上海高二重点中学下期中试卷

合集下载

2023年上海奉贤中学高二下期中数学试卷及答案

2023年上海奉贤中学高二下期中数学试卷及答案

奉贤中学2023学年第二学期高二年级数学期中一、填空题(本题共12题,满分54分,1—6每题4分,7—12每题5分)1.各项为正数的等比数列{}n a 中,151,16a a ==,则公比是__________.2.已知抛物线22(0)y px p =>的焦点坐标为()2,0,则p 的值为___________.3.设()P M 表示事件M 发生的概率,若()()112,,()243P A P B A P B A ===∣∣,则()P B =__________.4.已知等差数列{}n a 的前n 项和为n S ,且满足:27129a a a ++=,则13S =__________.5.已知一个随机变量X 的分布列为101a b c -⎛⎫⎪⎝⎭,若b 是a ,c 的等差中项,则b =__________.6.已知某地市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是90%,乙厂产品的合格率是80%,则从该地市场上买到一个合格灯泡的概率是______.7.圆锥曲线221x my +=的焦点在x 轴上,离心率为12,则实数m 的值是__________.8.已知随机变量X 服从二项分布(),B n p ,若[]50E X =,[]30D X =,则p 的值为_________.9.已知变量x ,y 之间的一组相关数据如表所示,则变量x ,y 之间的相关系数r =__________.(计算结果精确到0.01)x681012y653210.已知数列{}n a 中,0n a >,且对于任意正整数n 有112n n n S a a ⎛⎫=+ ⎪⎝⎭,则n S =_________.11.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2023这2023个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.12.已知数列{}n a 中,213a a =,记{}n a 的前n 项和为n S ,且满足()2*11322,N n n n S S S n n n +-++=+≥∈.若对任意*N n ∈,都有1nn aa +<,则首项1a 的取值范围是______.二、单选题(本题共4题,满分18分,13,14每题4分,15,16每题5分)13.用最小二乘法求回归方程是为了使()A.()1n ii y y =-=∑ B.()1ni i y y =-=∑ C.()1nii y y =-∑最小 D.()21nii y y =-∑最小14.已知{}n a 为等比数列,下面结论中正确的是A.1322a a a +≥ B.2221322a a a +≥C.若13a a =,则12a a = D.若31a a >,则42a a >15.李明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,()()2212~N ,6,~N ,2X Y μμ.X 和Y 的分布密度曲线如图所示.则下列结果正确的是()A.()6D X = B.12μμ>C.(38)(38)P X P Y ≤<≤ D.(34)(34)P X P Y ≤<≤16.数列{}n a 满足132a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()A .1B.2C.3D.4三、解答题(本题共5题,满分78分,17—19每题14分,20,21题每题18分)17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,3PA =,设E 为侧棱PC 的中点.(1)求四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.18.为了推进国家“民生工程”,某市现提供一批经济适用房来保障居民住房.现有条件相同的甲、乙、丙、丁4套住房供,,A B C ,3人申请,且他们的申请是相互独立的.(1)求,A B 两人不申请同一套住房的概率;(2)设3名申请人中申请甲套住房的人数为X ,求X 的分布列和数学期望.19.近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达40%,每年年底把除运营成本a 万元,再将剩余资金继续投入直播平合.(1)若100a =,在第3年年底扣除运营成本后,直播平台的资金有多少万元?(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底㧅除运营成本后资金达到3000万元?(结果精确到0.1万元)20.如果数列{}n a 对任意的*N n ∈,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a ∈,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ≥∈)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n bn c =,1,2,3,,2n k = ,证明:12k k c c +<.21.已知椭圆()222:109x y b bΓ+=>的左右焦点分别为1F ,2F ,p 为Γ上的动点.(1)若b =,设点P 的横坐标为0x ,试用解析式将1PF 表示成0x 的函数;(2)过点P 的直线():20l y kx k =+≠与Γ的另一个交点为Q ,P '为P 关于y 轴的对称点,直线P Q '与y 轴交于点()0,N n ,求n 关于b 的表达式;(3)试根据b 的不同取值,讨论满足12F F P 为等腰锐角三角形的点P 的个数.奉贤中学2023学年第二学期高二年级数学期中一、填空题(本题共12题,满分54分,1—6每题4分,7—12每题5分)1.各项为正数的等比数列{}n a 中,151,16a a ==,则公比是__________.【答案】2【解析】【分析】直接利用等比数列的通项公式计算得到结果【详解】由已知等比数列{}n a 中,151,16a a ==,得445116a a q q ===,又等比数列{}n a 的各项为正数,0q >,故2q =.故答案为:2.2.已知抛物线22(0)y px p =>的焦点坐标为()2,0,则p 的值为___________.【答案】4【解析】【分析】利用抛物线的标准方程得到焦点坐标,从而求得p 值.【详解】因为抛物线22(0)y px p =>,所以抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,又因为抛物线22(0)y px p =>的焦点坐标为()2,0,所以22p=,则4p =.故答案为:4.3.设()P M 表示事件M 发生的概率,若()()112,,()243P A P B A P B A ===∣∣,则()P B =__________.【答案】724【解析】【分析】根据题意分别求出()P B A 、()P A 进而利用()()()P B P AB P AB =+即可求出结果.【详解】因为1(1(3P B A P B A =-=,1()1()2P A P A =-=,则()()()()(|)((|)P B P AB P AB P A P B A P A P B A =+=⋅+⋅11117242324=⨯+⨯=故答案为:724.4.已知等差数列{}n a 的前n 项和为n S ,且满足:27129a a a ++=,则13S =__________.【答案】39【解析】【分析】由27129a a a ++=求得73a =,()11313713=132a a S a +=代入即可求得.【详解】∵()27122127777923a a a a a a a a a =++=++=+=,∴73a =,∴()113713713132133922a a a S a +⨯====.故答案为:395.已知一个随机变量X 的分布列为101a b c -⎛⎫⎪⎝⎭,若b 是a ,c 的等差中项,则b =__________.【答案】13【解析】【分析】根据分布列的性质及等差中项即可求b .【详解】由题可知,21a cb a bc +=⎧⎨++=⎩,解得13b =,故答案为:13.6.已知某地市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是90%,乙厂产品的合格率是80%,则从该地市场上买到一个合格灯泡的概率是______.【答案】0.87##87100【解析】【分析】由全概率公式计算.【详解】记灯光合格中事件A ,灯泡来自甲厂为事件B ,灯泡来自乙厂为事件C ,由已知()70%P B =,()30%P C =,(|)90%P A B =,(|)80%P A C =,所以90708030()(|)()(|)()0.87100100100100P A P A B P B P A C P C =+=⨯+⨯=.故答案为:0.87.7.圆锥曲线221x my +=的焦点在x 轴上,离心率为12,则实数m 的值是__________.【答案】43【解析】【分析】根据圆锥曲线焦点在x 轴上且离心率小于1,确定a ,b 求解即可.【详解】因为圆锥曲线221x my +=的焦点在x 轴上,离心率为12,所以曲线为椭圆,且2211,a b m==,所以2222221114c a b e a a m -===-=,解得43m =,故答案为:438.已知随机变量X 服从二项分布(),B n p ,若[]50E X =,[]30D X =,则p 的值为_________.【答案】25##0.4【解析】【分析】根据题意,由二项分布的期望方差公式,即可得到结果.【详解】因为随机变量X 服从二项分布(),B n p ,则[]50E X np ==,[]()013D np X p ==-,解得25p =.故答案为:259.已知变量x ,y 之间的一组相关数据如表所示,则变量x ,y 之间的相关系数r =__________.(计算结果精确到0.01)x681012y6532【答案】0.99-【解析】【分析】根据相关系数公式求解即可.