( )A.2)(4b a +B. 2)(b a +C. 2)(b a -D. ab b a 4)(2--6.已知0和1-都是某个方程的解,此方程是( )A. 012=-xB. 0)1(=+x xC. 02=-x xD. 1+=x x7.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 ( )A. 27B. 33C. 27和33D.以上都不对8.如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A. 3-≠mB. 3≠mC. 0≠mD. 03≠-≠m m 且9.关于x 的方程0)()(=---x b b x ax 的解为 ( )A. b a ,B.b a ,1 C. b a ,1- D. b a -, 10.已知06522=+-y xy x ,则x y :等于( ) A. 161或 B. 16或 C. 2131或 D. 32或三.按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法)3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法)四. 用适当的方法解方程(每小题4分,共12分)1.036252=-x 2.0223)12(22=-+-+x x3.0)4()52(22=+--x x五.(本题5分)已知)0(04322≠=-+y y xy x ,求yx y x +-的值。
2011全国中考数学真题(一元二次方程【附答案】)
2011全国各省市中考数学真题分类汇编- 一元二次方程(附答案)一、选择题1.(2011广东中考)一元二次方程()22x x x -=-的根是………………【 】A.-1B. 2C. 1和2D. -1和22.(2011武汉市中考)若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是( ) A.4. B.3. C.-4. D.-3.3.(2011A .2=x4.(2011A. 2210x x+= C. (1)(2)x x -+5.(2011送了2070A. (1)x x -= C. 2(1)x x +7.(2011·济宁A.-1 B.08.(2011成都市中考)已知关于的一元二次方程有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥9.(2011威海市中考)关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4±D . 0或810.(2011舟山市中考)一元二次方程0)1(=-x x 的解是( ▲ ) (A )0=x (B )1=x(C )0=x 或1=x(D )0=x 或1-=x11.(2011台湾中考)關於方程式95)2(882=-x 的兩根,下列判斷何者正確?( ) (A)一根小於1,另一根大於3 (B)一根小於-2,另一根大於2(C)兩根都小於12.(2011b 4+之值为何?((A) 2 (B) 513.(2011黄石β满足( )A. 1α<<14.(2011毕节是( )A 、1(160+C 、1(160-15.(2011泉州A. 416.(2011福州A.C.17.(2011(A )218.(2011湘潭市中考)一元二次方程0)5)(3(=--x x 的两根分别为( ) A. 3, -5 B. -3,-5 C. -3,5 D.3,5二、填空题1.(2011苏州市中考)已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于 .2.(2011德州市中考)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.3.(2011泰安市中考)方程03522=++x x 的解是 。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)(1)
一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2- C .2 D .4 2.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-3.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 4.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k ≥-4C .k>-4且k≠0D .k>-4 5.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 6.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 7.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1- D .2,1- 8.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长9.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=10.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x 11.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人 12.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++= D .210x x +-= 二、填空题13.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.14.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.15.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.16.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.17.方程2350x x -=的一次项系数是______.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.当m =___________时,方程(2150m m x mx --+=是一元二次方程.20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.解方程:2250x x +-=.22.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.23.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.24.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.25.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.26.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解. 3.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为722x -±=⨯,符合题意;D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 4.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.6.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.7.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.9.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 10.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.11.B解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.12.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.二、填空题13.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根,∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】 本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 14.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 15.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.16.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 17.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5【分析】根据一元二次方程的一般形式解答.【详解】解:方程2350x x -=的一次项是5x -,其系数是5-.故答案是:5-.【点睛】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.18.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.23.(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --= 2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.24.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 25.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。
九年级数学一元二次方程单元测试卷 (word版,含解析)
九年级数学一元二次方程单元测试卷 (word 版,含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 【解析】试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可;(3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解. 试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0 ∴1x =3或2x =4 . 则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去) 则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形. ①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1= 12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x=90时,“=”成立,所以,当x=90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L.【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.3.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.5.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D,(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).