圆幂定理练习题

合集下载

3.15圆幂定理与托勒密定理

3.15圆幂定理与托勒密定理

圆幂定理【知识点学习】圆幂定理:(1)相交弦定理:圆的两条相交弦中,每条弦被交点所分的两条线段的乘积相等。

(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段的积相等。

(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项。

三个定理统称为圆幂定理。

PPDPCPBPA⋅=⋅PDPCPBPA⋅=⋅PCPBPA⋅=2【例题与练习】1.已知:如图,⊙O的弦AD、BC互相垂直,垂足为E,53sin=∠BAD,31cos=∠CAD,2=AC,求EC和AD。

ADOCBE2. 如图,已知⊙O 的割线PAB 交⊙O 于A 、B 两点,PO 与⊙O 交于点C ,cm AB PA 6==,cm PO 12=,求⊙O 的半径。

P3. 如图,已知⊙O 与⊙'O 相交于A 、B 两点,点P 在BA 的延长线上,⊙O 的割线PCD 交⊙O于点D C 、,PE 与⊙'O 相切于点E ,4=PC ,8=CD ,求线段PE 的长。

BAC P DO O'E4. 如图,已知⊙1O 与⊙2O 相交于D C 、两点,AB 为外公切线,B A 、为切点,CD 的延长线与AB 相交于点M ,12=AB ,9=CD ,求线段MD 的长。

5. 如图,P 为⊙O 外的一点,过点P 作⊙O 的两条割线,分别交⊙O 于A 、B 和C 、D ,且AB是⊙O 的直径,已知4==OA PA ,CD AC =. (1)求CD 的长; (2)求B ∠cos 的值.CAO B PD6. 已知:如图,在ABC ∆中,︒=∠90C ,BE 是角平分线,BE DE ⊥交AB 于D ,⊙O 是BDE ∆的外接圆,若6=AD ,26=AE ,求DE 的长.EOAD BC7. 已知,△ABC 外接于⊙O ,且BC AB =,BC AO ⊥,垂足为点D , (1) 求证:△ABC 为等边三角形;(2) 点E 为BC 上的一动点(不于C B 、重合),连结AE 并延长交⊙O 于点P ,已知1=AB ,x AE =,y PE =,求y 关于x 的解析式并求其定义域;(3) 在(2)的条件下,设α=∠PAC ,β=∠EPC ,当y 取何值时,1sin sin 22=+βα.【练习】:1、 如图,BC 是半圆⊙O 的直径,BC EF ⊥于点F ,5=FCBF.已知点A 在CE 的延长线上,AB 与半圆交于D ,且8=AB ,2=AE ,求AD 的长。

(建议下载)圆幂定理练习题

(建议下载)圆幂定理练习题

C.3个是半圆的三等分点,则∠C.145°.如图,以等腰三角形的腰为直径作圆,交底边于D,连结B.∠BAD>∠D.∠BAD<∠AD⊥BC于D,AB=2,DB为斜边上的高,S△ABC=4S△ABD,则ABC在半圆上,CD⊥AB于点百度文库爱是看得见萨科技的沃尔克我去额咳咳,省得麻烦迫.8.如图,AB是⊙O的直径,CB切⊙O与B,CD切⊙O与D,交BA的延长线于E.若AB=3,ED=2,则BC的长为______.9.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.10.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.11.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若BE=2,CD=8,求AB和AC的长.8cm ,DO =6cm ,.cm 102=DO .有∠AEO =90°,∴∠AEO =∠AEO ∽△AOD ..cm 8.4=ADOD平分∠BAC ,的直径,CD ⊥AB ,∴=.∴∠.又∵OA =OC A .∴∠1=∠2.即:∠ACO ,∠AEC =∠CEB ..∴CE 2=BE ·CEAE=.=8022=+CE AE ,为圆周上一5C 的切线,过点作l A ___________.CD =的切线,切点为,交圆于A PO O B ,.C ∠=、如图所示,过⊙O外一点AP.已知AC=4,AB。

圆幂定理练习题

圆幂定理练习题

a a a 3aA. —B. —C. —D.——4 3 2 4如图,AD是^ ABC高线,DE丄AB于E, DF丄AC于F,则(1)AD2= BD • CD(2)AD2= AE- AB(3)AD2 =AF- A0(4)AD2= AC2- AC- CF 中正确的有( )2.3.A. 1个B. 2个 C. 3个如图,AB是O O的直径,C, D是半圆的三等分点,则/D. 4个C+/ E+Z D=(4.D. 120°二、填空题在RtAABC中,/ BAC= 90°, AD丄BC于D, AB= 2, DB= 1,贝U DC=5. ,AD =6. 在RtAABC 中,AD 为斜边上的高,&ABC= 4S A ABD,则AB : BC=7.tan22 CD丄AB 于点D,且AD= 3DB,设/ COD=,贝U BC.°A. 135B. 110如图,AB是半圆3.2AB 是O O 的直径,CB 切O O 与B , CD 切O O 与D ,交BA 的延长线于 E.若AB = 3, ED 则BC 的长为 ________________ .(I )求/ AOD 的度数;(n )若 A0= 8 cm , D0= 6 cm ,求 OE 的长.10.如图,在△ ABC 中,/ C = 90°, AD 是/ BAC 的平分线,O 是AB 上一点,以 OA 为半径的O O 经过点D .(1)求证:BC 是O O 切线;⑵若BD = 5, DC = 3,求AC 的长.11.如图,AB 是O O 的直径,CD 是O O 的一条弦,且 CD 丄AB 于E,连结 AC 0C 、BC.(1)求证:/ ACO =/ BCD;⑵若BE = 2, CD = 8,求AB 和AC 的长.&如图,=2,9.如图, 在梯形 ABCD 中,AB// CD,一、选择题:1. A2. C二、填空题5. 3疋6. 1 :.•••O O 内切于梯形ABCD,1••• AO 平分/ BAD ,有/ DAO =—/ BAD,2 1 又 DO 平分/ ADC,有/ ADO = — / ADC.21•••/DAO +/ ADO = _(/ BAD +/ADC)= 90°,A / AOD= 180°- (/ DAO +/ADO) =290(n )•••在 RtA AOD 中,A0= 8cm , D0= 6cm ,•••由勾股定理,得(AO2DO 210cm.• E 为切点,••• OE 丄 AD .有/ AEO = 90°, •/ AEO =/ AOD. 又/ CAD 为公共角,•••△AEO^^ AOD.OE AO AO OD '。

