高考中函数图像的考查点
高考数学中的函数图像问题解析
高考数学中的函数图像问题解析高考数学是所有高中毕业生的噩梦之一,尤其是数学中的函数图像问题。
在高考数学中,函数图像问题是一个必须掌握的部分,因为它涉及到很多实际问题的解决方法。
在本文中,我们将详细讨论高考数学中的函数图像问题,帮助读者更好地理解这个难点。
一、简单的函数图像问题在高考数学中,最简单的函数图像问题是给定一个函数f(x),要求求出其图像。
这个问题看似简单,但实际上需要掌握一些技巧。
首先,我们需要了解一些常见的函数的图像,例如二次函数,指数函数,对数函数等。
这些函数的图像是高考数学中重点考察的,因此需要记住其基本形态。
其次,我们需要使用一些基本的图像变换技巧,例如平移,压缩等,来对函数的图像进行分析和绘制。
最后,我们需要了解如何使用数值表来绘制函数的图像。
数值表是一种非常有用的工具,可以帮助我们更好地理解函数的性质。
例如,我们可以使用数值表来确定函数的极值点,拐点,以及其他关键点。
此外,数值表还可以帮助我们确定函数的单调性,从而更好地理解函数的最大值和最小值,以及函数的攀升或下降趋势。
二、复杂的函数图像问题除了简单的函数图像问题外,高考数学中还存在一些更为复杂的函数图像问题。
例如,有时候我们需要对一个函数进行分段定义,这样函数的图像会变得更加复杂。
此时,我们需要了解分段函数的基本性质和图像变换规律,来更好地分析和绘制分段函数的图像。
另外,有时候函数的定义域和值域也受到限制,这会对函数的图像造成一些影响。
例如,如果定义域为负数,那么函数的图像可能会受到对称性的影响,这就需要我们使用对称性来分析和绘制函数的图像。
应用题中也会出现函数图像的问题,例如在求解物理问题时,需要根据函数的图像来解决问题。
因此,在应用题中需要有针对性地分析函数的图像,来解决具体的问题。
三、总结在高考数学中,函数图像问题是一个非常重要的考点,需要从多个方面进行思考和分析。
对于这个问题,我们需要掌握基本的图像变换和数值表技巧,以及对各种函数的基本形态和特殊性质有所了解。
高考数学中的三角函数图像的映象变换
高考数学中的三角函数图像的映象变换三角函数作为高中数学的基础知识,其图像映象变换是数学考试中必须掌握的知识点。
在高考考试中,从题目的大量出现可以看出,对于学生来说,了解清楚三角函数图像的映象变化是取得高分的要点之一。
本文将从三角函数的基础知识开始,讲解其图像映象变化的演变过程以及对数学计算的影响。
一、三角函数的基础知识三角函数是学习高中数学的基础知识,包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)。
其中,正弦函数 sin(x) 的周期为2π,其函数图像在2π 区间内是一个周期性区间之内的波浪线;余弦函数 cos(x) 的周期为2π,其函数图像在2π 区间内是一个周期性区间之外的波浪线;正切函数 tan(x) 是一个不断向两侧无限延伸的函数。
二、三角函数图像的映象变换1. 垂直方向的拉伸和压缩变换垂直方向的拉伸和压缩变换是指通过改变三角函数图像的振幅,使其映射为一张更高或更矮的图像。
具体来说,若三角函数的振幅从原先的 A 拉伸为 2A,则会使三角函数的波浪线在垂直方向拉伸;反之,若三角函数的振幅从原先的 A 压缩为 A/2,则会使三角函数的波浪线在垂直方向压缩。
2. 水平方向的平移变换水平方向的平移变换是指通过移动三角函数图像的水平坐标轴,使其波峰和波谷发生横向位移。
具体来说,若将 sin(x) 函数向右平移 h 个单位,则对应的函数为 sin(x-h);反之,若将 sin(x) 函数向左平移 h 个单位,则对应的函数为sin(x+h)。
3. 镜像对称变换镜像对称变换是指通过对 x 轴或者 y 轴进行镜像反转,使函数图像在经过镜像后,出现左右位置颠倒的情况。
具体来说,若将sin(x) 函数关于 y 轴进行镜像对称,则对应的函数为 sin(-x);若将sin(x) 函数关于 x 轴进行镜像对称,则对应的函数为 -sin(x)。
三、三角函数图像的变换对数学计算的影响三角函数图像的映象变换可以方便简单地将三角函数问题简化,从而更好地处理数学计算问题。
论如何用图像来理解高考数学中的各种函数
论如何用图像来理解高考数学中的各种函数在高考数学中,函数是一个非常重要的概念,它是数学中的一个基础性概念,涉及到关于数的运算、变化、数量之间的关系等方面。
在高考数学中,常见的函数类型包括一次函数、二次函数、指数函数、对数函数、三角函数等等。
要想真正理解这些函数,我们可以利用图像来进行解析和具体化。
1. 一次函数一次函数是指函数的自变量的最高次数为一的函数,通常可以用直线来表示。
一般的一次函数的一般式为y = kx + b,其中k代表斜率,b代表截距。
当k>0时,表示函数单调递增;当k<0时,表示函数单调递减;当k=0时,表示函数为常数函数。
对于一次函数,我们可以通过以下几种方法来理解它:1)根据函数的一般式y = kx + b,我们可以通过选取不同的x 值,绘制出对应的y坐标,来得到一条直线。
通过观察这个直线的斜率和截距,我们可以得到一些直线的性质和规律,帮助我们更好地理解一次函数。
2)我们可以通过对一次函数图像的观察,来得到一些几何上的性质。
比如,当一次函数的斜率大于0时,直线从左下方向右上方倾斜;当一次函数的斜率小于0时,直线从左上方向右下方倾斜;当一次函数的斜率等于0时,直线平行于x轴。
这些性质可以帮助我们更好地掌握一次函数的变化规律。
3)我们可以通过对一次函数的导数的分析,来更深入地理解一次函数。
一次函数的导数恒为常数,这意味着一次函数的变化是匀速变化,这一点可以通过一次函数图像的直线形态得到证明。
2. 二次函数二次函数是指函数的自变量的最高次数为2的函数。
它通常可以用一条抛物线来表示。
一般的二次函数的一般式为y = ax^2 + bx + c,其中a>0。
二次函数的图像通常具有开口向上或者开口向下的形态。
对于二次函数,我们可以通过以下几种方法来理解它:1)我们可以通过图像来得到一些关于二次函数的性质和规律。
比如,当二次函数的系数a>0时,函数图像开口向上;当二次函数的系数a<0时,函数图像开口向下。
函数图像 高三数学一轮复习
的对称轴是直线 x= 13 ______.
2
考题讲练1(10分钟)
考向一
例1
画函数图象
作出下列函数的图象:
(x+2);
(1)y=|x-2|·
(2)y=|log2(x+1)|;
2x-1
;
(3)y=
x-1
(4)y=x2-2|x|-1.