【答案】(1)C(8,8);(2)①S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②点B的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC=AO=8,∠OAC=90°,得出C(8,8)即可;(2)①由旋转的性质得出DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,得出∠ACE=90°,证出四边形OACE是矩形,得出DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,得出BE=OB−OE=m−8,由三角形的面积公式得出S =0.5m2−4m(m>8)即可;b、当点B在线段OE上(点B不与O,E重合)时,BE=OE−OB=8−m,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:7(负值舍去),∴7当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B 的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.6.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.7.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题8.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16, ∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10, ∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.9.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.10.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x ,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x ,依题意得,4000(1-x )2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元 方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用。
新人教版九年级数学一元二次方程单元测试卷.docx
新人教版第二十一章一元二次方程错误 ! 未定义书签。
一、选择题(本大题共8 小题,每小题 3 分,共24 分)每小题只有一个正确选项,把正确选项的代号填在题后的括号内. )1.下列方程中,是一元二次方程的是()A. ( x 3) x x22B. ax 2bx c 0C. 3x 21 2 0D. 2 x21x2.把方程x(x2)5( x2) 化成一般式,则 a 、b、 c 的值分别是()A . 1,3,10B . 1,7,10 C. 1,5,12 D . 1,3,23. 方程8x2( k1) x k 7 0 的一个根为零,则k()A. 1B.3C.4D.-7 164. 若方程2x25x m 0 有两个相等实数根,则m =()A.2B. 0C. 2D.31 85.用配方法解下列方程时,配方错误的是()A . x22x 99 0 化为 ( x 1)2100B . 2x 27 x 4 0 化为 ( x7 )281416C. x28x 9 0 化为 ( x 4) 225 D . 3x 24x 2 0 化为 ( x 2 )210396.方程 (x 5)(x 2) 1的解为()A.5B. - 2C.5 或- 2D.以上都不对7.用换元法解方程 x( x 1)( x 2x 1) 6 ,如果设 x2x y ,则原方程可变形为()A. y2y 6 0B. y2y 6 0C. y 2y 6 0D. y 2y 6 08. 某国在 2007年一月份发生禽流感的养鸡场有100个,后来二、三月份新发生禽流感共有250 个,设二、三月份平均每月禽流感的感染率为x,依题意,列出的方程是:()A . 100(1x) 2250 B. 100(1 x)100(1x) 2250C. 100(1x)2250D. 100(1x)2350二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)9.关于 x 的方程( m2) x m2 2x30 是一元二次方程,那么m =_______________.10. 已知一元二次方程x2mx60 的一个根为3,则另一个根为 ______ , m= ____.11. 用配方法解一元二次方程x28x70时,这个方程可化为(x+____)2=______.12. 当m __________ 时,方程m2x2(2m 1) x10有两个实数根.13. 如果 m 是x2x 1 0的解,那么代数式m32m27 的值为_________.14. 某印刷厂一月份印刷了科技书籍50 万册,第一季度共印182 万册,问二、三月份平均每月的增长率是______________.三、解方程(每小题 5 分,共 15 分)15. x 23x1(用配方法) 16. 2 x27 x 40 用公式法)17. ( x1) 22x( x1)0 (用因式分解法)四、(本大题共 2 小题,每小题 6 分,共12 分)18. 求证:方程2x23(m1) x m 24m70对于任何实数m ,永远有两个不相等的实数根;.19. 若实数x满足( x2 4 x5) 2x2x300,求( x2) 2(x 1) 2的值。
新人教版九年级数学上册《一元二次方程》单元测试卷带答案详细解析
新人教版九年级数学上册《一元二次方程》单元测试卷一、选择题1、下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1) B.+-2=0C.ax2+bx+c=0 D.x2+2x=x2-12、一元二次方程配方后化为()A.B.C.D.3、三角形的两边长分别为4和7,第三边长是方程x2-7x+12=0的解,则第三边的长为() A.3 B.4 C.3或4 D.无法确定4、关于x的方程ax2+bx+c=0,若满足a-b+c=0,。
则方程().A.必有一根为1 B.必有两相等实根 C.必有一根为-1 D.没有实数根。
5、方程x2=5x的根是().A.x1=0,x2=5 B.x1=0,x2=-5 C.x=0 D.x=56、已知是关于的方程的一个根,则()A.-1 B.1 C.1 D.37、若、是一元二次方程的两个根,则的值是()A.-1 B.0 C.1 D.28、一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或149、有一人患流感,经过两轮传染后,共有121人患上了流感,那么每轮传染中平均一个人传染的人数为()A.11人B.10人C.9人D.8人10、白云区蓬莱仙阁景点今年八月份共接待游客25万人次,十月份共接待游客64万人次,设每月的平均增长率为,则可列方程为()A.B.C.D.64(1-)2=25二、填空题11、方程3x(x﹣1)=2(x+2)化成一般形式为_________.12、关于x的方程的一个根是-1,则m=______.13、关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=_____.14、已知x=3是一元二次方程的一个解,那么4a-5的值为__________.15、实数是关于的方程的两根,则点关于原点对称的点的坐标为____________。
16、已知一等腰三角形的底边长和腰长分别是方程的两个实数根,则该等腰三角形的周长是_________17、关于x的方程(k2-4)x2+(k-2)x+3k-1=0,当k=______时为一元一次方程;当k______时为一元二次方程。
【新】九年级上册数学 人教版一元二次方程的单元测试卷
一元二次方程单元测试卷(时间:90分钟 满分:120分) 姓名:一、填空题(每题3分,共30分)1、已知关于x 的方程22(1)(1)20m x m x m -+++-=当m 时,方程为一元二次方程;当m 时,方程是一元一次方程。
2、配方:x 2-3x + = (x- )23、把一元二次方程2(13)(3)21x x x -+=+化成一般形式是:它的二次项系数是 ;一次项系数是 ;常数项是 4、关于x 的方程2320x x m -+=的一个根为-1,则方程的另一个根 m =______ 5、一个两位数等于它的两个数字积的3倍,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可表示为 ,也可表示为 ,由此得到方程 。
6、用换元法解方程x 2+(1x )2+5x +5x -66=0时,如果设x+1x=t ,那么原方程可化为 。
7、关于x 的一元二次方程2(21)20mx m x +--=的根的判别式的值等于4,则m = 。
8、已知12,x x 是方程22340x x +-=的两个根,那么:2212x x += ; 9、已知关于x 的方程x 2+(k 2-4)x +k -1=0的两实数根互为相反数,则k = 10、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为 二、选择题:(每题3分,共24分)11、解下面方程:(1)5222=-x (2)2320x x --=(3)260x x +-=,较适当的方法分别为( )A 、(1)直接开平法方(2)因式分解法(3)配方法B 、(1)因式分解法(2)公式法(3)直接开平方法C 、(1)公式法(2)直接开平方法(3)因式分解法D 、(1)直接开平方法(2)公式法(3)因式分解法 12、方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根 13、下列方程是关于x 的一元二次方程的是( );A 、20ax bx c ++=B 、2112x x+=C 、2221x x x +=-D 、23(1)2(1)x x +=+14、方程(1)(3)5x x +-=的解是 ( );A 、121,3x x ==-B 、124,2x x ==-C 、121,3x x =-=D 、124,2x x =-= 15、某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为 ( )A 、20%B 、30%C 、50%D 、120% 16、以3和1-为两根的一元二次方程是 ( );A 、2230x x +-=B 、2230x x ++=C 、2230x x --=D 、2230x x -+=17、一元二次方程2(2)4260m x mx m --+-=有两个相等的实数根,则m 等于 ( ) A. 6- B. 1 C. 6-或1 D. 218、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
新人教版九年级数学一元二次方程单元测试卷
第二十二章 一元二次方程班级 姓名 成绩 一、选择题(本大题共8小题,每小题3分,共24分) 1.下列方程中,是一元二次方程的是( )A. 2)3(2+=-x x xB.02=++c bx ax C.02132=+-x x232057x +-=2.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A. 10,3,1- B. 10,7,1- C. 12,5,1- D. 2,3,13.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、124.若方程0522=+-m x x 有两个相等实数根,则m =( )A. 2-B. 0C. 2D. 8135.用配方法解下列方程时,配方错误的是( )A .09922=-+x x 化为100)1(2=+x B. 04722=--x x 化为1681)47(2=-x C. 0982=++x x 化为25)4(2=+x D. 02432=--x x 化为910)32(2=-x 6.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-67.用换元法解方程6)1)(1(2=-++x x x x ,如果设y x x =+2,则原方程可变形为( )A. 062=-+y yB. 062=--y y C. 062=+-y y D. 062=--y y8.某国在2007年一月份发生禽流感的养鸡场有100个,后来二、三月份新发生禽流感共有250个,设二、三月份平均每月禽流感的感染率为x ,依题意,列出的方程 是:( )A.250)1(1002=+xB.250)1(100)1(1002=+++x x C.250)1(1002=-x D.350)1(1002=+x 二、填空题(本大题共7小题,每小题3分,共21分) 9.关于x 的方程22(2)30m m xx ---+=是一元二次方程,那么m =_______________.10.已知一元二次方程062=--mx x 的一个根为3,则另一个根为______,m =____.11.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.12.当m__________时,方程01)12(22=+-+x m x m 有两个实数根.13.如果m 是012=-+x x 的解,那么代数式7223-+m m 的值为_________.14.某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是______________.15小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,求这个小组人数 。
