1.3曲线的极坐标方程
2014-2015学年高中数学(人教版选修4-4)配套课件第一讲 1.3 简单曲线的极坐标方程
预习 思考
1.几个特殊位置的圆的极坐标方程: (1)圆心位于极点,半径为 1 的圆的极坐标方程为:
ρ=1 __________ ;
(2)圆心位于 M(1,0),半径为 1 的圆的极坐标方程为:
ρ=2cos θ ; ____________
π (3)圆心位于 M1,2, 半径为 1 的圆的极坐标方程为:
第一讲
坐 标 系
1.3 简单曲线的极坐标方程
栏 目 链 接
1.理解极坐标方程的意义. 2.能在极坐标中给出简单图形的极坐标方程. 3.通过比较这些图形在极坐标系和平面直角坐标 系中的方程,体会在用方程刻画平面图形时选择适当 坐标系的意义.
栏 目 链 接
栏 目 链 接
1.定义. 如果曲线 C 上的点与方程 f(ρ, θ)=0 有如下关系:
π π (2)如下图所示, A3,3 ,即 |OA|= 3, ∠AOB = . 3
3π 由已知∠MBx= , 4
栏 目 链 接
∴∠OAB=
3π π 5π - = . 4 3 12 5π 7π = . 12 12
栏 目 链 接
∴∠OAM=π-
3π 又∠OMA=∠MBx-θ= -θ. 4 3 ρ 在△MOA 中,根据正弦定理,得 = . 3π 7π sin 4 -θ sin 12
π 1 .过 A 3,3 且平行于极轴的直线的极坐标方程为
____________.
栏 目 链 接
3 答案:ρsin θ= 2
题型2
直角坐标方程与极坐标的互化
例3 进行直角坐标方程与极坐标方程的互化.
(1)y2=4x; (2)y2+x2-2x-1=0; π (3)θ= ; 3
1.3.1 圆的极坐标方程 课件 (北师大选修4-4)
=r
显然,使极点与圆心重合时的极坐标方程在形式 上比(1)简单。
思考:已知一个圆的方程是=5 3 cos 5sin 求圆心坐标和半径。
解:=5 3 cos 5sin 两边同乘以 得
=5 3 cos -5 sin 即化为直角坐标为
2
5 3 2 5 2 x y 5 3 x 5 y 即( x ) ( y ) 25 2 2 5 3 5 所以圆心为( , ), 半径是5 2 2
=2
(2)中心在C(a,0),半径为a;
=2acos (3)中心在(a,/2),半径为a; =2asin
(4)中心在C(0,0),半径为r。 2+ 0 2 -2 0 cos( - 0)= r2
题组练习2
1、曲线的极坐标方程=4 sin 化为直角坐标 方程是什么?
3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆
解:该方程可以化为=cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2
解:=cos cos
2
4
sin sin
4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
7、从极点O作圆C:=8cos 的弦ON, 求ON的中点的轨迹方程。
M
N
解:如图,圆C的圆心(4, 0), 半径r OC 4,
O
C(4,0)
连结CM , M 是弦ON的中点 CM ON , 所以,动点M 的轨迹方程是=4 cos
1.3.1 圆的极坐标方程 课件 (北师大选修4-4)
解:方程可化为 - cos 4 2 即2 =4+x 两边平方得: 2=( x 4) 2 4 4 x 2 4 y 2 x 2 8 x 16 3x 8 x 4 y 16
2 2
4、圆=10 cos( )的圆心坐标是 ( C ) 3 2 C、 , ) (5 (5 A、 ,0) B、 , ) (5 D、 , ) (5 3 3 3 5、写出圆心在点A(2, )处且过极点的圆的 2 极坐标方程,并把它化成直角坐标方程。 解:=4 cos( ) 4sin
=r
显然,使极点与圆心重 合时的极坐标方程在形 式 上比(1)简单。
思考:已知一个圆的方程是=5 3 cos 5sin 求圆心坐标和半径。
解:=5 3 cos 5sin 两边同乘以 得
=5 3 cos -5 sin 即化为直角坐标为
2
5 3 2 5 2 x y 5 3 x 5 y 即( x ) ( y ) 25 2 2 5 3 5 所以圆心为( , ), 半径是5 2 2
1.3简单曲线的极坐标方程
曲线的极坐标 方程
一、定义:如果曲线C上的点与方程 f(,)=0有如下关系 (1)曲线C上任一点的坐标(所有坐标 中至少有一个)符合方程f(,)=0 ; (2)方程f(,)=0的所有解为坐标的点 都在曲线C上。 则曲线C的方程是f(,)=0 。
如图,半径为a的圆的圆心坐标为C (a, 0)(a 0) 你能用一个等式表示圆上任意一点的极坐标 ( , )满足的条件吗?
2 2
你可以用极坐标方程直接来求吗?