函数图象的识别
角度1.由解析式判断函数图象
例2 函数f
A.
x =
上f x < 0,在 −2,0 上f x > 0;y = g x 是奇函数,由图象及奇函数对称性
知,在 −3, −1 上g x < 0,在 −1,0 上g x > 0;
f x > 0,
f x < 0,
< 0时,有
或
∴ 所求不等式的解集是
g x <0
g x > 0,
{x| − 2 < x < −1或0 < x < 1或2 < x < 3}.
单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值
点、最小值点、与坐标轴的交点等),描点,连线.
f(x)+k
2.利用图象变换法作函数的图象
(1)平移变换
f(x+h)
f(x-换
(3)翻折变换
保留x轴上方图象
①y=f(x)――――――――――――――――――→y= |f(x)| .
将x轴下方图象翻折上去
保留y轴右侧图象,并作其
②y=f(x)―――――――――――――――――――――→y= f(|x|) .
关于y轴对称的图象
(4)对称变换
①函数 y=f(x)和函数 y= 09 _________的图象关于
高考数学中的函数图像变换及其应用
高考数学中的函数图像变换及其应用高考数学作为广大学生面临的一大挑战,其中数学分值占比不容忽视,其中函数图像变换的相关知识成为了考生备考重点之一。
本文将介绍这些知识,并探讨其相关应用。
一、函数图像的平移平移是函数图像变换中最基本的一种,它是通过改变函数图像与坐标轴的相对位置来实现的。
其中,平移的方向与距离是决定平移效果的两个重要因素。
对于一般的函数y=f(x),将它的图像向右平移a个单位长度的方法如下:设新函数为y=f(x-a),则各个点的实际位置为(x+a,y),根据平移的原理,需要将这些点在坐标系中向左平移a个单位长度即可实现。
类似地,将函数图像向左平移a个单位长度的方法就是y=f(x+a),而将其上移或下移b个单位长度的方法分别为y=f(x)+b 和y=f(x)-b。
函数图像的平移主要应用于研究函数图像的周期性,以及改变其输出值区间、控制其渐进线等方面。
二、函数图像的伸缩伸缩也是函数图像变换中常用的一种方法,它是通过改变函数图像沿x、y轴的长度比例来实现的。
对于一般的函数y=f(x),将其图像沿x轴方向压缩k倍的方法如下:设新函数为y=f(kx),则每个点的实际位置为(x/k,y),因此只需将这些点在坐标系中沿x轴方向伸缩k倍即可。
类似地,函数图像沿y轴方向压缩k倍的方法为y=kf(x),而沿x、y轴方向伸缩k倍的方法分别为y=f(x/k)和y=kf(kx)。
函数图像的伸缩主要应用于研究函数图像的单调性、极值、导数等性质,以及折线图、曲线图的绘制等方面。
三、函数图像的旋转旋转是函数图像变换中相对复杂的一种,它是通过改变函数图像与坐标轴的相对位置和形状来实现的。
对于一般的函数y=f(x),将其图像沿原点逆时针旋转α角的方法如下:设新函数为y=f(xcosα+ysinα),则原函数中每个点的坐标(x,y)将变为(xcosα+ysinα,-xsinα+ycosα),按照旋转的原理,需要将这些点在坐标系中沿逆时针方向旋转α角度即可实现。
2022新高考数学高频考点题型归纳11函数图像(学生版)
专题11函数图像一、关键能力1.在实际情境中,会根据不同的需要选择图象法、列表法、解析式法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解集的问题. 二、教学建议1.学生应掌握图象的平移变换、对称变换、翻折变换、伸缩变换等;2.函数图象的应用很广泛,研究函数的性质、解决方程解的个数、不等式的解等都离不开函数的图象,对图象的控制能力往往决定着对函数的学习效果.3.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法. 三、自主梳理 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )―——————―→关于x 轴对称y =-f (x ); ②y =f (x )――——————―→关于y 轴对称y =f (-x ); ③y =f (x )―――——————→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――——————―→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )―――——————→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――——————―→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)翻折变换(☆☆☆)①y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);②y =f (x )――――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.(4)伸缩变换①y =f (x ) 至 y =f (ax ).②y =f (x ) 至 y =af (x ).――——————―——————―→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变四、高频考点+重点题型 考点一、作图例1-1(対称、翻折、分段作图)画下列函数图像 (1)y =|lg x |; (2)y =x 2-2|x |-1;例1-2.(平移作图)(1)y =2x +2; (2)y =x +2x -1.例1-3(周期、类周期函数作图)定义函数f (x )=⎪⎪⎩⎪⎪⎨⎧>≤≤--2,)2(2121|,23|84x x f x x 则函数g (x )=xf (x )-6在区间[1,2n ](n ∈N *)内所有零点的和为( )A .nB .2n C.34(2n -1) D.32(2n -1)对点训练1.已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y fx =的图象:D .()y f x =-的图象:对点训练2.(2019年高考全国Ⅱ卷理)设函数的定义域为R ,满足,且当时,.若对任意,都有,则m 的取值范围是A .B .C .D .考点二、识图例1-1.(由解析式选图像) 【2020·天津卷】函数241xy x =+的图象大致为 ( )()f x (1) 2 ()f x f x +=(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞8()9f x ≥-9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦A BC D例2-2.(由图像选解析式)(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x = D .()()g x y f x =例2-3.(实际应用识图像)在2 h 内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.下面能反映血液中药物含量Q 随时间t 变化的图象是( )例2-4(两个函数图像对比)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()对点训练1.函数y=2x2-e|x|在[-2,2]的图象大致为()对点训练2.以下四个选项中的函数,其函数图象最适合如图的是()A.y=||2xexB.y=2(1)||xx exC .y =|2|xe xD .y =22xe x对点训练3.(2020·江西临川一中模拟) 广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为O ,O 1,O 2,若一动点P 从点A 出发,按路线A →O →B →C →A →D →B 运动(其中A ,O ,O 1,O 2,B 五点共线),设P 的运动路程为x ,y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象为( )对点训练4.(2021·四川高三三模(理))函数()()log a f x x b =--及()g x bx a =+,则()y f x =及y g x 的图象可能为( )A .B .C .D .考点三、利用图像解不等式 例3-1(转化为两个图像的上下方)【2020年高考北京】已知函数()21xf x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞例3-2(图像在x 轴的上下方)函数f (x )是定义域为(-∞,0)∈(0,+∞)的奇函数,在(0,+∞)上单调递增,f (3)=0,若x ·[f (x )-f (-x )]<0,则x 的取值范围为________.对点训练1.(2021·浙江高三专题练习)若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦对点训练2.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________.考点四、利用图像求解方程问题 例4-1.(方程根的个数)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.例4-2.已知12,x x 是方程x2210,log 10x x x +=+=的两个根,则12x x +=对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)对点训练2.若满足225xx +=, 满足()222log 15x x +-=, 则+=考点五、利用图像研究函数性质 例5-1.(利用图像研究单调性)1x 2x 1x 2x已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)例5-2(利用图像研究函数最值或值域)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值 _.