人教版九年级数学一元二次方程章节综合测试(Word版有答案)
人教版九年级数学一元二次方程章节综合测试(Word版有答案)(时间:60分钟满分:100分)一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是( )A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=( )A.9 B.3 C.-3 D.3或-34.方程x2+x-1=0的一个根是( )A.1- 5 B.1-52C.-1+ 5 D.-1+525.若m,n是一元二次方程x2-5x+2=0的两个实数根,则mn-m-n的值是( ) A.7 B.-7 C.3 D.-36.已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为( ) A.1 B.-1 C.0 D.-27.如图,在宽为20 m、长为32 m的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求小路的宽.如果设小路的宽为x m,根据题意,所列方程正确的是( )A.(32+x)(20+x)=540B.(32-x)(20-x)=540C.(32+x)(20-x)=540D.(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A.60元B.80元C.60元或80元D.30元9.若2-3是方程x2-4x+c=0的一个根,则c的值是( )A.1 B.3- 3C.1+ 3 D.2+ 310.用配方法解方程x2+x=2,要使方程左边为x的完全平方式,应把方程两边同时( )A.加14B.加12C.减14D.减1211.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根。
人教版九年级数学上册 一元二次方程单元测试题(Word版 含解析)
人教版九年级数学上册 一元二次方程单元测试题(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0. 解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.2.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值; 【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9 【解析】 【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3, 解得,a 1=﹣2,a 2=﹣4, ∴a 的值是﹣2或﹣4; ②∵a ≤x ≤b ,b =﹣3 ∴a =﹣2舍去, ∴a =﹣4, ∴﹣4≤x ≤﹣3, ∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13 x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9. 【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.3.阅读以下材料,并解决相应问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程42210x x -+=,就可以令21x =,则原方程就被换元成2210t t -+=,解得 t = 1,即21x =,从而得到原方程的解是 x = ±1材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:……………………………………(1)利用换元法解方程:()()222312313+-++-=x x x x(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,n c 表示第(n )1-行第 3 个数,请用换元法因式分解:()41-⋅+n n n b a c【答案】(1)x =或x = 或x=-1或x=-2;(2)()41-⋅+n n n b a c =(n 2-5n+5)2 【解析】 【分析】(1)设t=x 2+3x-1,则原方程可化为:t 2+2t=3,求得t 的值再代回可求得方程的解; (2)根据杨辉三角形的特点得出a n ,b n ,c n ,然后代入4(b n -a n )•c n +1再因式分解即可. 【详解】(1)解:令t=x 2+3x-1 则原方程为:t 2+2t=3 解得:t=1 或者 t=-3 当t=1时,x 2+3x-1=1解得:x =或x =当t=-3时,x 2+3x-1=-3 解得:x=-1或x=-2∴方程的解为:x =或x =或x=-1或x=-2 (2)解:根据杨辉三角形的特点得出: a n =n-1(1)(2)2n n n b --= (2)(3)2n n n c --=∴4(b n -a n )•c n +1=(n-1)(n-4)(n-2)(n-3)+1=(n 2-5n+4)(n 2-5n+6)+1 =(n 2-5n+4)2+2(n 2-5n+4)+1=(n 2-5n+5)2 【点睛】本题主要考查因式分解的应用.解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.4.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.5.(本题满分10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、B ,直线CD 与x 轴、y 轴分别交于点C 、D ,AB 与CD 相交于点E ,线段OA 、OC 的长是一元二次方程-18x+72=0的两根(OA >OC ),BE=5,tan ∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴EG2=CG•GP,∴GP=16,∵△CPE与△PCQ是中心对称,∴CH=GP=16,QH=FG=12,∵OC=6,∴OH=10,∴Q(10,﹣12),如图②作MN∥x轴,交EG于点N,EH⊥y轴于点H ∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴CE=15,∵MN=CG=,可以求得PH=3﹣6,同时可得PH=QR,HE=CR ∴Q(﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.6.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802BBCD BDC ︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠ 9059=︒-︒ 31=︒.(2)①BD BC a ==, ∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴22a x -±=a =- a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根. ②∵AE AD =, 又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+,∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.7.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.8.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a为腰长及底边长两种情况考虑是解题的关键.9.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y关于x的函数表达式;(2)找准等量关系,正确列出一元二次方程.10.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC⊥s时,PQ∥BC.(2)不存在某时刻t,使线段PQ恰好把△ABC 的面积平分.(3)存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为137-cm2.【解析】(1)证△APQ∽△ABC,推出APAB=AQAC,代入得出10210t-=28t,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,得出方程-5 6t2+6t=12×12×8×6,求出此方程无解,即可得出答案.(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、OD、和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8-185t)2-(6-65t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP的面积的2倍,进行计算即可.解:(1)BP=2t,则AP=10﹣2t.∵PQ∥BC,∴△APQ∽△ABC,∴APAB=AQAC,即10210t-=28t,解得:t=20 9,∴当t=209时,PQ∥BC.(2)如答图1所示,过P点作PD⊥AC于点D.∴PD∥BC,∴F ,即B ,解得6PD 6-5t =. 216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t .如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC,∴D ,即COD ∆,解得:OC ,h ,∴QD=AD﹣AQ=t .在Rt△PQD 中,由勾股定理得:QD 2+PD 2=PQ 2,即h ,化简得:13t 2﹣90t+125=0,解得:t 1=5,t 2=t ,∵t=5s 时,AQ=10cm >AC ,不符合题意,舍去,∴t=52. 由(2)可知,S △AQP =54∴S 菱形AQPQ′=2S △AQP =2×258=32+cm 2.所以存在时刻t ,使四边形cm 2. “点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。
新人教版初中数学九年级数学上册第一单元《一元二次方程》测试(有答案解析)(6)
