【最新】人教版七年级数学上册1.2.4绝对值(1)导学案

合集下载

七年级数学上册1.2.4《绝对值(1)》教案(新版)新人教版

七年级数学上册1.2.4《绝对值(1)》教案(新版)新人教版
例题解析
例1:求下列各数的绝对值:,,―4.75,10.5。
解:=;=;|―4.75|=4.75;|10.5|=10.5。
例2: 化简:(1);(2)。
解:(1);(2)。
例3:计算:(1)|0.32|+|0.3|;(2)|–4.2|–|4.2|;(3)|–|–(–)。
分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。
师生共同完成
巩固绝对值的概念和求法
课堂练习
1.在括号里填写适当的数:
-|+3|=( );|( )|=1,|( )|=0;-|( )|=-2.
2. 求+7,-2,,-8.3,0,+0.01,-,1的绝对值。
3.(1)绝对值是的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是-2的数?
分小组讨论、交流
为得出绝对值的定义铺垫
教学过程
1.绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|=,=,|+8.2|=; (2)|0|=;
(3)|―3|=,|―0.2|=,|―8.2|=。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:

人教版数学七年级上册1.2.4绝对值(教案)

人教版数学七年级上册1.2.4绝对值(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学七年级上册1.2.4绝对值(教案)
一、教学内容
人教版数学七年级上册1.2.4绝对值:本节主要内容包括绝对值的概念、绝对值的性质及其在数轴上的表示。具体教学内容如下:
1.理解绝对值的概念,掌握表示方法,例如|a|表示a的绝对值。
2.掌握绝对值的性质,如:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数在数轴上表示的距离,不考虑方向。它是表示数值大小的重要工具,广泛应用于数学和日常生活中。
2.案例分析:接下来,我们来看一个具体的案例。数轴上,点-3和点3的距离都是3,这个距离就是绝对值。通过这个案例,我们可以理解绝对值是如何帮助我们解决距离问题的。
我也注意到,在小组讨论中,有些学生对于绝对值在实际生活中的应用提出了很有创意的想法。这让我感到很高兴,说明学生们能够将所学知识联系到生活实际,这是我教学的一个重要目标。
然而,我也发现了一些需要改进的地方。在重点难点解析部分,我可能需要更多的耐心和不同的教学方法来帮助那些理解起来比较慢的学生。我计划在下一次课时,增加一些互动性更强的问题,让学生们更多地参与到解答过程中来,而不是单向的讲解。
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于难点部分,比如负数的绝对值是它的相反数,我会通过数轴上的具体点和图形来帮助大家理解。

人教版-数学-七年级上册-1-2-4绝对值(1) 导学案

人教版-数学-七年级上册-1-2-4绝对值(1) 导学案

1.2.4绝对值(1)学习目标:1.理解、掌握绝对值概念,体会绝对值的作用与意义.2.掌握求一个已知数的绝对值.3.体验运用直观知识解决数学问题的成功.学习重点与难点重点难点:绝对值的概念 学习过程一、自主学习:问题:小红和小明从同一处O 出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近) .二、探索新知:1.由上问题可以知道,10到原点的距离是 ,-10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对 .这时我们就说10的绝对值是10,-10的绝对值也是10;例如,-3.8的绝对值是3.8;17的绝对值是17;-613的绝对值是 .一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作∣a ∣.2.练习(1)式子∣-5.7∣表示的意义是 .(2)-2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)∣24∣= . ∣-3.1∣= ,∣-13∣= ,∣0∣= . 3.思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 . 用式子表示就是:1)当a 是正数(即a>0)时,∣a ∣= ;2)当a 是负数(即a<0)时,∣a ∣= ; 3)当a=0时,∣a ∣= ; 4)随堂练习 P12第1、2大题(直接做在课本上). 三、应用新知:1. ______7.3=-; ______0=; ______75.0=+-;______31=+; ______45=--; ______32=-+. 2.计算:①错误!嵌入对象无效。

②错误!嵌入对象无效。

③错误!嵌入对象无效。

④错误!嵌入对象无效。

四、发现总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.a a >0即︱a ︱= 0 a=0 -a a <0(1)由于0的相反数是0,0本身还是0,所以0的绝对值既是它本身,又是它的相反数.所以a a ≥0即︱a ︱= -a a <0(2)求一个数的绝对值,关键是看这个数是一个什么数,然后再按照求绝对值的方法进行求解.(3)如果︱a ︱是一个正数,那么满足条件的a 值有两个,这两个数分居在原点两侧,且到原点的距离相等,这两个数互为相反数;反过来,如果两个数互为相反数,那么这两个数的绝对值相等.五、课堂检测:1.一个数的绝对值是32,那么这个数为______;绝对值等于4的数是______. 2.绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零3.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.计算: 错误!嵌入对象无效。

人教版初中数学课标版七年级上册第一章1.2.4 绝对值教案

人教版初中数学课标版七年级上册第一章1.2.4 绝对值教案

1.2.4 绝对值(1)教案【教学目标】一、知识与技能1.借助数轴,初步理解绝对值的概念,会求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用.二、过程与方法1.使学生形成从一般到特殊的解题思想,养成严密的思维习惯.2.培养学生主动探索,敢于发现,合作交流的精神.三、情感态度与价值观1.通过对形式不同的问题的解答,激发学生学习的积极性和兴趣,使全体学生积极参与,体验成功的喜悦.2.对学生进行“实践——认识——实践”的辩证唯物主义教育.【教学重点、难点】1.重点:绝对值的概念,会求一个数的绝对值.2.难点:对绝对值概念的正确理解.【教学过程】一、情境引入:两辆汽车从同一处O出发,分别向东、西方向行驶10km ,到达A、B两处。

它们行驶路线相同吗?它们行驶路程相同吗?(1)如何用有理数表示它们的行驶情况?(2)这两个有理数有什么关系?-10与10在数轴上所表示的点到原点的距离是10个单位长度,它们的符号不同.我们把这个距离10叫做+10和-10的绝对值。

二、合作学习:1.绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值) . 记作:|a|例如,在数轴上表示数―10与表示数10的点与原点的距离都是10,所以―10和10的绝对值都是10,记作|―10|=|10|=10同样可知:|―4| =4,|+1.7|=1.72.想一想:这里的数a 可以表示什么样的数?3.试一试: 由绝对值的意义,我们可以知道:︳7︳= , ︳-7︳= ;︳2.8︳= ,︳-4.5︳= ;︳0︳=4.议一议:从以上结果你有什么启示?你能用自已的话总结出绝对值的性质吗?5.归纳出数a 的绝对值的性质:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数.我们可以用a 来表示任意一个有理数,上述性质可以表示为:①若a >0,则|a |=a ;②若a =0,则|a |=0; 或写成: ③若a <0,则|a |=–a ;(4)绝对值的非负性由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩三、典例导学:【知识点 1】 求一个数的绝对值例1.写出下列各数的绝对值. 解:66=; 88-=; 3.9 3.9-=; 5522= ; 221111-= ;100100=; 00= 【总结提升】求一个数的绝对值的方法:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到结论.练习一:课本P11第 2,3题2.判断下列各式是否正确:(1)|5|=|-5| ( )(2)-|5|=|-5| ( )(3)-5=|-5| ( )3.判断下列说法是否正确:(1)符号相反的数互为相反数( )(2) 一个数的绝对值越大,表示它的点在数轴上越靠右( )(3)一个数的绝对值越大,表示它的点在数轴上离原点越远( )(4)当a ≠0时,|a|总是大于0 ( )想一想:1.绝对值是3的数有几个?各是什么?有没有绝对值是-4.5的数?2. 绝对值小于2的整数有几个,把它们在数轴上表示出来.3.判断:如果一个数的绝对值是它本身,那么这个数是正数【知识点 2】 应用绝对值的性质解决问题在日常生活和生产中,我们借助绝对值的意义可以判断某些产品质量的好差,你能回答526,8, 3.9,,,100,0211---下列问题吗?例2. 正式排球比赛对所有排球的质量有严格的规定,下列5个质量检测结果:(用正数记超过质量的克数,用负数记不足质量的克数)+15,-10,+25,-20,-8请指出哪个排球的质量好一些.答:记为-8的排球质量好一些。

七年级数学上册1.2.4绝对值导学案新版新人教版2

七年级数学上册1.2.4绝对值导学案新版新人教版2

1.2.4 绝对值学习目标:1、我能记住绝对值的概念及其性质,会求一个已知数的绝对值;2、我会比较有理数的大小;3、我能积极讨论,参与群学,敢于展示,用于质疑、补充。

学习重点:绝对值的概念及其性质学习难点:两个负数的大小比较一、自主学习知识点一绝对值的概念一般地,数轴上表示数a的点与原点的叫做数a的绝对值,记作。

知识点二绝对值的性质(1)由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是 .用式子表示就是:当a是正数(即a>0)时,∣a∣= ;当a是负数(即a<0)时,∣a∣= ;当a=0时,∣a∣= .(2)绝对值的非负性a(即任何数的绝对值都是非负数)。