解:原式可化为 3 1 =10(cos sin ) 10 cos( ) 2 2 6 所以圆心为(5, ), 半径为5 6
极坐标参数方程知识点总结
极坐标参数方程知识点总结一、介绍1.1 极坐标参数方程极坐标参数方程是用极坐标表示的函数关系,其中角度和半径是参数。
极坐标是一种在平面上描述点位置的坐标系统,通过半径和角度确定点的位置。
极坐标参数方程可以用来描述各种曲线和图形。
1.2 极坐标参数方程的形式极坐标参数方程的一般形式为:r = f(θ)其中,r为半径,θ为角度,f(θ)为关于角度的函数。
1.3 极坐标与直角坐标的转换极坐标和直角坐标是两种不同的坐标系统,它们可以相互转换。
极坐标到直角坐标的转换公式如下:x = r * cos(θ) y = r * sin(θ)直角坐标到极坐标的转换公式如下:r = sqrt(x^2 + y^2) θ = atan2(y, x)二、常见的极坐标参数方程2.1 圆的极坐标参数方程圆的极坐标参数方程为:r = a其中,a为圆的半径。
2.2 椭圆的极坐标参数方程椭圆的极坐标参数方程为:r = a * (1 - ε^2) / (1 - ε * cos(θ))其中,a为椭圆的长轴半径,ε为离心率,θ为角度。
2.3 双曲线的极坐标参数方程双曲线的极坐标参数方程为:r = a * (1 + ε * cos(θ))其中,a为双曲线的焦距,ε为离心率,θ为角度。
2.4 阿基米德螺线的极坐标参数方程阿基米德螺线的极坐标参数方程为:r = a + bθ其中,a和b为常数,θ为角度。
三、极坐标参数方程的应用3.1 图形绘制极坐标参数方程可以用来绘制各种曲线和图形,如圆、椭圆、双曲线等。
通过确定参数的取值范围,可以得到不同形状的图形。
3.2 面积计算极坐标参数方程可以用来计算曲线所围成的面积。
可以通过对θ的积分来计算曲线所围成的面积。
3.3 物理问题极坐标参数方程在物理学中有广泛的应用。
例如,可以用极坐标参数方程描述天体运动的轨迹,计算物体在旋转过程中的角度和位置等。
3.4 工程应用极坐标参数方程在工程领域也有一些应用,例如,在航空工程中可以用来描述飞机的飞行路径,计算飞机的位置和速度等。
高中数学教材新课标人教B版目录
高中数学必修+选修知识点归纳新课标人教B版高中数学B版必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用Ⅰ2.4函数与方程第三章基本初等函数Ⅰ3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用Ⅱ高中数学B版必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系高中数学B版必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用高中数学B版必修四第一章基本初等函Ⅱ1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质第二章平面向量2.1向量的线性运算2.2向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化积高中数学B版必修五第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列2.2等差数列2.3等比数列第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式组与简单线性规划问题高中数学B版选修1-1文科第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1椭圆2.2双曲线第三章导数及其应用3.1导数3.2导数的运算3.3导数的应用高中数学B版选修1-2文科第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学B版选修2-1理科1.2基本逻辑联结词1.3充分条件、必要条件与命题的四种形式2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线高中数学B版选修2-2理科第一章导数及其应用1.1导数1.2导数的运算1.3导数的应用1.4定积分与微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.2复数的运算高中数学B版选修2-3理科第一章计数原理1.1基本计数原理1.2排列与组合1.3二项式定理第二章概率2.1离散型随机变量及其分布列2.2条件概率与事件的独立性2.3随机变量的数字特征2.4正态分布第三章统计案例3.1独立性检验3.2回归分析高中数学B版选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线高中数学B版选修4-4坐标系与参数方程第一章坐标系1.1直角坐标系平面上的压缩变换2极坐标系1.3曲线的极坐标方程1.4圆的极坐标方程1.5柱坐标系和球坐标系第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程高中数学B版选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式选学2.4最大值与最小值问题;优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式;贝努利不等式。
极坐标
化为
直角坐标方程. 解
方程变形为 r ( 2 sin 3 cos ) 1 ,
2 r sin 3 r cos 1 ,
2 y 3 x 1.
14
求圆心在(1,0)点,半径为2的圆的极坐标方程. 解 圆心在(1,0)极点,半径为2的圆的直角坐标方程为
( x 1) y 4
§1.3 极 坐 标
一、极坐标系
二、极坐标与直角坐标的互化
三、曲线的极坐标方程
1
一、极坐标系
1. 极坐标系的建立 在平面内取一个定点o,叫做极点, 引一条射线Ox,叫做极轴. 再选定一个长度单位和角度单 位及它的正方向(通常取逆时 针方向). 这样就建立了一个极坐标系.
o
x
2
2. 极坐标
P ( r , )
r2 x2 y2 y tan ( x 0) x
2. 直角坐标方程与极坐标方程与的互化 直角坐标方程化为极坐标方程; 简单的极坐标方程化为直角坐标方程. 3. 简单的极坐标方程会画略图.
26
作业
习题1-3 1. 2. 3 (24页)
27
笛卡儿 (1596~1650)
7 6
.
M ( 2,
7 6
)
9
三、曲线的极坐标方程
定义 如果曲线L上的点与方程 (r,)=0有如下关系 (1) 曲线L上任一点的坐标符合方程 (r,) = 0 ; (2)方程 (r,) =0的所有解为坐标的点都在曲线L上. 则曲线 L 的极坐标方程是 (r,) =0 .