一、选择题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-2.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -= 3.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 4.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,22x = 5.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-36.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7 7.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 8.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .89.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( ) A .0m ≠ B .14m C .14m < D .14m > 10.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 11.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4 D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8 B .3,4 C .4,3 D .4,8二、填空题13.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)14.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.15.一元二次方程x 2=2x 的解为__________16.已知关于x 的方程2x m =有两个相等的实数根,则m =________.17.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____. 20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.22.解方程:(1)x 2+10x +9=0;(2)x 2=14. 23.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 24.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?25.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).26.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.B解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.4.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 5.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=, 解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.6.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0,解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x的方程()32a x4x10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a∆--⨯-⨯-=+>解得:1a≥-且a≠3故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.8.D解析:D【分析】设每轮传染中平均一个人传染了x人,则一轮传染后共有(1+x)人被传染,两轮传染后共有[(1+x)+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x人,由题意,得:(1+x)+x(1+x)=81,即x2+2x﹣80=0,解得:x1=8,x2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D.【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.9.B解析:B【分析】由方程有实数根即△=b2﹣4ac≥0,从而得出关于m的不等式,解之可得.【详解】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:14 m,故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 10.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 11.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.12.D解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题13.1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解 解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 14.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.15.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x(x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=2x,x2-2x=0,x(x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.16.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】=有两个相等的实数根,解:∵关于x的方程2x m∴关于x的方程20-=有两个相等的实数根,x m∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.17.54(1-x)2=42【分析】根据题意经过两次的钢量减少最后的结果应该是原来的(1-x)2倍列出方程即可【详解】解:根据题意有:54(1-x)2=42故答案为:54(1-x)2=42【点睛】本题考查解析:5.4(1-x)2=4.2【分析】根据题意,经过两次的钢量减少,最后的结果应该是原来的(1-x )2倍,列出方程即可.【详解】解:根据题意有:5.4(1-x )2=4.2故答案为:5.4(1-x )2=4.2【点睛】本题考查一元二次方程的实际应用问题,属于基础题.18.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)12x x ==2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,524b x a -±±∴==,1255,44x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.22.(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a=1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.24.(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数; (3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.25.(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 26.(1)14k >-;(2)7 【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)根据一元二次方程根与系数的关系可求解.【详解】(1)∵一元二次方程有两个不相等的实数根,∴()2221410k k +-⨯⨯>, 解得14k >-; (2)当1k =时,原方程为2310x x ++=,∵1x ,2x 是方程的根,∴123x x +=-,121=x x ,∴()22212121227x x x x x x +=+-=. 【点睛】本题主要考查一元二次方程根的判别式及韦达定理,熟练掌握一元二次方程根的判别式及韦达定理是解题的关键.。
【初三数学】广州市九年级数学上(人教版)第21章一元二次方程单元检测试题(含答案解析)
人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)一、选择题 (每题3分,共30分)1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .m= -2D .2m ≠±2.一元二次方程()224260m x mx m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 3.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 4.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 5.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠0 6.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .3 7.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.28.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( ) A.9cm 2B.68cm 2C.8cm 2D.64cm 29.县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产x %,则第三季度化肥增产的吨数为( )A 、 2(1)a x +B 、2(1)a x +%C 、2(1%)x +D 、2(%)a a x +10. 一个多边形有9条对角线,则这个多边形有多少条边( )A 、6B 、7C 、8D 、9二、填空题 (每题3分,共30分)11.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12.一元二次方程(x +1)(3x -2)=10的一般形式是 . 13.方程23x x =的解是____14.已知两个连续奇数的积是15,则这两个数是______ 15.已知4)2)(1(2222=-+-+y x y x ,则22x y +的值等于 .16.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 18.k = 时,二次三项式x 2-2(k +1)x +k +7是一个x 的完全平方式.19.当k <1时,方程2(k +1)x 2+4kx +2k -1=0的根的情况为: .20.已知方程x 2-b x + 22 = 0的一根为b = ,另一根为= .三、解答题21.解方程(每小题5分,共20分)① 2430x x --= ② 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=022.(本题10分)有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.23.(本题10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(本题10分)一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽.25.(本题10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(7)一、精心选一选,慧眼识金(每小题3分,共30分). 1.下列方程中,是一元二次方程的是( ).A .230x x y ++=B .2(2)x x x x -=+ C .221132x x ++=D .2150x x++= 2.方程(3)x x x +=的根是( ).A .3x =-B .0x =C .D .0x =或3x =-3.一元二次方程220x x -+=的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根 4.用配方法解方程2410x x ++=,经过配方可得到( ).A .()223x += B .()225x += C .()223x -=D .()225x -=5判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围是( ). A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25 <x <3.266.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ).A .1B .5C .5-D .67.关于x 的一元二次方程230x ax a --=的一个根为6,另一个根为( ).A .2B .2-C .6-D .48.有一个面积为16 cm 2的梯形,它的一条底边长为3 cm ,另一条底边长比它的高长1c m ,若设这条底边长为x cm ,依据题意,列出方程整理后得( ).A .22350x x +-=B .22700x x +-=3x =C .22350x x --=D .22700x x -+=9.方程的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .15C .12或15D .