【详解】根据表中数据计算可知11(681012)9,(6532)4,44x y =⨯+++==+++=()()()()()()()()()()4169648954109341292414iii x x y y =--+--+--+----=-=∑,()()()()()2242212698910912920i i x x =-+-+=-+-=-∑()()()()()24221226454342410i i y y =-+--+--=+=∑,变量,x y 之间的相关系数()()4720.9910iix x y y r --=--∑,故答案为:0.99-.10.已知数列{}n a 中,0n a >,且对于任意正整数n 有112n n n S a a ⎛⎫=+ ⎪⎝⎭,则n S =_________.【答案】【解析】【分析】由题意可得2211n n S S --=,又11S =,则数列{}2n S 是以1为首项,1为公差的等差数列,然后结合等差数列通项公式的求法求解即可.【详解】已知数列{}n a 中,0n a >,且对于任意正整数n 有112n n n S a a ⎛⎫=+ ⎪⎝⎭,1112n n n n n S S S S S --=-+-,111n n n n S S S S --+=-,即2211n n S S --=,又1111112,0,1,S S S S S =+>∴=所以数列{}2n S 是以1为首项,1为公差的等差数列,即2n S n =,又∵0n S >,∴=n S .故答案为.11.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2023这2023个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.【答案】135【解析】【分析】根据题意可知所求数为能被15整除余1,得出数列{}n a 的通项公式,然后再求解项数即可.【详解】因为能被3除余1且被5整除余1的数即为能被15整除余1的数,故()*1514,n a n n =-∈N ,又2023na≤,解得135n =.故答案为:135.12.已知数列{}n a 中,213a a =,记{}n a 的前n 项和为n S ,且满足()2*11322,N n n n S S S n n n +-++=+≥∈.若对任意*N n ∈,都有1n n a a +<,则首项1a 的取值范围是______.【答案】137,156⎛⎫⎪⎝⎭【解析】【分析】根据给定的递推公式,分段求出数列{}n a 的表达式,再利用给定不等关系列出不等式组求解作答.【详解】*2,N n n ≥∈,21132n n n S S S n +-++=+,有2213(1)2n n n S S S n ++++=++,于是得2163n n n a a a n ++++=+,有3216(1)3n n n a a a n +++++=++,因此36n n a a +-=,数列31331{},{},{}n n n a a a -+分别是以234,,a a a 为首项,6为公差的等差数列,而32114S S S ++=,213a a =,即有32121114a a a a a a +++++=,解得31149a a =-,又43215a a a ++=,则有411115(149)361a a a a =---=+,于是得*N n ∈,3113131136(1),1496(1),616(1)n n n a a n a a n a a n -+=+-=-+-=++-,因对任意*N n ∈,都有1n n a a +<,则12a a <,3133132n n n n a a a a -++<<<,从而得1111111133149149616136a a a aa a a a <⎧⎪<-⎪⎨-<+⎪⎪+<+⎩,解得1137156a <<,所以首项1a 的取值范围是137(,156.故答案为:137(,156【点睛】思路点睛:给出n S 与n a 的递推关系,求n a ,常用思路是:一是利用1n n nS S a +-=转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a .二、单选题(本题共4题,满分18分,13,14每题4分,15,16每题5分)13.用最小二乘法求回归方程是为了使()A.()1n ii y y =-=∑ B.()1ni i y y =-=∑ C.()1nii y y =-∑最小 D.()21nii y y =-∑最小【答案】D 【解析】【分析】由最小二乘法的求解即可知.【详解】根据最小二乘法的求解可知:回归方程是为了使得每个数据与估计值之间的差的平方和最小,故选:D14.已知{}n a 为等比数列,下面结论中正确的是A.1322a a a +≥ B.2221322a a a +≥C.若13a a =,则12a a = D.若31a a >,则42a a >【答案】B 【解析】【详解】设{a n }的首项为a 1,公比为q ,当a 1<0,q <0时,可知a 1<0,a 3<0,a 2>0,所以A 不正确;当q =-1时,C 选项错误;当q <0时,a 3>a 1⇒a 3q <a 1q ⇒a 4<a 2,与D 选项矛盾.因此根据基本不等式可知B 选项正确.15.李明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,()()2212~N ,6,~N ,2X Y μμ.X 和Y 的分布密度曲线如图所示.则下列结果正确的是()A.()6D X = B.12μμ>C.(38)(38)P X P Y ≤<≤ D.(34)(34)P X P Y ≤<≤【答案】C【解析】【分析】根据给定的正态分布密度曲线,结合正态分布的对称性和性质,逐项判定,即可求解.【详解】对于A 中,随机变量X 服从正态分布,且()21~N ,6X μ,可得随机变量X 的方差为226σ=,即()36D X =,所以A 错误;对于B 中,根据给定的正态分布密度曲线图像,可得随机变量1230,34μμ==,所以12μμ<,所以B 错误;对于C 中,根据正态分布密度曲线图像,可得38X ≤时,随机变量X 对应的曲线与x 围成的面积小于38Y ≤时随机变量Y 对应的曲线与x 围成的面积,所以(38)(38)P X P Y ≤<≤,所以C 正确;对于D 中,根据正态分布密度曲线图像,可得1(34)2P X ≤>,1(34)2P Y ≤=,即(34)(34)P X P Y ≤>≤,所以D 错误.故选:C.16.数列{}n a 满足132a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()A.1B.2C.3D.4【答案】A【解析】【分析】根据已知条件,利用累加法求得m ,结合数列的单调性即可判断m 的取值范围,进而求得其整数部分【详解】由211n n n a a a +=-+可得211(1)n n n n n a a a a a +==---,所以111(1)1111n n n n na a a a a +--=--=,所以111111n n na a a +-=--,则12111111a a a -=--,23211111a a a -=--,34311111a a a -=--,L ,20222023202211111a a a -=--,上述式子累加得:120231220221111111m a a a a a -=++⋯+=--,故2023121m a =--,又因为()2212101n n n n n a a a a a +-+=-=≥-,即1n n a a +≥,所以111n n a a a -≥≥≥> ,根据递推公式得:132a =,1221714a a a =-+=,2322371216a a a =-+=>,所以202332a a ≥>,那么20231(0,1)1a ∈-,则202312(1,2)1m a =-∈-,则m 的整数部分是1,故选:A【点睛】关键点睛:本题考查累加法,以及数列的单调性,能够正确的裂项从而累加是解决问题的关键三、解答题(本题共5题,满分78分,17—19每题14分,20,21题每题18分)17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,3PA =,设E 为侧棱PC 的中点.(1)求四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.【答案】(1)2(2)arcsin 221【解析】【分析】(1)根据锥体体积公式求得正四棱锥E ABCD -的体积V .(2)建立空间直角坐标系,利用向量法求得直线BE 与平面PCD 所成角θ的大小.【小问1详解】设AC BD O = ,则O 是,AC BD 的中点,连接OE ,由于E 是PC 的中点,所以//OE PA ,1322OE PA ==,由于PA ⊥平面ABCD ,所以OE ⊥平面ABCD ,所以()1322232V =⨯⨯⨯=.【小问2详解】依题意可知,,AB AD PA 两两相互垂直,以A 为原点建立如图所示空间直角坐标系,()()()()32,0,0,0,0,3,2,2,0,1,1,,0,2,02B P C E D ⎛⎫ ⎪⎝⎭,()()31,1,,2,0,0,0,2,32BE DC PD ⎛⎫=-==- ⎪⎝⎭ ,设平面PCD 的法向量为(),,n x y z = ,则20230n DC x n PD y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,故可设()0,3,2n = ,设直线BE 与平面PCD 所成角为θ,则3312221sin 221994114n BE n BE θ⋅+===⋅+⨯++ ,由于π02θ≤≤,所以12221arcsin 221θ=.18.为了推进国家“民生工程”,某市现提供一批经济适用房来保障居民住房.现有条件相同的甲、乙、丙、丁4套住房供,,A B C ,3人申请,且他们的申请是相互独立的.(1)求,A B 两人不申请同一套住房的概率;(2)设3名申请人中申请甲套住房的人数为X ,求X 的分布列和数学期望.【答案】(1)34(2)分布列见解析,数学期望为34【解析】【分析】(1)设出事件,求出,A B 两人申请同一套住房的概率,再利用对立事件求概率公式求出,A B 两人不申请同一套住房的概率;(2)方法一:求出X 的可能取值及对应的概率,求出分布列和数学期望;方法二:得到13,4X B ⎛⎫~ ⎪⎝⎭,再根据二项分布的性质求出分布列和数学期望.