2022年高考复习专项有关圆幂定理型压轴题

2022年高考复习专项有关圆幂定理型压轴题

2022年高考复习专项有关圆幂定理型压轴题【方法点拨】1.相交弦定理:如下左图,圆O 的两条弦AB 、PC 相交于圆内一点P ,则PA PB PC PD ⋅=⋅.2.切割线定理:如下右图,PT 为圆O 的切线,P AB 、PCD 为割线,则2PT PA PB =⋅();3.割线定理:如下右图,P AB 、PCD 为圆O 的割线,则PA PB PC PD ⋅=⋅.说明:上述三个定理可以统一为22PA PB PO R ⋅=-(其中R 是半径),统称为圆幂定理.【典型题示例】 例1如图,在平面直角坐标系x O y 中,已知点,点P 是圆O :上的任意一点,过点作直线BT 垂直于AP ,垂足为T ,则2P A +3PT 的最小值是__________.【答案】【分析】从题中已知寻求P A 、PT 间的关系是突破口,也是难点,思路一是从中线长定理入手,二是直接使用圆幂定理. 【解法一】由中线长公式可得,则 ,则(1,0)A -224x y +=(1,0)B 93221862PT PA PA+=+≥=22212()2PO PA PB AB =+-22=10PA PB +222cos 2PA PB AB P PA PB +-=⋅3cos P PA PB=⋅CA ODPBPOACD在中,,即 所以(当且仅当时取等)【解法二】∵BT ⊥ AP ,∴点T 的轨迹是圆,其方程是:x 2+y 2=1,过点P 作该圆的切线PC ,C 为切点,则PC,由切割线定理得:所以(当且仅当时取等).点评:解法二中,先运用定直线张直角,得到隐圆,然后运用切割线定理得出定值,最后再使用基本不等式予以解决,思路简洁、解法明快.在有关解析几何的题目中,首先考虑相关的几何性质是解决这类问题的首选方向.在△AOM 中,由正弦定理得:OMsinA =√5,而OA =OM =2, 所以sinA =√5,所以tan A =2.故直线AB 的斜率为2.Rt PBT ∆cos PT PB P =3PT PA=9232PA PT PA PA+=+≥=2PA =23PC PA PT =⋅=9232PA PT PA PA+=+≥=2PA =例3 在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,其中A 点在第一象限,且2BM MA =,则直线l 的方程为 . 【答案】y =x -1【分析】本题思路有下列几种:①利用向量坐标设点转化,点参法;②设直线方程的在x轴上的截距式,联立方程组;③垂径定理后二次解三角形;④相交弦定理;⑤利用”爪”型结构,得2133OM OA OB =+,两边平方求得AOB ∠的余弦值. 【解法一】:易知直线l 的斜率必存在,设直线l 的方程为y =k (x -1).由BM →=2MA →,设BM =2t ,MA =t .如图,过原点O 作OH ⊥l 于点H ,则BH =3t2.设OH =d ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5. 在Rt △OMH 中,d 2+⎝⎛⎭⎫t 22=OM 2=1,解得d 2=12, 则d 2=k 2k 2+1=12,解得k =1或k =-1. 因为点A 在第一象限, BM →=2MA →,由图知k =1, 所以所求的直线l 的方程为y =x -1.2BM MA =,设BM =2t ,MA =t【解法二】由 又过点M 的直径被M 分成两段长为51-、51+由相交弦定理得()()225151t =-+,解之得2t =过原点O 作OH ⊥l 于点H ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5,解得d 2=12,(下同解法一,略). 【解法三】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧1-x 2=2(x 1-1),-y 2=2y 1.当直线AB 的斜率不存在时,BM →=MA →,不符合题意.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+y 2=5,得(1+k 2)y 2+2ky -4k 2=0,则⎩⎪⎨⎪⎧y 1+y 2=-2k 1+k 2,y 1·y 2=-4k21+k 2,-y 2=2y 1,解得⎩⎪⎨⎪⎧y 1=2k 1+k 2,y 2=-4k1+k 2,所以y 1·y 2=-8k 2(1+k 2)2=-4k 21+k2,即k 2=1.又点A 在第一象限, 所以k =1,即直线AB 的方程为y =x -1.【解法四】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧ 1-x 2=2(x 1-1),-y 2=2y 1,即⎩⎪⎨⎪⎧-x 2=2x 1-3,-y 2=2y 1.又⎩⎪⎨⎪⎧ x 21+y 21=5,x 22+y 22=5,代入可得⎩⎪⎨⎪⎧x 21+y 21=5,(2x 1-3)2+4y 21=5,解得x 1=2,代入可得y 1=±1.又点A 在第一象限,故A (2,1),由点A 和点M 的坐标可得直线AB 的方程为y =x -1. 点评:上述各种解法中,以解法一、解法二最简、最优.【巩固训练】1. 在平面直角坐标系xoy 中,M 是直线3x =上的动点,以M 为圆心的圆M ,若圆M 截x 轴所得的弦长恒为4,过点O 作圆M 的一条切线,切点为P ,则点P 到直线2100x y +-=距离的最大值为 .2.在平面直角坐标系xOy 中,圆C :(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D .若AB =OD ,则直线l 1的斜率为 .3. 在平面直角坐标系xOy 中,设直线2y x =-+与圆222x y r +=(0)r >交于A B 、两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = .4.在平面直角坐标系xOy 中,已知点()0,1P 在圆C :22222410++-+-+=x y mx y m m 内,若存在过点P 的直线交圆C 于A 、B 两点,且△PBC 的面积是△PAC 的面积的2倍,则实数m 的取值范围为 .5.在平面直角坐标系xOy 中,圆22:(2)()3C x y m ++-=.若圆C 存在以G 为中点的弦AB ,且2AB GO =,则实数m 的取值范围是 .6.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点()00,P x y 在直线2y x =上且PA PB =,则0x 的取值范围为 .222()x m y r -+=【答案与提示】1.【答案】 2.【答案】 【解析一】作CE ⊥AB 于点E ,则 ,由OECD 是矩形,知CE 2=OD 2,∴,化简得,即cos ∠OCD ==,tan ∠COB =tan ∠OCD =,∴直线l 1的斜率为.设OD =t (又∴直线l 13.244164416OC ⎪⎝⎭即222225159cos 16816r r r AOB r =+∠+,整理化简得3cos 5AOB ∠=-. 5±22222221144CE BC BE BC AB BC OD =-=-=-2222215()44r m r m r -=--=222254r mm r -=-r m =CD OC 3rm=55±2m t =Rt COE ∆过点O 作AB 的垂线交AB 于D , 则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=.又圆心到直线的距离OD ==222212cos 5OD AOD r r ∠===,r =.【解法二】注意到线性表示时的系数和为2,联想“三点共线”. 由5344OC OA OB =+,即153288OC OA OB =+得A B D 、、三点共线(其中D 是AB 的中点),且:3:5AD BD =,设,5BD x =思路一:垂径定理后二次解三角形,()222224r x r x ⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩,解之得r =思路二:相交弦定理,()22335224r r x x r x ⎧⋅=⋅⎪⎨⎪=+⎩,解之得r =. 4.【答案】4,49⎡⎫⎪⎢⎣⎭5.【答案】[【提示】易知OA OB ⊥,考察临界状态,只需过原点作圆的切线,切点弦的张角大于等于直角即可. 6.【答案3AD x =。

圆幂定理试题及答案

圆幂定理试题及答案

圆幂定理试题及答案一、选择题1. 圆幂定理指的是()A. 圆上任意两点的距离等于它们到圆心的距离之和B. 圆上任意两点的距离等于它们到圆心的距离之差C. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之和D. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之差2. 在圆幂定理中,如果圆上一点P到圆心O的距离为OP,点P到圆上另一点A的距离为PA,则以下哪个表达式是正确的?()A. OP = PAB. OP + PA = 2RC. OP - PA = RD. OP × PA = R^2二、填空题3. 若圆的半径为5cm,圆上一点到圆心的距离为3cm,则该点到圆上任意一点的距离之和为_________。

4. 已知圆幂定理中的OP = 8cm,PA = 6cm,且点A在圆上,则圆的半径R为_________。

三、解答题5. 如图所示,圆O的半径为10cm,点P在圆上,OP(点P到圆心O的距离)为12cm。

求点P到圆上另一点B的距离PB。

6. 在一个半径为7cm的圆中,有两点A和B,已知OA(点A到圆心O 的距离)为5cm,求AB的长度。

四、证明题7. 证明圆幂定理:在一个给定的圆中,圆上任意一点到圆心的距离与该点到圆上其他点的距离之和等于圆的直径。

答案一、选择题1. 正确答案:D2. 正确答案:B二、填空题3. 该点到圆上任意一点的距离之和为10cm + 10cm = 20cm。

4. 圆的半径R可以通过勾股定理计算得出:R^2 = OP^2 - OA^2,所以R^2 = 8^2 - 6^2 = 64 - 36 = 28,因此R = √28 ≈ 5.29cm。

三、解答题5. 由于OP > OA,根据圆幂定理,PB = 2R - OP = 2 * 10 - 12 = 20 - 12 = 8cm。

6. 同样使用圆幂定理,AB = 2R - OA - OB,但是OB = OA = 5cm,所以AB = 2 * 7 - 5 - 5 = 14 - 10 = 4cm。

圆幂定理讲义(带答案解析)

圆幂定理讲义(带答案解析)

圆幂定理STEP 1:进门考理念:1. 检测垂径定理的基本知识点与题型。

2. 垂径定理典型例题的回顾检测。

3. 分析学生圆部分的薄弱环节。

(1)例题复习。

1.(2015•夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN= cm.【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形.【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解.【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E.在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC•sinB=4×=2(cm),∴OE=CD=2,在△AOE中,AE=AB=4cm,则OA===2(cm),则MN=2OA=4(cm).故答案是:4.【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.2.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【考点】M2:垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;KQ:勾股定理.【专题】11 :计算题;16 :压轴题.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.4.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A (13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.【考点】FI:一次函数综合题.【专题】16 :压轴题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP 2:新课讲解1、熟练掌握圆幂定理的基本概念。