不能确定10.某商场销售一批名牌衬衫,平均每天可出售20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,经调查发现:如果每件衬衫每降低1元,则商场平均每天多售出2件,若商场平均每天要盈利1200元,则每件衬衫应降价( ). A .10元 B .20元 C .25元 D .10元或20元 二、耐心填一填,一锤定音(每小题3分,共30分)11.把方程()()42213-+=-x x x 化成一元二次方程的一般形式为 ,它的二次项系数、一次项系数以及常数式的和为 . 12.方程是一元二次方程,则m 的值为________.13.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的平均年增长率相同,则其增长率为_______. 14.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为:2()2m x +=__________. 15.若关于的方程有两个实数根相等,则__________. 16.小亮在写作业时,一不小心,把方程23x-80x -=的一次项x 前的数字被墨水玷污了,但从题的条件中,他知道方程的一个解是2x =,请问你能帮助小亮求出被玷污的数字是________.17.在实数内定义运算“”,其法则为:,方程(43)的解为 .18.若两个连续偶数的积是288,则这两个数的和等于 .19.已知实数x 满足2(1)4(1)120x x ----=,则代数式1x -的值为______.20.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意一个实数对 (a ,b )进入其中时,会得到一个新的实数:21a b +-,例如把(3,-2)放入其中,就会得到32+(-2)-1=6. 现将实数对(m ,2m -)放入其中,得到实数2,则m 的值为___________.三、细心做一做,马到成功(共60分) 21.(每小题4分,共12分)解下列方程:(1) 2235x x +-=(2)2(53)40x +-= (3)29180x x -+=22(2)(3)20m m xm x --+--=x ()24110x k x -++=k =⊕22a b a b ⊕=-⊕⊕24x =2)2)(113(=--x x22.(6分)当x 为何值时,代数式562++x x 的值与代数式1-x 的值相等?23.(7分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?24.(8分)已知关于x 的方程222(1)0x m x m -++=.(1)当m 取何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.25.(8分)已知关于x 的方程2210x kx +-=. (1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求k 值及方程的另一个根.26.(9分)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分人教版九年级数学上册第21章一元二次方程单元检测题(有答案)一.选择题(共10小题,满分30分,每小题3分) 1.下列方程中,属于一元二次方程是( ) A .2x 2﹣y ﹣1=0 B .x 2=1 C .x 2﹣x (x +7)=0D .2.关于x 的一元二次方程x 2﹣2x +a 2﹣1=0有一根为1,则a 的值是( )A.2 B.C.±D.±13.下列实数中,是方程x2﹣4=0的根的是()A.1 B.2 C.3 D.44.用配方法解一元二次方程x2﹣4x﹣3=0,下列变形正确的是()A.(x﹣4)2=﹣3+16 B.(x﹣4)2=3+16C.(x﹣2)2=3+4 D.(x﹣2)2=﹣3+45.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.6.方程(2x﹣3)(x+2)=0的解是()A.x=﹣B.x=2C.x1=﹣2,x2=D.x1=2,x2=﹣7.若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 8.已知方程x2﹣4x+k=0有一个根是﹣1,则该方程的另一根是()A.1 B.0 C.﹣5 D.59.某农机厂四月份生产零件40万个,第二季度共生产零件162万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.40(1+x)2=162B.40+40(1+x)+40(1+x)2=162C.40(1+2x)=162D.40+40(1+x)+40(1+2x)=16210.与去年同期相比我国石油进口量增长了a%,而单价增长了%,总费用增长了15.5%,则a=()A.5 B.10 C.15 D.20二.填空题(共8小题,满分24分,每小题3分)11.将一元二次方程3(x+2)2=(x+1)(x﹣1)化为ax2+bx+c=0(a≠0)的形式为.12.a是方程x2﹣x=1的一个根,则2a2﹣2a+6的值是.13.用配方法解方程x2+x﹣=0时,可配方为,其中k=.14.观察算式×,则它的计算结果为.15.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.16.如果关于x的方程x2+kx+k2﹣3k+=0的两个实数根分别为x1,x2,那么的值为.17.2017年全国的快递业务量为401亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,若2019年的快递业务量达到620亿件,设2018年与2019年这两年的平均增长率为x,则可列方程为.18.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是m.三.解答题(共8小题,满分66分)19.(8分)用适当的方法解方程:(1)x2+4x+3=0(2)7(x﹣5)=(x﹣5)220.(8分)已知a是方程x2﹣2x﹣4=0的根,求代数式a(a+1)2﹣a(a2+a)﹣3a ﹣2的值.21.(8分)若方程x2+(m2﹣1)x+m=0的两个实数根互为相反数,求m的值.22.(8分)已知x1,x2是方程2x2﹣5x+1=0的两个实数根,求下列各式的值:(1)x1x22+x12x2(2)(x1﹣x2)223.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0(1)求证:无论k为何值,方程有两个不相等的实数根;(2)若方程的两根之和x1+x2=7,求方程的两根x1,x2.24.(8分)关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.25.(8分)家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?26.(10分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品次降价的百分率;(2)若该种品进价为300元/件,两次降价后共售出此种品100件,为使两次降价销售的总利润不少于3500元,第一次降价后至少要售出该种商品多少件?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.2.解:∵将x=1代入x2﹣2x+a2﹣1=0,∴1﹣2+a2﹣1=0,∴a=±,∵△=4﹣4(a2﹣1)=8﹣4a2,∴当a=±时,△=0,满足题意,故选:C.3.解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.4.解:∵x2﹣4x﹣3=0,∴x2﹣4x=3,∴x2﹣4x+4=4+3,∴(x﹣2)2=7,故选:C.5.解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.6.解:(2x﹣3)(x+2)=0,x+2=0,2x﹣3=0,x=﹣2,x2=,1故选:C.7.解:当k=0时,方程变形为﹣4x﹣2=0,解得x=﹣;当k≠0时,△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,综上所述,k的范围为k≥﹣2.故选:B.8.解:设该方程的另一根为m,依题意,得:m﹣1=4,解得:m=5.故选:D.9.解:依题意得五、六月份的产量为40(1+x)、40(1+x)2,∴40+40(1+x)+40(1+x)2=162.故选:B.10.解:设去年的石油进口量是“x”、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+%)y,由题意,知(1+a%)x•(1+%)y=xy(1+15.5%)解得a=10(舍去负值)故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:3(x+2)2=(x+1)(x﹣1)3x2+12x+12=x2﹣12x2+12x+13=0.故答案是:2x2+12x+13=0.12.解:由题意可知:a2﹣a=1,∴原式=2(a2﹣a)+6=2×1+6=8,故答案为:813.解:∵x2+x﹣=0∴(x2+2x﹣5)=0,∴[(x+1)2﹣6]=0,∵可配方为,∴k=﹣6故答案为:﹣6.14.解:两数分别为:,,由两数的形式可知该两个数是方程20x2+19x+4=0的两根,∴两根之积为:=,∴原式=,故答案为:15.解:设x2+3x=y,方程变形得:y2+2y﹣3=0,即(y﹣1)(y+3)=0,解得:y=1或y=﹣3,即x2+3x=1或x2+3x=﹣3(无解),故答案为:1.16.解:∵方程x2+kx+k2﹣3k+=0的两个实数根,∴b2﹣4ac=k2﹣4(k2﹣3k+)=﹣2k2+12k﹣18=﹣2(k﹣3)2≥0,∴k=3,代入方程得:x2+3x+=(x+)2=0,解得:x1=x2=﹣,则=﹣.故答案为:﹣.17.解:设2018年与2019年这两年的平均增长率为x,由题意得:401(1+x)2=620,故答案是:401(1+x)2=620.18.解:设小道进出口的宽度为x米,依题意得(40﹣2x)(26﹣x)=864,整理,得x2﹣46x+88=0.解得,x1=2,x2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故答案为:2.三.解答题(共8小题,满分66分)19.解:(1)∵x2+4x+3=0,∴(x+1)(x+3)=0,∴x=﹣1或x=﹣3;(2)∵7(x﹣5)=(x﹣5)2∴(x﹣5)2﹣7(x﹣5)=0,∴(x﹣5)(x﹣5﹣7)=0,∴x=5或x=12;20.解:a(a+1)2﹣a(a2+a)﹣3a﹣2=a3+2a2+a﹣a3﹣a2﹣3a﹣2=a2﹣2a﹣2∵a是方程x2﹣2x﹣4=0的根,∴a2﹣2a﹣4=0,∴a2﹣2a=4,∴原式=4﹣2=2.21.解:∵x2+(m2﹣1)x+m=0的两个实数根互为相反数,∴m2﹣1=0,∴m=1或﹣1,当m=1时,方程为x2+1=0,方程无解,故所求.故m的值为﹣1.22.解:x1+x2=,x1x2=,(1)原式=x1x2(x1+x2)=×=;(2)原式=(x1+x2)2﹣4x1x2=()2﹣4×=.23.(1)证明:△=[﹣(2k+1)]2﹣4(k2+k)=1>0,所以无论k为何值,方程总有两个不相等的实数根;(2)解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+k=0的两根之和x1+x2=7,∴2k+1=7,解得k=3,则原方程即为x2﹣7x+12=0,解得x1=3,x2=4.24.解:(1)△=(﹣m)2﹣4×2×n,∵m﹣n=4,∴n=m﹣4,∴△=m2﹣8(m﹣4)=m2﹣8m+32=(m﹣4)2+16,∵(m﹣4)2≥0,∴△>0,∴方程有两个不相等的实数根;(2)根据题意得△=(﹣m)2﹣4×2×n=0,当n=2时,m2﹣16=0,解得m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,解得x1=x2=1;当m=﹣4时,方程变形为2x2+4x+2=0,解得x1=x2=﹣1.25.解:设每件衬衣降价x元,则平均每天能售出(30+3x)件,依题意,得:(160﹣100﹣x)(30+3x)=3600,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,∵为了尽快减少库存,∴x=30.答:每件衬衣应降价30元.26.解:(1)设该种商品每次降价的百分率为x,根据题意得:500(1﹣x)2=320,解得:x1=0.2=20%,x2=1.8(舍去).