【小问1详解】设,A B 两人申请同一套住房为事件M ,()14111C 444P M =⨯⨯=,所以,A B 两人不申请同一套住房的概率为()314P P M =-=;【小问2详解】方法一:随机变量X 可能取的值为0,1,2,3.()3033270C 464P X ⎛⎫==⨯= ⎪⎝⎭,()21313271C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭,()2231392C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭,()333113C 464P X ⎛⎫==⨯= ⎪⎝⎭所以X 的分布列为X0123P 27642764964164所以数学期望()27279130123646464644E X =⨯+⨯+⨯+⨯=.方法二:依题意得13,4X B ⎛⎫~ ⎪⎝⎭,所以()3333133C C ,0,1,2,34464k k k k k P X k k --⎛⎫⎛⎫==⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为X0123P 27642764964164所以数学期望()13344E X =⨯=.19.近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达40%,每年年底把除运营成本a 万元,再将剩余资金继续投入直播平合.(1)若100a =,在第3年年底扣除运营成本后,直播平台的资金有多少万元?(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底㧅除运营成本后资金达到3000万元?(结果精确到0.1万元)【答案】(1)936万元(2)3000万元【解析】【分析】(1)用n a 表示第n 年年底扣除运营成本后直播平台的资金,然后根据已知计算123,,a a a 可得;(2)由已知写出1236,,,,a a a a ,然后由63000a ≥求得a 的范围.【小问1详解】记n a 为第n 年年底扣除运营成本后直播平台的资金,则15001.4100600a =⨯-=,26001.4100740a =⨯-=37401.4100936a =⨯-=故第3年年底扣除运营成本后直播平台的资金为936万元.【小问2详解】15001.4a a =⨯-,()225001.4 1.45001.4 1.4a a a a a=⨯-⨯-=⨯--L()6546500 1.4 1.4 1.41a a=⨯-+++ 661 1.45001.41 1.4a -=⨯-⋅-由63000a ≥,得46.8a ≤,故运营成本最多控制在46.8万元,才能使得直播平台在第6年年底扣除运营成本后资金达到3000万元.20.如果数列{}n a 对任意的*N n ∈,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a ∈,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ≥∈)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n b n c =,1,2,3,,2n k = ,证明:12k k c c +<.【答案】(1)是,理由见解析(2)63(3)证明见解析【解析】【分析】(1)计算1212n n n a a +++-=,12nn n a a +-=,122n n +>,得到答案.(2)根据题意得到()120232k k +≥,Z k ∈,计算当64k =时,()120802k k +=,当65k =时,()121452k k +=,得到答案.(3)证明211k m m k k b b b b -+++>+,得到()1k k k k b b +>+,得到11k k b b ++<,代入计算得到证明.【小问1详解】因为2n n a =,则21121222n n n n n a a +++++=--=,11222n n n n n a a ++-=-=,又122n n +>,故211n n n n a a a a +++->-,数列{}2n是“速增数列”.【小问2详解】121,3,2023k a a a ===,当2k ≥时,()()()11221120231231k k k k k a k ---==-+-++-+≥++++-+ ,即()120232k k +≥,Z k ∈,当63k =时,()120162k k +=,当64k =时,()120802k k +=,故正整数k 的最大值为63.【小问3详解】2111k k k k k k b b b b b b +++-->->-,故211k k k k b b b b ++-->-,即211k k k k b b b b +-++>+;32211112k k k k k k k k k k b b b b b b b b b b +++++---->->->->-,故3212k k k k b b b b ++--->-,即32121k k k k k k b b b b b b +--+++>+>+,同理可得:211k m m k k b b b b -+++>+,*N m ∈,11m k ≤≤-,故()()()()1221222111k k k k k k k k b b b b b b b b b k b b -++=+++=++++++>+ ,故11k k b b ++<,1112222k k k k b b b b k k c c ++++=⨯=<,得证.【点睛】关键点睛:本题考查了数列的新定义问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据题意利用累加法的思想确定211k m m k k b b b b -+++>+是解题的关键.21.已知椭圆()222:109x y b bΓ+=>的左右焦点分别为1F ,2F ,p 为Γ上的动点.(1)若b =,设点P 的横坐标为0x ,试用解析式将1PF 表示成0x 的函数;(2)过点P 的直线():20l y kx k =+≠与Γ的另一个交点为Q ,P '为P 关于y 轴的对称点,直线P Q '与y 轴交于点()0,N n ,求n 关于b 的表达式;(3)试根据b 的不同取值,讨论满足12F F P 为等腰锐角三角形的点P 的个数.【答案】(1)10023,[3,3]3PF x x =+∈-.(2)()2,0,32b n b =∈;(3)答案见解析;【解析】【分析】(1)设00(,)P x y ,写出椭圆的方程及1F 的坐标,利用两点间的距离公式求出1PF 的表达式,点P 坐标代入椭圆方程用0x 表示出0y ,即可进一步将1||PF 表示成0x 的函数;(2)设点P 、Q 的坐标为()11,x y 、()22,x y ,联立写出韦达定理,利用P N QN k k '=可得,b n 的关系.(3)根据椭圆的对称性,只需讨论12PF PF =和1112F P F F =两种情况,分类讨论可求结果.【小问1详解】设00(,)P x y ,其中2200195x y +=,0[3,3]x ∈-,由2c ==得左焦点1(2,0)F -,则1||PF =00022|3|3,[3,3]33x x x =+=+∈-;【小问2详解】设点P 、Q 的坐标为()11,x y 、()22,x y ,由222192x y b y kx ⎧+=⎪⎨⎪=+⎩得()()22229363690b k x kx b +++-=,于是2121222223636999k b x x x x b k b k--+==++,由题意,P '的坐标为()11,x y -,因为P '、Q 、N 三点共线,所以P N QN k k '=,即1212n y n y x x --=-,将112y kx =+和222y kx =+代入并整理,得122122n kx n kx x x ----=-,即1222n n k k x x ---=+-,即()122121n k x x ⎛⎫-+= ⎪⎝⎭,将1212,x x x x +代入得()22369(2)(36)0k b n k -+--=,于是()2,0,32b n b =∈.【小问3详解】设122F Fc =,于是1(,0)F c -,2(,0)F c,且c =当12PF PF =或112F P F F =或221F P F F =时,12PF F △为等腰三角形,根据椭圆的对称性,只需讨论12PF PF =和1112F P F F =两种情况,此时,当等腰三角形的顶角为锐角时即为等腰锐角三角形,(1)若12PF PF =且12F PF ∠为锐角,如图1:在2 POF 中,245OPF ∠< ,则有3c b <<,3b <<,解得3232b <<,由对称性知当3232b <<时,如图2:以12,PF PF 为腰的等腰锐角三角形有2个,(2)若112PF F F =且12PF F ∠为锐角,如图3:首先12F F 大于1PF 的最小值,∵1PF 的最小值为3,c -,于是由23c c >-得1c >即0b <<又∵12PF F ∠为锐角,11222,2262PF F F c PF a c c ===-=-,于是2221122PF F F PF +>,即()2224462c c c +>-,整理得2690c c +->,解得3c >,结合229b c =-,解得0b <<,又<0b <<由对称性知当0b <<时,如图4:以112,PF F F 为腰的等腰锐角三角形的点P 的个数为4个,综上:当320,2b ⎛∈ ⎝⎦时,只有以112,PF F F 为腰的等腰锐角三角形,满足这样的点P 的个数共有4个,如图4.当322b ⎛∈ ⎝时,以112,PF F F 为腰的等腰锐角三角形的点P 的个数为4个,以12,PF PF 的等腰锐角三角形有2个,满足这样的点P 共有6个,图2与图4合并.当b ∈时,以12,PF PF 为腰的等腰锐角三角形有2个,满足这样的点P 的个数共有2个,如图2.【点睛】关键点点睛:满足12F F P 为等腰锐角三角形的个数,以哪两个边为腰进行分类讨论,找出临界情况是解题关键,从临界值向两边分类,统计满足条件的三角形的总个数.。