对于任意数a,0知识点三有理数大小的比较(1)利用数轴比较数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数右边的数。

(2)由上述规定可知,①正数 0,0 负数,正数负数。

②两个负数,的反而小。

方法规律:异号两数比较大小,要考虑它们的;同号两数比较大小,要考虑它们的。

bac二、合作探究合作探究一 (1)∣-5∣读作 ,其意义是:在数轴上数-5与_______的距离是 个单位长度,所以︱-5︱= 。

(2)—2的绝对值记作 ,表示它到原点的距离是 个单位长度, 所以︱-2︱= 。

合作探究二 表示33.-- ,即______3.3=-- 表示750.+- ,即______75.0=+- 合作探究三 如果3-=a ,则 ______=a ;______=-a 。

合作探究四 已知|x-4| +|y+2| =0, 求2x -|y|的值。

合作探究五 比较 -43与 -32的大小. 解:43-= ; 32-= . 因为43>32,所以 -43 -32. 三、当堂检测(1、2、3题是必做题,4、5题是选做题)1.填空:______7.3=-;______0=;______75.0=+-.______31=+;______45=--;______32=-+. 2.比较大小; 0.3 —564;—37 —25 ;—21 —313. 计算:(1)______510=-+-;(2)______36=-÷-; 4.有理数a ,b ,c 在数轴上的位置如图所示,下列各式成立的是( ) A .c>b>a ; B .│a │>│b │>│a │; C .│c │>│b │>│a │ D .│c │>│a │>│b │ 5.如果|a|=-a ,那么( )A.a >0B.a <0C.a ≥0 D .a ≤02019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.已知x y ≠,且210x x -=,210y y -=,则x y +( ) A .1B .﹣1C .5D .﹣52.有一个质地均匀且可以转动的转盘,盘面被分成6个全等的扇形区域,在转盘的适当地方涂上灰色,未涂色部分为白色,用力转动转盘,为了使转盘停止时,指针指向灰色的可能性的大小是13,那么下列涂色方案正确的是( )A .B .C .D .3.已知a <b,则下列式子正确的是( ) A .a+5>b+5B .3a >3bC .-5a >-5bD .3a >3b 4.如图,已知AB ∥CD ∥EF ,∠ABC=50°,∠CEF=150°,则∠BCE 的值为( ).A .50°B .30°C .20°D .60°5.实数327、16、3、﹣π、0、 0.101001中,无理数有( )个 A .1B .2C .3D .46.空气的密度是,将用科学计数法表示为( ) A .B .C .D .7.在-242,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个8.说明“如果x <2,那么x 2<4”是假命题,可以举一个反例x 的值为( ) A .1-B .3-C .0D .1.59.已知点P (3m-6,m-4)在第四象限,化简|m+2|+|8-m|的结果为( ) A .10B .-10C .2m-6D .6-2m10.化简的结果是( )A .x +3B .x –9C .x -3D .x +9二、填空题题11.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D'、C'的位置,并利用量角器量得∠EFB =65°,则∠AED'等于_____度.12.在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).13.若2x -有平方根,则实数x 的取值范围是______.14.已知2x =-,1y =是关于二元一次方程351x y k +-=的解,则代数式21k -=_____. 15.如图,有一条平直的等宽纸带按图折叠时,则图中∠α=____16.已知三元一次方程组114x y y z x z -=⎧⎪-=⎨⎪+=⎩,则xyz =______.17.一个正数a 的平方根分别是2m ﹣1和﹣3m+52,则这个正数a 为_____. 三、解答题 18.(阅读材料) 小明同学遇到下列问题:解方程组23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y )看作一个数,把(2x ﹣3y )看作一个数,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y,这时原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解得6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y.得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩.所以,原方程组的解为914 xy=⎧⎨=⎩(解决问题)请你参考小明同学的做法,解决下面的问题:(1)解方程组235135x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)已知方程组ax by mcx dy n+=⎧⎨+=⎩的解是32xy=⎧⎨=⎩,求方程组(1)(1)a x by mc x dy n+-=⎧⎨+-=⎩的解.19.(6分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(6分)如图,在平面直角坐标系中有三个点A(2,3),B(1,1),C(4,2)(1)连接A、B、C三点,请在如图中作出△ABC关于x轴对称的图形△A’B’C’并直接写出各对称点的坐标;(2)求△ABC的面积;(3)若M(x,y)是△ABC内部任意一点,请直接写出点M在△A’B’C’内部的对应点M1的坐标.21.(6分)计算(结果表示为含幂的形式):311322341428-⎛⎫⎛⎫⨯÷ ⎪ ⎪⎝⎭⎝⎭22.(8分)某中学体育组因教学需要本学期购进篮球和排球共100个,共花费2600元,已知篮球的单价是20元/个,排球的单价是30元/个.()1篮球和排球各购进了多少个(列方程组解答)?()2因该中学秋季开学成立小学部,教学资源实现共享,体育组提出还需购进同样的篮球和排球共30个,但学校要求花费不能超过800元,那么排球最多能购进多少个(列不等式解答)?23.(8分)如图,点D ,E 分别在等边△ABC 的边AC ,BC 上,BD 与AE 交于点P ,∠ABD=∠CAE ,BF ⊥AE ,AE=10,DP=2,求PF 的长度.24.(10分)(1()238432--(2)解不等式组2362323x x x x +≤+⎧⎪⎨++>⎪⎩①②25.(10分)规定两数a 、b 之间的一种运算,记作(a ,b );如果c a b =,那么(a ,b )=c . 例如:因为328=,所以(2,8)=3.(1)根据上述规定,填空:(4,16)=_________,(7,1)=___________,(_______,125)=-2. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3)4n x n=,即(3)4x nn=所以34x =,即(3,4)=x , 所以(3n ,4n )=(3,4). 请你尝试运用这种方法解决下列问题: ①证明:(6,45)-(6,9)=(6,5)②猜想:((1)m x +,(1)m y -)+((1)n x +,(2)n y -)=(____________,____________),(结果化成最简形式).参考答案一、选择题(每题只有一个答案正确) 1.A 【解析】 【分析】由,x y 满足的条件及x y ≠,可得出,x y 为一元二次方程22100z --=的两个不等实根,再利用根与系数的关系即可求出x y +的值. 【详解】解:∵x y ≠且221010x x y y -=-=,,∴,x y 为一元二次方程2100z z --=的两个不等实根, ∴1x y +=. 故选:A. 【点睛】本题考查了根与系数的关系,牢记两根之和等于ba-是解题的关键. 2.A 【解析】 【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.【详解】A.指针指向灰色的概率为2÷6=13,故选项正确; B.指针指向灰色的概率为3÷6=12,故选项错误;C.指针指向灰色的概率为4÷6=23,故选项错误;D.指针指向灰色的概率为5÷6=56,故选项错误.故答案选:A. 【点睛】本题考查了几何概率,解题的关键是熟练的掌握概率的相关知识点. 3.C 【解析】 【分析】由于a <b ,根据不等式的性质可以分别判定A 、B 、C 、D 是否正确. 【详解】解:A 、由a <b 得到a+5<b+5,故本选项不符合题意. B 、由a <b 得到3a <3b ,故本选项不符合题意. C 、由a <b 得到-5a >-5b ,故本选项符合题意. D 、由a <b 得到3a <3b,故本选项不符合题意. 故选:C . 4.C 【解析】 【分析】 【详解】解:∵AB ∥CD ∥EF ,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°; ∴∠ECD=180°-∠CEF=30°, ∴∠BCE=∠BCD-∠ECD=20°. 故选:C . 5.B 【解析】分析:根据无理数的定义:无限不循环小数叫无理数,逐个数分析即可.详解:3273=是有理数、164=是有理数、3是无理数、﹣π是无理数、0、 0.101001是有理数.∴有2个无理数, 故选B.点睛: 本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 6.A 【解析】 【分析】科学计数法是把一个数表示成n 为整数,据此即可表示.【详解】 解:故答案为:A 【点睛】本题考查了科学计数法,熟练掌握用科学计数法表示实数是解题的关键. 7.C 【解析】-242=, 3.14,3273-=-是有理数;2,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽3 35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 8.B 【解析】 【分析】找出x 满足x <2,但不满足x 2<2即可.【详解】解:如果x<2,那么x2<2是假命题,可以举一个反例为x=-1.因为x=-1满足条件x<2,但不满足x2<2.故选B.【点睛】本题考查了命题与定义:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.判断一个命题是假命题,只需举出一个反例即可.9.A【解析】【分析】先根据第四象限内点的横坐标大于0,纵坐标小于0,列出关于m的一元一次不等式组,求解得出m的取值范围,再根据绝对值的定义化简即可.【详解】解:∵点P(3m-6,m-1)在第四象限,∴36040mm->⎧⎨-<⎩,解得:2<m<1.∴|m+2|+|8-m|=m+2+8-m=2.故选:A.【点睛】本题考查了点的坐标,一元一次不等式组的解法,绝对值的定义,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.10.C【解析】【分析】把分子因式分解即可求解.【详解】=故选C.【点睛】此题主要考查分式的运算,解题的关键是熟知因式分解的运用.二、填空题题11.1【解析】【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=65°,∴∠EFC=180°-65°=115°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°-∠EFC=180°-115°=65°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=65°,∴∠A ED′=180°-65°-65°=1°,故答案为:1.【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,注意:两直线平行,同旁内角互补.12.1×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.1微米=1×10-7米.13.x≥1【解析】【分析】根据非负数有平方根列式求解即可.【详解】根据题意得,x-1≥0,解得x≥1.故答案为:x≥1.【点睛】本题考查了平方根的意义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.-5【解析】【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k 的一元一次方程,可以求出k 的值,从而求出关于k 的代数式的值.【详解】把2,1x y =-=代入二元一次方程351x y k +-=,得651k -+-=,解得2k =-,则21415k -=--=-.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值. 15.70°【解析】【详解】∵a ∥b,∴∠1=40°.由折叠知,∠2=∠3,∵∠2+∠3=180°-40°=140°,∴∠3=140°÷2=70°.∴∠α=∠3=70°.故答案为70°.【点睛】本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.16.6【解析】【分析】根据三元一次方程组的解法,由①+②,得到x z 2-=,再与③结合,求出方程组的解,再代入计算即可.【详解】解:114x y y z x z -=⎧⎪-=⎨⎪+=⎩①②③,由①+②,得到x z 2-=,再与③结合,得:24x z x z -=⎧⎨+=⎩, 解方程组得:31x z =⎧⎨=⎩, 把x 3=代入①,得y 2=,∴xyz 6=,故答案为:6.【点睛】本题考查解三元一次方程组,解答本题的关键是明确解三元一次方程组的方法,利用方程的思想解答. 17.1【解析】【分析】直接利用平方根的定义得出2m-1+(-3m+52)=0,进而求出m 的值,即可得出答案.【详解】解:根据题意,得:2m-1+(-3m+52)=0,解得:m=32,∴正数a=(2×32-1)2=1,故答案为1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.三、解答题18.(1)原方程组的解为923x y ⎧=⎪⎨⎪=-⎩;(2)22x y =⎧⎨=-⎩.【解析】【分析】理解题目中给定的整体代换的思路,按照题目中所给的方法求解方程即可.