答:该种商品每次降价的百分率为20%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据题意得:[500×(1﹣20%)﹣300]m+(320﹣300)(100﹣m)≥3500,解得:m≥18.因为m是整数,所以m最小值是19.答:第一次降价后至少要售出该种商品19件.人教新版九年级数学上第21章一元二次方程单元练习试题(含答案)一.选择题(共14小题)1.下列方程中,是一元二次方程的是()A.x2﹣4=0 B.x=C.x2+3x﹣2y=0 D.x2+2=(x﹣1)(x+2)2.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C.D.3.若2是关于x的方程x2﹣(m﹣1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的长,则△ABC的周长为()A.7或10 B.9或12 C.12 D.94.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0 B.a≥0 C.a>0 D.a<05.用配方法解方程x2﹣4x﹣9=0时,原方程应变形为()A.(x﹣2)2=13 B.(x﹣2)2=11 C.(x﹣4)2=11 D.(x﹣4)2=13 6.已知a,b,c满足4a2+2b﹣4=0,b2﹣4c+1=0,c2﹣12a+17=0,则a2+b2+c2等于()A.B.C.14 D.20167.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,08.点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,则经过点P的正比例函数图象一定过()象限.A.一、三B.二、四C.一D.四9.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)10.关于x的方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.m>B.m<﹣C.m=D.m<11.已知m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,且满足+1=,则b 的值为()A.3 B.3或﹣1 C.2 D.0或212.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=90013.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)14.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有()A.500(1﹣2x)=320 B.500(1﹣x)2=320C.500()2=320 D.500(1﹣)2=320二.填空题(共4小题)15.若关于x的一元二次方程ax2+2ax+c=0有一个根是0,此时方程的另一个根是16.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.17.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.18.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.三.解答题(共5小题)19.选择合适的方法解一元二次方程(1)x2﹣x=1;(2)(2x﹣1)2=9;(3)3y(y﹣1)=2y﹣2;(4)(x﹣3)2+x2=9;(5)x2﹣6x﹣2=0;(6)x2+2x+10=0.(7)x2+10x+21=0 (8)7x2﹣x﹣5=0 (9)(2x﹣1)2=(3﹣x)2(10)x2+2x=0.20.关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.21.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m 的值.22.如图,将一幅宽20cm,长30cm的图案进行装裱,装裱后的整幅画长与宽的比与原画的长宽比相同,四周装裱的面积是原图案面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?23.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?参考答案一.选择题(共14小题)1.解:A、x2﹣4=0是一元二次方程,符合题意;B、x=不是整式方程,不符合题意;C、x2+3x﹣2y=0是二元二次方程,不符合题意;D、x2+2=(x﹣1)(x+2)整理得:x﹣4=0,是一元一次方程,不符合题意,故选:A.2.解:∵a是方程2x2﹣4x﹣2019=0的一个根,∴2a2﹣4a﹣2019=0,∴a2﹣2a=,故选:C.3.解:将x=2代入方程得:4﹣2(m﹣1)+m+2=0,解得:m=8,则方程为x2﹣7x+10=0,即(x﹣5)(x﹣2)=0,解得:x=5或x=2,当三角形的三边为2、2、5时,2+2<5,不能构成三角形;当三角形的三边为5、5、2时,三角形的周长为5+5+2=12,综上所述,三角形的周长,12.观察选项,选项C符合题意.故选:C.4.解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选:B.5.解:∵x2﹣4x=9,∴x2﹣4x+4=9+4,即(x﹣2)2=13,故选:A.6.解:由题意,知4a2+2b﹣4+b2﹣4c+1+c2﹣12a+17=0,整理,得(b2+2b+1)+(4a2﹣12a+9)+(c2﹣4c+4)=0,所以(b+1)2+(2a﹣3)2+(c﹣2)2=0,所以b+1=0,2a﹣3=0,c﹣2=0,所以b=﹣1,a=,c=2.故a2+b2+c2=+1+4=.故选:B.7.解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0,x+4=0,x1=6.x2=﹣4,∵点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,∴P(6,﹣4)或(﹣4,6),故经过点P的正比例函数图象一定过二、四象限.故选:B.9.解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.10.解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=m,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,解得m<.故选:D.11.解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,∴m+n=﹣(2b+3),mn=b2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b=3或﹣1,当b=3时,方程为x2+9x+9=0,此方程有解;当b=﹣1时,方程为x2+x+1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b=3,故选:A.12.解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.13.解:设2018年和2019年第一季度营收入的平均增长率为x,根据题意可得:(1+x)2=(1+22%)(1+30%).故选:D.14.解:设该店春装原本打x折,依题意,得:500•()2=320.故选:C.二.填空题(共4小题)15.解:把x=0代入原方程得出c=0,∴方程为ax2+2ax=0,∴ax(x+2)=0,∴该方程的另一个根为﹣2.故答案为:﹣2.16.解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.17.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,x1=3,x2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6,所以这个三角形的周长为3+6+6=15.故答案为:15.18.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.三.解答题(共5小题)19.解:(1)x2﹣x=1,x2﹣x﹣1=0,a=1,b=﹣,c=﹣1,∴x=,,(2)(2x﹣1)2=9,2x﹣1=±3,2x=1±3,x=,x1=﹣1,x2=2,(3)3y(y﹣1)=2y﹣2,3y(y﹣1)﹣2(y﹣1)=0,(y﹣1)(3y﹣2)=0,,(4)(x﹣3)2+x2=9,x2﹣6x+9+x2﹣9=0,2x2﹣6x=0,x2﹣3x=0,x(x﹣3)=0,x1=3,x2=0,(5)x2﹣6x﹣2=0;x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,,(6)x2+2x+10=0,a=1,b=2,c=10,△=b2﹣4ac=﹣4×1×10=20﹣40<0,∴此方程无实数根,(7)x2+10x+21=0,(x+3)(x+7)=0,x1=﹣3,x2=﹣7,(8)7x2﹣x﹣5=0,a=7,b=﹣,c=﹣5,△=﹣4×7×(﹣5)=6+140=146,x=,,(9)(2x﹣1)2=(3﹣x)2,2x﹣1=±(3﹣x),2x﹣1=3﹣x,2x﹣1=﹣3+x,,(10)x2+2x=0,x(x+2)=0,x1=﹣2,x2=020.解:(1)∵关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△=(2k﹣3)2﹣4k2=﹣12k+9>0,解得:k<.(2)∵关于x的方程x2+(2k+3)x+k2=0有两个实数根α、β,∴α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k﹣3=6,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,则(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.21.解:(1)设方程的另一个根是x1,那么x1+1=﹣2,∴x1=﹣3;(2)∵x1、x2是方程的两个实数根,∴x1+x2=﹣2,x1x2=,又∵x12+x22+2x1x2﹣x12x22=0,∴(x1+x2)2﹣(x1x2)2=0,即4﹣=0,得m=±4,又∵△=42﹣8m >0,得m <2, ∴取m =﹣4.22.解:由题意知长:宽=3:2,因装裱后的整幅画长与宽的比与原画的长宽比相同,故上下边衬和左右边衬的比例也为3:2,所以可设上下边衬的宽度为3xcm ,左右边衬的宽度为2xcm , 则装裱后的面积为:(20+4x )(30+6x ),且原面积为:30×20, 所以四周装裱的面积为:(20+4x )(30+6x )﹣30×20, 根据题意列方程:(20+4x )(30+6x )﹣30×20=×30×20整理得:x 2+10x ﹣11=0, 解得:x 1=﹣11(舍去),x 2=1, 所以上下边衬为3cm ,左右边衬为2cm ,答:应按上下边衬为3cm ,左右边衬为2cm 来进行设计. 23.解:设竖条的宽度是2xcm ,横条的宽度是3xcm ,则 (20﹣6x )(30﹣6x )=(1﹣)×20×30解得x 1=1,x 2=(舍去).2×1=2(cm ),3×1=3(cm ). 答:横条宽3cm ,竖条宽2cm .人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1BC.D.8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可). 10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 . 13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①12x =,121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;。
人教版九年级数学上册一元二次方程单元测试 答案
人教版九年级数学上册一元二次方程单元测试答案初中数学试卷一元二次方程单元测试姓名:____________ 班级:____________ 成绩:______________测试时间:9月20日考试时间:100分钟满分:120一、选择题(每小题3分,共30分)1、下列方程中一定是关于x的一元二次方程的是(C)A、5/2x-1/x+2=。