上海市2023-2024学年高二下学期期中考试 数学(A卷)含答案

上海市2023-2024学年高二下学期期中考试 数学(A卷)含答案

2023学年第二学期高二年级数学期中考试试卷(A )(答案在最后)时间:120分钟满分:150分注:请将试题的解答全部写在答题纸的相应位置,写在试卷上无效.一、填空题(本大题共有12小题,第1-6题每题4分,第7-12题每题5分,满分54分)考生应在答题纸的相应位置直接填写结果.1.设随机变量X 服从二项分布19,3B ⎛⎫ ⎪⎝⎭,则[]D X =_________.2.8位选手参加射击比赛,最终的成绩(环数)分别为42,38,45,43,41,47,44,46,这组数据的第75百分位数是_________.参考表格:3.在一个22⨯列联表中,通过数据计算28.325χ=,则这两个变量间有关的可能性为________.参考表格:()20P x χ≥0.050.0250.0100.0010x 3.841 5.024 6.63510.8284.曲线()ln f x x x =+在1x =处的切线方程是________.5.某同学在一次考试中,8道单选题中有6道有思路,2道没思路,有思路的有90%的可能性能做对,没思路的有25%的可能性做对,则他在8道题中随意选择一道题,做对的概率是__________.6.“守得住经典,当得了网红”,这是时下人们对国货最高的评价,网络平台的发展让越来越多的消费者熟悉了国货品牌的优势,使得各大国货品牌都受到高度关注,销售额迅速增长,已知某国货品牌2023年8-12月在D 网络平台的月销售额y (单位:百万元)与月份x 具有线性相关关系,并根据这5个月的月销售额,求得回归方程为 4.23ˆy x =+,则该国货品牌2023年8-12月在D 网络平台的总销售额为______百万元.7.今天星期三,再过1天是星期四,那么再过20242天是星期_________.8.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=________.(用数字作答)9.双曲线具有如下光学性质:从一个焦点发出的光线经双曲线反射后,反射光线的反向延长线一定经过另一个焦点.已知双曲线()2222:10x yC a ba b-=>,,如图从C的一个焦点F射出的光线,经过P Q,两点反射后,分别经过点M和N.若12cos13PM PQ PM PQ PQN∠+=-=-,,则C的离心率为_________. 10.函数()11,03ln,0x xf xx x⎧+≤⎪=⎨⎪>⎩,若方程()0f x ax-=恰有3个根,则实数a的取值范围为______.11.一只蜜蜂从蜂房A出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房........此类推,用na表示蜜蜂爬到n号蜂房的方法数.设集合{}232025S a a a=,,,,集合B是集合S的非空子集,则B中所有元素之和为奇数的概率为________.12.现有6根绳子,共有12个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这6根绳子恰好能围成一个圈的概率为______.二、选择题(本大题共有4小题,第13-14题每远4分,第15-16题每题5分,满分18分)毎题有且只有一个正确选项.考生应在答題纸的相应位置,将正确选项用2B铅笔涂黑.13.要调查下列问题,适合采用全面调查(普查)的是()A.某城市居民3月份人均网上购物的次数B.某品牌新能源汽车最大续航里程C.检测一批灯泡的使用寿命D.调查一个班级学生每周的体育锻炼时间14.对两个变量的三组数据进行统计,得到以下散点图,关于两个变量相关系数的比较,正确的是()A.123r r r >>B.231r r r >>C.132r r r >>D.321r r r >>15.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布2(38,7)N ,从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布2(44,2)N ,下地铁后从地铁站步行到单位要5分钟,从统计的角度出发,下列说法中合理的有()参考数据:若2()~(,)P Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=A .若8:00出门,则开私家车不会迟到B.若8:02出门,则乘坐地铁上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大D.若8:12出门,则乘坐地铁几乎不可能上班不迟到16.n S 是数列{}n a 前n 项和,11243,41n n a a a n +==--,给出以下两个命题:命题211212:2n p a a a a a a n n +++=+ ;命题q :对任意正整数n ,不等式()ln 21n S n n >++恒成立.下列说法正确的是()A.命题p q 、都是真命题B.命题p 为真命题,命题q 为假命题C.命题p 为假命题,命题q 为真命题D.命题p q 、都是假命题三、解答题(本大题共5题,满分78分)解答下列各题须在答题纸的相应位置写出必要的步骤.17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点.(1)求异面直线EF 与BC 所成的角;(2)求三棱锥11C B D F -的体积.18.已知函数2()6ln(1),f x ax x a =-+为常数.(1)若()y f x =在1x =处有极值,求a 的值并判断1x =是极大值点还是极小值点;(2)若()y f x =在[]23,上是增函数,求实数a 的取值范围.19.本市某区对全区高中生的身高(单位:厘米)进行统计,得到如下的频率分布直方图.(1)若数据分布均匀,记随机变量X 为各区间中点所代表的身高,写出X 的分布列及期望.(2)现从身高在区间[)170,190的高中生中分层抽样抽取一个160人的样本.若身高在区间[)170,180中样本的均值为176厘米,方差为10;身高在区间[)180,190中样本的均值为184厘米,方差为16,试求这160人身高的方差.20.已知椭圆()22:11x C y t t+=>的左、右焦点分别为12F F 、,直线():0l y kx m m =+≠与椭圆C 交于M N 、两点(M 点在N 点的上方),与y 轴交于点E .(1)当3t =时,点A 为椭圆C 上除顶点外任一点,求12AF F △的周长;(2)当4t =且直线l 过点()10D -,时,设EM DM EN DN λμ== ,,求证:λμ+为定值,并求出该值;(3)若椭圆C 的离心率为223,当k 为何值时,22OM ON +恒为定值;并求此时MON △面积的最大值.21.对于有穷数列()12,,,3m a a a m ≥ ,若存在等差数列{}n b ,使得11221m m m b a b a b a b +≤<≤<<≤< ,则称数列{}n a 是一个长为m 的“弱等差数列”.(1)证明:数列124,,是“弱等差数列”;(2)设函数()sin f x x x =,()f x 在()0,2024内的全部极值点按从小到大的顺序排列为12,,,m a a a ,证明:12,,,m a a a 是“弱等差数列”;(3)证明:存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.2023学年第二学期高二年级数学期中考试试卷(A )时间:120分钟满分:150分注:请将试题的解答全部写在答题纸的相应位置,写在试卷上无效.一、填空题(本大题共有12小题,第1-6题每题4分,第7-12题每题5分,满分54分)考生应在答题纸的相应位置直接填写结果.1.设随机变量X 服从二项分布19,3B ⎛⎫ ⎪⎝⎭,则[]D X =_________.【答案】2【解析】【分析】根据给定条件,利用二项分布的方差公式计算得解.【详解】依题意,11[]9(1)233D X =⨯⨯-=.故答案为:22.8位选手参加射击比赛,最终的成绩(环数)分别为42,38,45,43,41,47,44,46,这组数据的第75百分位数是_________.参考表格:【答案】45.5【解析】【分析】先排序,再由875%6⨯=,可取第6和第7个数之和的一半即可得解.【详解】先排序可得38,41,42,43,44,45,46,47,由875%6⨯=,所以第75百分位数是454645.52+=.故答案为:45.53.在一个22⨯列联表中,通过数据计算28.325χ=,则这两个变量间有关的可能性为________.参考表格:()20P x χ≥0.050.0250.0100.0010x 3.841 5.024 6.63510.828【答案】99%##0.99【解析】【分析】根据独立性检验的知识确定正确答案.【详解】由于28.325 6.635χ=>,所以两个变量之间有关系的可能性为99%.故答案为:99%4.曲线()ln f x x x =+在1x =处的切线方程是________.【答案】21y x =-【解析】【分析】求出函数的导函数,把1x =代入即可得到切线的斜率,然后根据(1,1)和斜率写出切线的方程即可.【详解】解:由函数ln y x x =+知1'1y x=+,把1x =代入'y 得到切线的斜率112k =+=则切线方程为:12(1)y x -=-,即21y x =-.