圆章节知识点及练习题

合集下载

第二十四章圆知识点及练习题

第二十四章圆知识点及练习题

《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

第一章 圆(讲义)(含答案)

第一章 圆(讲义)(含答案)

第一章圆(讲义)➢知识点睛1.圆的基本概念及性质:在同一平面内,到定点的距离等于一个固定长度的所有的点构成的图形叫做圆。

这个定点叫做圆的圆心。

连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。

直径所在的直线是圆的对称轴。

2.圆的周长与面积:圆的一周长度称为圆的周长,圆的周长与它的直径长度之比称为圆周率,记为π。

因此圆的周长C=rπ=。

圆的内部区域面积称dπ2为圆的面积,圆的面积S=2πr。

3.两个大小不同的同心圆之间的部分称为圆环。

设大圆半径为R,小圆半径为r,则圆环面积S=()2222-=-。

R r R rπππ➢精讲精练经典例题1圆与扇形相关概念:(1)圆中心的一点叫做,一般用字母表示。

(2)连接圆心和圆上任意一点的线段,叫做,用字母表示。

(3)通过圆心并且两端都在圆上的线段叫做,用字母表示。

直径长度是半径长度的倍。

(4)决定圆的大小;决定圆的位置;圆有条对称轴。

(5)图中涂色部分是一个。

圆上A、B两点之间的部分叫做。

顶点在圆心,两条半径组成的∠AOB,叫做。

(6)圆的周长式:;圆的面积公式:。

经典例题2(1)图中圆的周长是多少?圆的面积是多少?(单位:厘米,π取3.14)(2)下图的周长及面积分别是多少?(π取3.14,单位:米)经典例题3计算下图涂色部分的面积。

(π取3.14)经典例题4如图,有五个同心圆的半径分别是1、2、3、4、5,求图中阴影部分的面积。

(π取3.14)经典例题5如图是圆环的一半,面积是28.26平方厘米,那么图形的周长是多少?(π取3.14)【参考答案】经典例题1:(1)圆心,O(2)半径,r(3)直径,d ,2(4)半径,圆心,无数(5)扇形,弧AB ,圆心角(6)C =π2πd r ,S =2πr经典例题2:(1)周长:94.2cm ,面积:706.52cm(2)周长:40.56米,面积:105.12平方米经典例题3:84.78经典例题4:47.1经典例题5:24.84。

圆知识点总结及习题

圆知识点总结及习题

圆知识点总结及习题一、基本概念1. 圆的定义圆是平面上到定点距离相等的所有点的集合。

这个定点称为圆心,到圆心的距离称为半径,以O表示圆心,r表示半径的圆记作圆O。

2. 圆的元素圆的元素包括圆心、半径、直径、弦、弧和扇形。

直径是连接圆上任意两点的线段,且通过圆心。

弦是圆上任意两点的线段,弧是圆上的一段弧线,扇形是由圆心、圆上两点和这两点对应的弧线所组成的区域。

3. 圆的周长和面积圆的周长C=2πr,圆的面积S=πr2。

二、性质1. 圆的基本性质圆上任意两点之间的距离相等。

2. 弧长和圆心角的关系弧长和圆心角之间的关系为:L=θr,其中L表示弧长,θ表示圆心角的弧度,r表示半径。

3. 弦长和圆心角的关系弦长和圆心角之间的关系为:l=2rsin(θ/2),其中l表示弦长,θ表示圆心角的弧度,r表示半径。

三、定理1. 圆的切线定理定理1:当直线与圆相交于两点时,这条直线称为圆的切线。

切线与半径的夹角为直角,且切点处的切线等于半径。

2. 圆心角定理定理2:圆心角的度数是它所对的圆周角度数的两倍。

3. 弦切线定理定理3:当直线与圆相交于一个点时,这条直线称为圆的切线。

切线与切点处的弦相交延长线的夹角等于这条弦所对的圆心角的度数。

四、习题1. 已知半径为8,求圆的周长和面积。

2. 在半径为6的圆中,求一条长2的弦的长度。

3. 已知AB为圆上的弦,AB=6,O为圆心,求角AOB的度数。

通过本文的总结,我们对圆的基本概念、性质、定理和相关的习题有了一定的了解。

希望读者能够通过学习更深入地了解圆的相关知识,提高数学学科的成绩。

圆(全)知识点习题及答案

圆(全)知识点习题及答案

圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。

(完整版)圆知识点总结与例题讲解

(完整版)圆知识点总结与例题讲解

一、圆的概念与周长1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

∆4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

△10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

☆11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

☆13.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

△14.圆是轴对称图形,直径所在的直线是圆的对称轴。

例题讲解:一、填空题△1、圆是()图形,()所在的直线是圆的(),圆有()条对称轴。

2、圆的周长是它的直径的()倍多一些,这个倍数是一个固定的数,我们把它叫(),常用字母()表示。

它是一个()小数,取两位小数是()。

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

⼈教版数学九年级上册第⼆⼗四章《圆》知识点及练习题(附答案)《圆》章节知识点复习和练习附参考答案⼀、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离⼤于定长的点的集合; 3、圆的内部:可以看作是到定点的距离⼩于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4、到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