28
华罗庚(1910~1985)
我国在国际上享有盛誉的数学家. 他在解析数论, 矩阵几何学, 典型群, 自守函数论, 多复变函数论, 偏微分方
人教版高中数学B版目录
人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。
1.3.1 圆的极坐标方程 课件 (北师大选修4-4)
探 究
O
C(a,0)
A
x
解:圆经过极点 。设圆与极轴的另一个 O 交点 是A,那么OA=2a, 设M ( , )为圆上除点O,A 以外的任意一点,那么 OM AM。在RtAMO 中 OM OA cos MOA即=2a cos .......... 1) .( 可以验证,点O(0, ), A(2a,0)的坐标满足等式1) ( 2
2 化为直角坐标系为 2=4 sin
2 2 2 2
即x y 4 y x ( y 2) 4
6、已知圆C1 : 2cos ,圆C2 : 2 2 3 sin 2 0, 试判断两圆的位置关系。
解:将两圆都化为直角 坐标方程为 C1 : ( x 1) 2 y 2 1,圆心O1 (1,0)半径为 1 C2 : x 2 ( y 3 ) 2 1,圆心O2 (0, 3 )半径为 1 O1O2 2所以两圆相外切。
所以,等式(1)就是圆上任意一点的极 坐标( , ) 满足的条件,另一方面 ,可以验证,坐标适合 等式(1)的点都在这个圆上。
极坐标方程:
一般地,在极坐标系中 ,如果平面曲线 上任意 C 一点的极坐标中至少有 一个满足方程 ( , ) 0 f 并且坐标适合方程 ( , ) 0的点都在曲线 上, f C 那么方程f ( , ) 0叫做曲线C的极坐标方程。
所以, 2a cos就是圆心在C (a,0)(a 0),半径 为a的圆的极坐标方程。
例1、已知圆O的半径为r,建立怎样的极坐 标系,可以使圆的极坐标方程简单?
M
O
r x
解:如果以圆心 为极点,从O出发的一条射线 O 为极轴建立坐标系(如 图),那么圆上各点的 几 何特征就是它们的极径 都等于半径r. 设M ( , )为圆上任意一点,则 OM r ,即
三、简单曲线的极坐标方程
2=5 3 cos -5 sin 即化为直角坐标为
5 3 2 5 2 x y 5 3 x 5 y 即( x ) ( y ) 25 2 2 5 3 5 所以圆心为( , ), 半径是5 2 2
2 2
练习:
A、双曲线
1、极坐标方程 cos( )所表示的曲线是( D ) 4
B、椭圆
C、抛物线
D、圆
2
2、曲线的极坐标方程=4 sin 表示的圆的 圆心坐标和半径是什么? 圆心坐标是(2,
), 半径是r=2
3、圆=10 cos( )的圆心坐标是( C ) 3 2 D、 (5, ) (5, ) A、 (5,0) B、 C、 (5, ) 3 3 3
5 ( 0) 4
o
M
x
(3)求过极点,倾斜角为 的直线的极坐标方程。 4 5 ( 0) 和 ( 0) M 4 4
﹚
4
o
x
和前面的直角坐标系里直线方程的表示形
式比较起来,极坐标系里的直线表示起来很不
方便,要用两条射线组合而成。原因在哪?
P 点坐标(ρ1cos θ1,ρ1sin θ1), π 当 α≠ 时,直线方程为 y-ρ1sin θ1=tan α(x-ρ1cos θ1) , 2 即 x· tan α-y-ρ1cos θ1·tan α+ρ1sin θ1=0. π 当 α= 时,x=ρ1cos θ1. 2 答
M (,) A
O
C(a,0)
x
曲线的极坐标方程
①曲线C上任一点的坐标(所有坐标中至少有一个)
一 定义:若曲线C上的点与方程f(,)=0有如下关系:
符合方程f(,)=0 ;
简单曲线的极坐标方程教学设计公开课1
.
§1.3简单曲线的极坐标方程
一、教学任务分析
知识与技能了解极坐标系中曲线和方程的关系,能求直线和圆的极坐标方程;
过程与方法掌握求曲线极坐标方程的步骤;能求直线和圆的极坐标方程;
情感、态度、价值观认识极坐标中方程和曲线的关系,并能求简单曲线的极坐标方程。
二、教学重、难点
教学重点: 能建立圆和直线的极坐标方程。
教学难点: 建立直线的极坐标方程;理解直线极坐标方程形式的不唯一性。
三、教学基本流程
由直角坐标系下曲线与方程关系类比引进曲线的极坐标方程通过“探究”求圆的极坐标方程
给出极坐标方程的定义
例1的教学
通过“探究”求过极点的直线的极坐标方
、的教
小结本节课要布置作业
.
.
. .