圆幂定理题型总结

圆幂定理题型总结

有关圆幂定理型[真题再现]例1 (2020·南京市六校联合体高三第一次联考·13)如图,在平面直角坐标系x O y 中,已知点(1,0)A -,点P 是圆O :224x y +=上的任意一点,过点(1,0)B 作直线BT 垂直于AP ,垂足为T ,则2P A +3PT 的最小值是__________.【解法一】由中线长公式可得22212()2PO PA PB AB =+-,则22=10PA PB + 222cos 2PA PB AB P PA PB +-=⋅,则3cos P PA PB=⋅在Rt PBT ∆中,cos PT PB P =,即3PT PA=所以923221862PA PT PA PA+=+≥=(当且仅当322PA =时取等) 【解法二】∵BT ⊥ AP ,∴点T 的轨迹是圆,其方程是:x 2+y 2=1,过点P 作该圆的切线PC ,C 为切点,则PC =3,由切割线定理得:23PC PA PT =⋅=21862PA+≥=(当且仅当32=时取等)【分析】看到“弦的中点”想到作“弦心距”,得到CM ⊥AB ,故∠CMA +∠AOC =180o ,所以A 、O 、C 、M 四点共圆,AC 为直径.在该外接圆中,使用正弦定理求出sin A 即可. 【解析】连结C 、M ,则CM ⊥AB ,在四边形AOCM 中,∠CMA +∠AOC =180o ,故A 、O 、C 、M 四点共圆,且AC 为直径. x 2+(y -1)2=5中,令y =0,得x =±2,A (-2,0),AC =√5即为△AOM 外接圆的直径, 在△AOM 中,由正弦定理得:OMsinA =√5,而OA =OM =2, 所以sinA =2√5,所以tan A =2.故直线AB 的斜率为2.例3 在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,其中A 点在第一象限,且2BM MA =,则直线l 的方程为 . 【分析】本题思路有下列几种:①利用向量坐标设点转化,点参法;②设直线方程的在x轴上的截距式,联立方程组;③垂径定理后二次解三角形;④相交弦定理;⑤利用”爪”型结构,得2133OM OA OB =+,两边平方求得AOB ∠的余弦值. 【解法一】:易知直线l 的斜率必存在,设直线l 的方程为y =k (x -1).由BM →=2MA →,设BM =2t ,MA =t .如图,过原点O 作OH ⊥l 于点H ,则BH =3t2.设OH =d ,在Rt⊥OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5. 在Rt⊥OMH 中,d 2+⎝⎛⎭⎫t 22=OM 2=1,解得d 2=12, 则d 2=k 2k 2+1=12,解得k =1或k =-1. 因为点A 在第一象限, BM →=2MA →,由图知k =1, 所以所求的直线l 的方程为y =x -1.【解法二】由2BM MA =,设BM =2t ,MA =t又过点M 的直径被M 分成两段长为51-、51+ 由相交弦定理得()(225151t =-+,解之得2t =过原点O 作OH ⊥l 于点H ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5,解得d 2=12,(下同解法一,略).【解法三】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧1-x 2=2(x 1-1),-y 2=2y 1.当直线AB 的斜率不存在时,BM →=MA →,不符合题意.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+y 2=5,得(1+k 2)y 2+2ky -4k 2=0,则⎩⎪⎨⎪⎧y 1+y 2=-2k 1+k 2,y 1·y 2=-4k21+k 2,-y 2=2y 1,解得⎩⎪⎨⎪⎧y 1=2k 1+k 2,y 2=-4k1+k 2,所以y 1·y 2=-8k 2(1+k 2)2=-4k 21+k2,即k 2=1.又点A 在第一象限, 所以k =1,即直线AB 的方程为y =x -1.【解法四】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧ 1-x 2=2(x 1-1),-y 2=2y 1,即⎩⎪⎨⎪⎧-x 2=2x 1-3,-y 2=2y 1. 又⎩⎪⎨⎪⎧ x 21+y 21=5,x 22+y 22=5,代入可得⎩⎪⎨⎪⎧x 21+y 21=5,(2x 1-3)2+4y 21=5,解得x 1=2,代入可得y 1=±1.又点A 在第一象限,故A (2,1),由点A 和点M 的坐标可得直线AB 的方程为y =x -1. 点评:上述各种解法中,以解法一、解法二最简、最优.[强化训练]1. 在平面直角坐标系xoy 中,M 是直线3x =上的动点,以M 为圆心的圆M ,若圆M 截x 轴所得的弦长恒为4,过点O 作圆M 的一条切线,切点为P ,则点P 到直线2100x y +-=距离的最大值为 .【答案】2.(2020·南京盐城二检·13)在平面直角坐标系xOy 中,圆C :222()x m y r -+=(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D .若AB =OD ,则直线l 1的斜率为 .【答案】【解析一】作CE ⊥AB 于点E ,则22222221144CE BC BE BC AB BC OD =-=-=- 2222215()44r m r m r -=--=,由OECD 是矩形,知CE 2=OD 2,∴222254r mm r -=-,化简得3r m =,即cos ∠OCD =CD OC=rm=,tan ∠COB =tan ∠OCD∴直线l 1的斜率为. 【答案】【解法一】遇线性表示想求模,将向量问题实数化.22225325539244164416OC OA OB OA OA OB OB ⎛⎫=+=+⋅⋅⋅+ ⎪⎝⎭,即222225159cos 16816r r r AOB r =+∠+,整理化简得3cos 5AOB ∠=-. 过点O 作AB 的垂线交AB 于D , 则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=.又圆心到直线的距离OD==222212cos5ODAODr r∠===,r=【解法二】注意到线性表示时的系数和为2,联想“三点共线”.由5344OC OA OB=+,即153288OC OA OB=+得A B D、、三点共线(其中D是AB的中点),且:3:5AD BD=,设,5BD x=思路一:垂径定理后二次解三角形,()222224rxr x⎧⎛⎫=⎪ ⎪⎝⎭⎨⎪=+⎩,解之得r=.思路二:相交弦定理,()22335224r rx xr x⎧⋅=⋅⎪⎨⎪=+⎩,解之得r=4.在平面直角坐标系xOy中,已知点()0,1P在圆C:22222410++-+-+=x y mx y m m内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为.【答案】4,49⎡⎫⎪⎢⎣⎭5.在平面直角坐标系xOy中,圆22:(2)()3C x y m++-=.若圆C存在以G为中点的弦AB,且2AB GO=,则实数m的取值范围是.【答案】[6.已知直线3y ax=+与圆22280x y x++-=相交于,A B两点,点()00,P x y在直线2y x=上且PA PB=,则x的取值范围为.【答案】(1,0)(0,2)-⋃3AD x=。