对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是_____.对点训练2.(2020·全国高三其他(文))已知函数在区间的值域为,则( ) A .2 B .4 C .6 D .8()()()22241x x f x x x ee x --=--++[]1,5-[],m M m M +=巩固训练 一、单项选择题1.函数f (x )=x cos x 2在区间[0,4]上的零点个数为________. A. 4 B. 3 C. 2 D. 62.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A.{x |-1<x ≤0} B.{x |-1≤x ≤1} C.{x |-1<x ≤1} D.{x |-1<x ≤2}3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k的取值范围是________.4.(2021·四川达州市·高三二模(理))已知函数()f x 与()g x 的部分图象如图1,则图2可能是下列哪个函数的部分图象( )A .(())y f g x =B .()()y f x g x =C .(())y g f x =D .()()f x yg x =5.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .二、多项选择题7.设f (x )的定义域为R ,给出下列四个命题其中正确的是( )A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.8.观察相关的函数图象,对下列命题的真假情况进行判断,其中真命题为( )A .10x =x 有实数解B .10x =x 2有实数解C .10x >x 2在x ∈(0,+∞)上恒成立D .10x =-x 有两个相异实数解.三、填空题9. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.10.函数f (x )=⎩⎨⎧ln x (x >0),--x (x ≤0)与g (x )=|x +a |+1的图象上存在关于y 轴对称的点,则实数a 的取值范围是________.四、解答题11.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.12.(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称;(2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.。
函数高考知识点梳理
函数高考知识点梳理函数是高中数学的重要内容,也是高考考点之一。
掌握函数的相关知识对于高考数学成绩的提升至关重要。
本文将对函数的相关知识点进行梳理和总结,帮助同学们更好地备考。
一、函数的定义和性质1. 函数的定义:函数是一种有序对的关系,是自变量与因变量之间的映射关系。
2. 定义域:函数中自变量的取值范围。
3. 值域:函数中因变量的取值范围。
4. 图像:函数在坐标系中的表示,通常用曲线表示。
5. 奇偶性:函数关于坐标原点对称称为偶函数,关于y轴对称称为奇函数,否则为无偶奇性。
6. 单调性:函数的增减趋势。
7. 有界性:函数在某个区间上是否有上下界。
二、函数的分类1. 初等函数:基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则运算、函数的复合和函数的构造所得的函数。
2. 反函数:与原函数满足互逆关系的函数。
3. 反比例函数:自变量与因变量之间呈现反比例关系的函数。
4. 分段函数:根据自变量的取值范围,函数表达式有不同的形式。
5. 参数方程:自变量和因变量均用参数表示的函数。
三、函数的性质与运算1. 函数的和、差、积、商:函数间的四则运算。
2. 复合函数:一个函数作为另一个函数的自变量时构成的函数。
3. 反函数的性质:反函数的定义域和值域与原函数的相反。
4. 函数的平移:函数图像在坐标系中的平移和拉伸。
5. 函数的复合:多个函数进行复合运算的结果仍然是一个函数。
6. 函数的解析式与图像的关系:函数图像与函数的解析式之间的对应关系。
四、应用题1. 函数在实际问题中的应用,如函数模型的建立、函数图像的解读等。
2. 函数方程的解:求解函数方程的解析式。
通过对函数的相关知识点进行梳理和总结,我们可以更加全面地了解函数的定义、性质和运算规律。
在高考数学备考中,熟练掌握函数的相关知识点,能够灵活运用函数解决实际问题,将会为我们取得更好的成绩提供有力的支持。
精确理解函数的定义、掌握函数的分类和性质、善于运用函数的运算、熟练应用函数解决实际问题,是我们备考高考数学时不可或缺的能力。
高考数学应试技巧之常见函数的图像
高考数学应试技巧之常见函数的图像高考数学中,函数图像是一个非常重要的考点,常见函数的图像也是考试中常出现的内容之一。
因此,在高考前,熟练掌握常见函数的图像是非常必要的。
本文将介绍常见函数的图像及其应试技巧。
一、幂函数的图像幂函数的一般式可以表示为 $y=x^a$,其中 $a$ 为实数。
幂函数是一个以原点为对称中心的函数,他的图像随着 $a$ 的变化而改变。
当 $a>1$ 时,幂函数的图像向上开口,当 $a=1$ 时,幂函数为 $y=x$ 的直线,当 $0<a<1$ 时,幂函数的图像向下开口。
当$a<0$ 时,幂函数的图像关于 $x$ 轴对称。
应试技巧:考生在考场上要快速判断出幂函数图像的开口方向,可以通过观察 $a$ 的值来确定。
当 $a>1$ 时,幂函数图像向上开口,当 $0<a<1$ 时,幂函数图像向下开口。
二、指数函数的图像指数函数的一般形式可以表示为 $y=a^x$,其中 $a>0$ 且 $a\neq 1$。
指数函数的图像过 $(0,1)$,当 $a>1$ 时,指数函数的图像向上增长趋势,当$0<a<1$ 时,指数函数的图像向下减小趋势。
应试技巧:考生在考场上可以通过判断 $a$ 的大小来快速确定指数函数的图像增减趋势。
当 $a>1$ 时,指数函数的图像向上增长,当 $0<a<1$ 时,指数函数的图像向下减小。
三、对数函数的图像对数函数是指数函数的反函数,其一般式可以表示为 $y=log_ax$,其中 $a>0$ 且 $a \neq 1$。
对数函数的图像过 $(1,0)$。
当$a>1$ 时,对数函数的图像在 $x>1$ 的区间内单调递增,当$0<a<1$ 时,对数函数的图像在 $0<x<1$ 的区间内单调递减。
应试技巧:考生在考场上可以通过判断 $a$ 的大小和 $x$ 的取值范围来快速确定对数函数的增减趋势。
高考数学冲刺复习三角函数图像考点解析
高考数学冲刺复习三角函数图像考点解析在高考数学中,三角函数图像是一个重要的考点,它不仅要求我们掌握基本的概念和性质,还需要我们能够灵活运用这些知识解决各种问题。
在冲刺复习阶段,对三角函数图像考点进行系统的梳理和深入的理解,能够帮助我们在考试中更加得心应手。
一、三角函数的基本类型我们先来了解一下常见的三角函数,包括正弦函数(y = sin x)、余弦函数(y = cos x)和正切函数(y = tan x)。
正弦函数的图像是一个以2π 为周期,在-1 到1 之间波动的曲线。
它在 x = 0 时,函数值为 0;在 x =π/2 时,函数值为 1;在 x =3π/2 时,函数值为-1。
余弦函数的图像同样是以2π 为周期,在-1 到 1 之间波动。
它在 x = 0 时,函数值为 1;在 x =π 时,函数值为-1。
正切函数的图像则有所不同,它的周期是π,定义域为x ≠ (π/2)+kπ(k 为整数),值域为R。
其图像在每个周期内都是单调递增的,且有垂直渐近线 x =(π/2) +kπ。
二、三角函数图像的性质1、周期性正弦函数和余弦函数的周期都是2π,正切函数的周期是π。
周期性是三角函数的重要特征之一,利用周期性可以将函数在一个周期内的性质推广到整个定义域。
2、对称性正弦函数是关于直线 x =π/2 +kπ(k 为整数)对称的奇函数;余弦函数是关于直线 x =kπ(k 为整数)对称的偶函数。
3、单调性正弦函数在π/2 +2kπ, π/2 +2kπ(k 为整数)上单调递增,在π/2 +2kπ, 3π/2 +2kπ上单调递减。
余弦函数在2kπ π, 2kπ上单调递增,在2kπ, 2kπ +π上单调递减。
4、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R。
三、三角函数图像的变换1、平移变换对于函数 y = sin(x +φ),当φ > 0 时,图像向左平移φ 个单位;当φ < 0 时,图像向右平移|φ|个单位。
高考数学中的函数图像绘制
高考数学中的函数图像绘制高考数学中函数的图像绘制是一个不可或缺的知识点。
可以说,整个数学知识体系中,函数是一个重要的组成部分,而函数的图像绘制是理解函数的一种方式。
因此,我们需要掌握函数图像绘制的方法和技巧。
一、图像绘制的前提在绘制函数的图像之前,首先需要确定该函数的定义域和值域。
在确定了函数的定义域和值域之后,我们需要根据函数的特点来确定图像的大致形态。
二、基本函数的图像绘制1.一次函数一次函数的一般式为y=kx+b,其中k、b为常数。
根据函数的一般式,我们可以得知y与x的关系为正比例与常数之和,这表明一次函数的图像为一条直线,k代表该直线的斜率,b代表该直线与y轴交点的纵坐标。
2.二次函数二次函数的一般式为y=ax²+bx+c,其中a、b、c都是常数。
与一次函数不同的是,二次函数的图像为一条抛物线。
a代表抛物线的开口方向和程度,正数代表开口向上,负数代表开口向下。
3.指数函数指数函数的一般式为y=a^x,其中a为正实数,且a≠1。
指数函数的图像特点是随着自变量x的增加,函数值y也以指数倍数增长,因此图像呈现出逐渐上升的趋势。
当a>1时,图像会向上逐渐逼近x轴;当0<a<1时,图像会向下逐渐逼近x轴。