B、ax2+bx+c=02x。
2C、x2+2x=0.D、x3+3x=22、一元二次方程x2-2x-1=0的根的情况为(B)A.有两个相等的实数根。
B.有两个不相等的实数根C.只有一个实数根。
D.没有实数根3、用配方法解方程x2-4x+2=0,下列配方正确的是(A)A.(x-2)2=2.B.(x+2)2=2.C.(x-2)2=-2.D.(x-2)2=64、若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是(C)A.m-1.C.m>1.D.m<-15、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为(B)1mA.600m2.B.551m2.C.550m2.D.500m26、方程x2-4=0的根是(A)A.x=±2.B.x=-2.C.x=2.D.没有实数根30m第5题1m20m7、解方程x(x+2)=3(x+2),最适当的解法是(C)A.直接开平方法。
B.配方法。
C.因式分解法。
D.公式法8、某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为x,则列出方程正确的是(D)A.580(1+x)=1185.B.1185(1+x)=580C.580(1-x)=1185.D.1185(1-x)=5809、三角形两边长分别为3和6,第三边是方程(x-2)(x-4)=0的解,则这个三角形的周长是(B)A、11.B、13.C、11或13.D、不能确定10、关于x的方程x2+2(k+2)x+k2=0的两个实数根之和大于-4,则k的取值范围是(D)A.k>-1.B.k<0.C.-1<k<0.D.-1≤k<0二、填空题(每小题4分,共24分)已知每天的固定成本为3000元,问涨价多少元时,能够使该水果批发商场的利润最大化?解:设涨价x元,则每千克的售价为10+x元。
【5套打包】汕头市初三九年级数学上(人教版)第21章《一元二次方程》单元检测试卷及答案
人教版数学九年级上册第二十一章一元二次方程单元检测试题一、选择题1.关于x的方程ax2-3x+2=0是一元二次方程,则()A.a>0B.a≥0C.a≠0D.a=12.把方程(8-2x)(5-2x)=18,化成一般形式后,二次项系数、一次项系数分别为()A.4、-26B.-4、26C.4、22D.-4、-223.用配方法解下列方程,其中应在方程左右两边加上4的是()A. x2-2x=5B.2x2-4x=5C.x2+4x=5D.x2+2x=54.已知方程x2+bx+a=0有一个根是-a(a≠0),则下列代数式的值恒为常数的是()A.abB.abC.a+bD.a-b5.下列一元二次方程中,有实数根的是()A.x2-x+1=0B.x2-2x+3=0C.x2+x-1=0D.x2+4=06. 方程(x+1)(x-3)=5 的解是()A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1,x2=3D.x1=-4,x2=27.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且k≠0 C.k<-14D.k≥-14且k≠08.关于x的方程ax2-(a+2)x+2=0只有一解(相同解算一解),则a的值为()A.a=0B.a=2C.a=1D.a=0或a=29.设a,b是方程x2+x-2020=0的两个实数根,则a2+2a+b的值为()A.2017B.2018C.2019D.202010.有一个面积为16cm2的梯形,它的一条底边长为3cm,另一底边长比它的高线长1cm,若设这条底边长为x cm,依题意,列出方程整理得()A.x2+2x-35=0B.x2+2x-70=0C. x2-2x-35=0D.x2-2x+70=0二、填空题11.已知一元二次方程有一个根是2,那么这个方程可以是___________________________(填上你认为正确的一个方程即可).12.已知实数x满足4x2-4x+l=0,则代数式2x+12x的值为___________________________.13.小华在解一元二次方程x2-4x=0时,只得出一个根是x=4,则被他漏掉的另一个根是x=___________________________.14.当a___________________________时,方程(x-b)2=-a有实数解,实数解为___________________________.15.如果α,β是一元二次方程x2+3x-1=0的两个根,那么α2+2α-β的值是___________________________.16.若(x2-5x+6)2+|x2+3x-10|=0,则x=___________________________.17.若一元二次方程x2-2x-a=0无实数根,则一次函数y=(a+1)x+a-1的图象一定不经过第___________________________象限.18.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了___________________________元钱?三、解答题19.法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +l =0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.20.关于x 的一元二次方程(x -2)(x -3)=m 有两个不相等的实数根x 1、x 2,试确定m 的取值范围.若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.21.在直角坐标系内有一点A (2,5)另有一点B 的纵坐标为-1,A 与B 之间的距离为10,求点B 的坐标.22.一个农户用24米长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍(如图所示),要使鸡舍的总面积为36m 2,那么每个鸡舍的长、宽各应是多少?23.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC 方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,△MON 的面积为14m 2?24.已知关于x 的一元二次方程x 2+4x +m -1=0.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根; (2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值. 25.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.26.已知关于x 的两个一元二次方程:方程:x 2+(2k -1)x +k 2-2k +132=0…①;方程:x 2-(k +2)x +2k +94=0…②. (1)若方程①、②都有实数根,求k 的最小整数值; (2)若方程①和②中只有一个方程有实数根;试判断方程①,②中,哪个没有实数根,并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.参考答案:一、1.C ;2.D ;3.C ;4.D ;5.D ;6. B. 7.A ;8.D.点拨:当a =0时,方程为一元一次方程O DCB A-2x +2=0,此时有实数根x =1;当a ≠0时,方程为二次方程.由相同解,得Δ=[-(a +2)]2-8a =(a -2)2=0,解得a =2 ,此时方程有实数根x =1.由此,a =0或a =2时关于x 的方程ax 2-(a +2)x +2=0只有一解,故应选D ;9.C.点拨:因为a ,b 是方程x 2+x -2020=0的两个实数根,所以a 2+a -2020=0,a +b =-1,即a 2=2020-a ,所以a 2+2a +b =2020-a +2a +b =2020+a +b =2020-1=2019;10.A.二、11.答案不惟一.如,x 2-2x =0,等等;12.2.点拨:显然x ≠0,所以在方程两边同除以2x ,得2x -2+12x =0,所以2x +12x=2;13.0;14.≤0、x =b ;15.4;16.2;17.一;18.700.三、19.答案不惟一.如,①适合用求根公式法,解得x 1,2=32±;②适合用直接开平方法,解得x 1,2=1x 1=0,x 2=3;④适合用配方法,解得x 1,2=120.将关于x 的一元二次方程(x -2)(x -3)=m 转化为x 2-5x +6-m =0.因为关于x 的一元二次方程有两个不相等的实数根,所以(-5)2-4×1×(6-m )>0,解得m >-14.又因为x 1、x 2是方程的两个不等实数根,所以x 1+x 2=5,x 1x 2=6-m ,而x 1x 2-x 1-x 2+1=0,所以6-m -5+1=0,解得m =2.21.(-6,-1)或(10,-1). 22.长4米,宽3米.23.设出发后x 秒时,S △MON =14.①当x <2时,点M 在线段AO 上,点N 在线段BO 上,则12(4-2x )(3-x )=14,解得x 1,2s ).因为x <2,所以x s ).②当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,则12(2x -4)(3-x )=14,解得x 1=x 2=52(s ).③当x >3时,点M 在线段OC 上,点N 在线段OD 上,则12(2x -4)(x -3)=14,解得x =52+(s ).综上所述,出发后52±s ,或52s 时,△MON 的面积为14m 2. 24.(1)m <5,此时的答案不惟一.如,取m =4等等.(2)如取m =4,方程x 2+4x +3=0,人教版九年级数学上第21章一元二次方程单元培优试题(含答案)一.选择题1.一元二次方程(x -5)2=x -5的解是( )A .x =5B .x =6C .x =0D .x 1=5,x 2=62.已知3是关于x 的方程x 2-2a+1=0的一个解,则2a 的值是( ) (A)11 (B)12 (C)13 (D)143.若关于x 的一元二次方程(x+1)(x ﹣3)=m 有两个不相等的实数根,则m 的最小整数值为( )A .﹣4B .﹣3C .﹣2D .34.用配方法解方程0142=++x x ,配方后的方程是( )A . ()322=+xB . ()322=-xC. ()522=-xD . ()522=+x5.若|x 2-4x+4|与互为相反数,则x+y 的值为( ) (A)3 (B)4 (C)6 (D)96.已知关于x 的方程kx 2+(2k+1)x+(k ﹣1)=0有实数根,则k 的取值范围为( ) A .k ≥﹣B .k >﹣C .k ≥﹣且k ≠0D .k <﹣7.将一块正方形铁皮的四角各剪去一个边长为3 cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm 3,则原铁皮的边长为( ) A .10 cm B .13 cm C .14 cm D .16 cm8.下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x=a;②方程2x(x-1)-x+1=0的解是x=1; ③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19.其中答案完全正确的题目个数是( ) (A)0 (B)1 (C)2(D)3二.填空题9.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率 .10.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为________________.11设m,n 分别为一元二次方程x 2+2x-2 020=0的两个实数根,则m 2+3m+n= . 12.已知实数s ,t 满足s+t 2=1,则代数式﹣s 2+t 2+5s ﹣1的最大值等于 .13.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.14.如果(a 2+b 2+1)(a 2+b 2-1)=63,那么a 2+b 2的值为 . 三.解答题15.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率; (2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值. 16.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.17. 阅读下面的例题:解方程:x 2-|x|-2=0.18. 