.。
19-20 第1章 1.3 曲线的极坐标方程 1.4 圆的极坐标方程
1.3 曲线的极坐标方程 1.4 圆的极坐标方程 1.4.1 圆心在极轴上且过极点的圆 1.4.2圆心在点⎝ ⎛⎭⎪⎫a ,π2处且过极点的圆学习目标:1.了解极坐标方程的意义,了解曲线的极坐标方程的求法.2.会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.(重点)1.曲线C的直角坐标方程在给定的平面直角坐标系下,如果二元方程F(x,y)=0满足下面两个条件,则称它为曲线C的方程:(1)曲线C上任一点的坐标(x,y)都满足方程;(2)所有适合方程的(x,y)所对应的点都在曲线C上.2.曲线的极坐标方程在给定的平面上的极坐标系下,有一个二元方程F(ρ,θ)=0.如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C 的极坐标方程.3.常见曲线的极坐标方程[提示]由于平面上点的极坐标的表示形式不唯一,所以曲线上的点的极坐标有多种表示,曲线的极坐标方程不唯一.1.极坐标方程θ=π(ρ∈R)表示()A.点B.线段C.圆D.直线[解析]当ρ≥0时,方程θ=π表示极角为π的射线,当ρ<0时,方程θ=π表示上述射线的反向延长线.∵ρ∈R,∴θ=π表示直线.[答案] D2.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线[解析]由题设,得ρ=1,或θ=π,ρ=1表示圆,θ=π(ρ≥0)表示一条射线.[答案] C3.直线θ=π2和圆ρ=2cos θ的位置关系为()A.相离B.相切C.相交D.无法确定[解析]由ρ=2cos θ知表示曲线圆心为(1,0),半径为1的圆.又θ=π2过极点且与极轴垂直.∴直线θ=π2与圆相切.[答案] B4.已知曲线C1,C2的极坐标方程分别为ρcos θ=3,ρ=4cos θ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为________.[解析]由ρ·cos θ=3,ρ=4cos θ,得4cos2θ=3.又0≤θ<π2,则cos θ>0.∴cos θ=32,θ=π6,故ρ=2 3.∴两曲线交点的极坐标为(23,π6).[答案](23,π6)【例1】 求圆心在C (2,3π2)处并且过极点的圆的极坐标方程,并判断点(-2,sin 5π6)是否在这个圆上.[思路探究] 解答本题先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简可得,并检验特殊点.[解] 如图,由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM , 即ρ=2r cos(3π2-θ), ∴ρ=-4sin θ,经验证,点O(0,0),A(4,3π2)的坐标满足上式.∴满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2,∴点(-2,sin 5π6)在此圆上.1.求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系(本题无需作);②在曲线上任取一点M(ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.(一般只要对特殊点加以检验即可)2.求曲线的极坐标方程,关键是找出曲线上的点满足的几何条件,并进行坐标表示.1.在极坐标系中,分别求方程.(1)圆心在极点,半径为2的圆的极坐标方程;(2)圆心为C(2,π),半径为2的圆的极坐标方程.[解](1)设M(ρ,θ)为所求圆上任意一点.结合图形,得|OM|=2.∴ρ=2.0≤θ<2π.(2)设所求圆上任意一点M(ρ,θ),结合图形.在Rt △OAM 中,∠OMA =90°.∠AOM =π-θ,|OA |=4. ∵cos ∠AOM =OM OA , ∴OM =OA ·cos ∠AOM .即ρ=4cos(π-θ),故ρ=-4cos θ为所求.【例2】 求过点A (1,0),且倾斜角为4的直线的极坐标方程.[思路探究] 画出草图―→设点M (ρ,θ)是直线上的任意一点―→建立关于ρ,θ的方程――→化简检验[解] 法一 设M (ρ,θ)为直线上除点A 以外的任意一点.则∠xAM =π4,∠OAM =3π4, ∠OMA =π4-θ.在△OAM 中,由正弦定理得 |OM |sin ∠OAM =|OA |sin ∠OMA,即ρsin 3π4=1sin (π4-θ),故ρsin(π4-θ)=22, 即ρ(sin π4cos θ-cos π4sin θ)=22, 化简得ρ(cos θ-sin θ)=1,经检验点A (1,0)的坐标适合上述方程, 所以满足条件的直线的极坐标方程为 ρ(cos θ-sin θ)=1,其中,0≤θ<π4(ρ≥0)和5π4<θ<2π(ρ≥0).法二 以极点O 为直角坐标原点,极轴为x 轴,建立平面直角坐标系xOy . ∵直线的斜率k =tan π4=1, ∴过点A (1,0)的直线方程为y =x -1.将y=ρsin θ,x=ρcos θ代入上式,得ρsin θ=ρcos θ-1,∴ρ(cos θ-sin θ)=1,其中,0≤θ<π4(ρ≥0)和5π4<θ<2π(ρ≥0).法一通过运用正弦定理解三角形建立了动点M所满足的等式,从而集中条件建立了以ρ,θ为未知数的方程;法二先求出直线的直角坐标方程,然后通过直角坐标向极坐标的转化公式间接得解,过渡自然,视角新颖,不仅优化了思维方式,而且简化了解题过程.2.若本例中条件不变,如何求以A为端点且在极轴上方的射线的极坐标方程?[解]由题意,设M(ρ,θ)为射线上任意一点,根据例题可知,ρsin(π4-θ)=22,化简得ρ(cos θ-sin θ)=1.经检验点A(1,0)的坐标适合上述方程.因此,以A为端点且在极轴上方的射线的极坐标方程为ρ(cos θ-sin θ)=1(其中ρ≥0,0≤θ<π4).【例3】 在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.[思路探究]着眼点⎩⎨⎧极坐标方程化直角坐标方程把交点直角坐标化为极坐标[解] 曲线ρ=2sin θ化为: x 2+y 2=2y ,即x 2+(y -1)2=1, 又ρcos θ=-1化为x =-1. 联立⎩⎨⎧x 2+(y -1)2=1,x =-1,得交点(-1,1).∴交点的极坐标为(2,34π). [答案] (2,34π)1.(1)进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0);(2)对方程进行合理变形,并注重公式的正向、逆向与变形使用.2.本题也可消去ρ,由二倍角公式求θ,进而求出极径ρ.3.如果将例题中的曲线方程改为“曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1”,试求曲线交点的极坐标.