《弦切角定理》《圆幂定理》练习题及答案

《弦切角定理》《圆幂定理》练习题及答案

《弦切角定理》定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

弦切角定理:弦切角的度数等于它所夹的弧的圆心角度数的一半,等于它所夹的弧的圆周角度数。

那怎么证明呢?《圆幂定理》(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅【精典例题】1、如图,PA 、PB 是⊙O 的切线,AC 是⊙O 的直径,∠P=50°,则∠BOC 的度数为( ) A .50°B .25°C .40°D .60°2、如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A .C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( ) A .97°B .104°C .116°D .142°解答:解:∵PA 、PB 是⊙O 的切线, ∴∠OAP =∠OBP =90°, 而∠P =50°,∴∠AOB =360°﹣90°﹣90°﹣50°= 130°, 又∵AC 是⊙O 的直径,∴∠BOC =180°﹣130°=50°. 故选A .BADB3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A 、30°B 、45°C 、60°D 、67.5°4、已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则 线段AB 长度的最小值为( )A 、1B 、2C 、3D 、2解答:如右图所示,OA ⊥l ,AB 是切线,连接OB , ∵OA ⊥l ,∴OA=2, 又∵AB 是切线, ∴OB ⊥AB ,在Rt △AOB 中,AB =22OB OA -=2212-=3.故选C .5、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形, 两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管 道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点) 是( )A.2mB.3mC.6mD.9m解答:在Rt △ABC 中,BC =8m,AC =6m,AB =22BC AC +=2286+=10. ∵中心O 到三条支路的距离相等,设距离是r .△ABC 的面积=△AOB 的面积+△BOC 的面积+△AOC 的面积 即:12AC •BC =12AB •r+12BC •r+12AC •r 即:6×8=10r+8r+6r ∴r=4824=2. 故O 到三条支路的管道总长是2×3=6m .故选C .解答:解:∵BD 是圆O 的直径, ∴∠BAD =90°, 又∵AC 平分∠BAD ,∴∠BAF =∠DAF =45°, ∵直线ED 为圆O 的切线, ∴∠ADE =∠ABD =19°,∴∠AFB =180°-∠BAF -∠ABD =180°-45°-19°=116°. 故选C .解答:解:如图:∵PD 切⊙O 于点C , ∴OC ⊥PD , 又∵OC=CD , ∴∠COD=45°, 连接AC ,∵AO=CO , ∴∠ACO=22.5°,∴∠PCA=90°-22.5°=67.5°. 故选D .O(第5题图)6、如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,还需补充一个条件,则补充的条件不正确...的是( ) A. DE =DO B. AB =AC C. CD =DB D. AC ∥OD7、已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于( )A 、30°B 、60°C 、45°D 、50°解答:连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠A=∠ACO , ∵PC 为⊙O 的切线,∴OC ⊥PC ,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°. 故选C .8、如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是ABD 上异于点A 、D 的一点.若∠C =40°,则∠E 的度数为 .9、已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线y =x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3=解答:由三个半圆依次与直线y =x 相切并且圆心都在x 轴上,∴y =x 倾斜角是30°,∴得,OO 1=2r 1,OO 1=2r 2,001=2r 3,r 1=1,∴r3=9.故答案为9.333333解答:当AB=AC 时,连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BC ,∴CD=BD , ∵AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴DE 是⊙O 的切线.所以B 正确. 当CD=BD 时,AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ∵DE ⊥AC ∴DE ⊥OD ∴DE 是⊙O 的切线.所以C 正确.当AC ∥OD 时,∵DE ⊥AC ,∴DE ⊥OD .∴DE 是⊙O 的切线.所以D 正确. 故选A .ABCD P· OE解答:如图:连接BD ,∵AB 是直径,∴∠ADB =90°,∵BC 切⊙O 于点B ,∴∠ABC =90°, ∵∠C =40°,∴∠BAC =50°,∴∠ABD =40°,∴∠E =∠ABD =40°. 故答案为:40°.10、如图,在Rt △ABC 中,∠ABC 是直角,AB=3,BC=4,P 是BC 边上的动点,设BP=x ,若能在AC 边上找到一点Q ,使∠BQP=90°,则x 的取值范围是 .解答:解:过BP 中点以BP 为直径作圆,连接QO ,当QO ⊥AC 时,QO 最短,即BP 最短, ∵∠OQC=∠ABC=90°,∠C=∠C ,∴△ABC ∽△OQC ,∴=,∵AB=3,BC=4,∴AC=5, ∵BP=x ,∴QO=x ,CO=4﹣x ,∴=,解得:x=3,当P 与C 重合时,BP=4,∴BP=x 的取值范围是:3≤x ≤4, 故答案为:3≤x ≤4.11、如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C ,∠DAB=∠B=30°. (1)直线BD 是否与⊙O 相切?为什么? (2)连接CD ,若CD=5,求AB 的长.解答:(1)直线BD 与⊙O 相切.如图连接OD ,CD , ∵∠DAB=∠B=30°,∴∠ADB=120°, ∵OA=OD ,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB ﹣∠ODA=120°﹣30°=90°. 所以直线BD 与⊙O 相切.(2)连接CD ,∠COD=∠OAD+∠ODA=30°+30°=60°, 又OC=OD ,∴△OCD 是等边三角形,即:OC=OD=CD=5=OA ,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.12、已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线;(2)若DE =2,tan C =12,求⊙O 的直径.【解析】(1)证明:联结OD . ∵ D 为AC 中点, O 为AB 中点,∴ OD 为△ABC 的中位线. ∴OD ∥BC . ∵ DE ⊥BC , ∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD ⊥DE 于点D. ∴ DE 为⊙O 的切线.(2)解:联结DB . ∵AB 为⊙O 的直径, ∴∠ADB=90°. ∴DB ⊥AC . ∴∠CDB=90°. ∵ D 为AC 中点, ∴AB=AC .在Rt △DEC 中,∵DE=2 ,tanC=12, ∴EC=4tan DEC=. 由勾股定理得:DC=在Rt △DCB 中, BD=tan DC C ⋅ BC=5. ∴AB=BC=5. ∴⊙O 的直径为5.【巩固练习】1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直线和这个圆的位置关系为( )A. 相离B. 相切C. 相交D. 相交或相离2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=70°,则∠BAC 等于( )A. 70°B. 35°C. 20°D. 10°(第2题) (第3题) (第4题) (第5题)3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论中,错误的是( )A. ∠1=∠2B. PA=PBC. AB ⊥OPD. 2PA PC ·PO4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )A.335 B. 635 C. 10 D. 55.如图已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么AB ︰CD 等于∠BPD 的( )A. 正弦B. 余弦C. 正切D. 余切6.如图A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )A. 15°B. 25°C. 30°D. 40°(第6题) (第7题) (第8题) (第9题)7.如图AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( )A. 到CD 的距离不变B. 位置不变C. 等分DB ⌒D. 随C 点的移动而移动8.如图AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 21359.如图在⊙O 中,直径AB 、CD 互相垂直,BE 切⊙O 于B ,且BE=BC ,CE 交AB 于F ,交⊙O 于M ,连结MO 并延长,交⊙O 于N ,则下列结论中,正确的是( )A. CF=FMB. OF=FBC. BM⌒的度数是22.5° D. BC ∥MN 10.如图⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=_________.(第10题) (第11题) (第12题) (第13题)11.如图AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD =_________.12.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=∆∆DAP ABP S S :__________.13.⊙O 的直径AB=10cm ,C 是⊙O 上的一点,点D 平分BC ⌒,DE=2cm ,则AC=_____. 14.如图,AB 是⊙O 的直径,∠E=25°,∠DBC=50°,则∠CBE=________.(第14题) (第15题) (第17题) (第18题)15.点A 、B 、C 、D 在同一圆上,AD 、BC 延长线相交于点Q ,AB 、DC 延长线相交于点P ,若∠A=50°,∠P=35°,则∠Q=________.16.在Rt △ABC 中,∠C=90°,AC=12cm ,BC=5cm ,以点C 为圆心,6cm 的长为半径的圆与直线AB 的位置关系是________.17.如图,在△ABC 中,AB=AC,∠BAC=120°,⊙A 与BC 相切于点D,与AB 相交于点E,则∠ADE 等于___度. 18.如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙A 于点D 、E,交AB 于C.图中互相垂直的线段有_________(只要写出一对线段即可).19.已知⊙O 的半径为4cm,直线L 与⊙O 相交,则圆心O 到直线L 的距离d 的取值范围是____.E A PO EC D BA20.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B,且∠APB=50°,点C 是优弧AB 上的一点,则∠ACB 的度数为________.(第20题) (第21题) (第22题) (第23题)21.如图,⊙O 为△ABC 的内切圆,D 、E 、F 为切点,∠DOB=73°,∠DOE=120°, 则∠DOF=_______度,∠C=______度,∠A=_______度.22.如图,AB 、AC 为⊙O 的切线,B 、C 是切点,延长OB 到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ ADO 等于_______23.如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =45°,则下列结论正确的是( )A.AD =BCB.AD =ACC.AC >ABD.AD >DC24.如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M,N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( )A .(2,-4) B. (2,-4.5) C.(2,-5) D.(2,-5.5)(第24题) (第25题) (第26题) (第27题)25、如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥OD ,AB =2,OD =3,则BC 的长为( )A .B . CD26、已知圆O 的半径为R ,AB是圆O 的直径,D 是AB 延长线上一点,DC是圆O 的切线,C 是切点,连结AC ,若∠CAB =30°,则BD 的长为( )A .BC .D 27、如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、M 两点,若点M 的坐标是(-4,-2),则点N 的坐标为( )A .(-1,-2)B .(1,2)C .(-1.5,-2)D .(1.5,-2)PO C BA212123322R R R28、如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC 交圆于点D ,连结AD ,若∠ABC =45°,则下列结论正确的是( )A .B .C .D .(第28题) (第29题) (第30题) (第31题)29、如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是( )①AD ⊥BC ②∠EDA =∠B ③OA =AC ④DE 是⊙O 的切线A .1 个B .2个C .3 个D .4个30、一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN =60︒,则OP =( )A .50 cmB .25cm C .cm D .50cm 31、如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点 F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .32、如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,BC =4cm ,则切线AB = cm.(第32题) (第33题) (第34题) (第35题)33、如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC =30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF =2,则HE 的长为_________.34、如图,点A 、B 、C 在⊙O 上,切线CD 与OB 的延长线交于点D ,若∠A =30°,CD =,则⊙O 的半径长为 .35、如图,在中,,与相切于点,且交于两点,则图中阴影部分的面积是 (保留).O 12AD BC =12AD AC =AC AB >AD DC >12333503第19题图ABC DO32ABC △120AB AC A BC =∠==,°,A ⊙BC D AB AC 、M N 、π36、如图,⊙O 内切于△ABC ,切点分别为D ,E ,F .∠B =50°,∠C =60°,连结OE ,OF ,DE ,DF ,则∠EDF 等于( )A .40°B .55°C .65°D .70°(第36题) (第73题) (第38题)37、如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为________cm.38、如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连结PA .设PA =x ,PB =y ,则x -y 的最大值是________.39、如图,AB 是半圆O 的直径,C 为半圆上一点,过C 作半圆的切线,连接AC, 作直线AD ,使∠DAC=∠CAB ,AD 交半圆于E,交过C 点的切线于点D. (1)试判断AD 与CD 有何位置关系,并说明理由; (2)若AB=10,AD=8,求AC 的长.40、如图,点A ,B ,C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连结BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线; (2)求图中阴影部分的面积.答案:8、据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.9、解:A错,F显然不是弦的平分点;B错,F不是半径的中点;C错,M点平分应为45°;D对,∵BE为圆O的切线,∴BE⊥AB,∵CD⊥AB,∴BE∥CD,∴∠BEF=∠DCF,∵BC=BE,∴∠BCE=∠BEF,∴∠BCE=∠DCF,∵OC=OM,∴∠DCF=∠CMN,∴∠BCE=∠CMN,∴BC∥MN.故选D.10、解:如图利用相交弦定理可知:11、根据割线定理,PF*PC=PA*PB,设EB=X则PA=2X,AE=4X,PB=7X7*(7+13)=2X*7X,X2=10在三角形PCE中,CE2=PC2-PE2=400-360=40,CD=2CE=10412、由切割线定理可得PA2=PD×PB,∵PA=12,PD=8 ∴PB=18.由弦切角和公共角易知△PAD∽△PBA.∴S△PAD:S△PBA=PA2:PB2=4:9.⌒,∴OD平分BC,∴OE为△ABC的中位线,13、∵点D平分BC又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm,则弦AC=6cm.故答案为6cm.14、连接AC,∵∠DBA和∠DCA都为AD所对的圆周角,∴∠DBA=∠DCA,∵AB为⊙O的直径,∴∠BCA=90°,∴∠CBA+∠CAB=90°,∵∠CAB=∠E+∠DCA,∴∠CBD+∠DBA+∠E+∠DBA=90°,∵∠E=25°,∠DBC=50°,∴∠DBA=7.5°,∴∠CBE=∠DBA+∠DBC=57.5°15、∠A=50°,故∠BCD=130°(因为是圆,同弧的角互补),由P=35°计得∠CDQ=85°,故可以计出∠Q=45°.16.相交 17.60 18.如OA⊥PA,OB⊥PB,AB⊥OP等. 19.0≤d<4. 20.65°21. 146°,60°,86° 22.64°23、【答案】A 24、【答案】A 25、【答案】A 26、【答案】C27、【答案】C 28、【答案】A 29、【答案】D 30、【答案】A31、 32、【答案】433、【答案】34、【答案】2.3536、B 由∠B =50°,∠C =60°可求出∠A =70°,则易求得∠EOF =110°,∴∠EDF =12∠EOF =55°.37、过O 作OF ⊥AC 于F ,连结OC ,如图.则CE =2CF .根据△ABC 为等边三角形,且边长为4 cm ,易求得它的高为2 3 cm ,即OC = 3 cm.∵BC 与⊙O 相切,∴∠OCB =90°.又∠ACB =60°,∴∠OCF =30°.3π3在Rt△OFC中,可得CF=OC·cos 30°=3×32=32(cm),故CE=2CF=3 cm.38、如图,连结OA,过点O作OC⊥AP于点C,所以∠ACO=90°,AC=12AP.易证△OAC∽△APB,所以OA AP =ACPB,即4x=x2y,所以y=x28.所以x-y=x-x28=-18(x-4)2+2,所以x-y的最大值是2.39.(1)AD⊥CD.理由:连接OC,则OC⊥CD.∵OA=OC,∴∠OAC=∠OCA,又∠OAC= ∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∴AD⊥CD.(2)连接BC,则∠ACB=90°由(1)得∠ADC=∠ACB,又∠DAC=∠CAB.∴△ACD∽△ABC,∴AC ADAB AC=,即AC2=AD·AB=80,故40、22.(1)证明:如图,连结OB,交CA于点E.∵∠C=30°,∠C=12∠BOA,∴∠BOA=60°.∵∠OAC=30°,∴∠AEO=90°.∵BD∥AC,∴∠DBE=∠AEO=90°.∴OB⊥BD.∴BD是⊙O的切线.(2)解:∵AC∥BD,∴∠D=∠OAC=30°.∵∠OBD=90°,OB=8,∴BD=3OB=8 3.∴S阴影=S△BDO-S扇形AOB=12×8×83-60·π×82360=323-32π3.。