【详解】(1)令m =3x y +,n =5x y-,原方程组可化为21m n mn +=⎧⎨-=-⎩, 解得:12{32m n ==, ∴132352x yx y+⎧=⎪⎪⎨-⎪=⎪⎩, 解得923x y ⎧=⎪⎨⎪=-⎩ ∴原方程组的解为923x y ⎧=⎪⎨⎪=-⎩;(2)令e=x+1,f=﹣y,原方程组可化为ae bf m ce df n+=⎧⎨+=⎩,依题意,得32 ef=⎧⎨=⎩,∴132xy+=⎧⎨-=⎩,解得2{2xy==-.【点睛】此题考查了二元一次方程组的解,认真阅读材料,学会利用换元法解二元一次方程组,可以简化计算过程. 19.(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.【解析】【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥1.答:则至少每年平均增加1万平方米.20.(1)见解析;(2)52;(3)M1 (x,-y).【解析】【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)利用关于x轴对称点的性质得出答案.【详解】(1)如图所示:A’ (2,-3)、B’(1,-1) C’(4,-2)(2)S△ABC=2×3﹣12×2×1﹣12×2×1﹣12×3×1=6﹣1﹣1﹣3 2=5 2答:△ABC的面积是5 2 .(3)M1 (x,-y).【点睛】此题主要考查了轴对称变换以及割补法求三角形面积.关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.21.122【解析】【分析】先把原式化为同底数幂的乘除法,然后根据同底数幂的运算法则,即可得到答案.【详解】解:原式=31312422228⨯⨯⨯2÷ 311222228=⨯÷ 313222222=⨯÷122=【点睛】本题考查了幂的乘方,同底数幂乘法和除法,解题的关键是熟练掌握运算法则进行解题.22.(1)购进篮球40个,购进排球60个;(2)最多购进排球20个.【解析】【分析】 ()1根据购进篮球和排球共100个,共花费2600元,进而分别得出方程求出即可;()2利用篮球和排球共30个,学校要求花费不能超过800元,得出不等式求出即可.【详解】() 1设购进篮球x 个,购进排球y 个,根据题意可得:x y 10020x 30y 2600+=⎧+=⎨⎩, 解得:{x 40y 60==,答:购进篮球40个,购进排球60个; ()2设购进排球z 个,购进篮球()30z -个,根据题意可得:()30z 2030z 800+-≤,解得:z 20≤,答:最多购进排球20个.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,利用已知排球与篮球的数量总和和总费用得出等式是解题关键.23.4【解析】【分析】首先根据等边三角形的性质可得出三边相等,三角相等,然后可判定,进而得出,的长,又根据外角的性质得出,在中,根据三角函数的值,即可得出PF的长度.【详解】解:∵等边△ABC∴,又∵∴∴又∵∴又∵,,∴又∵∴.【点睛】此题主要考查等边三角形的性质,外角的性质,以及直角三角形中根据三角函数求边长,熟练运用即可解题.24.(13;(2)0<x≤3.【解析】【分析】(1)由立方根、二次根式的定义和绝对值的意义解答即可;(2) 分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)原式333;(2)2362323x x x x ①②+≤+⎧⎪⎨++⎪⎩, ∵由①得,x ⩽3,由②得x>0,∴此不等式组的解集为:0<x ⩽3,在数轴上表示为:故答案为0<x ⩽3.【点睛】本题考查了实数的运算和解一元一次不等式组,解题的关键是熟练掌握实数的运算法则及解一元一次不等式组的步骤.25.(1)1,2,5;(1)①证明见解析;②(x+1),(y 1-3y+1).【解析】【分析】 (1)根据规定的两数之间的运算法则解答;(1)①根据同底数幂的乘法法则,结合定义证明;②根据例题和①中证明的式子作为公式进行变形即可.【详解】(1)因为41=16,所以【4,16】=1.因为72=1,所以【7,1】=2.因为5-1=125,所以【5,125】=-1. 故答案为:1,2,5;(1)①证明:设【6,9】=x ,【6,5】=y ,则6x =9,6y =5,∴5×9=45=6x •6y =6x+y ,∴【6,45】=x+y ,则:【6,45】=【6,9】+【6,5】,∴【6,45】-【6,9】=【6,5】;②∵【3n ,4n 】=【3,4】,∴【(x+1)m ,(y-1)m 】=【(x+1),(y-1)】,【(x+1)n ,(y-1)n 】=【(x+1),(y-1)】,∴【(x+1)m ,(y-1)m 】+【(x+1)n ,(y-1)n 】,=【(x+1),(y-1)】+【(x+1),(y-1)】,=【(x+1),(y-1)(y-1)】,=【(x+1),(y1-3y+1)】.故答案为:(x+1),(y1-3y+1).【点睛】本题考查的是新定义的理解和掌握,还考查了同底数幂的乘法以及有理数的混合运算,弄清题中的新运算是解本题的关键.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( ) A .3×5+3×0.8x ≤27 B .3×5+3×0.8x ≥27 C .3×5+3×0.8(x ﹣5)≤27D .3×5+3×0.8(x ﹣5)≥272.一副三角板如图放置,若AB ∥DE ,则∠1的度数为( )A .105°B .120°C .135°D .150°32时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值( ) A .2B .102-1)C .2D 2-14.若关于x 的不等式组3122x m x x ->⎧⎨->-⎩无解,则m 的取值范围是( )A .2m >-B .2m ≥-C .2m <-D .2m ≤-5.小颖有两根长度为 6cm 和 9cm 的木条,桌上有下列长度的几根木条,从中选出一根使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为( )的木条 A .2cmB .3cmC .12cmD .15cm6.下列语句中:①如果两个角都等于70°,那么这两个角是对顶角;②三角形内角和等于180°;③画线段3cm AB =.是命题的有( )A .0个B .1个C .2个D .3个7.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A .a>1B .a≥1C .a>2D .a≥28.下列实数中,有理数是( ) A 2B 12C 34D 49.把点A (3,﹣4)先向上平移4个单位,再向左平移3个单位得到点B ,则点B 坐标为( ) A .(0,﹣8)B .(6,﹣8)C .(﹣6,0)D .(0,0)10.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD=BE=1.沿直线DE 将△BDE 翻折,点B 落在点B′处.则点B′的坐标为( ).A .(1,2).B .(2,1).C .(2,2).D .(3,1).二、填空题题11.在直角坐标系中,若点P(x-5,2x-6)在第二象限,那么x的取值范围是____ 12.如图所示,直线AB 与直线CD 交于点O ,则AOC ∠=______.13.若33a =-,则a 的值为_________14.如图,OP 平分∠AOB ,∠BCP =40°,CP ∥OA ,PD ⊥OA 于点D ,则∠OPD =_____°.15.两条平行直线上各有n 个点,用这n 对点按如下的规则连接线段:①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当1n =时的情况,此时图中三角形的个数为0;图2展示了当2n =时的一种情况,此时图中三角形的个数为2;图3展示了当3n =时的一种情况,此时图中三角形的个数为4;试猜想当2018=n 时,按照上述规则画出的图形中,三角形最少有____个16.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.17.用科学记数法表示2018(保留两个有效数字),结果是_____. 三、解答题18.在平面直角坐标系中,△ABC 三个顶点的位置如图(每个小正方形的边长均为1):(1)请画出△ABC 沿x 轴向右平移3个单位长度,再沿y 轴向上平移2个单位长度后的A B C '''(其中A B C '''、、分别是A 、B 、C 的对应点,不写画法);(2)直接写出A B C '''、、三点的坐标; (3)求△ABC 的面积.19.(6分)如图,已知直线AB ∥CD ,∠A=∠C=100°,E 、F 在CD 上,且满足∠DBF=∠ABD ,BE 平分∠CBF . (1)直线AD 与BC 有何位置关系?请说明理由. (2)求∠DBE 的度数.(3)若把AD 左右平行移动,在平行移动AD 的过程中,是否存在某种情况,使∠BEC=∠ADB ?若存在,求出此时∠ADB 的度数;若不存在,请说明理由.20.(6分)已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若BC =32,且BD :CD =9:7,则D 到AB 的距离为_____.21.(6分)如图,已知ABC △中,AB AC =,O 是ABC △内一点,且OB OC =,试说明AO BC ⊥的理由.22.(8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的): x(人) 500 1000 1500 2000 2500 3000 … y(元)﹣3000﹣2000﹣100010002000…(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为多少元? 23.(8分)阅读下列材料:2017年年底,共青团北京市委确定了未来3年对口援疆工作内容.在与新疆和田当地教育部门、学校交流过程中,共青团北京市委了解到,和田地区中小学汉语课外读物匮乏.根据对口援疆工作安排,结合和田地区对图书的实际需求,2018年1月5日起,共青团北京市委组织东城、西城、朝阳、海淀、丰台、石景山六个区近900所中小学校,按照和田地区中小学提供的需求图书种类,开展“好书伴成长”募捐书籍活动.活动中,师生踊跃参与,短短两周,已募捐百万余册图书.截至1月19日,分别收到思想理论约2.6万册、哲学约2.6万册、文学艺术约72.6万册、综合约18.0万册,及科学技术五大类书籍,这些图书最终通过火车集中运送至新疆和田.根据相关统计数据,绘制了如下统计图:(以上数据来源于新浪网站)根据以上材料解答下列问题:(1)此次活动中,北京市中小学生一共捐书约为万册(保留整数),并将条形统计图补充完整;(2)在扇形统计图中,文化艺术类所在扇形的圆心角约为度(保留整数);(3)根据本次活动的数据统计分析,写出你对同学们捐书的一条感受或建议.24.(10分)已知方程组35223x y mx y m+=+⎧⎨+=⎩的解满足不等式588x y+>,求m的取值范围.25.(10分)如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】设小聪可以购买该种商品x 件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过1元,即可得出关于x 的一元一次不等式. 【详解】设小聪可以购买该种商品x 件, 根据题意得:3×5+3×0.8(x-5)≤1. 故选C . 【点睛】考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键. 2.A 【解析】 【分析】利用平行线的性质以及三角形的内角和定理即可解决问题. 【详解】解:如图,延长EF 交AB 于点H.AB DE ,BHE E 45?∠∠∴==,1180B EHB 1803045105=﹣﹣=﹣﹣=,∠∠∠∴︒︒︒︒︒ 故选A. 【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.B 【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”化为1.为了使该结果的整数部分不为零,再将该结果的小数点向右移动一位,即计算)101. 这样,位于原来显示的结果左端的数字消失了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.根据以上分析,为了满足要求,应该在这个计算器中计算)101的值.故本题应选B. 点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理. 4.B 【解析】 【分析】一元一次不等式组无解是指不等式组的各不等式解集没有公共部分,所以在解此类问题时,要先求出不等式组的各不等式的解,即可解答 【详解】3122x m x x ->⎧⎨->-⎩①②, 解①得x >3+m , 解②得x <1因为原不等式组无解, 所以1≤3+m 解得2m ≥- 故选B 【点睛】此题考查解一元一次不等式组,难度不大,掌握运算法则是解题关键 5.C 【解析】【分析】根据两边之和大于第三边,两边之差小于第三边,可得第三边的长度的取值范围是. 【详解】设木条的长度为lcm ,则9-6<l<9+6,即3<l<1. 故选C 【点睛】考核知识点:三角形三边关系. 6.C 【解析】 【分析】根据命题的定义进行判断即可. 【详解】①②是一个完整的句子,且对某件事情作出了 肯定或否定的判断,所以是命题.③没有对某件事情作出肯定或否定的判断,所以不是命题. 故选C. 【点睛】本题主要考查命题的定义,一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 7.D 【解析】 【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答. 【详解】解:∵不等式组211x a x a >-⎧⎨<+⎩无解∴211a a -≥+ ∴2a ≥ 故选:D 【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:大大取大,小小取小,大小小大中间找,大大小小找不到(无解).8.D【解析】选项A、B、C是无理数,选项D,原式=2,是有理数,故选D.9.D【解析】【分析】直接利用平移中点的变化规律求解即可.【详解】点A(3,﹣4)先向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(3-3,-4+4),则点B的坐标为(0,0),故选D.【点睛】本题考查了点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.B【解析】【详解】解:∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=′BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故选B.二、填空题题11.3<x<1。