⼆、点与圆的位置关系1、点在圆内 ? d r < ? 点C 在圆内;2、点在圆上 ? d r = ? 点B 在圆上;3、点在圆外 ? d r > ? 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ? d r > ? ⽆交点;2、直线与圆相切 ? d r = ? 有⼀个交点;3、直线与圆相交 ? d r < ? 有两个交点;四、圆与圆的位置关系外离(图1)? ⽆交点 ? d R r >+;外切(图2)? 有⼀个交点 ? d R r =+;相交(图3)? 有两个交点 ? R r d R r -<<+;内切(图4)? 有⼀个交点 ? d R r =-;内含(图5)? ⽆交点 ? d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆⼼,并且平分弦所对的两条弧;(3)平分弦所对的⼀条弧的直径,垂直平分弦,并且平分弦所对的另⼀条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD中任意2个条件推出其他3个结论。

六年级上册数学重点《圆》知识点,附练习题!

六年级上册数学重点《圆》知识点,附练习题!

六年级上册数学重点《圆》知识点,附练习题!一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

3、半圆周长=圆周长一半+直径= πr+d二、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

人教版九年级数学上册第二十四章圆知识点及练习题(附答案)(含知识点)

人教版九年级数学上册第二十四章圆知识点及练习题(附答案)(含知识点)

《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

(完整版)初三数学圆知识点复习专题经典

(完整版)初三数学圆知识点复习专题经典
∴ PA2 PC PB
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结

圆的知识点+练习题

圆的知识点+练习题

圆知识点总结一、圆的意义1、圆是由一条曲线围成的平面图形。

(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

在同一个圆里,有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。

画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。

(d=2r, r =d÷2)5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

6、圆心决定圆的位置,半径决定圆的大小。

要比较两圆的大小,就是比较两个圆的直径或半径。

7、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

9、同一个圆内的所有线段中,圆的直径是最长的。

10、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×转数11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π表示。

π是一个无限不循环小数。

π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。

π>3.14二、圆的基本公式12、如果用C表示圆的周长,那么C=πd或C = 2πr13、求圆的半径或直径的方法:d = C÷πr = C÷π÷2=C÷2π14、半圆的周长等于圆周长的一半加一条直径。

C半圆= πr+2r=5.14r C半圆= πd÷2+d=2.57d15、常用的3.14的倍数:3.14×2=6.28 3.14×3=9.42 3.14×4=12.563.14×5=15.7 3.14×6=18.84 3.14×7=21.983.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.963.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.53.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.3416、圆的面积公式:S=πr2。

九年级数学:第二十四章圆知识点及练习题(附答案)

九年级数学:第二十四章圆知识点及练习题(附答案)

《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

(完整版)初中圆知识点及练习题

(完整版)初中圆知识点及练习题

圆复习教案知识点:一、圆的概念1、圆——到定点的距离等于定长的点的集合2、圆的内部——可以看作是圆心的距离小于半径的点的集合3、圆的外部——可以看作是圆心的距离大于半径的点的集合4、等圆——不相同,相等的圆;同心圆——相同,不等的圆。