新课标九年级数学提高培训-:圆幂定理

新课标九年级数学提高培训-:圆幂定理

圆幂定理提高训练一、填空题(共6小题,每小题5分,满分30分)1、已知:如图,PT切⊙O于点T,PA交⊙O于A,B两点且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=.第1题第2题第3题2、如图:PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A,B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长等于.3、如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD=.4、如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=.第4题第5题第6题5、如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=.6、如图,已知A、B、C、D在同一个圆上,BC=CD,AC与BD交于E,若AC=8,CD=4,且线段BE、ED为正整数,则BD=.二、选择题(共6小题,每小题4分,满分24分)7、如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为()A、3B、4C、D、第7题第8题第9题8、如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为()A、6.4B、3.2C、3.6D、89、如图,⊙O的弦AB平分半径OC,交OC于P点,已知PA和PB的长分别是方程x2﹣12x+24=0的两根,则此圆的直径为()A、B、C、D、10、如图,⊙O的直径AB垂直于弦CD,垂足为H,点P是上一点(点P不与A、C两点重合),连接PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F,给出下列四个结论:(1)CH2=AH•BH;(2)=;(3)AD2=DF•DP;(4)∠EPC=∠APD,其中正确的个数是()A、1B、2C、3D、4第10题第11题第12题11如图,P是半圆O的直径BC延长线上一点,PA切半圆于点A,AH⊥BC于H,若PA=1,PB+PC=a(a>2),则PH等于()A、B、C、D、12、已知:如图,△ABC是⊙O的内接正三角形,弦EF经过BC的中点D,且EF∥AB,若AB=2,则DE的长是()A、B、C、D、1三、解答题(共10小题,满分96分)13如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B,(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,AE:EB=2:3,求AB的长和∠ECB的正切值.第13题第14题第15题14、如图,P是平行四边形ABCD的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE.15、如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.16如图,BC是半圆的直径,O是圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.(1)若∠B=30°,问:AB与AP是否相等?请说明理由;(2)求证:PD•PO=PC•PB;(3)若BD:DC=4:1,且BC=10,求PC的长17已知:如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,PD⊥AB于点D,PD、AO的延长线相交于点E,连接CE并延长CE交⊙O于点F,连接AF.(1)求证:△PBD∽△PEC;(2)若AB=12,tan∠EAF=,求⊙O半径的长.18已知:如图AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程x2﹣6x+(m2+4m+13)=0(其中m为实数)的两根.(1)求证:BE=BD.(2)若GE•EF=6,求∠A的度数19、如图,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥AD于E,BE交⊙O于F,AF交CE于P,求证:PE=PC.20、已知:如图,ABCD为正方形,以D点为圆心,AD为半径的圆弧与以BC为直径的⊙O相交于P、C两点,连接AC、AP、CP,井延长CP、AP分别交AB、BC、⊙O于E、H、F、三点,连接OF.(1)求证:△AEP∽△CEA;(2)判断线段AB与OF的位置关系,并证明你的结论;(3)求BH:HC.21、如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.22、如图所示,⊙O的直径的长是关于x的二次方程x2+2(k﹣2)x+k=0(k是整数)的最大整数根.P是⊙O外一点,过点P作⊙O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与⊙O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.答案与评分标准一、填空题(共6小题,每小题5分,满分30分)1、(2001•重庆)已知:如图,PT切⊙O于点T,PA交⊙O于A,B两点且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=15.解答:解:根据相交弦定理得DT•CD=AD•BD,DT=9.设PB=x.根据切割线定理和勾股定理得:PT2=PD2﹣DT2=PB•PA,即(x+6)2﹣81=x(x+9),解得x=152、(2006•菏泽)(非课改区)如图:PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A,B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长等于.分析:由相交弦定理得AM•MB=CM•MD,由此求出AM=5,再由切割线定理得PT2=PA•PB即可求出PT.解答:解:由相交弦定理得,AM•MB=CM•MD,而CM=10,MD=2,PA=MB=4,∴AM=5;由切割线定理得,PT2=PA•PB=4×(4+5+4)=4×13,∴PT=2.3、如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD=1:3.分析:根据切割线定理可以求得∠D=∠PAC,即可求证△PAC∽△PDB,根据对应边比值相等的性质和CD的长可求得PC与PB的比值,即可解题.解答:解:∵PAB、PCD为⊙O的两条割线,∴∠BAC+∠BDC=180°,∠PAC+∠BAC=180°,∴∠BDC=∠PAC,又∵∠P=∠P,∴△PAC∽△PDB,∴=,设PC=x,PD=y,且y﹣x=11,解得x=4,y=15,∴===,4、如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=.分析:连接OD,设CE=x,由切割线定理得,CD2=CB•CA,根据AB=CD=2,求得BC,由切线的性质,可证明△BCE∽△DCO,由比例式求得CE即可.解答:解:∵CD是⊙O的切线,∴CD2=CB•CA,∵AB=CD=2,∴4=BC(BC+2),解得BC=﹣1+,∵CD是⊙O的切线,BE为⊙O的切线,∴∠CBE=∠CDO=90°,∴△BCE∽△DCO,∴=,即=,解得,CE=,故答案为.点评:本题考查了切割线定理和切线长定理以及三角形的相似的判定和性质等知识,综合性强,难度较大.5、如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=.分析:连OD,根据切线的性质得到OD⊥AC,在Rt△ADO中,设OD=R,AD=2,AE=1,利用勾股定理可计算出R=,则AO=,AB=4,再根据OD∥BC,得到△AOD∽△ABC,利用相似比=,即可求出BC的长.解答:解:连OD,如图,∵AC为⊙O的切线,∴OD⊥AC,在Rt△ADO中,设OD=R,AD=2,AE=1,∴22+R2=(R+1)2,解得R=,∴AO=,AB=4,又∵∠C=90°,∴OD∥BC,∴△AOD∽△ABC,∴=,即BC==.故答案为:.6、如图,已知A、B、C、D在同一个圆上,BC=CD,AC与BD交于E,若AC=8,CD=4,且线段BE、ED为正整数,则BD=7.分析:根据已知条件,易证△ABC∽△BEC,所以BC2=CE•AC,即可求得EC=2,AE=6,利用相交弦定理,可以确定BE•DE=12,又线段BE、ED为正整数,且在△BCD中,BC+CD>BE+DE,所以可得BE=3、DE=4或BE=4、DE=3,所以BD=7.解答:解:∵BC=CD,∴∠BAC=∠DAC,∵∠DBC=∠DAC,∴∠BAC=∠DBC,又∵∠BCE=∠ACB,∴△ABC∽△BEC,∴BC2=CE•AC,∵AC=8,CD=4,∴EC=2,AE=6,由相交弦定理得,BE•DE=AE•EC,即BE•DE=12,又线段BE、ED为正整数,且在△BCD中,BC+CD>BE+DE,所以可得BE=3、DE=4或BE=4、DE=3,所以BD=BE+DE=7..二、选择题(共6小题,每小题4分,满分24分)7、如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为()A、3B、4C、D、分析:连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长.解答:解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,△BEC是等腰三角形,是解决此题的关键.8、如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为()A、6。