4.对数函数对数函数的一般式为y=logₐ(x),其中a为一个正实数,且a≠1。
对数函数的图像为一条平滑的曲线,在某些情况下可以看作是与x 轴和y轴交于原点的反比例函数。
当a>1时,函数的图像会逐渐趋近于y轴;当0<a<1时,函数的图像会逐渐趋近于x轴。
三、绘制函数图像的注意事项1.绘制函数图像时,需要准确标注坐标轴上的标尺。
2.绘制函数图像时,需要注意函数的定义域和值域,不要将图像的范围超出。
3.绘制函数图像时,需要根据函数特点细致勾画。
例如,一次函数的图像需要尽可能准确地画出斜率和截距,抛物线函数需要画出对称轴和极值点等等。
4.在绘制完函数图像之后,需要对图像进行合理的标注和说明,以方便后续学习和使用。
高考三角函数图像求解技巧
高考三角函数图像求解技巧高考数学中,三角函数是一个非常重要的知识点。
掌握三角函数的图像求解技巧,在解决相关问题时会事半功倍。
下面我将为你详细介绍高考三角函数图像求解技巧。
1. 定义域和值域:在求三角函数的图像时,首先要确定函数的定义域和值域。
根据函数的周期性,我们可以限制函数在一个周期内的图像,并利用周期性将其延伸到整个定义域上。
常见的三角函数的定义域和值域如下:- 正弦函数(sin):定义域为实数集,值域[-1,1]- 余弦函数(cos):定义域为实数集,值域[-1,1]- 正切函数(tan):定义域为实数集,值域为整个实数集R2. 基本图像的熟练掌握:掌握基本的三角函数图像可以帮助我们更好地理解和求解复杂的三角函数图像。
要熟练掌握正弦函数、余弦函数和正切函数的基本图像,可以通过观察函数在不同象限的正负情况来加深理解。
当x为0时,正弦函数和正切函数为0,余弦函数为1;当x为π/2时,正弦函数为1,余弦函数为0,正切函数不存在;当x为π时,正弦函数和正切函数为0,余弦函数为-1。
3. 周期和对称性:了解三角函数的周期性和对称性对图像的求解非常有帮助。
正弦函数和余弦函数的周期都为2π,而正切函数的周期为π。
掌握了周期之后,我们可以根据函数的对称性在一个周期内求解出函数的图像,再利用周期性进行延伸。
正弦函数的图像关于y轴对称,余弦函数的图像关于y轴对称,正切函数的图像关于原点对称。
4. 函数的平移和伸缩:可以通过改变函数的周期、振幅、相位等参数来实现图像的平移和伸缩。
对于正弦函数和余弦函数,改变式中的参数a和b可以实现图像的平移和伸缩变换。
当a>1时,表示振幅增大,图像上下拉伸;当a<1时,表示振幅减小,图像上下压缩。
当b>0时,表示图像向左平移;当b<0时,表示图像向右平移。
对于正切函数,改变式中的参数a和b 可以实现图像的水平和垂直方向的伸缩变换。
5. 考虑一些特殊值点:在求解三角函数图像时,需要关注一些特殊点的位置和性质。
重难点06 函数的图像-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)
重难点06 函数的图像1.函数图象平移变换的八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值. 2.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称.(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x ). (3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.3.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称.(2)函数y =f (x )的图象关于(a ,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x ).(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ). 4.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称.2023高考函数图象部分仍以考查图像识别为重点和热点,难度为中档,也可能考查利用函数图象解函数不等式或函数零点问题,为难题,题型为选择题.(建议用时:40分钟)一、单选题1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【答案】D【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D. 2.函数f (x )=1-11x -( ) A .在(-1,+∞)上单调递增 B .在(1,+∞)上单调递增 C .在(-1,+∞)上单调递减 D .在(1,+∞)上单调递减 【答案】B【解析】f (x )图象可由y =-1x图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示.故选:B3.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D. 4.函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .【答案】B【解析】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.5.向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .6.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.7.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )A .B .C .D .【答案】C【解析】根据函数2()1log f x x =+过1,02⎛⎫⎪⎝⎭排除A;根据1()2x g x -+=过()0,2排除B 、D, 故选C .8.将函数21y =+的图象按向量平移得到函数的图象,则 A .(11)a =--,B .(11)a =-,C .(11)a =, D .(11)a =-,【答案】 A【解析】以函数y=2的图像为参照系,函数21x y =+的图象向上平移了1个单位,函数12x y +=的图象向左平移了一个单位,因此,只需把函数21x y =+的图象向下平移一个单位,再向左平移一个单位,即可得到函数12x y +=的图象,选A.9.函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.2,12,1x x x x x ⎧+<⎪⎨+≥⎪⎩2x R 则a 的取值范围是 A .[2,2]- B .[3,2]- C .[2,23]- D .[23,23]-【答案】A【解析】满足题意时()f x 的图象恒不在函数2xy a =+下方, 当23a =时,函数图象如图所示,排除C,D 选项;当23a =-时,函数图象如图所示,排除B 选项,本题选择A 选项. 11.函数()21x f x x-=的图像为( )A .B .C .D .【答案】D【解析】函数()21x f x x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误; 又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.12.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7,4⎛⎫+∞ ⎪⎝⎭B .7,4⎛⎫-∞ ⎪⎝⎭C .70,4⎛⎫⎪⎝⎭D .7,24⎛⎫ ⎪⎝⎭【答案】D 【解析】函数恰有4个零点,即方程,即有4个不同的实数根,即直线与函数的图象有四个不同的交点.又做出该函数的图象如图所示,由图得,当时,直线与函数的图象有4个不同的交点,故函数恰有4个零点时,b 的取值范围是故选D .二、填空题13.设奇函数()f x 的定义域为[-5,5].若当x ∈[0,5]时,()f x 的图象如图,则不等式()f x <0的解集是________.【答案】(2,0)(2,5)-⋃【解析】利用函数()f x 的图象关于原点对称. ()0f x ∴<的解集为(2,0)(2,5)-⋃.故答案为:(2,0)(2,5)-⋃ 14.已知函数y =211x x --的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. 【答案】(0,1)∪(1,4)【解析】y =1,11-x-1,11x x x x +≤->⎧⎨-<<⎩或 函数y =kx -2的图象恒过定点M (0,-2), kMA =0,kMB =4.当k =1时,直线y =kx -2在x >1或x ≤-1时与直线y =x +1平行,此时有一个公共点,∴k ∈(0,1)∪(1,4)时,两函数图象恰有两个交点.15.已知函数,,则方程实根的个数为______ 【答案】4【解析】试题分析:如图与交点个数为416.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围为________.【答案】[-1,1]【解析】画出曲线|y|=2x+1与直线y=b的图象如图所示由图象可得|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].。
高考常见函数图像总结归纳
高考常见函数图像总结归纳函数是数学中的重要概念,而函数图像则是高中数学中常见的考点之一。
在高考中,学生需要熟练掌握各类函数的图像特征,以便正确解题。
本文将对高考常见函数的图像进行总结归纳,帮助学生快速理解和记忆各类函数的图像。
1. 线性函数图像线性函数的图像是一条直线,具有以下特征:- 函数方程:y = kx + b,其中k为斜率,b为截距;- 斜率与截距的取值范围确定了直线的倾斜方向和位置;- 当k > 0时,直线右斜;当k < 0时,直线左斜;- 当b > 0时,直线与y轴的交点在y轴上方;当b < 0时,直线与y 轴的交点在y轴下方;当b = 0时,直线经过原点;- 当k = 1时,图像为45°直线;当k > 1时,图像陡峭;当0 < k < 1时,图像平缓。