人教版七年级数学上册:1.2.4《绝对值》教学设计1

人教版七年级数学上册:1.2.4《绝对值》教学设计1

人教版七年级数学上册:1.2.4《绝对值》教学设计1一. 教材分析绝对值是初中数学中的一个重要概念,它在实际生活和工作中有着广泛的应用。

人教版七年级数学上册1.2.4节主要介绍绝对值的概念、性质以及绝对值的应用。

本节内容为学生提供了理解实数大小关系的基础,也为后续学习不等式、方程等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的基本知识,对数的大小比较有一定的了解。

但他们对绝对值的概念和性质还不够熟悉,需要通过具体实例和练习来逐步理解和掌握。

此外,学生可能对绝对值的应用场景感到困惑,需要教师进行引导和拓展。

三. 教学目标1.了解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.绝对值的概念和性质。

2.绝对值在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论来理解和掌握绝对值的概念和性质。

2.利用实例和练习,让学生通过动手动脑来巩固知识,提高解决问题的能力。

3.采用分组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和拓展题,以便进行课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用一个实际问题引入绝对值的概念,如“小明从家出发,向东走了3公里,向西走了2公里,他家距离学校有多远?”让学生思考并讨论,引出绝对值的概念。

2.呈现(10分钟)通过PPT展示绝对值的定义和性质,让学生直观地理解绝对值的概念。

同时,给出一些例子,让学生通过观察和分析来掌握绝对值的性质。

3.操练(10分钟)让学生分组进行练习,运用绝对值的概念和性质来解决实际问题。

教师巡回指导,解答学生的疑问,并给予及时的反馈。

4.巩固(10分钟)针对学生练习中出现的问题,教师进行讲解和总结,帮助学生巩固绝对值的知识。

然后,给出一些变式题目,让学生进一步理解和掌握绝对值的概念和性质。

人教新版(2024)七年级数学上册-1.2.4 绝对值(教案)

人教新版(2024)七年级数学上册-1.2.4 绝对值(教案)

1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。

七年级数学上册1.2.4绝对值教案1(新版)新人教版

七年级数学上册1.2.4绝对值教案1(新版)新人教版

1.2.4绝对值主备人:审核人:教学目标:1.使学生掌握有理数的绝对值概念及表示方法。

2.使学生熟练掌握有理数绝对值的求法和有关计算问题。

3.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点:给出一个数会求它的绝对值。

教学难点:绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

教具准备:三角板教学过程:问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:(1)|+2|= , = ,|+8.2|= ; (2)|0|= ;(3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3)一个负数的绝对值是它的相反数。