圆幂定理练习题

圆幂定理练习题

1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( ) A .4a B .3a C .2a D .43a 2.如图,AD 是△ABC 高线,DE ⊥AB 于E ,DF ⊥AC 于F ,则(1)AD 2=BD ·CD (2)AD 2=AE ·AB (3)AD 2=AF ·AC (4)AD 2=AC 2-AC ·CF 中正确的有( )A .1个B .2个C .3个D .4个3.如图,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 4.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CAD D .∠BAD <∠CAD二、填空题5.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =2,DB =1,则DC =______,AD =______.6.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则AB ∶BC =______.7.如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD = ,则tan 22______.8.如图,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.9.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求∠AOD 的度数;(Ⅱ)若AO =8 cm ,DO =6 cm ,求OE 的长.10.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D .(1)求证:BC 是⊙O 切线;(2)若BD =5,DC =3,求AC 的长.11.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.专题十三 相似三角形定理与圆幂定理参考答案习题13一、选择题:1.A 2.C 3.D 4.C 二、填空题5.3,3 6.1∶2 7.318.3 三、解答题9.(Ⅰ)∵AB ∥CD ,∴∠BAD +∠ADC =180°.∵⊙O 内切于梯形ABCD ,∴AO 平分∠BAD ,有∠DAO =21∠BAD , 又DO 平分∠ADC ,有∠ADO =21∠ADC .∴∠DAO +∠ADO =21(∠BAD +∠ADC )=90°,∴∠AOD =180°-(∠DAO +∠ADO )=90°.(Ⅱ)∵在Rt △AOD 中,AO =8cm ,DO =6cm , ∴由勾股定理,得.cm 1022=+DO AO∵E 为切点,∴OE ⊥AD .有∠AEO =90°,∴∠AEO =∠AOD . 又∠CAD 为公共角,∴△AEO ∽△AOD . ∴cm 8.4,==∴=⋅ADODAO OE AD AO OD OE .10.(1)连接OD .∵OA =OD ,AD 平分∠BAC ,∴∠ODA =∠OAD ,∠OAD =∠CAD .∴∠ODA =∠CAD . ∴OD ∥AC .∴∠ODB =∠C =90°.∴BC 是⊙O 的切线. (2)过D 作DE ⊥AB 于E .∴∠AED =∠C =90°.又∵AD =AD ,∠EAD =∠CAD ,∴△AED ≌△ACD . ∴AE =AC ,DE =DC =3.在Rt △BED 中,∠BED =90°,由勾股定理,得422=-=DE BD BE ,设AC =x (x >0),则AE =x .在Rt △ABC 中,∠C =90°,BC =BD +DC =8,AB =x +4,由勾股定理,得 x 2+82=(x +4)2.解得x =6.即AC =6.11.(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,∴=.∴∠1=∠2.又∵OA =OC ,∴∠1=∠A .∴∠1=∠2. 即:∠ACO =∠BCD .(2)由(1)问可知,∠A =∠2,∠AEC =∠CEB .∴△ACE ∽△CBE .∴CEAEBE CE =.∴CE 2=BE ·AE . 又CD =8,∴CE =DE =4. ∴AE =8.∴AB =10.∴AC =.548022==+CE AE模拟题集锦:1、 如图,已知⊙O 的直径5AB =,C 为圆周上一 点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.OADCB2、如图,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C两点,1PA PB =,则圆O 的半径为 ,C ∠3、如图,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .B .6C .D .34、如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.5、如图,圆O 和圆O '相交于A ,B 两点,AC 是圆O '的切线,AD 是圆O 的切线,若BC =2,AB =4,则=BD _.6、如右图:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .7、如下图,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知BC CD ==2AE EC =,30CBD ∠=,C. .'OCO BDA则CAB ∠= 30 ,AC 的长是 6 .8、如图所示,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = 254.C D M OB AP。

22.第二十二讲 园幂定理(含答案)-

22.第二十二讲 园幂定理(含答案)-

第二十二讲 园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= .思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学历训练A组1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD 于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC 中,∠C=90°,AB=10,AC=6,以AC 为直径作圆与斜边交于点P ,则BP 的长为( )A .6.4B .3.2C .3.6D .8(5.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为()A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.⌒ ⌒ ⌒8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.B 组10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a2 B .a1 C .2a D .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( ) A .21 B .215 C .23 D .114.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BH:HC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案。

第5周培优 圆幂定理及中考题应用学生版

第5周培优 圆幂定理及中考题应用学生版

第5周毕业班数学培优:圆和相似综合题有关定理一、圆幂定理 以上称圆幂定理(在证明比例式、求线段长度时将发挥重要作用。

)二、弦切角定理:顶点在圆上,一边和圆相交,另一边和圆相切的角称为弦切角。

弦切角等于弦与切线所夹弧所对的圆周角。

弦切角定理的证明:已知:AP 切⊙O 于P ,PQ 是弦,则∠APQ 是弦切角,∠APQ 夹的弧是弧PQ ,弧PQ 所对的圆周角记为∠PCQ证明:∠APQ=∠PCQ (弦切角的位置分以下三种情况)定理 图形 已知 结论 证法相 交 弦 定 理⊙O 中,AB 、CD 为弦,交于点P 。

PA ·PB =PC ·PD 连结AC 、BD , 证:△APC ∽△DPB切 割 线 定 理⊙O 中,PT 切⊙O 于点T ,割线PB 交⊙O 于点A 。

PT 2=PA ·PB 连结TA 、TB , 证:△PTB ∽△PAT割 线 定 理PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C 两点。

PA ·PB =PC ·PD 过P 作PT 切⊙O 于T ,用两次切割线定理三、圆幂定理的证明1、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

如图1,几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA•PB(切割线定理)如图2,设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=PA•PB 证明:连接AT, BT∵∠PTB=∠PAT(弦切角定理) ∠P=∠P(公共角)∴△PBT∽△PTA(两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT2=PB•PA2、推论(割线定理):从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如图3,几何语言:∵PT是○O切线,PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)由上可知:PT2=PA•PB=PC•PD3、切线长定理:若已知圆的两条切线相交,则切线长相等;圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

(完整word版)圆幂定理和托勒密定理

(完整word版)圆幂定理和托勒密定理

板块1. 圆幂定理例1.如图,AB为圆O的直径,P A为圆O的切线,PB与圆O相交于D.若P A=3,PD∶DB=9∶16,则PD=________;AB=________.例2 如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,求PB的值.例3自圆O外一点P引圆的一条切线P A,切点为A,M为P A的中点,过点M引圆的割线交圆于B,C两点,且∠BMP=100°,∠BPC=40°.求∠MPB的大小.例4 如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于点E,且与CD相切,若AB=4,BE=5,求DE的长例5如图所示,已知P A与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.(1)求证:∠P=∠EDF;(2)求证:CE·EB=EF·EP;(3)若CE∶BE=3∶2,DE=6,EF=4,求P A的长.例6 如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点⊙O的切线,弦CD交AB 于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长.A BCDEFO O F EDCBAP练习:1.如图,PT 是⊙O 的切线,T 为切点,PB 是⊙O 的割线,交⊙O 于A 、B 两点,交弦CD 于点M ,已知CM=10,MD=2,PA=MB=4,则PT 的长为 . 2.如图,PAB 、PCD 为⊙O 的两条割线,若PA=5,AB=7,CD=11,则AC :BD= . 3.如图,AB 是⊙O 的直径,C 是AB 延长线上的一点,CD 是⊙O 的切线,D 为切点,过点B 作⊙O 的切线交CD 于点F ,若AB=CD=2,则CE= .4. 如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上 的点,连结PC 交O ⊙ 于F ,如果713PF FC ==,,且::2:4:1PA AE EB =,那么CD 的长是 .5. 如图,BC 是半圆O ⊙的直径,EF BC ⊥于点F ,5BF FC=.已知点A 在CE的延长线上,AB 与半圆交于D ,且82AB AE ==,,则AD 的长为__________. 6.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为 方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .22 7.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ; (3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .9.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .10.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a 2 B .a 1 C .2a D .3a11.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215- C .23D .1 12.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.板块2.托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.即:;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BDAC BC AD CD AB ABCD ⋅≥⋅+⋅例1. 如图,在△ABC 中,∠A 的平分 线交外接∠圆于D ,连结BD ,求证:AD ·BC=BD(AB +AC).例2. 已知a 、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B .例3 在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,例4 若a 、b 、x 、y 是实数,且122=+b a ,122=+y x .求证:1≤+by ax .PACDBQ PBC DAQ Q CD D P C D C B A P ∠=∠∠∠求证:,=,使上取一点之间,在弦、在两点,、圆于。

05 初升高衔接专题 圆幂定理(含答案)

05  初升高衔接专题     圆幂定理(含答案)

圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、切线长定理、弦切角定理及割线定理(切割线定理推论)的统一,例如如果交点为P 的两条相交直线与圆O 相交于A 、B 与C 、D ,则PA ·PB=PC ·PD 。

根据两条与圆有相交关系的线的位置不同,有以下定理:1.相交弦定理相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PAP B P CP D ⋅=⋅.2.切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.如图,PT 是O ⊙的切线,P AB 为O ⊙的割线,则2PT PA PB =⋅.3.割线定理割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.如图,P AB 和PCD 为O ⊙的两条割线,则PA PB PC PD ⋅=⋅.【例1】(1)如图1-1,已知O ⊙的弦AB 、CD 相交于点P ,6cm PA =,9cm PB =,:1:3PC PD =,则CD =__________.(2)如图1-2,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM M C =, 1.5AM =,4BM =,则OC 的长为__________.(3)如图1-3,点P 为弦AB 上的一点,连接OP ,过点P 作PC OP ⊥,PC 交O ⊙于C ,且O ⊙的半径为3.若4AP =,1PB =,则OP 的长为________. ACO PDBACOMBACOPB图1-1 图1-2 图1-3A CBDP OTAOBPDAOBPC【例2】如图,已知O ⊙的弦AB ,CD 相交于点P ,4PA =,3PB =,6PC =,EA 切O ⊙于点A ,AE 与CD 的延长线交于点E,EA =PE 的长.【例3】(1)如图,过点P 作O ⊙的两条割线分别交O ⊙于点A 、B 和点C 、D ,已知3PA =,2AB PC ==,则PD 的长是____________. PA BCOD(2)如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连接PC 交O ⊙于F ,如果7PF =,13FC =,且::2:4:1PA AE EB=,则CD 的长是______________. PFCAO D BE【练出高分】 班级 姓名1.(1)如图1,O ⊙的弦AB 与CD 相交于点P ,已知3cm PA =,4cm PB =,2cm PC =,PD =__________.(2)如图2,已知O ⊙中,弦25cm AB =,M 是AB 上一点,13cm OA =,5cm OM =,则AM =________.A CD B O PAB OM图1 图2 2.(1)如图3,一圆周上有三点A ,B ,C ,∠A 的平分线交边BC 于D ,交圆于E ,已知5BC =,4AC =,6AB =,则AD DE ⋅=__________.(2)如图4,已知AB 为O ⊙的直径,C 为O ⊙上一点,CD AB ⊥于D ,9AD =,4BD =,以C 为圆心,CD 为半径的圆与O ⊙相交于P ,Q 两点,弦PQ 交CD 于E ,则PE EQ ⋅=__________.AEDBCAE PO D BC Q图3 图43.(1)如图,PC 是半圆的切线,且PB OB =,过B 的切线交PC 于点D ,若6PC =,则O ⊙半径为__________,:CD DP =__________.(2)点A 是半径为3的圆外一点,它到圆的最近点的距离为5,则过点A 的切线长为__________.A O BCP D(3)如图,两圆相交于C 、D ,AB 为公切线,若12AB =,9CD =,则MD =____________.培 优:4.如图,四边形ABCD 是边长为a 的正方形,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆交于另一点P .延长AP 交BC 于点N ,求BNNC的值.5.如图,四边形ABCD 内接于以BC 为直径的圆O ,且A B A D =,DA 、CB 的延长线相交于P 点.CE PD ⊥于E ,PB BO =,已知18DC =,求DE 的长.DC A B NPD C圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、切线长定理、弦切角定理及割线定理(切割线定理推论)的统一,例如如果交点为P 的两条相交直线与圆O 相交于A 、B 与C 、D ,则PA ·PB=PC ·PD 。