2. 平方函数图像平方函数的图像是一条抛物线,具有以下特征:- 函数方程:y = ax^2 + bx + c,其中a、b、c为常数;- a确定了抛物线的开口方向,当a > 0时,开口向上;当a < 0时,开口向下;- 抛物线在x轴上的交点称为零点,即函数方程的解;- 当a > 0时,抛物线在零点两侧均大于0;当a < 0时,抛物线在零点两侧均小于0;- 抛物线的对称轴为x = -b/2a,顶点坐标为(-b/2a, f(-b/2a))。
3. 绝对值函数图像绝对值函数的图像是一条V形曲线,具有以下特征:- 函数方程:y = |x|;- 函数的定义域为整个实数集,值域为非负实数;- 抛物线在原点处有一个尖点,称为顶点;- 当x > 0时,函数值与自变量相等;当x < 0时,函数值等于自变量的相反数;- 函数图像以y轴为对称轴,对称于原点。
4. 指数函数图像指数函数的图像是一条光滑的曲线,具有以下特征:- 函数方程:y = a^x,其中a为底数;- 当a > 1时,函数图像递增;当0 < a < 1时,函数图像递减;- 若a > 1,则函数图像在y轴右侧无上界;若0 < a < 1,则函数图像在y轴右侧无下界;- 函数图像在点(0, 1)处与x轴相交;- 当x > 0时,函数图像在x轴上方;当x < 0时,函数图像在x轴下方。
函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)
考向12 函数的图象【2022·全国·高考真题(理)】函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.【2022·全国·高考真题(文)】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.1.函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. 2.图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.识图的三种常用方法(1).抓住函数的性质,定性分析:①由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. (2).抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3).根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).(1)若()()f m x f m x +=-恒成立,则()y f x =的图像关于直线x m =对称.(2)设函数()y f x =定义在实数集上,则函数()y f x m =-与()y f m x =-(0)m >的图象关于直线x m =对称.(3)若()()f a x f b x +=-,对任意x ∈R 恒成立,则()y f x =的图象关于直线2a bx +=对称. (4)函数()y f a x =+与函数()y f b x =-的图象关于直线2a bx +=对称. (5)函数()y f x =与函数(2)y f a x =-的图象关于直线x a =对称. (6)函数()y f x =与函数2(2)y b f a x =--的图象关于点()a b ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数); 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称. (3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.1.(2022·青海·海东市第一中学模拟预测(理))函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【答案】D 【解析】 【分析】利用函数的单调性,奇偶性和特值点等性质来判断图像. 【详解】易知f (x )是偶函数,排除B ,C 项;当0πx ≤≤时,sin 0x ≥,所以sin cos 0y x x x =≥,排除A 项. 故选:D2.(2022·青海·模拟预测(理))已知函数()f x 的部分图像如图所示,则函数()f x 的解析式可能为( )A .()ln sin f x x x =+B .()ln cos f x x x =-C .()ln cos f x x x =+D .()ln sin f x x x =-【答案】B 【解析】 【分析】判断函数的奇偶性,可判断A,D;利用特殊值可判断C;结合三角函数性质以及函数的奇偶性,可判断B. 【详解】对于A ,()ln sin ,0f x x x x =+≠,()ln sin ()f x x x f x -=--≠,即()ln sin ,0f x x x x =+≠不是偶函数,不符合题意;对于C, ()ln cos ,0f x x x x =+≠,()πln πcos π=ln π11f =+-<,不符合题意; 对于D ,()ln sin ,0f x x x x =-≠,()ln sin ()f x x x f x -=-+≠,不符合题意; 对于B ,()ln cos ,0f x x x x =-≠,()ln cos ()f x x x f x -=--=, 故()f x 为偶函数,结合函数cos y x =的性质,可知B 符合题意, 故选:B3.(2022·浙江·三模)函数1sin 22x xxy -+=+在区间[,]-ππ上的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】直接由特殊点通过排除法求解即可. 【详解】 当0x =时,12y =,排除C 选项;当2x π=-时,0y =,排除B 、D 选项.故选:A.4.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.5.(多选题)(2022·全国·模拟预测)在下列四个图形中,二次函数2y ax bx =+与指数函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .【答案】ABD 【解析】 【分析】根据,,0a b 的关系与各图形一个个检验即可判断. 【详解】当0a b >>时,A 正确;当0b a >>时,B 正确; 当0a b >>时,D 正确;当0b a >>时,无此选项. 故选:ABD .1.(2022·青海·海东市第一中学模拟预测(文))函数()2222x xx xf x -+=+的部分图像大致是( ) A . B .C .D .【答案】B 【解析】 【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案. 【详解】函数的定义域为R ,因为()()2222x xx xf x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .2.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()f x 图象如图所示,那么该函数可能为( )A .ln ()||xf x x =B .()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩C .()()1(0)e 1e (0)xx x x f x x x -⎧>⎪=⎨⎪+<⎩D .ln ||()x f x x=【答案】D 【解析】 【分析】根据所给函数的图象,利用排除法分析ABC 即可得解. 【详解】由图象可知,函数定义域为(,0)(0,)-∞+∞,图象关于原点对称,函数是奇函数, 1x >时()0f x >, 据此,ln ()||xf x x =定义域不符合,排除A; 若 ()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩,则1x >时,()0f x <,不符合图象,故排除B ;若()()1(0)e 1e (0)x x x x f x x x -⎧>⎪=⎨⎪+<⎩,则当x 趋向于0+时,1()e x x f x -=趋向于1-,当x 趋向于0-时,()(1)e xf x x =+趋向于1,不符合图象,故排除C; 故选:D3.(2022·湖北·模拟预测)函数()[]()0,1y f x x =∈对任意()10,1a ∈,由()()*1n n a f a n +=∈N 得到的数列{}n a 均是单调递增数列,则下列图像对应的函数符合上述条件的是( )A .B .C .D .【答案】A 【解析】 【分析】由题可得()n n f a a >,进而可得函数()f x 的图像在直线y x =的图像上方,即得. 【详解】由题可知()()*1n n a f a n +=∈N ,1n n a a +>,∴()n n f a a >,故函数()f x 满足()f x x >,即函数()f x 的图像在直线y x =的图像上方,故排除BCD. 故选:A.4.(2022·浙江湖州·模拟预测)已知函数()2ln1(),cos x x f x a R x a+=∈+的图像如图所示,则实数a 的值可能是( )A .2-B .12-C .12D .2【答案】C 【解析】 【分析】根据函数的定义域分析即可 【详解】由题意,2210x x x x x x +->-=-≥,故210x x +->,分子一定有意义.又根据图象可得,当23x π=时分式无意义,故此时分母为0,故2cos 03a π+=,即102a -+=,12a =故选:C5.(2022·浙江绍兴·模拟预测)下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--【答案】A 【解析】 【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.6.