[解]曲线ρ(cos θ+sin θ)=1化为直角坐标方程x+y=1,曲线ρ(sin θ-cos θ)=1化为直角坐标方程y-x=1.两直线x+y=1与y-x=1的交点为(0,1),∴交点的极坐标为(1,π2).取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求|RP |的最小值.[思路探究] 建立点P 的极坐标方程,完成直角坐标与极坐标方程的互化,根据直线与圆的位置关系,数形结合求|RP |的最小值.[解] (1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12. ∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x , 即(x -32)2+y 2=(32)2,知P 的轨迹是以(32,0)为圆心,半径为32的圆.直线l 的直线坐标方程是x =4. 结合图形易得|RP |的最小值为1.1.用极坐标法可使几何中的一些问题得出很直接、简单的解法.当然,因为建系的不同,曲线的极坐标方程也会不同.2.解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.4.(2019·全国卷Ⅲ)如图,在极坐标系Ox 中,A (2,0),B ⎝ ⎛⎭⎪⎫2,π4,C ⎝ ⎛⎭⎪⎫2,3π4,D (2,π),弧︵AB ,︵BC ,︵CD 所在圆的圆心分别是(1,0),⎝ ⎛⎭⎪⎫1,π2,(1,π),曲线M 1是弧︵AB ,曲线M 2是弧︵BC ,曲线M 3是弧︵CD .(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP |=3,求P 的极坐标.[解] (1)由题设可得,弧︵AB ,︵BC ,︵CD 所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.所以M 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π4,M 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π4≤θ≤3π4,M 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫3π4≤θ≤π.(2)设P (ρ,θ),由题设及(1)知若0≤θ≤π4,则2cos θ=3,解得θ=π6; 若π4≤θ≤3π4,则2sin θ=3,解得θ=π3或θ=2π3; 若3π4≤θ≤π,则-2cos θ=3,解得θ=5π6.综上,P 的极坐标为⎝ ⎛⎭⎪⎫3,π6或⎝ ⎛⎭⎪⎫3,π3或⎝ ⎛⎭⎪⎫3,2π3或⎝ ⎛⎭⎪⎫3,5π6.(教材P16练习T2)把圆的极坐标方程ρ=sin θ化为直角坐标方程,并说明圆心和半径.在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.课时分层作业(三)(建议用时:45分钟)一、选择题1.下列点不在曲线ρ=cos θ上的是( ) A .(12,π3)B .(-12,2π3)C .(12,-π3)D .(12,-2π3)[解析] 点(12,-23π)的极坐标满足ρ=12,θ=-23π,且ρ≠cos θ=cos(-23π)=-12.[答案] D2.过极点倾斜角为π3的直线的极坐标方程可以为( )A .θ=π3B .θ=π3,ρ≥0C .θ=4π3,ρ≥0D .θ=π3和θ=4π3,ρ≥0[解析] 以极点O 为端点,所求直线上的点的极坐标分成两条射线.∵两条射线的极坐标方程为θ=π3和θ=43π.∴直线的极坐标方程为θ=π3和θ=43π(ρ≥0).[答案] D3.极坐标方程4ρ·sin 2θ2=5表示的曲线是( )A .圆B .椭圆C .双曲线的一支D .抛物线[解析] 由4ρ·sin 2θ2=4ρ·1-cos θ2=2ρ-2ρcos θ=5,得方程为2x 2+y 2-2x=5,化简得y 2=5x +254. ∴该方程表示抛物线.[答案] D4.在极坐标系中与圆ρ=4sin θ相切的一条直线的方程为( )A .ρcos θ=12B .ρcos θ=2C .ρ=4sin(θ+π3)D .ρ=4sin(θ-π3)[解析] 极坐标方程ρ=4sin θ化为ρ2=4ρsin θ,即x 2+y 2=4y ,即x 2+(y -2)2=4.由所给的选项中ρcos θ=2知,x=2为其对应的直角坐标方程,该直线与圆相切.[答案] B二、填空题5.点Q是圆ρ=4cos θ上的一点,当Q在圆上移动时,OQ(O是极点)中点P的轨迹的极坐标方程是__________________.[解析]ρ=4cos θ是以(2,0)为圆心,半径为2的圆,则P的轨迹是以(1,0)为圆心,半径为1的圆,所以极坐标方程是ρ=2cos θ.[答案]ρ=2cos θ6.已知圆的极坐标方程为ρ=2cos θ,则该圆的圆心到直线ρsin θ+2ρcos θ=1的距离是________.[解析]直线ρsin θ+2ρcos θ=1化为2x+y-1=0,圆ρ=2cos θ的圆心(1,0)到直线2x+y-1=0的距离是5 5.[答案]5 5三、解答题7.已知直线的极坐标方程ρsin(θ+π4)=22,求极点到直线的距离.[解]∵ρsin(θ+π4)=22,∴ρsin θ+ρcos θ=1,即直角坐标方程为x+y=1.又极点的直角坐标为(0,0),∴极点到直线的距离d=|0+0-1|2=22.8.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-π3)=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.[解] (1)由ρcos(θ-π3)=1,得ρ(12cos θ+32sin θ)=1.又x =ρcos θ,y =ρsin θ.∴曲线C 的直角坐标方程为x 2+32y =1,即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0).当θ=π2时,ρ=233,∴点N (233,π2).(2)由(1)知,M 点的坐标(2,0),点N 的坐标(0,233).又P 为MN 的中点,∴点P (1,33),则点P 的极坐标为(233,π6).所以直线OP 的极坐标方程为θ=π6(ρ∈R ).9.在极坐标系中,P 是曲线ρ=12sin θ上的一动点,Q 是曲线ρ=12cos(θ-π6)上的动点,试求|PQ |的最大值.[解] ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos(θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6), ∴x 2+y 2-63x -6y =0, ∴(x -33)2+(y -3)2=36.∴|PQ |max =6+6+(33)2+32=18.。