故答案为:21y x =-【点睛】本题考查导数的几何意义,属于基础题.5.某同学在一次考试中,8道单选题中有6道有思路,2道没思路,有思路的有90%的可能性能做对,没思路的有25%的可能性做对,则他在8道题中随意选择一道题,做对的概率是__________.【答案】5980【解析】【分析】根据全概率公式求解即可.【详解】设事件A 表示“考生答对”,设事件B 表示“考生选到有思路的题”则小明从这8道题目中随机抽取1道做对的概率为:3159()()()()(0.90.254480P A P B P A B P B P A B =+=⨯+⨯=∣∣.故答案为:5980.6.“守得住经典,当得了网红”,这是时下人们对国货最高的评价,网络平台的发展让越来越多的消费者熟悉了国货品牌的优势,使得各大国货品牌都受到高度关注,销售额迅速增长,已知某国货品牌2023年8-12月在D 网络平台的月销售额y (单位:百万元)与月份x 具有线性相关关系,并根据这5个月的月销售额,求得回归方程为 4.23ˆyx =+,则该国货品牌2023年8-12月在D 网络平台的总销售额为______百万元.【答案】225【解析】【分析】根据样本中心点()x y 在回归直线上的性质,先计算出x ,代入回归方程求得y ,再用y 代表月平均销售额,即可算得总销售额.【详解】依题意,89101112105x ++++==,因样本中心点()x y 在回归直线上,代入得:4.210345y =⨯+=,所以该国货品牌2023年8-12月在D 网络平台的总销售额为545225⨯=百万元.故答案为:225.7.今天星期三,再过1天是星期四,那么再过20242天是星期_________.【答案】天(或日)【解析】【分析】首先由67432642026474724284(71)⨯+==⨯=+,再利用二项展开式即可得解.【详解】由()()6742024674326740674167367467467467422484714C 7C 7C ⨯+==⨯=+=⋅+⋅++ ()067416736736746746744C 7C 7C 74=⋅+⋅+⋅+ ,所以20242除7余4,所以再过20242天是星期天.故答案为:天(或日).8.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=________.(用数字作答)【答案】15【解析】【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.9.双曲线具有如下光学性质:从一个焦点发出的光线经双曲线反射后,反射光线的反向延长线一定经过另一个焦点.已知双曲线()2222:10x y C a b a b-=>,,如图从C 的一个焦点F 射出的光线,经过P Q ,两点反射后,分别经过点M 和N .若12cos 13PM PQ PM PQ PQN ∠+=-=- ,,则C 的离心率为_________.【答案】3【解析】【分析】作出MP ,QN 的反向延长线交于双曲线的左焦点1F ,由已知可得PM PQ ⊥ ,112cos 13PQF ∠=,设1||13||12,F Q t PQ t ==,可得||2,23,PF t a t ==由勾股定理可求得1||,F F =进而可求C 的离心率.【详解】由双曲线的光学性质可知MP ,QN 的反向延长线交于双曲线的左焦点1F ,如图所示:由||||PM PQ PM PQ +=- ,两边平方可得222222PM PM PQ PQ PM PM PQ PQ ++=-+ ,所以0PM PQ = ,所以PM PQ ⊥ ,所以190∠=︒F PF ,又12cos 13PQN ∠=-,所以112cos 13PQF ∠=,设1||13||12,F Q t PQ t ==,则1||5PF t =,设||FQ m =,则||12FP t m =-,根据双曲线定义,可得11||||||||2PF PF QF QF a -=-=,所以5(12)132t t m t m a --=-=,解得10m t =,所以||2,23,PF t a t ==在1Rt F PF 中,222211||||||29,F F PF PF t =+=所以1||,F F =所以C的离心率为3c e a ==.故答案为:3.10.函数()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若方程()0f x ax -=恰有3个根,则实数a 的取值范围为______.【答案】11,3e ⎡⎫⎪⎢⎣⎭【解析】【分析】画出()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩的图象,再分析()y f x =与直线y ax =的交点个数即可.【详解】画出函数()f x 的图象,如图所示:由题意可知0a >,先求y ax =与ln y x =相切时的情况,由图可得此时ln y x =,1y x'=设切点为()00,ln x x ,则0001ln a x x ax ⎧=⎪⎨⎪=⎩,解得0e x =,1e a =,此时直线e x y =,此时直线e x y =与()y f x =只有两个公共点,所以1e a <,又斜率11e 3>,又当13a =时13y x =与11,(0)3y x x =+≤平行,13y x =与()y f x =有三个公共点,而当13a <,直线y ax =与()y f x =有四个交点,故11,3e a ⎡⎫∈⎪⎢⎣⎭.故答案为:11,3e ⎡⎫⎪⎢⎣⎭11.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房........此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数.设集合{}232025S a a a = ,,,,集合B 是集合S 的非空子集,则B 中所有元素之和为奇数的概率为________.【答案】20232024221-【解析】【分析】根据题意,得到数列{}n a 满足12n n n a a a --=+,求得在{}232025S a a a = ,,,偶数项共有675项,奇数项为1349项,得到S 中有202421-的非空子集,以及B 中所有元素之和为奇数的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意知,该蜜蜂爬到1号蜂房的路线数为1,第2号蜂房的路线数为2,第3号蜂房的路线数为3,第4号蜂房的路线数为5,第5号蜂房的路线数为8, ,则第n 号蜂房的路线数为12(3,N )n n n a a a n n *--=+≥∈,所以54575686713,21,34,a a a a a a a a a =+==+==+= ,即数列{}n a 为1,2,3,5,8,13,21,34, ,其中25811,,,,a a a a 为偶数,所以在{}232025S a a a = ,,,偶数项共有675项,奇数项为1349项,又由{}232025S a a a = ,,,,可得S 中有202421-的非空子集,若B 中元素之和为奇数,则B 中的奇数共有奇数个,偶数可以随意,所以满足条件的B 的个数为:01267513134867513482023675675675675134913491349(C C C C )(C C C )222+++++++=⋅= ,所以B 中所有元素之和为奇数的概率为20232024221P =-.故答案为:20232024221-.12.现有6根绳子,共有12个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这6根绳子恰好能围成一个圈的概率为______.【答案】256693【解析】【分析】直接根据圆排列及古典概型计算.【详解】依题意,环排列有:11111108642C C C C C 3840⋅⋅⋅⋅=种,总的连接方式有:22222121086466C C C C C 66452815610395A 720⋅⋅⋅⋅⨯⨯⨯⨯==种,所以恰好能围成一个圈的概率为384025610395693P ==.故答案为:256693.二、选择题(本大题共有4小题,第13-14题每远4分,第15-16题每题5分,满分18分)毎题有且只有一个正确选项.考生应在答題纸的相应位置,将正确选项用2B 铅笔涂黑.13.要调查下列问题,适合采用全面调查(普查)的是()A.某城市居民3月份人均网上购物的次数B.某品牌新能源汽车最大续航里程C.检测一批灯泡的使用寿命D.调查一个班级学生每周的体育锻炼时间【答案】D 【解析】【分析】结合普查和抽查的适用条件即可求解.【详解】A ,B 选项中要调查的总体数量和工作量都较大,适合采用抽查;C 选项的检测具有毁损性,适合抽查;D 选项要调查的总体数量较小,工作量较小,适合采用普查,故选:D.14.对两个变量的三组数据进行统计,得到以下散点图,关于两个变量相关系数的比较,正确的是()A.123r r r >>B.231r r r >>C.132r r r >>D.321r r r >>【答案】C 【解析】【分析】根据散点图中点的分布的特征,确定3个图对应的相关系数的正负以及大小关系,可得答案.【详解】由散点图可知第1个图表示的正相关,故10r >;第2,3图表示的负相关,且第2个图中的点比第3个图中的点分布更为集中,故23,0r r <,且23r r >,故230r r <<,综合可得231r r r <<,即132r r r >>,故选:C15.