即:①若a>0,则|a|=a;②若a<0,则|a|=–a;或写成:。

③若a=0,则|a|=0;3.绝对值的非负性由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。

绝对值导学案人教版七年级数学上册

绝对值导学案人教版七年级数学上册

1.2.4 绝对值 第一课时一、教学目标(一)学习目标1.理解绝对值的概念及通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;2.会求一个数的绝对值;知道一个数的绝对值,会求这个数;3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.(二)学习重点理解绝对值的概念,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法(三)学习难点会求一个数的绝对值,知道一个数的绝对值,会求这个数 二、教学设计 (一)课前设计 1.预习任务(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . (2)一个正数的绝值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. (3)一个数的绝对值一定是一个非负数.(4)⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.预习自测(1)-2017的绝对值是( )A.-2017 B .2017 C .20171 D . 20171- (2)2+的相反数是 . (3)下列说法中正确的是( ) A.符号相反的数互为相反数;B.一个数的绝对值越大,表示它的点在数轴上越靠右;C.一个数的绝对值越大,表示它的点在数轴上离原点越远;D.当a a =时, 0>a . (4)下列等式不成立的是( )A .55=-B .55--=-C .55=-D .55-=--(二)课堂设计 1.知识回顾(1)数轴的三要素是什么?(2)什么叫互为相反数?它的几何意义是什么? 2.问题探究探究一 绝对值的定义及其几何意义 ●活动①: 绝对值的概念及其几何意义两辆汽车从同一处O 出发,分别向东、西方向行驶10km ,到达A 、B 两处。

问题:(1)两辆车的行驶路线相同吗? (2)它们的行驶路程相等吗?(3)若以出发地为原点,在数轴上分别标出A 、B 两地的具体位置并指出A 、B 两点各表示的数是多少?一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a因为10和-10,它们与原点的距离都是10个单位长度,所以10和-10的绝对值都是10,即1010,1010=-=探究二 绝对值的法则★ ●活动①: 绝对值的法则请根据绝对值的定义写出下列数的绝对值:6,-8,-3,9,25,112-,100,0. 师生共同得出其结果.由计算结果可得:6,8,3,9,25,112,100,0. (1)任何数的绝对值均为非负数,即0≥a(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a●活动② :绝对值法则的运用例1. 计算:①_____|5.3|=+;②_____|-2.4|=;③____|3|=--;④|0|=________. 练习:计算:①5.0 ② 31- ③)2(-- ④5.1-- ●活动③例2.(1)绝对值等于2的数有 个,它们是 . (2)若1=x ,则x = .若9-=-x ,则x = . (3)若|a -3|+|b -2015|=0,求a ,b 的值.练习:(1)若一个数的绝对值等于4,则这个数为 . (2)若2=x 且0<x ,则=x ;若01=-x ,则=x . (3)若,012=-+-b a 则b a = . ●活动④例3. a 为何值时,下列各式成立? (1)a a =;(2)a a -=; (3)a a >;练习:若a a =,则数a 在数轴上的对应点一定在( )A .原点左侧B .原点及原点左侧C .原点及原点右侧D .原点右侧 ●活动①例4.第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.【知识点】绝对值的意义练习:某出租车司机一天上午在南北方向的大街上营运,如果规定向南为正,向北为负,他这天上午行车里程如下(单位:千米):+10,-3,+8,-5,12,11,-10,-10.若汽车耗油量为0.07升/千米,求上午他一共用掉了多少升油? 3.课堂总结 知识梳理(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. (3)一个数的绝对值一定是一个非负数.(4)⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a重难点归纳(1)任何数的绝对值均为非负数,即0≥a(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)若a a =,则0≥a ,若a a -=,则0≤a(三)课后作业 基础型 自主突破1.数轴上的点A 到原点的距离是6,则点A 表示的数为( ) A .6或-6 B .6 C .-6 D .3或-3 【知识点】绝对值【解题过程】解:数轴上的点A 到原点的距离是6,则点A 表示的数为6或-6. 【思路点拨】根据绝对值的定义即可求解. 【答案】A2.-5的绝对值是( )A .-5B .±5C .51D .5【知识点】绝对值【解题过程】-5的绝对值是5【思路点拨】根据绝对值的法则即可求解. 【答案】D3.若||||y x =,则x 与y 的关系是( )A .相等B .互为相反数C .都为0D .相等或互为相反数 【知识点】绝对值【解题过程】解:若||||y x =,则x 与y 的关系是相等或互为相反数. 【思路点拨】根据绝对值的意义即可求解. 【答案】D4.若a 是有理数,则下列说法正确的是( )A .|a |一定是正数B .a -一定是负数C .||a -一定是负数D .1||+a 一定是正数 【知识点】绝对值【解题过程】解:A .|a |一定是正数是错误的,应该是非负数;B .a -一定是负数是错误的,当a 是正数是,a -为负,当a 为负数时,a -为正;当a 为0时,a -为0.故B 错误; C .||a -一定是负数是错误的,应该是非正数;故应选D【思路点拨】根据任何数的绝对值均为非负数即可求解. 【答案】D5.(1)绝对值等于5的数有 个,它们是 ; (2)绝对值最小的有理数是 ; (3)绝对值等于它本身的是数是 ; (4)若4=x ,则x = . 【知识点】绝对值【解题过程】解:(1)绝对值等于5的数有两个,它们是5±; (2)绝对值最小的有理数是0;(3)绝对值等于它本身的是数是非负数; (4)若4=x ,则x =4±.【思路点拨】根据绝对值的定义及性质即可求解.【答案】(1)两个,5± ;(2)0; (3)非负数 ; (4)4±6.已知0|3||34|=-+-y x ,求|8|y x -的值. 【知识点】绝对值【解题过程】解:由题意得,03,034=-=-y x 所以03,034=-=-y x 故3,43==y x 所以334388=-⨯=-y x【思路点拨】根据任何数的绝对值均为非负数,而非负数的和为零时,只有各部分分别为零,从而可分别求出y x ,的值,再代入即可求解. 【答案】3能力型 师生共研1.若5=x ,则x = ;若7-=-x ,则x = . 【知识点】绝对值【解题过程】解:若5=x ,则x =5±;若7-=-x ,则x =7±.【思路点拨】根据绝对值等于一个正数的数有两个,它们互为相反数即可求解. 【答案】5±; 7±.2.如果a a -=-||,下列各式成立的是( )A .0<aB .0≤aC .0>aD .0≥a【知识点】绝对值【解题过程】解: 如果a a -=-||,则0≤a ,则应选B【思路点拨】根据任何一个数的绝对值均是一个非负数即可求解. 【答案】B探究型 多维突破1.大家知道|5|=|5-0|,它在数轴上的意义是表示5的点与原点即表示0的点之间的距离.又如式子|6-3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a +5|在数轴上的意义是 . 【知识点】绝对值 【数学思想】数形结合【解题过程】解:式子|a +5|在数轴上的意义是表示数a 的点与表示-5的点之间的距离. 【思路点拨】先读懂题目的意思,了解数轴上两个点的距离等于表示这两个点的数的差的绝对值.【答案】表示数a 的点与表示-5的点之间的距离 2.求|991981||3121||211|-++-+-+|1001991-|的值. 【知识点】绝对值【解题过程】解:原式=100199199198141313121211-+-++-+-+-=10011-=10099【思路点拨】先分别求出各自的绝对值,再把互为相反数的数相加即可求解. 【答案】10099 自助餐1.绝对值不大于3的非负整数的个数是( ) A .4 B .5 C .7 D .9【知识点】绝对值【解题过程】解:绝对值不大于3的非负整数有:0,1,2,3,共4个【思路点拨】可以先画出数轴,根据绝对值不大于3即指到原点的距离不大于3的非负整数即可求解. 【答案】A2.下列各对数中,互为相反数的是 ( )A .)5(--与|5|--B .|-3|与|+3|C .)4(--与|4|-D .|-a |与|a |【知识点】绝对值【解题过程】解: 55,5)5(-=--=-- ,故A 中两数互为相反数;;333==-;44)4(=-=--aa =-B 、C 、D 三个选项的值相等. 【思路点拨】先分别化简即可判断. 【答案】A3.若0|3||2|=++-b a ,则a = ,b = . 【知识点】绝对值【解题过程】解: 因为032=++-b a ,所以03,02=+=-b a 故3,2-==b a 【思路点拨】根据任意数的绝对值始终是非负数即可求解. 【答案】3,2-==b a4.计算:(1) |-16|+|-24|-|-30| = ; (2) |+0.25|×|-8.8|×|-40|+|-1|= 。