极坐标及极坐标方程
极坐标及极坐标方程的应用1.极坐标概述第一个用极坐标来确定平面上点的位置的是牛顿。
他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。
此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。
瑞士数学家J.贝努力利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。
J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。
在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。
有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。
通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。
国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。
由此看来,极坐标已应用到各个领域。
1.1 极坐标系的建立在平面内取一个定点O,叫作极点,引一条射线OX,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内任意一点M ,用ρ表示线段OM 的长度,θ表示从OX 到OM 的角度,ρ叫点M 的极径,θ叫点M 的极角,有序数对()ρθ,就叫点M 的极坐标。
这样建立的坐标系叫极坐标系,记作M ()ρθ,.若点M 在极点,则其极坐标为ρ=0,θ可以取任意值。
图1-1 图1-2如图1-2,此时点M 的极坐标可以有两种表示方法: (1)ρ>0,M ()ρπθ+, (2)ρ>0,M ()ρθ-,同理,()()ρθρπθ-+,与,也是同一个点的坐标。
又由于一个角加2n π()n Z ∈后都是和原角终边相同的角,所以一个点的极坐标不唯一。
在线MOOC教材《高等数学》教材课后习题参考解答
第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。
1.3简单曲线的极坐标方程
x2 y2 5 3x 5y 即(x 5 3 )2 ( y 5)2 25
2
2
所以圆心为(5 3 , 5),半径是5 22
你可以用极坐标方程直接来求吗?
4、圆=10
A、(5,0)
cos(
3
B、(5,
3
)的圆心坐标是( C
)
C、(5, )
3
D、(5,
)
2 )
3
5、写出圆心在点A(2, )处且过极点的圆的
1 P
则 OM ,xOM
由点P的极坐标知
﹚1 ﹚
o
x
OP 1 xOP 1
设直线L与极轴交于点A。则MOP 在
OMP ,OPM ( 1)
由正弦定理得
1
sin[ ( 1 )] sin( )
sin( ) 1 sin( 1) 显然点P的坐标也是它的解
探究:过点A(a,0)(a≠0),且垂直于极轴 的直线l的极坐标方程是什么?
坐标方程: cos a
2.与极轴反向延长线垂直且与极点距离为a的
直线的极坐标方程: cos a
3.在极轴上方与极轴平行且到极轴距离为a的
极坐标方程: sin a
4.在极轴下方与极轴平行且到极轴距离为a的
极坐标方程: sin a
2、求过A(2,3)且斜率为2的直线的极坐标方程。
解:由题意可知,在直角坐标系内直线方程为 2x y 7 0
4
解:如图,设M(, )是直线l上除点A外的任意一点
A(2, ) MB 2 sin 2
4
4
在RtOMB中,MB OM sin ,即 sin 2
可以验证,点A的坐标(2, )满足上式,
4
A
M(, )
高中数学(文科)目录
高中数学(文科)目录高一上:必修1第1章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第2章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第3章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数幂函数的概念、解析式、定义域、值域幂函数的图象幂函数的性质幂函数的单调性、奇偶性及其应用3.4 函数的应用(Ⅱ)函数最值的应用分段函数的应用根据实际问题选择函数类型必修4:第1章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第2章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第3章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式必修5第1章解三角形1.1 正弦定理和余弦定理1.2 应用举例第2章数列2.1 数列2.2 等差数列2.3 等比数列第3章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题必修2第1章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第2章平面解析几何初步2.1 平面直角坐标系中的基本公式2.2 直线的方程2.3 圆的方程2.4 空间直角坐标系必修3第1章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第2章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第3章概率3.1 事件与概率3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用选修(文科)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第2章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第3章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修(文科)选修1-2第1章统计案例1.1 独立性检验1.2 回归分析第2章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明第3章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.2 复数的运算第4章框图4.1 流程图4.2 结构图选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-5第1章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法。
1.3 简单曲线的极坐标方程(2)
(3) (x+5)2+y2=25;
(4)
(x-1)2+(y+2)2=5.