5、弧——圆上任意两点间的部分叫做,简称。

按与半圆的大小关系可分为:和6、等弧——7、弦——,经过的弦叫做直径,直径是的弦。

8、弦心距——圆心到直线的距离9、弓形——弧与所对的弦所组成得图形。

10、圆的内部——到圆心的距离小于半径的点的集合叫做圆的内部11、圆的外部——到圆心的距离大于半径的点的集合叫做圆的外部12、圆心角:13、圆周角:。

14、弦切角、圆内角、圆外角及性质:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

等于二、确定圆的条件1.过已知两点的圆的圆心组成的图形是__________________________,_____________________确定一个圆.2.三角形的三个顶点确定一个圆,这个圆叫做三角形的_____________,它的圆心叫做三角形的图4_______,它是三角形_______________________的交点;这个三角形叫做圆的__________________- 3.三角形外心的位置:锐角三角形的外心在_______________________;直角三角形的外心是_________________________; 钝角三角形的外心在_________________________.三、与圆有关的位置关系 (一) 点与圆的位置关系1、 点和圆的位置关系有三种:(1)_____________;(2)____________;(3)____________2、 点在圆内 ⇒ d r < ⇒ 点C ;点在圆上 ⇒ d r = ⇒ 点B ; 点在圆外 ⇒ d r > ⇒ 点A ;㈡直线和圆的位置关系1.直线和圆的位置关系有三种:(1)_____________;(2)____________;(3)____________ 2.当直线和圆 _____________公共点时,叫做直线和圆相交,此时圆心到直线的距离_______半径; 当直线和圆 _____________公共点时,叫做直线和圆相切,此时圆心到直线的距离_______半径; 当直线和圆 _____________公共点时,叫做直线和圆相离,此时圆心到直线的距离_______半径;(3)、圆与圆的位置关系外离(图1)⇒ 交点 ⇒ d R r >+; 外切(图2)⇒ 有 交点 ⇒ d R r =+; 相交(图3)⇒ 有 交点 ⇒ R r d R r -<<+内切(图4)⇒ 有 交点 ⇒ d R r =-; 内含(图5)⇒ 交点 ⇒ d Rr <-;A3.切线的性质:圆的切线___________________ 如图可表述为:_____________________________PA O ⎫⇒⎬⎭e 是的切线或:PA 切⊙O 于点A ⇒____________________________4.判定直线为圆的切线:经过_____________,并且垂直于_______________的直线是圆的切线。

第24章圆章节知识点及习题及答案

第24章圆章节知识点及习题及答案

第24章圆章节知识点及习题及答案第⼆⼗四章圆章节知识点思维导图:⼀、圆的有关性质(⼀)与圆有关的概念1、定义:在⼀个平⾯内线段OA绕它固定的⼀个端点O旋转⼀周,另⼀个端点A所形成的图形叫做圆,固定的端点O叫做圆⼼,线段OA叫做半径。

2、弦:连接圆上任意两点的线段叫做弦,经过圆⼼的弦,叫做直径。

3、弧:圆上任意两点间的部分(曲线)叫做圆弧,简称弧。

能够互相重合的弧叫等弧。

圆的任意⼀条直径的两个端点把圆分成两条弧,每⼀条弧都叫做半圆,⼤于半圆的弧叫优弧;⼩于半圆的弧叫劣弧,由弦及其所对的弧组成的圆形叫⼸形。

4、圆⼼⾓:我们把顶点在圆⼼的⾓叫做圆⼼⾓。

5、圆周⾓:顶点在圆上,并且两边都与圆相交的⾓叫做圆周⾓。

注意:在圆中,同⼀条弦所对的圆周⾓有⽆数个。

6、弦⼼距:从圆⼼到弦的距离叫弦⼼距。

7、同⼼圆、等圆:圆⼼相同,半径不相等的两个圆叫同⼼圆;能够重合的两个圆叫等圆。

8、点的轨迹:1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;2)垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3)⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4)到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5)到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

(⼆)圆的性质1、对称性:圆是轴对称图形,任何⼀条直径所在直线都是它的对称轴;圆也是以圆点为对称中⼼的中⼼对称图形。

2、性质:①垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;推论1 :平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;垂径定理及推论1 可理解为⼀个圆和⼀条直线具备下⾯五个条件中的任意两个,就可推出另外三个:①过圆⼼;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2:圆两条平⾏弦所夹的弧相等。

初三数学九上圆所有知识点总结和常考题型练习题

初三数学九上圆所有知识点总结和常考题型练习题

圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB∥CD∴弧AC=弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD六、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

圆相关知识点复习及练习题

圆相关知识点复习及练习题

圆相关知识点复习及练习题一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

圆的有关概念:1、半径:圆上一点与圆心的连线段。

(1)、确定一个圆的要素是圆心和半径。

(2)连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

(3)圆上任意两点间的部分叫做圆弧,简称弧。

小于半圆周的圆弧叫做劣弧。

大于半圆周的圆弧叫做优弧。

在同圆或等圆中,能够互相重合的弧叫做等弧。

(4)顶点在圆上,并且两边和圆相交的角叫圆周角。

(5)圆心角:以圆心为顶点,半径为角的边。

(6)经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。

(7)与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。

直角三角形内切圆半径r满足:r=+。

+a2bc7、弦心距:圆心到弦的垂线段的长。

1、圆的有关性质1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、夹在平行线间的两条弧相等。

(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

(完整版)圆(全)知识点习题及答案

(完整版)圆(全)知识点习题及答案

圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。

第二十四章圆知识点及练习题(附答案)