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布2(38,7)N ,从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布2(44,2)N ,下地铁后从地铁站步行到单位要5分钟,从统计的角度出发,下列说法中合理的有()参考数据:若2()~(,)P Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=A.若8:00出门,则开私家车不会迟到B.若8:02出门,则乘坐地铁上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大D.若8:12出门,则乘坐地铁几乎不可能上班不迟到【答案】D 【解析】【分析】对于A ,由(59)0.0013P Z ≥=即可判断;对于BC ,分别计算开私家车及乘坐地铁不迟到的概率即可判断;对于D ,计算(38)0.0013P Z ≤=即可判断【详解】对于A ,当满足1(1759)10.9974(59)0.001322P Z P Z -<≤-≥===时,江先生仍旧有可能迟到,只不过发生的概率较小,故A 错误;对于B ,若8:02出门,①江先生开私家车,当满足1(2452)(52)(2452)0.97722P Z P Z P Z -<<≤=+<<=时,此时江先生开私家车不会迟到;②江先生乘坐地铁,当满足()()().1P 40Z 48P Z 48P 40Z 48097722-<<≤=+<<=时,此时江先生乘坐地铁不会迟到;此时两种上班方式,江先生不迟到的概率相当,故B 错误;对于C ,若8:06出门,①江先生开私家车,当满足1(3145)(48)(45)(3145)0.84132P Z P Z P Z P Z -<<≤>≤=+<<=时,此时江先生开私家车不会迟到;②江先生乘坐地铁,当满足().1P Z 44052≤==时,此时江先生乘坐地铁不会迟到;此时两种上班方式,显然江先生开私家车不迟到的可能性更大,故C 错误;对于D ,若8:12出门,江先生乘坐地铁上班,当满足()().1P 38Z 50P Z 38000132-<<≤==时,江先生乘坐地铁不会迟到,此时不迟到的可能性极小,故江先生乘坐地铁几乎不可能上班不迟到,故D 正确.故选:D.【点睛】关键点点睛:本题解决的关键是分别分析得江先生使用不同交通工具在路上所花时间,结合正态分布的对称性求得其对应的概率,从而得解.16.n S 是数列{}n a 前n 项和,11243,41n n a a a n +==--,给出以下两个命题:命题211212:2n p a a a a a a n n +++=+ ;命题q :对任意正整数n ,不等式()ln 21n S n n >++恒成立.下列说法正确的是()A.命题p q 、都是真命题B.命题p 为真命题,命题q 为假命题C.命题p 为假命题,命题q 为真命题D.命题p q 、都是假命题【答案】A 【解析】【分析】由题意可求出12n a a a 的表达式,利用等差数列的求和公式可判断命题p ;证明出当01x <≤时,ln 1≤-x x ,可得出212ln2121n n n +≤--,再结合放缩法可判断命题q .【详解】因为()()11244223,4121212121n n n n a a a a a n n n n n +⎛⎫==-=-=-- ⎪--+-+⎝⎭,所以()12221121n n a a n n +-=-+--,所以,数列221n a n ⎧⎫-⎨⎬-⎩⎭为常数列,则122121n a a n -=-=-,所以22112121n n a n n +=+=--;所以123521211321n n a a a n n +=⨯⨯⨯=+- ,令21n b n =+,则12n n b b +-=,所以数列{}n b 为首项为3,公差为2的等差数列,因此()()2112123213572122n n n a a a a a a n n n +++++=+++++=+ ,即命题p 正确;设()1ln x x x ϕ=--,其中01x <≤,则()111xx x xϕ'-=-=,当01x <<时,()0x ϕ'<,()x ϕ单调递减,则()()10x ϕϕ≥=,即ln 1≤-x x ,当且仅当1x =时,等号成立,所以21212ln1212121n n n n n ++<-=---,即2235212ln ln ln 3211321n n S n n n n +⎛⎫=++++>++++ ⎪--⎝⎭ ,则()3521ln ln 211321n n S n n n n +⎛⎫=+⨯⨯⨯=++ ⎪-⎝⎭,所以命题q 正确.故选:A.三、解答题(本大题共5题,满分78分)解答下列各题须在答题纸的相应位置写出必要的步骤.17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点.(1)求异面直线EF 与BC 所成的角;(2)求三棱锥11C B D F -的体积.【答案】(1)arccos 3.(2)43.【解析】【分析】(1)分别以1,,DA DC DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出异面直线EF 与BC 所成的角.(2)先求出11C B D S ,再由向量法求出点F 到平面11D B C 的距离,由此根据1111C B D F F B D C V V --=即可求出三棱锥11C B D F -的体积.【小问1详解】以D 为坐标原点,分别以1,,DA DC DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,∵在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点,∴(0,0,1),(1,1,0),(2,2,0),(0,2,0)E F B C ,∴(1,1,1),(2,0,0)EF BC =-=-,设异面直线EF 与BC 所成的角为π,(0]2θθ∈,,则|||2|3cos cos ,|3||||32|EF BC EF BC EF BC θ⋅=〈〉==⋅⨯,∴异面直线EF 与BC 所成的角为3arccos 3.【小问2详解】∵在棱长为2的正方体1111ABCD A B C D -中,11112B D B C D C ===,∴111322222322B DC S ⨯== ∵112,2,2),0,0,2),(0,2,0),(1,1,0)((B D C F ,∴1111(2,20),(0,22),(1,1,2)D B D D C F ==-=-,,,设平面11D B C 的法向量(,,)n x y z =,则1110n D B n D C ⎧⋅=⎪⎨⋅=⎪⎩,∴220220x y y z +=⎧⎨-=⎩,令1x =,则可取(1,1,1)n =--r ,∴点F 到平面11D B C 的距离1||33||3n D F d n ⋅== ,∴三棱锥11C B D F -的体积11111111234233333C BD F F B D C B D C V V S d --==⨯=⨯⨯= .18.已知函数2()6ln(1),f x ax x a =-+为常数.(1)若()y f x =在1x =处有极值,求a 的值并判断1x =是极大值点还是极小值点;(2)若()y f x =在[]23,上是增函数,求实数a 的取值范围.【答案】(1)32a =;1x =是()y f x =的极小值点(2)实数a 的取值范围为)1,2∞⎡+⎢⎣【解析】【分析】(1)先根据函数在1x =处有极值求出a 的值,将a 值代入原函数求导进行判断函数在1x =左右的导函数正负号即可得到结果;(2)()y f x =在[]23,上是增函数,转化成()0f x '≥在[]23x ∈,恒成立,进而分离参数转化成23a x x≥+在[]23x ∈,恒成立进行求解即可得到结果.【小问1详解】()f x 的定义域为[)1,∞-+,则6()21f x ax x-'=+;由题意,()y f x =在1x =处有极值,即()01f '=,即230a -=;∴32a =;∴63(2)(1)()311x x f x x x x+-=-'=++,∴当1x >时,()0f x '>,()f x 为增函数;当11x -<<时,()0f x '<,()f x 为减函数;∴1x =是()y f x =的极小值点.【小问2详解】∵()y f x =在[]23,上是增函数,∴()0f x '≥在[]23x ∈,恒成立,即有6201ax x-≥+,23a x x ∴≥+在[]23x ∈,恒成立,只需求2max3a x x ⎛⎫≥ ⎪+⎝⎭;[]23x ∈ ,,[]22116,1224x x x ⎛⎫∴+=+-∈ ⎪⎝⎭,2311,42x x ⎡⎤∴∈⎢⎥+⎣⎦;12a ∴≥,∴a 的取值范围为)1,2∞⎡+⎢⎣.19.本市某区对全区高中生的身高(单位:厘米)进行统计,得到如下的频率分布直方图.(1)若数据分布均匀,记随机变量X 为各区间中点所代表的身高,写出X 的分布列及期望.(2)现从身高在区间[)170,190的高中生中分层抽样抽取一个160人的样本.若身高在区间[)170,180中样本的均值为176厘米,方差为10;身高在区间[)180,190中样本的均值为184厘米,方差为16,试求这160人身高的方差.【答案】(1)分布列见详解,期望为171.7(2)27.25【解析】【分析】(1)依据分布列和期望的定义即可求得X 的分布列及期望;(2)依据方差的定义去求这160人的方差.