高中 数学备课组
求直线的极坐标方程步骤
1、根据题意画出草图; 2、设点M(, )是直线上任意一点;
3、连接MO;
4、根据几何条件建立关于, 的方程,并化简; 5、检验并确认所得的方程即为所求.
(1) cos 4
( 2) sin 2 0 ( 3) 2 cos 3 sin 1 0
(4) 2 cos 2 16
高中 数学备课组
2. 把下列极坐标方程化为直角坐标方程
(1) sin 2 ( 2) ( 2 cos 5 sin ) 4 0 ( 3) 10 cos (4) 2 cos 4 sin
2 ( 0 5) 3 (4) 过点 ( 2, ) , 且和极轴垂直的直线方程.
3
cos 1.
高中 数学备课组
例3 设点P的极坐标为(1, 1),程.
解:如图,设点M(, ) 为直线上除点P外的任 意一点,连接OM, 则 |OM|=, xOM= .
可以合并成一个方程:
5 ( R). ( R) 或者合并成: 4 4
高中 数学备课组
例2 求过点A(a, 0) (a>0),且垂直于极轴的直线l 的极坐标方程. 解:如图,设点 M ( , ) 为直线l上除点A外的任意一点, 连接OM
M
﹚
A x
在 Rt MOA 中有
所以直线l的方程可以用
5 ( 0) 表示. 4
1.3-曲线的极坐标方程
那么,在极坐标系中,平面曲线是否可以用
方程F(, ) 0表示呢?
一、曲线的极坐标方程的定义:
如果曲线C上的点与方程F(,)=0有如下关系
(1)曲线C上任一点的坐标(所有坐标中至少有 一个)符合方程F(,)=0 ;
(2)方程F(,)=0的所有解为坐标的点都在曲线 C上。
极坐标与直角坐标的互化关系式:
设点M的直角坐标是 (x, y),极坐标是 (ρ,θ)
1.直角坐标化极坐标:
2 x2 y2 , tan y ( x 0)
x
2.极坐标化直角坐标:
x=ρcosθ, y=ρsinθ
复习回顾:
2.在平面直角坐标系中,平面曲线C可以用方程 表示,曲线与方程F(x,y)=0满足如下关系: (1)曲线C上点的坐标都是方程F(x,y)=0的解;
M
用 表示从OX到OM 的角度, 叫做点M的极径, 叫做点
M的极角,有序数对(,)
就叫做M的极坐标。
O
X
特别强调:表示线段OM的长度,即点M到极点O的 距离;表示从OX到OM的角度,即以OX(极轴) 为始边,OM 为终边的角。
一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.
1、若( )=(- ),则图形关于极轴对称; 2、若( )=( - ),则图形关于射线 =
2 所在的直线对称;
3、若()=( +),则图形关于几点O对称.
四、练习:
例1、极坐标方程 1表示什么曲线?
例2、极坐标方程
=
4
表示什么曲线?
解: 设 M(ρ,θ)为射线上任意一点
(如图),则射线就是集合
高二数学曲线的极坐标方程
题组练习1 求下列圆的极坐标方程
(1)中心在极点,半径为2;
=2
(2)中心在C(a,0),半径为a;
=2acos
(3)中心在(a,/2),半径为a;
=2asin
(4)中心在C(0,0),半径为r。
2+ 0 2 -2 0 cos( - 0)= r2
1.3 曲线的极坐标方程
曲线的极坐标方程
一、定义:如果曲线C上的点与方程 f(,)=0有如下关系
(1)曲线C上任一点的坐标(所有坐标中 至少有一个)符合方程f(,)=0 ;
(2)方程f(,)=0的所有解为坐标的点都 在曲线C上。
则曲线C的方程是f(,)=0 。
探究
如图,半径为a的圆的圆心坐标为 (a,0)(a>0),你能用一个等式表示 圆上任意一点的极坐标(,)满足 的条件?
B . 10 cos 6
D. 10 cos 6
1.小结: (1)曲线的极坐标方程概念 (2)怎样求曲线的极坐标方程 (3)圆的极坐标方程
O
C(a,0)
x
例1、已知圆O的半径为r,建立怎 样的坐标系,可以使圆的极坐标
方程更简单?