2024年中考数字复习 圆中的重要模型-圆幂定理模型(原卷+答案解析)

2024年中考数字复习 圆中的重要模型-圆幂定理模型(原卷+答案解析)

圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。

可能是在19世纪由德国数学家施泰纳(Steiner)或者法国数学家普朗克雷(Poncelet)提出的。

圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。

模型1.相交弦模型条件:在圆O中,弦AB与弦CD交于点E,点E在圆O内。

结论:△CAE∼△BDE⇒ECEB=EAED⇒EC⋅ED=EB⋅EA。

1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,两圆组成的圆环的面积是.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.模型2.双割线模型条件:如图,割线CH与弦CF交圆O于点E和点G。

结论:△CEG∼△CHF⇒ECCH=CGCF⇒EC⋅FC=GC⋅HC4(2023·浙江·九年级假期作业)如图:PAB、PCD为⊙O的两条割线,若PA∙PB=30,PC=3,则CD的长为()A.10B.7C.510D.35(2023·四川成都·九年级校考阶段练习)如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为.6(2022·河南洛阳·统考一模)我们知道,直线与圆有三种位置关系:相交、相切、相离.当直线与圆有两个公共点(即直线与圆相交)时,这条直线就叫做圆的割线.割线也有一些相关的定理.比如,割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.下面给出了不完整的定理“证明一”,请补充完整.已知:如图①,过⊙O 外一点P 作⊙O 的两条割线,一条交⊙O 于A 、B 点,另一条交⊙O 于C 、D 点.求证:PA ⋅PB =PC ⋅PD .证明一:连接AD 、BC ,∵∠A 和∠C 为BD 所对的圆周角,∴.又∵∠P =∠P ,∴,∴.即PA ⋅PB =PC ⋅PD .研究后发现,如图②,如果连接AC 、BD ,即可得到学习过的圆内接四边形ABDC .那么或许割线定理也可以用圆内接四边形的性质来证明.请根据提示,独立完成证明二.证明二:连接AC 、BD ,模型3.切割线模型条件:如图,CB 是圆O 的切线,CA 是圆O 的割线。

人教B版高中数学选修4-1创新设计练习1.3.1圆幂定理(含答案详析)

人教B版高中数学选修4-1创新设计练习1.3.1圆幂定理(含答案详析)

1.3 圆幂定理与圆内接四边形1.3.1 圆幂定理基础达标1.圆内两条相交弦,其中一弦长为8 cm ,且被交点平分,另一条弦被交点 分成1∶4两部分,则这条弦长是( )A .2 cmB .8 cmC .10 cmD .12 cm 解析:由相交弦推论,即可得.设另一条弦被分成x cm ,4x cm.则⎝ ⎛⎭⎪⎫822=x ·4x ,所以x =2 cm. 所以弦长为10 cm.答案:C2.如图所示,PC 切⊙O 于A ,PO 的延长线交⊙O 于B ,BC 切⊙O 于B , 若AC ∶CP =1∶2,则PO ∶OB 等于( )A .2∶1B .1∶1C .1∶2D .1∶4解析:连接OA ,则OA ⊥PC ,∴△P AO ∽△PBC ,∴PO PC =OA BC ,即PO OA =PC BC ,又∵OA =OB ,AC ∶CP =1∶2,设AC =x ,则CP =2x ,∴CA =x =BC ,∴PO OA =2x x =2,∴PO ∶OB =2∶1.答案:A3.如图所示,在⊙O 中,弦AB 与半径OC 相交于点M,且OM=MC,AM=1.5,BM=4,则OC等于()A.2 6 B. 6C.2 3 D.2 2解析:延长CO交⊙O于D,则DM=3CM,CM·MD=MA·MB,所以1.5×4=3CM2,CM=2,OC=2 2.答案:D4.如图所示,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为________.解析:由相交弦定理知EA·EB=EC·ED.①又∵E为AB中点,AB=4,DE=CE+3,∴②式可化为22=EC(CE+3)=CE2+3CE,∴CE=-4(舍去)或CE=1.∴CD=DE+CE=2CE+3=2+3=5.答案:55.如图所示,P A、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于点D、E,交AB于点C,图中互相垂直的线段有________⊥________(只要求写出一对线段).解析:如题图所示,由于P A、PB均为⊙O切线,∴P A⊥OA,PB⊥OB.又由切线长定理知P A=PB,OP为∠APB的角平分线,∴AB⊥OP,故应填P A⊥OA或PB ⊥OB或AB⊥OP.答案:AB OP6.如图,已知在⊙O中,P是弦AB的中点,过点P作半径OA的垂线分别交⊙O于C、D两点,垂足是点E.求证:PC·PD=AE·AO.证明:连接OP,∵P为AB的中点,∴OP⊥AB,AP=PB.∵PE⊥OA,∴AP2=AE·AO.∵PD·PC=P A·PB=AP2,∴PD·PC=AE·AO.综合提高7.如图所示,P A、PB是⊙O的两条切线,A、B为切点,连接OP交AB于C,连接OA、OB,则图中等腰三角形、直角三角形个数分别为()A.1,2 B.2,2C.2,6 D.1,6解析:∵P A、PB为⊙O切线,∴OA⊥AP,OB⊥PB,P A=PB,OP平分∠APB,∴OP⊥AB.∴直角三角形有6个,等腰三角形有2个.即直角三角形有:△OAP,△OBP,△OCA,△OCB,△ACP,△CBP;等腰三角形有:△OAB,△ABP.答案:C8.如图所示,P A切⊙O于A,PBC是⊙O的割线,且PB=BC,P A=32,那么BC的长为()A. 3 B.2 3C.3 D.3 3解析:根据切割线定理P A2=PB·PC,所以(32)2=2PB2.所以PB=3=BC.答案:C9.如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=________;CE=________.解析:由圆的割线定理知:AB·AC=AD·AE,∴AE=8,∴DE=5.连接EB,∵∠EDB=90°.∴EB为直径.∴∠ECB=90°.由勾股定理,得EB2=DB2+ED2=AB2-AD2+ED2=16-9+25=32.在Rt△ECB中,EB2=BC2+CE2=4+CE2,∴CE2=28,∴CE=27.答案:52710.如图,P AB、PCD是⊙O的两条割线,PC=AB,P A=20,CD=11,则AB的长为________.解析:设PC=AB=x,则x(x+11)=20×(20+x),解得x=25.所以AB的长为25.答案:2511.如图所示,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P.猜想:四边形ABCD的四边有何关系?解:AB+CD=AD+BC.理由:因为AB、BC、CD、DA都与⊙O相切,L、M、N、P为切点,所以AL=AP,LB=MB,DN=DP,NC=MC.所以AB+CD=AL+LB+DN+NC=AP+MB+DP+MC=AD+BC.即AB+CD=AD+BC.12.(创新拓展)已知⊙O与⊙O′外切于P点,AB为两圆的一条外公切线,A、B为切点,AC为⊙O的直径,CD切⊙O′于D,如图所示.求证:AC=CD.证明:方法一:作两圆的公切线MN.再连接P A、PB和PC,如图所示,易得∠APB=90°.∵AC为⊙O直径,∴∠APC=90°.∴C、P、B三点共线.在Rt△ACB中利用射影定理得AC2=CP·CB.又∵CD2=CP·CB,∴CD2=AC2.∴AC=CD.方法二:如图所示,作线段OO′.则OO′必过P点,连接O′B、O′C、O′D,并作O′M⊥AC于M.设⊙O半径为R,⊙O′半径为r.∵MO′2=OO′2-OM2,∴MO′=(R+r)2-(R-r)2=2Rr.∵CO′2=CM2+MO′2,∴CO′2=(2R-r)2+4Rr=4R2+r2.∴CD2=CO′2-O′D2=4R2+r2-r2=4R2. ∴CD=2R=AC.。