(2022·河南·平顶山市第一高级中学模拟预测(文))函数sin 22cos x xy x=-的部分图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】 设()sin 22cos x x f x x =-,分析函数()f x 的定义域、奇偶性及其在0,2π⎛⎫⎪⎝⎭上的函数值符号,结合排除法可得出合适的选项. 【详解】 设()sin 22cos x xf x x=-,则对任意的x ∈R ,2cos 0x ->,则()()()()sin 2sin 22cos 2cos x x x xf x f x x x---===---,所以函数()f x 是偶函数,排除B 、D .当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,则sin 20x >,所以()0f x >,排除C .故选:A .7.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-【答案】C 【解析】 【分析】由图象确定函数的性质,验证各选项是否符合要求即可. 【详解】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数, 与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭,当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错,若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭,当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,又2()44f ππ=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致,故选:C .8.(2022·福建省福州第一中学三模)已知函数()()2()ln 1cos 3f x x x x ϕ=++⋅+.则当[0,]ϕπ∈时,()f x 的图象不可能是( )A .B .C .D .【答案】D 【解析】 【详解】首先设()()2ln 1g x x x =+,得到()g x 为奇函数,再分别令0,,2πϕπ=,依次判断选项即可.【点睛】设()(2ln 1g x x x =+,定义域为R ,()()((()2222ln 1ln 1ln 10g x g x x x x x x x +-=++-+=+-=, 所以()()g x g x -=-,()g x 为奇函数.当0ϕ=时,cos3y x =为偶函数,(2()ln 1cos3f x x x x =+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫> ⎪⎝⎭,所以选项B 可能. 当ϕπ=时,()cos 3cos3y x x π=+=-为偶函数,(2()ln 1cos3f x x x x =-+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,所以选项A 可能. 当2ϕπ=时,cos 3sin 32y x x π⎛⎫=+=- ⎪⎝⎭为偶函数,(2()ln 1sin3f x x x x =-+⋅为偶函数.因为()20033f f f ππ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,,所以选项C 可能. 故选:D9.(2022·吉林·三模(理))下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x=A .④②①③B .②④①③C .②④③①D .④②③①【答案】A 【解析】 【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值. 【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x=>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数 故选:A .10.(2022·浙江·镇海中学模拟预测)图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =【答案】A 【解析】 【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论. 【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A .11.(2022·浙江·模拟预测)已知函数()f x 的部分图像如图所示,则该函数的解析式可能是( )A .22cos ()ln 2cos xf x x x +=+-B .32cos ()ln 2cos xf x x x+=-C .32sin ()ln 2sin xf x x x+=+-D .22sin ()ln2sin xf x x x+=-【答案】B 【解析】 【分析】观察图象确定函数的性质,结合函数的性质和特殊点的取值判断各选项. 【详解】观察函数图象可得该函数图象关于原点对称,所以函数()f x 为奇函数,由图象可得(2)0f <,对于函数22cos ()ln2cos xf x x x+=+-,因为()()()222cos 2cos ()lnln ()2cos 2cos x xf x x x f x x x+-+-=-+=+=---,所以函数22cos ()ln2cos xf x x x+=+-为偶函数,A 错,对于函数32sin ()ln2sin x f x x x+=+-,()32sin ()ln()2sin x f x x f x x --=-+=-+, 所以函数32sin ()ln2sin x f x x x+=+-为奇函数,又32sin 2(2)2ln02sin 2f +=+>-,与图象不符,故C 错误, 对于函数22sin ()ln2sin x f x x x+=-,()22sin ()ln()2sin x f x x f x x --=-=-+, 所以函数22sin ()ln2sin x f x x x+=-为奇函数,又22sin 2(2)2ln02sin 2f +=>-,与图象不符,故D 错误, 对于函数32cos ()ln2cos x f x x x+=-,因为()32cos ()ln()2cos x f x x f x x +-=-=--, 所以函数32cos ()ln2cos x f x x x+=-为奇函数,且32cos 2(2)2ln02cos 2f +=<-,与图象基本相符,B 正确, 故选:B.12.(2022·四川眉山·三模(理))四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是( ) A .类似递增的双曲线 B .类似递增的对数曲线 C .类似递减的指数曲线 D .是一条S 形曲线【答案】A 【解析】 【分析】 依题意可得1311y x -=++,()0x >,整理得341y x -=++,()0x >,再根据函数的变换规则判断可得; 【详解】解:依题意可得拟合函数为1311y x -=++,()0x >, 即()31333 114111x x y x x x +--=+=+=++++,()0x >, 由3y x -=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >, 因为3y x-=在()1,+∞上单调递增,所以拟合函数图象是类似递增的双曲线; 故选:A13.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x x x x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.14.(2022·浙江绍兴·模拟预测)在同一直角坐标系中,函数()log a y x =-,()10a y a x-=>,且1a ≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称,根据对数函数的图象与性质及反比例函数的单调性即可求解. 【详解】解:因为函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称, 所以函数()log a y x =-的图象恒过定点()1,0-,故选项A 、B 错误;当1a >时,函数log a y x =在()0,∞+上单调递增,所以函数()log a y x =-在(),0∞-上单调递减, 又()11a y a x-=>在(),0∞-和()0,∞+上单调递减,故选项D 错误,选项C 正确. 故选:C.15.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案.【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A16.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解.【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =, 于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒ 而,,r H v 2323H v r π是常数, 所以盛水的高度h 与注水时间t 的函数关系式是23323H v h t r π=203r H t v π≤≤,223323103H v h t r π-'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A1.(2022·全国·高考真题(理))函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-, 所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C. 故选:A.2.