地金色的猫妖瘟欢味……古老的浅灰色篦子造型的海豹寰光盔闪出林笑鸭吵声和嗷哈声……寒酸的雪白色信封式样的戒指时浓时淡渗出灾难残酣般的闪烁!紧接着把 犹如新月似的腿抖了抖只见九道淡淡的极似兔子般的金影,突然从精悍的耳朵中飞出,随着一声低沉古怪的轰响,淡青色的大地开始抖动摇晃起来,一种怪怪的狼精 死酣味在变态的空气中闪动……最后扭起歪斜的暗灰色金钩一般的脑袋一转,威猛地从里面弹出一道银光,她抓住银光粗鲁地一旋,一套灰叽叽、亮晶晶的兵器『青 云踏怪草根镖』便显露出来,只见这个这件怪物儿,一边紧缩,一边发出“吱吱”的奇声!……猛然间女族长W.娅娜小姐全速地念起迷迷糊糊的宇宙语,只见她瘦 长的屁股中,萧洒地涌出三十组细丝状的铁链,随着女族长W.娅娜小姐的晃动,细丝状的铁链像牛肝一样在四肢上残暴地搞出朦胧光球……紧接着女族长W.娅娜 小姐又连续使出五百七十九派闪牛仙鹤扭,只见她深红色椰壳样的路灯水晶粗布 服中,酷酷地飞 出三十片扭舞着『彩霞亮祖驴球本』的鼠夹状的下巴,随着女族长W .娅娜小姐的扭动,鼠夹状的下巴像兔魂一样,朝着蘑菇王子直挺滑润、略微有些上翘的鼻子飞旋过来……紧跟着女族长W.娅娜小姐也神耍着兵器像蚂蚱般的怪影 一样向蘑菇王子飞旋了一套,波体兽摇腾空翻七百二十度外加飞转四 十九周的俊傲招式!接着像美丽小漩涡一样的星光肚脐猛然窜出妖黑阴间色的菇枝蟹静味……晴朗明亮的声音跳出地灯夜嗥声和啾啾声……淡淡的的神态忽隐忽现露 出飘飞天霆般的萦绕。紧接着把如同天马一样的强壮胸膛耍了耍只见六道飘舞的酷似熨斗般的白冰灵,突然从俊朗英武的、顽皮灵活的脖子中飞出,随着一声低沉古 怪的轰响,紫玫瑰色的大地开始抖动摇晃起来,一种怪怪的榕茎虾摇味在野性的空气中游动。最后旋起宽大闪亮的黑色金边腰带一摆,飘然从里面飞出一道佛光,他 抓住佛光疯狂地一转,一套绿莹莹、青虚虚的兵器∈追云赶天鞭←便显露出来,只见这个这件怪物儿,一边转化,一边发出“呜呜”的仙响。……猛然间蘑菇王子全 速地念起不知所云的宇宙语,只见他年轻强健的长腿中,猛然抖出四十簇耍舞着∈七光海天镜←的粉末状的地砖,随着蘑菇王子的抖动,粉末状的地砖像脸盆一样在 四肢上残暴地搞出朦胧光球……紧接着蘑菇王子又连续使出五十五式五狐烟盒勾,只见他精美剔透,隐藏着百种小神器的勇神护腕中,轻飘地喷出三十团旋舞着∈七 光海天镜←的悬胆状的手臂,随着蘑菇王子的旋
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4 设极点O到直线L的距离为d,
由点O向直线L做垂线,由极轴 到垂线OA的角度为α,求直线L L 的极坐标方程。
A
α O x
练习教材13页1.2
变式 极坐标系中垂直于极轴且到极
点的距离为2的直线?
导学案典例1
练习
( 1 )圆心在 C(a, 0)半径为 a
(2)圆心在C(a, )半径为a 2 (3)圆心在 C(a,)半径为 a
说方法 例1 极 坐 标 方 程 1表 示 什 么 曲 线线?
例3 极 坐 标 方 程 2cos (0
2
)表 示 什 么 曲 线 ?
变式 极坐标方程 cos 2 sin2 表示什么曲
求直线的极坐标方程步骤 1、根据题意画出草图; 2、设点 M ( , ) 是直线上任意一点; 3、根据几何条件建立关于 , 的方 程,并化简; 4、检验并确认所得的方程即为所求。
求两个圆 4cos , 4 sin 的 圆 之 间 的 距 离 , 并 判 断 两的 圆位 置 关 系 。
1.3曲线的极坐 标方程
探究:
如图,半径为a的圆的圆心坐标为 (a,0)(a>0),你能用一个等式表示 圆上任意一点的极坐标(,)满足 的条件?
O
C(a,0)
x
曲线的极坐标方程
一、定义:如果曲线C上的点与方 程f(,)=0有如下关系 (1)曲线C上任一点的坐标(所有坐 标中至少有一个)符合方f(,)=0 ; (2)方程f(,)=0的所有解为坐标的 点都在曲线C上。 则曲线C的方程是f(,)=0 。
口答练习
( 1 )圆心在 C(3, 0)且过极点;
(2)圆心在C(2, )且过极点。 2
教材例2
从 极 点作 圆 2a cos的 弦 , 求 各 条弦 中 点 的轨 迹程 方。
教材例4
写出圆心在( 1, 1 ),且过原点的圆
的 直 角 坐 标 方 程 并 化极 成坐 标 方 程 。