某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月成本不超过1万元的情况下,使得月销售利润达到8 000元,销售单价应定为多少?答案一.选择题 1. D 2. C. 3. B . 4. D 5. A. 6. A . 7. D 8. A.二.填空题 9. 20%.10. 2x 2-3x -5=0 11 2 018 12. 3. 13. 18 14. 8三.解答题 15. 解:(1)设每次下降的百分率为a ,根据题意,得:50(1﹣a )2=32,解得:a=1.8(不合题意,舍去)或a=0.2. 答:每次下降的百分率为20%;(2)设一次下降的百分率为b ,根据题意,得: 50(1﹣b )﹣2.5≥40, 解得 b ≤0.15.答:一次下降的百分率的最大值为15%.16. ∵a 是方程x 2-2013x+1=0的一个根,∴a 2-2013a+1=0, ∴a 2=2013a-1,∴原式=2013a-1-2012a+1120132013+-a=a+ a 1-1= a a 12+-1=aa 112013+--1=2013-1=2012. 17.解:(1)当x ≥0时,原方程化为x 2-x-2=0,解得x 1=2,x 2=-1(不合题意,舍去).(2)当x<0时,原方程化为x 2+x-2=0,解得x 1=1(不合题意,舍去),x 2=-2, 所以原方程的根是x 1=2,x 2=-2. 请参照例题人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(8)一、精心选一选!(每题3分,共30分)1.关于x 的一元二次方程(m +1)21m x++4x +2=0的解为( )A.x 1=1,x 2=-1B. x 1=x 2=-1C. x 1=x 2=1D.无解2.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A.(x -2)2=2B. (x +2)2=2C. (x -2)2=-2D. (x -2)2=6 3.一元二次方程3x 2-x =0的解是( ) A .x =0 B .x 1=0,x 2=13 C .x 1=0,x 2=3 D .x =134.已知关于x 的一元二次方程x 2-m =2x 有两个不相等的实数根,则m 的取值范围是( ) A . m >-1 B . m <-2 C .m ≥0 D .m <05. 一元二次方程x 2+x +2=0的根的情况是( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根 6.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥m C. 43>m 且2≠m D. 且2≠m 7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-= 8.关于x 的一元二次方程x 2﹣(k ﹣1)x ﹣k +2=0有两个实数根x 1,x 2,若(x 1﹣x 2+2)(x 1﹣x 2﹣2)+2x 1x 2=﹣3,则k 的值( ) A .0或2 B .﹣2或2 C .﹣2 D .2 9.今年“十一”黄金周我市各旅游景点共接待游客约334万人,旅游总收入约9亿元.已知我市前年“五一”黄金周旅游总收入约6.25亿元,那么这两年同期旅游总收入的年平均增长率约为( )A.12% B.16% C.20% D.25%10.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填!(每题3分,共30分) 11. 方程x 2+2x=0的解为 .12.若0x =是方程22(2)3280m x x m m -+++-=的解,则m =______. 13.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .14. 关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2,则b = ,c = .15.已知a ,b 是方程x 2+x ﹣3=0的两个实数根,则a 2﹣b +2019的值是( )16. 已知x 是一元二次方程2310x x +-=的实数根,那么代数式43≥m2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 . 17. 阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-, acx x =21·.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______. 18. 请写出一个值k =________,使一元二次方程x 2-7x +k =0有两个不相等的非0实数根.19. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = . 20.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为 .三、细心做一做!(每题8分,共40分)21.解方程:(1)2220x x +-=; (2)x 2+3=3(x +1). 22. 设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东汕头2011年九年级上学期《一元二次方程》单元测试题及答
案
(满分150分,考试时间100分钟)
一、选择题(每题4分,共32分)
1、若关于x 的方程(a -1)x 2
1a +=1是一元二次方程,则a 的值是( )
A 、0
B 、-1
C 、 ±1
D 、1
2、下列方程: ①x 2
=0, ②
2
1x
-2=0, ③22
x +3x=(1+2x)(2+x),
④32
x 3
2x x
-8x+ 1=0中,一元二次方程的个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
3、把方程(+(2x-1)2
=0化为一元二次方程的一般形式是( )
A 、5x 2-4x-4=0
B 、x -5=0
C 、5x 2-2x+1=0
D 、5x 2
-4x+6=0
4、方程x 2
=6x 的根是( )
A 、x 1=0,x 2=-6
B 、x 1=0,x 2=6
C 、x=6
D 、x=0 5、不解方程判断下列方程中无实数根的是( )
A 、-x 2=2x-1
B 、4x 2
+4x+
54
=0 C 2
0x -= D 、(x+2)(x-3)==-5 6、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A 、200(1+x)2
=1000 B 、200+200×2x=1000
C 、200+200×3x=1000 D、200[1+(1+x)+(1+x)2
]=1000
7、关于x 的二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ) A 、1 B 、1- C 、1或1- D 、0.5
8、关于x 的方程x 2
+2(k+2)x+k 2
=0的两实根之和大于-4,则k 的取值范围是( ) A 、k>-1 B 、k<0 C 、-1<k<0 D 、-1≤k<0 二、填空题(每题4分,共20分)
9、如果关于x 的方程4mx 2
-mx+1=0有两个相等实数根,那么它的根是_______.
10、若关于x 的方程(k-1)x 2
-4x-5=0 有实数根, 则k 的取值范围是_______.
11、一元二次方程032
=--a ax x 的两根之和为12-a ,则两根之积为_________;
12、已知x 2
+mx+7=0的一个根,则m= ,另一根为 .
13、若一元二次方程ax 2
+bx+c=0(a ≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c= .
三、解答题(每题7分,共35分) 14、解下列一元二次方程.
(1)5x(x-3)=6-2x; (2)3y 2
+1=;
15、已知方程2(m+1)x 2
+4mx+3m 2
=2有一根为1,求m 的值.
16、已知a ,b 是方程x 2+x-1=0的两根,求a 2
+2a+1
b
的值.
17、试说明关于x 的方程012)208(22=+++-ax x a a 无论a 取何值,该方程都是一元二次方程;
18、已知方程0122
=-+kx x
的一个根为2,求k 的值及方程的另外一个根?
四、解答题(每题9分,共27分)
19、已知关于x 的一元二次方程x 2
+mx+n=0的一个解是2,另一个解是正数, 而且也是方程
(x+4)2
-52=3x 的解,你能求出m 和n 的值吗?
20、(10图,某农户为了发展养殖业,准备利用一段墙( 墙长18米)和55米长的竹篱笆围成三个相连且面积相等的长方形鸡、鸭、鹅各一个.问:( 1)如果鸡、鸭、鹅场总面积为150米2
,那么有几种围法?(2)如果需要围成的养殖场的面积尽可能大,那么又应怎样围,最大面积是多少?
21、(10已知关于x 的一元二次方程m 2x 2
+2(3-m)x+1=0的两个不相等的实数根的倒数和为S.(1)求S 与m 的函数关系式;(2)求S 的取值范围。
五、解答题(每题12分,共36分)
22、设a 、b 、c 是△ABC 的三条边,关于x 的方程x 2
有两个相等的实数根,方
程3cx+2b=2a 的根为0.
(1)求证:△ABC 为等边三角形;
(2)若a,b 为方程x 2
+mx-3m=0的两根,求m 的值. 23、阅读下面的例题:
解方程022
=--x x
解:(1)当x≥0时,原方程化为022
=--x x ,
解得:1x =2,2x =-1(不合题意,舍去).
(2)当x <0时,原方程化为022
=-+x x ,
解得:1x =1(不合题意,舍去),2x =-2.
∴ 原方程的根是1x =2,2x =-2.请参照例题解方程0112
=---x x 。
24、学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的二种不同的方案.
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
广东汕头2011年秋季《一元二次方程》
单元测试题答案
一、选择题
1、B
2、A
3、A
4、B
5、B
6、D
7、B
8、D.
二、填空题
9、
18 10、1
15
k >≠且k 11、-3;
12、m=-6,另一根为、a+b+c=0,b=a+c,c=0; 三、解答题
14、(1)3,25-
;(2)3
; 15、把1代入方程,得:2(m+1)×12
+4m ×1+3m 2
=2, 整理得:3m 2
+6m=0,m 1=0,m 2=-2
16、解:∵a 、b 是方程x 2
+x-1=0的两根,∴a 2
+a=1,ab=-1,
∴a 2
+2a+1b =a 2+a+a+1b =1+1ab b
+=1+0b =1 17、故结论成立,04)4(20822
≠+-=+-a a a
;
18、K=4,x=-6; 19、m=-6,n=8
20、(1)垂直于墙的竹篱笆长10米,平行于墙的竹篱笆长15米
(2)垂直于墙的竹篱笆长9.25米,平行于墙的竹篱笆长18米,最大面积166.5 21、(1)S=2m-6;(2)S<-3且S ≠-6 ;
22、(1)证明:方程x 2
x+2c-a=0有两个相等的实根,
∴△=0,即△)2
-4×(2c-a)=0,
解得a+b=2c,方程3cx+2b=2a 的根为0,则2b=2a,a=b, ∴2a=2c,a=c, ∴a=b=c,故△ABC 为等边三角形. (2)解:∵a 、b 相等,∴x 2
+mx-3m=0有两个相等的实根,
∴△=0,∴△=m 2
+4×1×3m=0, 即m 1=0,m 2=-12.∵a 、b 为正数, ∴m 1=0(舍),故m=-12;
23、解:分两种情况:
(1)当x-1≥0时,原方程化为02=-x x ,解得:1x =1,2x =0(不合题意,舍去). (2)当x-1<0时,原方程化为022=-+x x ,解得:1x =1(不合题意,舍去),2x =
-2.
∴ 原方程的根是1x =1,2x =-2.
24、解:(1)方案1:长为1
9
7
米,宽为7米.方案2:长=宽=8米. (2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.
由题意得长方形长与宽的和为16米.设长方形花圃的长为x 米,则宽为(16-x )米.
则:x (16-x )=63+2, x 2-16x +65=0,2
(16)4165∆=--⨯⨯ 40=-<,
∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米.。