《1.2.4 第1课时 绝对值》教案和导学案

《1.2.4 第1课时 绝对值》教案和导学案

1.2.4 绝对值 《第1课时 绝对值》教案【教学目标】1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点) 3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.【教学过程】 一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( ) A .3 B .-3 C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明. (2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎨⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎨⎧a (a ≥0)-a (a <0)【教学反思】绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.《第1课时绝对值》导学案【学习目标】:1.理解绝对值的概念及性质.2.会求一个有理数的绝对值.【重点】:理解绝对值的概念及性质.【难点】:会求一个有理数的绝对值.【自主学习】一、知识链接1.a的相反数表示为 .2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34和34的点呢?二、新知预习问题1:什么是绝对值?怎样表示一个有理数的绝对值?【自主归纳】在数轴上,表示一个数的点到叫做这个数的绝对值,用“”表示.问题2:(1)一个正数的绝对值是什么?(2)一个负数的绝对值是什么?(3)0的绝对值是什么?【自主归纳】一个正数的绝对值是__________;一个负数的绝对值是它的__________;0的绝对值是______.由于绝对值表示距离,猜想:一个数的绝对值是一个_______数(不小于_____的数).三、自学自测求下列各数的绝对值:215 ,101,-4.75,10.5.四、我的疑惑______________________________________________________________________________________________________________________________________________________【课堂探究】 要点探究探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10km 到达A 处,记作 km ,乙车向西行驶10km 到达B 处,记做 km.(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A 、B 的位置,则A 、B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示.-5到原点的距离是5,所以-5的绝对值是 ,记做 =5; 0到原点的距离是 ,所以0的绝对值是 ,记做|0|= ; 4到原点的距离是 ,所以4的绝对值是 ,记做|4|= .探究点2:绝对值的性质及应用观察与思考:观察这些数的绝对值,它们有什么共同点? |5|=5 |-10|=10 |3.5|= 3.5 |100|=100 |-3|=3 |50|=50 |-4.5|=4.5 |-5000|=5000 |0|=0 …思考1: 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.任何一个有理数的绝对值都是非负数.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数. 思考2:若字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a 是正数时,|a |=____; 正数的绝对值是它本身. (2)当a 是负数时,|a |=____; 负数的绝对值是它的相反数. (3)当a=0时,|a |=____. 0的绝对值是0.反思:相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.绝对值相等,符号相反的两个数互为相反数.例1 求下列各数的绝对值:12,-53, -7.5, 0.例2 填空(1)绝对值等于0的数是______, (2)绝对值等于5.25的正数是_____, (3)绝对值等于5.25的负数是______, (4)绝对值等于2的数是_______.例3:若|a|+|b|=0,求a,b 的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.例4:已知|x-4|+|y-3|=0,求x+y 的值.归纳总结: 几个非负数的和为0,则这几个数都为0.1.判断下列说法是否正确.(1)一个数的绝对值是4,则这个数是-4. (2)|3|>0. (3)|-1.3|>0.(4)有理数的绝对值一定是正数. (5)若a =-b ,则|a|=|b|. (6)若|a|=|b|,则a =b. (7)若|a|=-a ,则a 必为负数. (8)互为相反数的两个数的绝对值相等.2.如果3>a ,则______3=-a ,______3=-a .3.已知|a-1|+|b+2|=0,求a,b的值.。

2024秋季新教材人教版七年级上册数学1.2.4-绝对值导学案

2024秋季新教材人教版七年级上册数学1.2.4-绝对值导学案

第一章有理数1.2有理数1.2.4绝对值教学目标:1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法.2.通过应用绝对值解决实际问题.重点:正确理解绝对值的概念,会求一个数的绝对值.难点:利用绝对值比较两个负数的大小.自主学习一、新课导入甲、乙两辆汽车从同一处O出发,分别向东西方向行驶10km,达到A,B两处,请在数轴上表示出来并回答问题(规定向东为正方向).(1)它们行驶的路线相同吗?(2)它们行驶的路程相等吗?课堂探究一、要点探究探究点1:绝对值的意义及求法合作探究探究一探究两辆车的行驶路线相同吗?行驶路程相同吗?请用数轴解释(规定向东为正方向).知识要点:绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫作数a的绝对值,记作|a|.探究二对于任意数a,你能求出它的绝对值吗?思考1:一个正数的绝对值是什么数?一个负数的绝对值是什么数?0的绝对值是什么数?结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.任何一个有理数的绝对值都是非负数.|a|≥0结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=____;正数的绝对值是它本身.(2)当a是负数时,|a|=____;负数的绝对值是它的相反数.(3)当a=0时,|a|=____.0的绝对值是0.例1(1)写出1,-0.5,−74的绝对值;(2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d,这四个数中,绝对值最小的是哪个数?总结:一个数的绝对值越小,数轴上表示它的点离原点越近,反过来,数轴上表示它的点离原点越近,它的绝对值越小.3.已知|x-4|+|y-3|=0,求x+y的值.归纳总结:几个非负式的和为0,则这几个式子都为0.二、课堂小结1.判断对错:(1)一个数的绝对值等于本身,则这个数一定是正数;()(2)一个数的绝对值等于它的相反数,这个数一定是负数;()(3)如果两个数的绝对值相等,那么这两个数一定相等;()(4)如果两个数不相等,那么这两个数的绝对值一定不等;()(5)有理数的绝对值一定是非负数.()2.化简:|0|=;|x|=(x<0);|m–n|=(m>n).3.某工厂生产一批螺帽,根据产品质量要求,螺帽的内径可以有0.02毫米的误差,抽查5只螺帽,超过规定内径的毫米数记作正数,不足规定内径的毫米数记作负数,检查结果如下表:(1)根据调查结果,指出哪些产品是合乎要求的(即在误差范围内的);(2)指出合乎要求的产品中哪一个质量好一些,并用绝对值的知识说明.参考答案合作探究一、要点探究合作探究练一练:1.5 3.53 3.50思考1略.思考2(1)a(2)-a(3)0【典例精析】解:(1)|1|=1,|-0.5|=0.5,−=47(2)因为在点A,B,C,D中,点C离原点最近,所以在有理数a,b,c,d中,c的绝对值最小.2.5,3.5,12024,653.解:根据题意可知|x-4|=0,|y-3|=0,x-4=0,y-3=0.所以x=4,y=3,故x+y=7.二、课堂小结当堂检测1.(1)×(2)×(3)×(4)×(5)√2.3,0,-x,m-n.3.解:(1)螺帽的内径误差是-0.018和+0.015符合要求;(2)|-0.018|=0.018;|+0.015|=0.015.因为0.018>0.015,所以螺帽的内径误差是+0.015毫米的质量好些.。

七年级数学上册 1.2.4 绝对值导学案 (新版)新人教版

七年级数学上册 1.2.4 绝对值导学案 (新版)新人教版

1.2.4 绝对值一、学习目标:1、理解绝对值的概念及几何意义,体会绝对值的作用;2、会求一个数的绝对值,会求绝对值已知的数;3、掌握有理数比较大小的法则.二、学习重难点:重点:绝对值的概念及有理数的大小比较难点:两个负数大小的比较探究案三、教学过程(一)情境导入两辆汽车从同一处O出发,分别向东、西方向行驶了10千米,到达A,B两处.它们的行驶路线相同吗?行驶的路程分别是多少?(二)合作探究请两位同学分别站在老师的左右两边,两位同学同时向东、西相反的方向走1米(老师、两名学生都在同一直线上,规定向东为正),把这两位同学所站位置用数轴上的点表示出来.说出两名学生与老师的距离.绝对值概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的________,记作_______. 例如,上面的问题中,在数轴上表示数-1的点和表示数1的点与原点的距离都是1,所以,1与-1的绝对值都是1,即|1|=1,|-1|=1.练习:-2的绝对值表示它离原点的距离是_______ 个单位,记作_______. 2:-0.8的绝对值是 __________. 3:口答:(1)|+6|=_____________ |72|=__________ |8.2|=__________ (2)|0|=____________ (3)|-3|=____________ |-31|=___________ |-0.6|=__________ 归纳总结数a 的绝对值的一般规律:1. 一个正数的绝对值是___________;2.一个负数的绝对值是_____________________;3.0的绝对值是____.4.即:①若a >0,则|a|=____;②若a <0,则|a|=_________;③若a=0,则|a|=______. 思考:有没有绝对值等于-2的数?一个数的绝对值会是负数吗?为什么?不论有理数a 取何值,它的绝对值总是什么数?探究二你能将这七天中每天的最低气温从低到高排列吗?能把这7个数用数轴上的点表示出来吗?观察这些点在数轴上的位置,思考它们与温度的高低之间的关系,你觉得两个有理数可以比较大小吗?数轴上的两个点,右边的点表示的数与左边的点表示的数的大小关系是怎样的?互为相反数的两个数的绝对值有什么关系? 例题解析1.说出下列各式的值: ,,,2.求下列各数的绝对值: 6 , -6 , -3.9 , +3.9, , , 0.3、化简: (1) ︱-(+21)︱ (2) -︱-131︱随堂检测1、如果,那么 a=_____,b=_____.2、已知x =30,y =-4,则3、化简填空4、一个数的绝对值是7,则这个数是____________.5、满足︱x ︱≤3的所有整数是_____________________;6、绝对值大于2并且不大于5的负整数有_____________ .7、判断对错:(1)一个数的绝对值等于本身,则这个数一定是正数 .( )(2)一个数的绝对值等于它的相反数,这个数一定是负数.( )(3)如果两个数的绝对值相等,那么这两个数一定相等( )(4)如果两个数不相等,那么这两个数的绝对值一定不等.( )(5)有理数的绝对值一定是非负数. ( )(6)有理数没有最小的,有理数的绝对值也没有最小的.( )(7)两个有理数,绝对值大的反而小. ( )(8)两个有理数为a、b,若a >b,则|a|>|b|. ( )课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获___________________________________________________________________________ _______________________________________________________________________________参考答案(二)合作探究绝对值概念:绝对值 |a| 练习: 1:2 |-2| 2:0.83:(1)6 8.2 (2)0(3)3 0.6 归纳总结 1.它本身 2. 它的相反数 3. 04.a –a 0 思考:没有 不会 非负数 探究二在数轴上表示有理数,左边的数小于右边的数.正数大于0,负数小于0,正数大于负数. 两个负数,绝对值大的反而小.虽然一对相反数分别在原点两边,但它们到原点的距离是相等的.所以互为相反数的两个数的绝对值相等.例题解析 1.,,,02.6 63.9 3.9 03.(1) ︱-(+21)︱ (2) -︱-131︱ =︱-21︱ =3111=2随堂检测1.0 12.183.5 5 -5 -5 - 0.34.7或-75.6.7.(5)对,其他均错欢迎您的下载,资料仅供参考!。