【小问1详解】由(0.0270.0250.0220.010.001)101x +++++⨯=,解得0.015x =,所以X 的分布列为:X155165175185195205P0.220.270.250.150.10.01()0.221550.271650.251750.151850.11950.01205171.7E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】由于身高在区间[)170,180,[)180,190的人数之比为5:3,所以分层抽样抽取160人,区间[)170,180,[)180,190内抽取的人数分别为100人与60人.在区间[)170,180中抽取的100个样本的均值为176,方差为10,即176x =,2110s =,在区间[)180,190中抽取的60个样本的均值为184,方差为16,即184y =,2216s =,所以这160人身高的均值为10017660184179160z ⨯+⨯==,从而这160人身高的方差为2s 22221210060()()160100s x z s y z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦221006010(176179)16(184179)27.25160160⎡⎤⎡⎤=⨯+-+⨯+-=⎣⎦⎣⎦,因此这160人身高的方差为27.25.20.已知椭圆()22:11x C y t t+=>的左、右焦点分别为12F F 、,直线():0l y kx m m =+≠与椭圆C 交于M N 、两点(M 点在N 点的上方),与y 轴交于点E .(1)当3t =时,点A 为椭圆C 上除顶点外任一点,求12AF F △的周长;(2)当4t =且直线l 过点()10D -,时,设EM DM EN DN λμ==,,求证:λμ+为定值,并求出该值;(3)若椭圆C 的离心率为223,当k 为何值时,22OM ON +恒为定值;并求此时MON △面积的最大值.【答案】(1)(2)83(3)32【解析】【分析】(1)根据椭圆定义求解三角形周长;(2)联立:(0)l y kx m m =+≠与22:19x C y +=,得到两根之和两根之积,由,EM DM EN DN λμ== 得到121211x x x x λμ+=+++,结合两根之和,两根之积求出答案;(3)先由离心率得到椭圆方程,联立直线方程,得到两根之和,两根之积,表达出()()()2222222919121691k m k OM ON k -+++=+⨯+,结合22||||OM ON +为定值得到13k =±,并求出此时MN ,和点O 到直线l 的距离d ,利用基本不等式得到32MON S ≤.【小问1详解】当3t =时,椭圆方程为22:13x C y +=,故a =c =,由椭圆定义可得,12AF F △的周长为22a c +=;【小问2详解】4t =时,椭圆方程为22:14x C y +=,故联立:(0)l y kx m m =+≠与22:14x C y +=可得,()222418440k x kmx m +++-=设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++,因为直线l 过点()10D -,,所以0k m =-+,即k m =,所以22121222844,4141k k x x x x k k --+==++因为()10D -,,设()0,E E y ,所以()11,E x EM y y =- ,()111,D x M y =+ ,()22,E x EN y y =- ,()221,x DN y =+ ,又因为,EM DM EN DN λμ== ,所以()()11221,1x x x x λμ=+=+,所以111x x λ=+,221x x μ=+,所以121212*********x x x x x x x x x x λμ+++=+=-+++++222222841844413224218231k k k k k k +=--=+--+++=++,所以λμ+为定值83.【小问3详解】由题意得3=,解得9t =,椭圆方程2219x y +=,联立2299y kx m x y =+⎧⎨+=⎩,消元得()2229118990k x kmx m +++-=,当()()2222Δ324369110k m k m =-+->,即22910k m -+>时,设()()1122,,,M x y N x y ,则1221891km x x k -+=+,21229991m x x k -⋅=+,又因为M 、N 在椭圆上,则121219y x =-,222219y x =-,则22222212121199x x OM ON x x +=+-++-()()2221112222228899x x x x x x ⎡⎤=++=+-⋅⎣+⎦()()()()()2222222222299191912162169191k m m k k m k k k ⎡⎤-++-++⎢⎥=+=+⨯⎢⎥++⎣⎦当22OM ON +为定值时,即与2m 无关,故2910k -=,得13k =±,此时219MN k ===+又点O 到直线l的距离d ==所以12MON S d MN =⨯⨯=△()222333322222m m +-==≤⋅=,当且仅当m =1m =±时,等号成立,因为2291k m ∆=-+,经检验,此时Δ0>成立,所以MON △面积的最大值为32.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.21.对于有穷数列()12,,,3m a a a m ≥ ,若存在等差数列{}n b ,使得11221m m m b a b a b a b +≤<≤<<≤< ,则称数列{}n a 是一个长为m 的“弱等差数列”.(1)证明:数列124,,是“弱等差数列”;(2)设函数()sin f x x x =,()f x 在()0,2024内的全部极值点按从小到大的顺序排列为12,,,m a a a ,证明:12,,,m a a a 是“弱等差数列”;(3)证明:存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【解析】【分析】(1)找到一个符合条件的数列{}n b 即可证明;(2)令()0f x '=得到极值点符合的等式关系,即为y x =-和tan y x =图象交点的横坐标,再结合二者图象的特点找到交点的位置,确定数列{}n b 即可证明;(3)先构造一个等比数列{}n a ,其通项公式为()()1202411,2,,2024n n n a k k n --=+= ,证明存在一个正整数k ,使其为长为2024的“弱等差数列”即可.【小问1详解】存在数列21125,,3,366是等差数列,且211251234366<<<<<<,所以数列124,,是“弱等差数列”.【小问2详解】()sin cos f x x x x +'=,令()0f x '=得tan x x -=,所以极值点即为y x =-和tan y x =图象交点的横坐标,由y x =-和tan y x =在()0,∞+内的图象可知,在每个周期都有一个交点,所以令12n n b -=π,则1n n n b a b +<<,所以12,,,m a a a 是“弱等差数列”.【小问3详解】构造正整数等比数列{}n a ,()()1202411,2,,2024n n n a k k n --=+= ,其中k 是待定正整数,下面证明:存在正整数k ,使得等比数列{}n a 是长为2024的“弱等差数列”.取20242024202320231,1,b a b a =-=-若存在这样的正整数k 使得()()()()2202220232023202220211232023202420251111b k b k k b k k b k k b k b ≤<≤+<≤+<<≤+<≤+< 成立,所以()()()2023202220222024202320242023111d b b a a k k k k =-=-=+-+=+,由()()1202411,2,,2024n n n a k k n --=+= ,得()()()()112022202412024202311111n n n n n n n n a a k k k k k k k d ------+-=+-+=+<+=,于是()()()202420232024120242024n n n n a a a a a a b n d b -=+-++->--= ()12023n ≤≤,又因为2024202420241b a a =-<,所以当1,2,,2024n = 时,<n n b a ,而()()()1211211n n n n a a a a a a b n d b -+=+-++-<+-= ,所以1122202420242025b a b a b a b ≤<≤<<≤< ,最后说明存在正整数k 使得12a b <,由()()()()()202320222022122024202211211320241m b b d k m k k k k -=-=+---+=++-->,上式对于充分大的k 成立,即总存在满足条件的正整数k .所以,存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.【点睛】思路点睛:新定义题目解题策略:(1)依据新定义取特殊值证明其成立;(2)如果有多个条件,先假设符合其中一个条件,再证明其余的条件也符合.。