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x x y x -+=+B .321x x y x -=+C .22cos 1x x y x =+D .22sin 1x y x =+ 【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<, 所以()222cos 2111x x x h x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A. 3.(2021·天津·高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .【答案】B【解析】【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.4.(2021·浙江·高考真题)已知函数21(),()sin 4f x x g x x =+=,则图象为如图的函数可能是()A .1()()4y f x g x =+- B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭, 当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.(2020·天津·高考真题)函数241x y x =+的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6.(2020·浙江·高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .【答案】A【解析】【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.7.(2019·浙江·高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( ) A . B .C .D .【答案】B【解析】【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.9.(2017·全国·高考真题(文))函数y =1+x +2sin x x 的部分图象大致为( ) A . B . C . D .【答案】D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ;当x →+∞时,y →+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.10.(2015·浙江·高考真题(文))函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C .D .【答案】D【解析】【详解】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 考点:1.函数的基本性质;2.函数的图象.11.(2018·浙江·高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .【答案】D【解析】【详解】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令||()2sin 2x f x x =,因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.12.(2018·全国·高考真题(理))函数422y x x =-++的图像大致为 A . B .C .D .【答案】D【解析】【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<, 得22x <-或202x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.13.(2017·全国·高考真题(文))函数sin21cos x y x=-的部分图像大致为 A . B . C . D .【答案】C【解析】【详解】由题意知,函数sin 21cos x y x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos2y =>-,故排除A .故选C .点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.14.(2015·安徽·高考真题(理))函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C【解析】【详解】试题分析:函数在P 处无意义,由图像看P 在y 轴右侧,所以0,0c c -><,()200,0b f b c =>∴>,由()0,0,f x ax b =∴+=即b x a =-,即函数的零点000.0,0b x a a b c a=->∴<∴<,故选C . 考点:函数的图像。
函数的图象及性质 高考数学必刷真题分类大全-专题04
专题04函数的图象及性质考向一由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A.3231x x y x -+=+ B.321x x y x -=+ C.22cos 1x x y x =+ D.22sin 1x y x =+【答案】A 【试题解析】设()321x x f x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A.【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.考向二由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.1.函数()22cos 6x x y x -=-的图像大致是()A .B .C .D .2.从函数y x =,2y x =,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =()A .2sin x x-B .cos x x +C .2sin x x -+D .cos x x -3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为()A .B .C .D .4.已知R α∈,则函数()e x x f x α=的图象不可能是()A .B .C .D .5.函数()2222x x x xf x -+=+的部分图象大致是()A .B .C .D .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是()A .B .C .D .7.下图中的函数图象所对应的解析式可能是()A .112x y -=-B .112xy =--C .12x y -=-D .21x y =--8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是()A .B .C .D .10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x )B .y =-|f (x )|)C .y =-f (-|x )D .y =f (-|x )11.函数()cos f x x x 的图像大致是()A .B .C .D .12.下列各个函数图像所对应的函数解析式序号为()①||()e sin x f x x =②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①1.函数()22cos 6x x y x -=-的图像大致是()A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos 6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB ,当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos 60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x =,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =()A .2sin x x-B .cos x x +C .2sin x x -+D .cos x x-【答案】C【解析】【分析】根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x -=⋅+的部分图象大致为()A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+,所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+,所以2cos ()sin ln 02cos x f x x x-=⋅<+,排除D.故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是()A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x x f x =0x ≥,则12()e x x f x x-'=所以1(0,2上()0f x '>,()f x 递增;1(,)2+∞上()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上()0f x '>,()f x 递增,(2,)+∞上()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e x f x x =且0x ≠,则21()e xx f x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上()0f x '<,()f x 递减,(0,)+∞上()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x x x xf x -+=+的部分图象大致是()A .B .C.D.