人教版数学七年级上册1.2.4《绝对值》教学设计

人教版数学七年级上册1.2.4《绝对值》教学设计

人教版数学七年级上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,对于七年级学生来说是全新的内容。

本节课的内容主要包括绝对值的定义、性质以及绝对值在数轴上的表示方法。

教材通过简单的例子引导学生探究绝对值的性质,让学生在理解绝对值概念的基础上,能够运用绝对值性质解决问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数轴、有理数等概念有一定的了解。

但绝对值作为一个新的概念,对学生来说仍然具有一定的抽象性。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和直观的数轴演示,帮助学生理解和掌握绝对值的概念和性质。

三. 教学目标1.理解绝对值的定义,掌握绝对值的性质。

2.能够运用绝对值性质解决简单问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.绝对值的定义和性质。

2.绝对值在数轴上的表示方法。

3.运用绝对值性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入绝对值的概念,让学生在具体的情境中感受绝对值的意义。

2.数形结合法:利用数轴直观地表示绝对值,帮助学生理解和掌握绝对值的性质。

3.引导发现法:教师引导学生发现绝对值的性质,培养学生的探究能力和思维品质。

4.归纳总结法:在教学过程中,教师引导学生总结绝对值的性质,加深学生对知识点的理解。

六. 教学准备1.教学课件:制作内容丰富、形式多样的课件,帮助学生理解和掌握绝对值的概念和性质。

2.数轴教具:准备数轴教具,方便学生直观地理解绝对值在数轴上的表示。

3.练习题:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例引入绝对值的概念,如:“小明的家距离学校5公里,那么小明的家到学校的距离是多少?”引导学生思考并回答问题,引出绝对值的概念。

2.呈现(10分钟)介绍绝对值的定义,即一个数的绝对值是它到原点的距离。

通过数轴演示,让学生直观地理解绝对值的意义。

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版

七年级数学上册 1.2.4 绝对值教案 (新版)新人教版
二、讲授新课
活动2.探索新知、讲授新课:
在数轴上标出到原点距离是6个单位长度的点.这样的点有几个?
演示课件
一个数在数轴上对应的点到原点的距离,叫做这个数的绝对值.数a的绝对值表示为.
(a可以取所有的正数、负数和0.)
例1:求+8、-12、-3、+3、-1.6、π-5的绝对值.
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

板书设计
绝对值
一个数在数轴上对应的点到原点的距离,叫做这个数的绝对值.数a的绝对值表示为.
例1:求+8、-12、-3、+3、-1.6、π-5的绝对值.
例2.填空:
(1)当a>0时,|2a|=________;
(2)当a>1时,|a-1|=________;
(3)当a<1时,|a-1|=________;
教学方法
讲授法讨论法读书指导法
学法指导
练习法
辅助准备
多媒体
教师活动
学生活动
一、引入
活动1
森林里举行了一场别开生面的运动会,小兔和小猴参加了滑板比赛.裁判小狗一声令下,小兔和小狗同时从O点出发.当小兔滑到-10处时,请问此时小兔离原点多远?而此时小猴刚好滑到10处,请问小猴离原点又有多远?小兔和小狗谁滑的更快些呢?
1.2.4绝对值
教学目标
1、理解绝对值的概念及其几何意义.会求一个数(不涉及字母)的绝对值.会求绝对值已知的数.
2、对有理数有深入的认识,发展学生的符号感和数形结合的意识
3、对有理数有深入的认识,发展学生的符号感和数形结合的意识
教学重(难)点
1、有理数的绝对值的几何意义和代数意义
2、有理数的绝对值的代数意义及其应用.

人教版七年级上册数学学案:1.2.4绝对值(1)

人教版七年级上册数学学案:1.2.4绝对值(1)

师生共用导学稿年级:七年级 学科:数学 执笔: 审核:内容:1.2.4绝对值(1) 课型:新授 时间:9月〖课前回顾〗1. 数轴上表示数2的点到原点的距离2. 数轴上表示数-2的点到原点的距离3. 〖学习目标〗1、知识目标:掌握绝对值的概念,理解绝对值的意义(重点)2、能力目标:能求得一个数的绝对值;知道某个数的绝对值,会求这个数.(难点)3、情感目标:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,增强学习数学的信心。

〖自主学习〗阅读课本第11-12页(练习上方)探究:一、绝对值的概念:一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作︱a ︱,读作a 的绝对值.1、仿例填空:(1)+5的绝对值记作︱+5︱,-5的绝对值记作︱-5︱.(2)-8.6的绝对值记作 ,+12.7的绝对值记作 .(3)0的绝对值记作(4)x 的绝对值记作 ,-x 的绝对值记作 。

(5)在数轴上,表示+5的点与原点的距离是5,所以︱+5︱=5;(6)在数轴上,表示-3的点与原点的距离是 ,所以︱-3︱= ;(7)在数轴上,表示21的点与原点的距离是 ,所以︱21︱= ; (8)在数轴上,表示0的点与原点的距离是 ,所以︱0︱= ;2、求下列各数的绝对值:(1)︱+2︱= ;︱+51︱= ;︱4.5︱= ;︱32︱= ; (2)︱0︱= ;(3)︱-3︱= ;︱-0.5︱= ;︱-8.3︱= ;小结:一个正数的绝对值是它 ,零的绝对值是 ,一个负数的绝对值是它的 .(一个数的绝对值是一个 数)(1)当a 是正数时,︱a ︱= ;(2)当a 是负数时,︱a ︱= ;(3)当a 是0时,︱a ︱= ;二巩固练习:1、计算:(1)︱+5︱= ;︱-5︱= ;︱+3︱= ;︱-4︱= ;(2)︱0︱= ;(3)︱-7.3︱= ;︱-21︱= ;︱-12.7︱= ; 2、填空:(1)绝对值是5的正数是 ,(2)绝对值是5的负数是 ,(3)绝对值是5的数有 个,是 ,(4)绝对值是12的数是 ,(5)︱a ︱=2,则a= ,︱a ︱=0,则a= ,︱a ︱=1.5,则a= ,3、判断:(1) 两数不等时,两数的绝对值也不等;( )(2) 任何数的绝对值都是正数;( )(3) 只有正数的绝对值等于它本身;( )(4) 互为相反数的两个数的绝对值相等;( )(5) 绝对值等于它的相反数的是负数和零( )4、化去式中的绝对值符号后计算:(1)︱-8︱+︱-4︱= ;(2)︱+3.5︱+︱-3.5︱= ;(3)︱-23︱×︱-32︱= ;(4)︱-27︱÷︱-1514︱= ;〖课堂小结〗1.绝对值的概念:一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作︱a ︱,读作a 的绝对值.2.一个正数的绝对值是它 ,零的绝对值是 ,一个负数的绝对值是它的 .(一个数的绝对值是一个 数)〖自我测试〗1、填空:(1)当a>0时,︱a︱= ;当a<0时,︱a︱= ;当a=0时,︱a︱= ;(2)一个数a的绝对值就是数轴上表示数a的点到原点的;(3)绝对值是7的数是;(4)与原点距离是5的点表示的数是.2、判断;(1)不同的数的绝对值不同;()(2)绝对值不同的数不同;()(3)当a<0时,︱a︱=-a;()(4)如果︱a︱=-a,那么a<0.()3、化简:(1)-(-1.5)= ,(2)-︱-8︱= .〖课后作业〗:A组(基础题):(1)课本12页练习1、2 (做书上)(2)课本15页4题(做本上)B组(能力题):1、绝对值小于3的所有整数有2、数轴上表示1和-3的两点之间的距离是3. 若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数C组(提高题):如果|a|=4,|b|=3,且a>b,求a,b的值.班级 姓名填空:(1)︱+2︱= ;︱+51︱= ;︱4.5︱= ;︱32︱= ; ︱0︱= ;︱-3︱= ;︱-0.5︱= ;︱-8.3︱= ;(2)绝对值是9的数是 ;(3)与原点距离是2.5的点表示的数是 .(4)│∏- 3|= │∏- 4|=(5)写出绝对值大于2.1而不大于5的所有整数_。