第二十四章圆知识点及练习题(附答案)

《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆章节知识点及其练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系A外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六、圆心角定理图4图5BD圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

BBABAO即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =PO 平分BPA ∠十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

PDB即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

十四、圆内正多边形的计算 (1)正三角形BA在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π=(2)圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=lOC 1D 1二、选择题:13. 若两圆相切,且两圆的半径分别是2,3,则这两个圆的圆心距是( )A. 5B. 1C. 1或5D. 1或414. ⊙O 1 和⊙O 2 的半径分别为1和4,圆心距O 1O 2=5,那么两圆的位置关系是( ) A. 外离 B. 内含 C. 外切 D. 外离或内含15.如果半径分别为1cm 和2cm 的两圆外切,那么与这两个圆都相切,且半径为3cm 的圆的个数有( )A. 2个B. 3个C. 4个D. 5个16.若两圆半径分别为R 和r (R >r ),圆心距为d ,且R 2+d 2-r 2=2Rd ,则两圆的位置关系是( )A. 内切B. 外切C. 内切或外切D. 相交17. 如图,⊙O 的直径为10厘米,弦AB 的长为6cm ,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( )A. 3≤OM ≤5B. 4≤OM ≤5C. 3<OM <5D. 4<OM <5 18. 已知:⊙O 1和⊙O 2的半径是方程x 2-5x +6=0 的两个根,且两圆的圆心距等于5则⊙O 1和⊙O 2的位置关系是( )A. 相交B. 外离C. 外切D. 内切19. 如图,△ABC 为等腰直角三角形,∠A =90°,AB =AC =2,⊙A 与BC 相切,则图中阴影部分的面积为( )A. 1-2π B. 1-3π C. 1-4π D. 1-5π20. 如图,点B 在圆锥母线VA 上,且VB =13VA ,过点B 作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是( )A. S 1=13SB. S 1=14SC. S 1=16SD. S 1=19S三、填空题21. 若半径分别为6和4的两圆相切,则两圆的圆心距d 的值是 _______________ 。

22. ⊙O 1和⊙O 2 的半径分别为20和15,它们相交于A ,B 两点,线段AB =24,则两圆的圆心距O 1O 2=____。

23. ⑴⊙O 1和⊙O 2相切,⊙O 1的半径为4cm ,圆心距为6cm ,则⊙O 2的半径为__________; ⑵⊙O 1和⊙O 2相切,⊙O 1的半径为6cm ,圆心距为4cm ,则⊙O 2的半径为__________ABMO24.⊙O1、⊙O2和⊙O3是三个半径为1的等圆,且圆心在同一直线上,若⊙O2分别与⊙O1,⊙O3相交,⊙O1与⊙O3不相交,则⊙O1与⊙O3圆心距d的取值范围是_____。

25. 在△ABC,∠C=90°,AC=3,BC=4,点O是△ABC的外心,现在以O为圆心,分别以2、2.5、3、为半径作⊙O,则点C与⊙O的位置关系分别是_____________.26.如图在⊙O中,直径AB⊥弦CD,垂足为P,∠BAD=30°,则∠AOC的度数是________度.27.在Rt△ABC,斜边AB=13cm,BC=12cm,以AB的中点O为圆心,2.5cm为半径画圆,则直线BC和⊙O的位置关系是________________.28.把一个半径为12厘米的圆片,剪去一个圆心角为120°的扇形后,用剩下的部分做成一个圆锥侧面,那么这个圆锥的侧面积是___________.29.已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为 ________ cm2(结果保留π)。

30. 一个扇形的弧长为4π,用它做一个圆锥的侧面,则该圆锥的底面半径为。

四、解答题:31. 已知:如图,⊙O1和⊙O2相交于点A、B,过点A的直线分别交两圆于点C,D点M 是CD的中点直线,BM分别交两圆于点E、F。

⑴求证:CE//DF⑵求证:ME=MF32. △ABC的三边长分别为6、8、10,并且以A、B、C三点为圆心作两两相切的圆,求这三个圆的半径33.如图所示,⊙O1和⊙O2相切于P点,过P的直线交⊙O1于A,交⊙O2于B,求证:O1A ∥O2B34.如图,A 为⊙O 上一点,以A 为圆心的⊙A 交⊙O 于B 、C 两点,⊙O 的弦AD 交公共弦BC 于E 点。

相关文档
最新文档