【解析】【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x xf x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是()A .B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.7.下图中的函数图象所对应的解析式可能是()A .112x y -=-B .112xy =--C .12x y -=-D .21x y =--【答案】A【解析】【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项;当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确.故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是()A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x )B .y =-|f (x )|)C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是()A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=- ,∴函数()f x 为奇函数,排除选项D ;当(0,)2x π∈时,0x >,0cos 1x <<,0()f x x ∴<<,排除选项BC .故选:A .12.下列各个函数图像所对应的函数解析式序号为()①||()e sin x f x x =②()ln ||=-g x x x ③2()sin =t x x x ④2e ()x h x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0x h x x=>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x=()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。
高考数学函数必考知识点
高考数学函数必考知识点高考数学中,函数是一个重要的考点,几乎涵盖了整个数学的基础知识。
而对于考生来说,掌握函数的基本概念和常见的题型非常关键。
本文将从函数的定义开始,逐步讲解高考中必考的几个重点知识点。
一、函数的定义及性质函数是数学中的一个基本概念,它描述了两个变量之间的关系。
在数学中,我们通常用字母y来表示函数的值,用字母x来表示自变量。
函数的定义可以简单理解为一个映射关系,输入x值,通过某种规则计算后得到对应的y值。
对于一个函数来说,有三个基本性质需要掌握。
首先是定义域,它表示自变量的取值范围。
其次是值域,它表示函数的所有可能输出值的集合。
最后是奇偶性,奇函数具有对称性,即关于原点对称;偶函数则具有轴对称性,即关于y轴对称。
二、基本函数的特性高考数学中常见的基本函数包括线性函数,二次函数,指数函数和对数函数。
对于每一种函数,我们需要掌握其基本图像、定义域、值域、单调性等重要特性。
线性函数是最简单的一种函数,其图像是一条直线。
线性函数的定义域是全体实数集合,值域也是全体实数集合。
线性函数的单调性取决于斜率的正负。
斜率大于0时,函数递增;斜率小于0时,函数递减。
二次函数的图像是一条抛物线,它的特点是开口向上或向下。
二次函数的定义域是全体实数集合,值域要根据抛物线的开口方向判断。
二次函数的单调性取决于二次项系数的正负,二次项系数大于0时,函数开口向上,递增;二次项系数小于0时,函数开口向下,递减。
指数函数和对数函数是互为反函数的一对函数。
指数函数的图像是以原点为中心的增长趋势逐渐加大的曲线,对数函数则是反向的曲线。
指数函数的定义域是全体实数集合,值域是正数集合;对数函数的定义域是正数集合,值域是全体实数集合。
指数函数是递增函数,对数函数是递减函数。
三、函数的综合运算在高考中,我们经常会遇到需要进行函数的复合、求反函数、函数的平移和缩放等综合运算的题目。
掌握这些运算的方法能够帮助我们解决更复杂的函数题。
高考数学中的函数图像拐点渐进线判断方法
高考数学中的函数图像拐点渐进线判断方法数学作为高中必修课程之一,在高考中占据着不可忽视的地位,而其中的函数图像也是高考数学中的一个重要考点。
在函数图像的相关知识中,拐点和渐进线的判断是比较重要的,掌握好相关方法对于解题至关重要。
一、拐点的判断方法首先,我们需要明确拐点的概念,它就是函数图像的曲线在该点处的曲率发生明显变化,即图像的凸凹性发生了改变,同时该点的切线在该点处的斜率也发生了变化。
那么如何准确地确定这个拐点的位置呢?方法一:通过求导数我们可以通过对函数取导数,再对导数求导,判断二阶导数是否恒正或恒负,如果在该点的导数为0的位置处,函数的二阶导数从正数转变为负数,则该点就是拐点。
也就是说,如果函数的f(x)的二阶导数f''(x)在某一点x0处由正数变为负数,那么在该点,函数图像有一个拐点。
方法二:通过对称性判断有些函数具有对称性,我们可以通过对称性来确定拐点的位置。
比如我们考虑一个函数 f(x)= x^3-3x 则我们可以先求函数的导数f′(x)=3x^2-3,然后再解方程f′(x) = 0,得到 x=±1。
这时,我们发现,函数具有奇对称性,因此在x=1的地方函数图像向左拐,而在x=-1的地方函数图像向右拐。
二、渐进线的判断方法在高考中,渐进线的判断比拐点更加普遍和常见。
渐进线是指函数图像无限趋近于一条直线时,该直线叫做函数图像的渐进线。
同样,我们也需要掌握相关的判断方法。
方法一:通过函数的极限判断函数在x为正无穷时的极限是指x不断增大的过程中,函数趋于一个定值的过程。
同样,函数在x为负无穷时的极限就是函数在x趋向于负无穷的过程中,函数趋向于一个定值的过程。
如果函数y=f(x)在x→∞的时候,有一直线y=k将函数图像无限趋近于这条直线,就称这条直线是函数 y=f(x)图像的水平渐进线;如果当x→x0,而且k是一个有限数时,有一直线y=k将函数图像无限趋近于这条直线,就称这条直线是函数y=f(x)图像的垂直渐进线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间可 以互求.已知渐近线 的方程时 ,可得 的值 ,于是e = =
0 az
a b % 2
:
1f +
因 求出 心 。 值; 知 心 值, 此可 离 率 的 而已 离 率的
分析: 先写出过腻 的直线方程 , 根据痢 =
的关系, 求
即得答案C .
点 评 : 例 中 需先 求 出反 函数 . 后 利 用 对称 变换 和 平 移 变 本 然
有7 个根 ,( ) 6 O , + = 必须 有4 根 , 由图像 直观可 知b 0 故正 个 则 <,
确答案应为C .■
圈5
的方程 ( +f( + : 有7 不 同的实 数解 的充 要条 件是 ) b ) c 0 个
Cb 0 c 0 .< 且 =
D. b≥0 c 0 且 =
根 的个数 呢?因函数带绝 对值 , 而
且是两层绝对 值符号 , 到作 图用 想
函数图像来分析. 即先作y ll 的图 =g l x 像, 然后将此 图像 向右平 移一个单 位得y ll 1的图像 ,再将此 图像 =g 一 I x
像 ( 图5 . 如 )
.
一
| .- … Y ‘\ . 寸 /Y .- f一 .
/2
.
双 曲 线 的渐 近 线 也 是 用 来 反 映 双 曲线 的 开 口 大 小 的程 度
a = (>O,> ) l 6 0 的一 个 焦 点 , 咀 与 一 条 渐 近 线 平 行 的 直 过
u
的, 所以双曲线 的离心率与渐近线之间有着密切 的联系 , 二者之
L 2
线z 与双曲线交于点 , , 与, 轴交于点Ⅳ 若劢 = 翮 , , 求双曲线
解 析 : 意 到 “ 要 条 件 ” 有 双 向可 推 性 , 注 充 具 因此 不 妨 先 考查
十・敷・高 版 ? ? 中
e
用。b c 、 、的关系即可求出离心率 的值.
) 间 的 关 系 以 及 双 曲线 的渐 近 线 , 别 是 双 曲线 的 离 心 率 , 之 特 求
解析 : 依题意知 = 2 _
n 以 、旷=6 Z所e 丁- == V . aV Z / -
,
双曲线离心率涉及到解析几何 、 平面几何 、 代数等 多个 知识点 , 综合性强 , 方法灵 活 , 解题关 键是挖掘题 中的隐含条件 , 能够 体
者 研
命题 意 图
21 0 2年 8 月
曲 线 的
1 a 0, (>
分 析 : 题 已知 渐 近线 的方 程 ,口 本 B 司确 定 a b 、的关 系 , 后 利 然
由于新 课标 降低 了对双曲线的要求 , 双曲线中基本知识必然
成 为高 考 考 查 的 热 点 , 查 中常 常 涉 及 到 双 曲线 基 本 量 a b 考 、
。
O
1
2
例 设 义为的 ㈤ { 4 定域R函 =
( ) .
Ab O c 0 .< 且 > Bb 0 I J 关 下方的部分按关于 轴对称向上翻折得y ll 1 的图 = lx 1 g一 l
显然, =有3 ( )0 个根0 12 所以要使方程厂 [()6= ,,, () + ]O ,
换 得 到 答 案 . 牢记 变换 规 则 . 可 避 免 出现错 选. 要 方
特 殊 情 形 , C, . 如 D
若c0则方 程变 为 + ()0 目 [()6=. =, 尸() = , () + ]0 ,
接 下 来 该 如 何 判 断 此 方 程 的
四 、 图 用 用 图, 是指善于用 函数图像来分析与解决问题 , 主要体现为 数形结合思想运用的意识.
点评 : 曲线 的 渐 近 线 出现 形 式 , 离心 率 值 相 关 , 用 双 与 利
0, c的关 系转 化 为 求得 离心 率. b,
现双曲线解题的技巧与方法.下面通过具体例子分类解 析如何
求解双 曲线的离心率.
一
、
利 用渐 近线 与离 心率 的关 系求解
一
例2 ( 江省慈溪市2 1年高 三5 浙 02 月模拟 考试 ) 双曲线 腥