【最新人教版初中数学精选】七年级数学上册 1.2.4绝对值教案1 (新版)新人教版.doc

【最新人教版初中数学精选】七年级数学上册 1.2.4绝对值教案1 (新版)新人教版.doc

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的 过
点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数 学 生 独

(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数 a 的绝 立思考,
举手回

对值的一般规律:
答,教师

(1)一个正数的绝对值是它本身;
尽量选 多名学
(2) 0 的绝对值是 0;
分小组 讨论,交 流,联系 前面所 学的数 轴,数形 结合可 使问题 变得更 简单
对值,4 叫做-4 的绝对值.
二、讲授新课
1.绝对值的定义:
我们把在数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值.
记作|a|.
让学生
精品【初中语文试题】
二次 备课
练习运用
精品【初中语文试题】
例如,在数轴上表示数―6 与表示数 6 的点与原点的距离都是 6, 思考问 题并相
课型
能力 目标
1、在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的 力.2、能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.3、给出一 能求它的绝对值.
情感 目标
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性
给出一个数会求它的绝对值.
绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数 启发引导、尝试研讨、变式练习
三、当堂检测:
1.在括号里填写适当的数:
自我检测
-|+3|=(
); |(
)|=1, |(
)|=0;
-|(
)|=-2.
2. 求+7,-2, 1 ,-8.3,0,+0.01,- 2 ,1 1 的绝对值.

【最新人教版初中数学精选】七年级数学上册 1.2.4绝对值教案1 (新版)新人教版.doc

【最新人教版初中数学精选】七年级数学上册 1.2.4绝对值教案1 (新版)新人教版.doc

分小组 讨论,交 流,联系 前面所 学的数 轴,数形 结合可 使问题 变得更 简单
对值,4 叫做-4 的绝对值.
二、讲授新课
1.绝对值的定义:
我们把在数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值.
记作|a|.
让学生
精品【初中题】
例如,在数轴上表示数―6 与表示数 6 的点与原点的距离都是 6, 思考问 题并相
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的 过
点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数 学 生 独

(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数 a 的绝 立思考,
举手回

对值的一般规律:
答,教师

(1)一个正数的绝对值是它本身;
尽量选 多名学
(2) 0 的绝对值是 0;
所以―6 和 6 的绝对值都是 6,记作|―6|=|6|=6.同样可知|―4|=4, 互交流
|+1.7|=1.7.
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|= , 1 = ,|+8.2|= ; (2)|0|= ;

5

(3)|―3|= ,|―0.2|= ,|―8.2|= .
三、当堂检测:
1.在括号里填写适当的数:
自我检测
-|+3|=(
); |(
)|=1, |(
)|=0;
-|(
)|=-2.
2. 求+7,-2, 1 ,-8.3,0,+0.01,- 2 ,1 1 的绝对值.
3
52
3. (1)绝对值是 3 的数有几个?各是什么? 4

秋七年级数学上册 1.2.4 绝对值导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

秋七年级数学上册 1.2.4 绝对值导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

1.2.4 绝对值一、学习目标:1、理解绝对值的概念及几何意义,体会绝对值的作用;2、会求一个数的绝对值,会求绝对值已知的数;3、掌握有理数比较大小的法则.二、学习重难点:重点:绝对值的概念及有理数的大小比较难点:两个负数大小的比较探究案三、教学过程(一)情境导入两辆汽车从同一处O出发,分别向东、西方向行驶了10千米,到达A,B两处.它们的行驶路线相同吗?行驶的路程分别是多少?(二)合作探究请两位同学分别站在老师的左右两边,两位同学同时向东、西相反的方向走1米(老师、两名学生都在同一直线上,规定向东为正),把这两位同学所站位置用数轴上的点表示出来.说出两名学生与老师的距离.绝对值概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的________,记作_______. 例如,上面的问题中,在数轴上表示数-1的点和表示数1的点与原点的距离都是1,所以,1与-1的绝对值都是1,即|1|=1,|-1|=1.练习:-2的绝对值表示它离原点的距离是_______ 个单位,记作_______.2:-0.8的绝对值是 __________.3:口答:(1)|+6|=_____________ |72|=__________ |8.2|=__________ (2)|0|=____________(3)|-3|=____________ |-31|=___________ |-0.6|=__________ 归纳总结数a 的绝对值的一般规律:1. 一个正数的绝对值是___________;____________________;___.4.即:①若a >0,则|a|=____;②若a <0,则|a|=_________;③若a=0,则|a|=______. 思考:有没有绝对值等于-2的数?一个数的绝对值会是负数吗?为什么?不论有理数a 取何值,它的绝对值总是什么数?探究二你能将这七天中每天的最低气温从低到高排列吗?能把这7个数用数轴上的点表示出来吗?观察这些点在数轴上的位置,思考它们与温度的高低之间的关系,你觉得两个有理数可以比较大小吗?数轴上的两个点,右边的点表示的数与左边的点表示的数的大小关系是怎样的?互为相反数的两个数的绝对值有什么关系?例题解析1.说出下列各式的值:,,,2.求下列各数的绝对值:6 , -6 , -3.9 , +3.9, , , 0.3、化简: (1) ︱-(+21)︱ (2) -︱-131︱随堂检测1、如果,那么 a=_____,b=_____.2、已知x =30,y =-4,则3、化简填空4、一个数的绝对值是7,则这个数是____________.5、满足︱x︱≤3的所有整数是_____________________;6、绝对值大于2并且不大于5的负整数有_____________.7、判断对错:(1)一个数的绝对值等于本身,则这个数一定是正数 .( )(2)一个数的绝对值等于它的相反数,这个数一定是负数.( )(3)如果两个数的绝对值相等,那么这两个数一定相等( )(4)如果两个数不相等,那么这两个数的绝对值一定不等.( )(5)有理数的绝对值一定是非负数. ( )(6)有理数没有最小的,有理数的绝对值也没有最小的.( )(7)两个有理数,绝对值大的反而小. ( )(8)两个有理数为a、b,若a >b,则|a|>|b|. ( )课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获___________________________________________________________________________ _______________________________________________________________________________参考答案(二)合作探究绝对值概念:绝对值 |a|练习:1:2|-2|3:(1)6(2)0(3)3归纳总结1.它本身2. 它的相反数3. 04.a –a0思考:没有 不会 非负数探究二在数轴上表示有理数,左边的数小于右边的数.正数大于0,负数小于0,正数大于负数. 两个负数,绝对值大的反而小.虽然一对相反数分别在原点两边,但它们到原点的距离是相等的.所以互为相反数的两个数的绝对值相等.例题解析1.,,,02.6 63.9 3.9 03.(1) ︱-(+21)︱ (2) -︱-131︱ =︱-21︱ =311 =21随堂检测1.0 1word2.183.5 5 -5 -5 -4.7或-75.6.7.(5)对,其他均错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学上册1.2.4绝对值(1)导学案
学习目标:
1、理解、掌握绝对值概念.体会绝对值的作用与意义
2、掌握求一个已知数的绝对值和有理数大小比较的方法.
3、体验运用直观知识解决数学问题的成功.
学习重点:绝对值的概念
学习难点:绝对值的概念与两个负数的大小比较
教学方法:学生自主探索
教学过程
一、学前准备
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)
二、合作探究、归纳
1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是
到原点的距离等于10的数有个,它们的关系是一对 .
定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣
2、练习
(1)式子∣-5.7∣表示的意义是 .
(2)—2的绝对值表示它离开原点的距离是个单位,记作 .
(3)∣24∣= . ∣—3.1∣= ,∣—1
3
∣= ,∣0∣= .
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是 .
用式子表示就是:
当a是正数(即a>0)时,∣a∣= ;
当a是负数(即a<0)时,∣a∣= ;
当a=0时,∣a∣= .
4、随堂练习
P11第1、2、3大题
三、小结:
本节课的收获:
你还有什么疑惑?
四、当堂清
1.______7.3=-;______0=;______75.0=+-.
2.______31=+;______45=--;______3
2=-+. 3.______510=-+-;______5.55.6=---.
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是3
2,那么这个数为______. 6.绝对值等于4的数是______.
7.绝对值等于其相反数的数一定是…………………………………( )
A .负数
B .正数
C .负数或零
D .正数或零
8.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等. 其中正确的有…………………………………………………( )
A .0个
B .1个
C .2个
D .3个
参考答案:1.3.7, 0, -0.75 2.
31, 45-, 32 3.15, 1 4.0, 正数, 负数 5. 3
2± 6. 4± 7.C 8.B 五、学习反思。

相关文档
最新文档