高中数学第一章相似三角形定理与圆幂定理1.2.3弦切角定理练习(含解析)新人教B版选修41

高中数学第一章相似三角形定理与圆幂定理1.2.3弦切角定理练习(含解析)新人教B版选修41

弦切角定理课时过关·能力提升1.如图,PQ为☉O的切线,A是切点,∠BAQ=55°,则∠ADB=()°°°°PQ是切线,∴∠C=∠BAQ=55°.∴AAA⏜ =360°-110°=250°.⏜ =110°.∴AAA∴∠ADB=125°.2.如图,△ABC内接于☉O,EC切☉O于点C.若∠BOC=76°,则∠BCE等于()°°°°EC为☉O的切线,∴∠BCE=∠BAC=1∠BOC=38°.23.如图,四边形ABCD是圆内接四边形,AB是直径,MN是☉O的切线,C为切点,若∠BCM=38°,则∠B等于()°°°°AC,如图所示.∵MN切圆于C,BC是弦,∴∠BAC=∠BCM.∵AB是直径,∴∠ACB=90°.∴∠B+∠BAC=90°.∴∠B+∠BCM=90°.∴∠B=90°-∠BCM=52°.4.如图,AB是☉O的直径,EF切☉O于点C,AD⊥EF于点D,AD=2,AB=6,则AC的长为()√3BC,如图所示.∵EF是☉O的切线,∴∠ACD=∠ABC.又AB是☉O的直径,∴∠ACB=90°.又AD⊥EF,∴∠ACB=∠ADC.∴△ADC∽△ACB.∴AAAA =AAAA.∴AC2=AD·AB=2×6=12.∴AC=2√3.★5.如图,∠ABC=90°,O是AB上一点,☉O切AC于点D,交AB于点E,连接DB,DE,OC,则图中与∠CBD相等的角共有()个个个个AB⊥BC,∴BC与☉O相切,BD为弦.∴∠CBD=∠BED.同理可得∠CDB=∠BED,∴∠CBD=∠CDB.如图,连接OD.∵OD=OB,OC=OC,∴Rt△COD≌Rt△COB.∴CB=CD,∠DCO=∠BCO.∴OC⊥BD.又DE⊥BD,∴DE∥OC.∴∠BED=∠BOC.∴∠CBD=∠BOC.∴与∠CBD相等的角共有3个.6.如图,AD切☉O于点F,FB,FC为☉O的两条弦,请列出图中所有的弦切角.AFB,∠AFC,∠DFC,∠DFB7.如图,AB是☉O的直径,直线CE与☉O相切于点C,AD⊥CE于点D,若AD=1,∠ABC=30°,则☉O 的面积是.DE是切线,∴∠ACD=∠ABC=30°.又AD⊥CD,∴AC=2AD=2.又AB是直径,∴∠ACB=90°.又∠ABC=30°,∴AB=2AC=4,∴OA=12AB=2.∴☉O的面积为S=π·OA2=4π.8.如图,AB是☉O的直径,PB,PE分别切☉O于点B,C,若∠ACE=40°,则∠P=.,连接BC,则∠ACE=∠ABC,∠ACB=90°.又∠ACE=40°,则∠ABC=40°.所以∠BAC=90°-∠ABC=90°-40°=50°,∠ACP=180°-∠ACE=140°.又AB是☉O的直径,则∠ABP=90°.又四边形ABPC的内角和等于360°,所以∠P+∠BAC+∠ACP+∠ABP=360°.所以∠P=80°.°9.如图,BA是☉O的直径,AD是☉O的切线,切点为A,BF,BD分别交AD于点F,D,交☉O于点E,C,连接CE.求证:BE·BF=BC·BD.BE·BF=BC·BD,只需证AAAA =AAAA,即证明△BEC∽△BDF.由∠DBF为公共角,只需再找一组角相等,为此,过点B作☉O的切线,构造弦切角.,过点B作☉O的切线BG,则AB⊥BG.又AD是☉O的切线,∴AD⊥AB,BG∥AD.∴∠GBC=∠BDF.又∵∠GBC=∠BEC,∴∠BEC=∠BDF.又∠CBE=∠DBF,∴△BEC∽△BDF.∴AAAA =AAAA.∴BE·BF=BC·BD.★10.如图,△ABC内接于☉O,AB=AC,直线MN切☉O于点C,弦BD∥MN,AC与BD相交于点E.求证:(1)△ABE≌△ACD;(2)BE=BC.很明显∠ABE=∠ACD,只需证明∠BAE=∠CAD,转化为证明∠BAE=∠CDB,∠CDB=∠DCN,∠DCN=∠CAD.(2)转化为证明∠BEC=∠ECB.∵BD∥MN,∴∠CDB=∠DCN.又∠BAE=∠CDB,∴∠BAE=∠DCN.又直线MN是☉O的切线,∴∠DCN=∠CAD.∴∠BAE=∠CAD.又∠ABE=∠ACD,AB=AC,∴△ABE≌△ACD.(2)∵∠EBC=∠BCM,∠BCM=∠BDC,∴∠EBC=∠BDC.∴CB=CD.∵∠BEC=∠EDC+∠ECD,∠ECD=∠ABE,∴∠BEC=∠EBC+∠ABE=∠ABC.又AB=AC,∴∠ABC=∠ECB.∴∠BEC=∠ECB.∴BE=BC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( ) A .
4
a B .
3
a C .
2
a D .
4
3a 2.如图,AD 是△ABC 高线,DE ⊥AB 于E ,DF ⊥AC 于F ,则(1)AD 2=BD ·CD (2)AD 2=AE ·AB (3)AD 2
=AF ·AC (4)AD 2=AC 2-AC ·CF 中正确的有( )
A .1个
B .2个
C .3个
D .4个
3.如图,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )
A .135°
B .110°
C .145°
D .120° 4.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )
A .∠BAD +∠CAD =90°
B .∠BAD >∠CAD
C .∠BA
D =∠CAD D .∠BAD <∠CAD
二、填空题
5.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =2,DB =1,则DC =______,AD =______.
6.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则AB ∶BC =______.
7.如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ ,
则tan 2
2
θ
______.
8.如图,AB是⊙O的直径,CB切⊙O与B,CD切⊙O与D,交BA的延长线于E.若AB=3,ED=2,则BC的长为______.
9.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,
(Ⅰ)求∠AOD的度数;
(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.
10.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.
(1)求证:BC是⊙O切线;
(2)若BD=5,DC=3,求AC的长.
11.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若BE=2,CD=8,求AB和AC的长.
专题十三 相似三角形定理与圆幂定理参考答案
习题13
一、选择题:
1.A 2.C 3.D 4.C 二、填空题
5.3,3 6.1∶2 7.
3
1
8.3 三、解答题
9.(Ⅰ)∵AB ∥CD ,
∴∠BAD +∠ADC =180°.∵⊙O 内切于梯形ABCD ,
∴AO 平分∠BAD ,有∠DAO =21
∠BAD , 又DO 平分∠ADC ,有∠ADO =2
1
∠ADC .
∴∠DAO +∠ADO =2
1
(∠BAD +∠ADC )=90°,∴∠AOD =180°-(∠DAO +∠ADO )=
90°.
(Ⅱ)∵在Rt △AOD 中,AO =8cm ,DO =6cm , ∴由勾股定理,得
.cm 1022=+DO AO
∵E 为切点,∴OE ⊥AD .有∠AEO =90°,∴∠AEO =∠AOD . 又∠CAD 为公共角,∴△AEO ∽△AOD . ∴
cm 8.4,==∴=⋅AD
OD
AO OE AD AO OD OE . 10.(1)连接OD .∵OA =OD ,AD 平分∠BAC ,
∴∠ODA =∠OAD ,∠OAD =∠CAD .∴∠ODA =∠CAD . ∴OD ∥AC .∴∠ODB =∠C =90°.∴BC 是⊙O 的切线. (2)过D 作DE ⊥AB 于E .∴∠AED =∠C =90°.
又∵AD =AD ,∠EAD =∠CAD ,∴△AED ≌△ACD . ∴AE =AC ,DE =DC =3.
在Rt △BED 中,∠BED =90°,由勾股定理,得
422=-=
DE BD BE ,设AC =x (x >0),则AE =x .
在Rt △ABC 中,∠C =90°,BC =BD +DC =8,AB =x +4,由勾股定理,得 x 2+82=(x +4)2.解得x =6.即AC =6.
11.(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,
∴=.∴∠1=∠2.
又∵OA =OC ,∴∠1=∠A .∴∠1=∠2. 即:∠ACO =∠BCD .
(2)由(1)问可知,∠A =∠2,∠AEC =∠CEB .
∴△ACE ∽△CBE .∴
CE
AE
BE CE =
.∴CE 2=BE ·AE . 又CD =8,∴CE =DE =4. ∴AE =8.∴AB =10.∴AC =
.548022==+CE AE
模拟题集锦:
1、 如图,已知⊙O 的直径5AB =,C 为圆周上一 点,4=BC ,过点C 作⊙O 的切线l ,过点A 作
l 的垂线AD ,垂足为D ,则CD =___________.
2、如图,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,3,1PA PB ==,
则圆O 的半径为 ,C ∠ .
3、如图,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为
A .62
B .6
C .32
D .3
O
A
D
C
B
A
B P
C
O
A
B
C O
4、如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E ,已知
O 的半径为3,2PA =,则PC =_________,
OE =_________.
5、如图,圆O 和圆O '相交于A ,B 两点,AC 是圆O '的切线,AD 是
圆O 的切线,若BC =2,AB =4,则=BD _.
6、如右图:PA 切
O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,
:1:2AB AC =,则O 的半径为 .
7、如下图,在圆内接四边形ABCD 中, 对角线, AC BD 相交于
点E .已知23BC CD ==,2AE EC =,30CBD ∠=, 则CAB ∠= 30 ,AC 的长是 6 .
8、如图所示,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = 254

·
P
C
B
A D
E
O . .'O
C
O B
D
A B C
O
A
P
C D M O
B A
P。

相关文档
最新文档