上海市新中高级中学2022-2023学年高二下学期期中数学试题

上海市新中高级中学2022-2023学年高二下学期期中数学试题

上海市新中高级中学2022-2023学年高二下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________二、解答题11.求:(1)求与直线3410x y ++=平行且过点()1,2的直线l 的方程;(2)当m 为何值时,直线()()222341m m x m m y m +-+-=-与直线235x y -=垂直.12.如图1,太阳灶是一种将太阳光反射至一点用来加热水或食物的设备,上面装有抛物面形的反光镜,镜的轴截面是抛物线的一部分(如图2),盛水或食物的容器放在抛物线的焦点处,该容器由6根等长的铁筋焊接在一起的架子支撑(图中F 点为放参考答案:1.20【分析】利用抽样比即可求解【详解】抽样比为1:20,小学生400人,抽出20人.故答案为:202.105°或165°【分析】根据倾斜角与斜率的概念求解.【详解】直线M N ¢¢的斜率1,则直线M N ¢¢的倾斜角为45°,当将直线MN 绕原点顺时针旋转60°时,直线MN 的倾斜角为60°+45°=105°;当将直线MN 绕原点逆时针旋转60°时,直线MN 的倾斜角为180°-(60°-45°)=165°,故答案为:105°或165°.3.0【分析】利用二项式定理求特定项的系数即可.【详解】由题意,可得3336C a m =,066C 1a ==.361a a +=Q , 30,0a m \=\=.故答案为:0.4.144【分析】根据相邻问题捆绑,不相邻问题插空,结合分步乘法计数原理即可求解.【详解】第一步:现将除甲乙丙之外的三个人全排列,有33A 6=种方法,第二步;将甲乙捆绑看成一个整体,然后连同丙看成两个个体,插空共有24A 12=种方法,第三步:甲乙两个人之间全排列22A 2=,由分步乘法计数原理可得总的排法有6122144´´=,故答案为:1445.6或-2【分析】根据反射光线上的点关于直线0x y +=的对称点一定在入射光线上,即可求解.故答案为:4.【点睛】对于抛物线的焦点弦,要熟记直线与抛物线联立,消元选择消去一次项,根据韦达定理,可得两个交点坐标与p 之间的等量关系;对于切线的斜率,利用导数的几何意义进行计算,要善于化简表达式,可用纵坐标表示,结合韦达定理,可得简化计算.11.(1)34110x y +-=(2)6m =-【分析】(1)设出与已知直线平行的直线,然后代点计算即可;(2)根据直线一般式垂直的条件列方程求解即可.【详解】(1)设与直线3410x y ++=平行的直线方程为340,1x y c c ++=¹,代入点()1,2得380c ++=,得11c =-,故直线l 的方程为34110x y +-=;(2)由两直线垂直可得()()2222330m m m m +---=,解得6m =-或1m =.又当1m =时,直线()()222341m m x m m y m +-+-=-为01=-,舍去;故6m =-.12.(1)218y x =,(4.5,0)F (2)架子所用钢筋总长度为39dm答案第161页,共22页。

上海中学高二下期中数学试卷

上海中学高二下期中数学试卷

上海中学高二(下)期中数学试卷试题数:22,总分:01.(填空题,3分)三个平面两两垂直,它们的交线交于一点O ,空间有一点P 到三个面的距离分别为3、4、5,则OP 的长为___ .2.(填空题,3分)已知正四棱锥的底面边长为2,高为3,则正四棱锥的侧面积为___ .3.(填空题,3分)正方体ABCD-A 1B 1C 1D 1中,异面直线BC 1与AC 所成角的大小为___ °.4.(填空题,3分)正方体ABCD-A 1B 1C 1D 1中,二面角A-CD-A 1的大小为___ .5.(填空题,3分)水平放置的△ABC 的斜二测直观图如图所示,若A 1C 1=2,△ABC 的面积为2 √2 ,则A 1B 1的长为___ .6.(填空题,3分)长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,高为2,则顶点A 1到截面AB 1D 1的距离为___ .7.(填空题,3分)已知正方体ABCD-A 1B 1C 1D 1的棱长为4,E 、F 分别为A 1D 1、AA 1的中点,过C 1、E 、F 的正方体的截面周长为___ .8.(填空题,3分)在各棱长都等于1的正四面体O-ABC 中,若点P 满足 OP ⃗⃗⃗⃗⃗ =xOA⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ +zOC⃗⃗⃗⃗⃗ (x +y +z =1) ,则 |OP ⃗⃗⃗⃗⃗ | 的最小值为___ . 9.(填空题,3分)如图,矩形ABCD 的长AB=2,宽AD=x ,若PA⊥平面ABCD ,矩形的边CD 上至少有一个点Q ,使得PQ⊥BQ ,则x 的范围是___ .10.(填空题,3分)在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,且有BD⊥CD,AB=BD=2,CD=1,点P是AC上的一个动点,则三角形PBD的面积的最小值为___ .11.(填空题,3分)在我国古代数学名著《九章算术》中将底面为直角三角形,侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1的取值范围是___ .到直线A1C的距离为m,C1到平面A1BC的距离为n,则mn12.(填空题,3分)正四面体ABCD的棱CD在平面α上,E为棱BC的中点,当正四面体ABCD绕CD旋转过程中,直线AE与平面α所成最大角的余弦值为___ .13.(单选题,3分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m || α,n⊥β,则()A.m || lB.m || nC.n⊥lD.m⊥n14.(单选题,3分)如果PA、PB、PC两两垂直,那么点P在平面ABC内的投影一定是△ABC()A.重心B.内心C.外心D.垂心15.(单选题,3分)如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°16.(单选题,3分)如图,已知直三棱柱ABC-A1B1C1,所有棱长均为2,则二面角A-BC-A1的余弦值为()A. 13 B. √63C. √217D. 2317.(单选题,3分)在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把直角坐标系折成60°的二面角,则AB 的长为()A. √2B.2 √11C.3 √2D.4 √218.(单选题,3分)等腰直角△ABC斜边CB上一点P满足CP≤ 14CB,将△CAP沿AP翻折至△C′AP,使二面角C′-AP-B为60°,记直线C′A,C′B,C′P与平面APB所成角分别为α,β,γ,则()A.α<β<γB.α<γ<βC.β<α<γD.γ<α<β19.(问答题,0分)如图,四边形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO= √2,AB=2.(1)求棱锥P-ABCD体积;(2)求证:平面PAC⊥平面BDE.20.(问答题,0分)在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.(Ⅰ)求二面角C-DE-C1的正切值;(Ⅱ)求直线EC1与FD1所成的余弦值.21.(问答题,0分)如图① ,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图② ),且倾斜时底面的一条棱始终在桌面上(图① 、② 均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.22.(问答题,0分)已知四边形ABCD是矩形,BC=kAB(k∈R),将△ABC沿着对角线AC 翻折,得到△AB1C,设顶点B1在平面ABCD上的投影为O.(1)若点O恰好落在边AD上,① 求证:AB1⊥平面B1CD;② 若B1O=1,AB>1.当BC取到最小值时,求k的值(2)当k= √3时,若点O恰好落在△ACD的内部(不包括边界),求二面角B1-AC-D的余弦值的取值范围.。

上海市好学校高二下学期期中数学试题(解析版)

上海市好学校高二下学期期中数学试题(解析版)

一、填空题 1.若,是第二象限角,则______. 1sin 3α=αcos α=【答案】【分析】利用同角三角函数的基本关系计算可得. 【详解】因为,是第二象限角, 1sin 3α=α所以cos α==故答案为:2.已知向量,若∥,则______. (2,1,3),(4,2,)a b x =-=-a b x =【答案】-6【分析】利用向量平行列方程,即可求解.【详解】因为向量,且∥,(2,1,3),(4,2,)a b x =-=-a b 所以=,ab λ 所以,解得:. 42213x -==-6x =-故答案为:-6.3.若复数 (是虚数单位)是纯虚数,则实数的值为____ ()()12z ai i =+-i a 【答案】-2【分析】将整理为,根据纯虚数的定义得到方程组,求解得到结果.z ()()221a a i ++-【详解】()()222221z i ai ai a a i =-+-=++-是纯虚数z 20210a a +=⎧∴⎨-≠⎩2a ⇒=-本题正确结果:2-【点睛】本题考查纯虚数的定义,属于基础题.4.计算_____________.123ii +∞=⎛⎫= ⎪⎝⎭∑【答案】2【分析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.122322313+∞=⎛⎫== ⎪⎝⎭-∑ii 故答案为:2.5.已知,则______. ()cos 2f x x =()f x '=【答案】2sin 2x -【分析】根据简单复合函数的求导法则计算可得.【详解】因为,则.()cos 2f x x =()()'sin 222sin 2f x x x x =-⋅=-'故答案为:2sin 2x -6.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石.验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为______石.(精确到整数) 【答案】169【分析】根据给定条件,利用分层抽样的意义列式计算作答. 【详解】设这批米内夹谷约为x 石,依题意,,解得, 281534254x =169x ≈所以这批米内夹谷约为169石. 故答案为:169 7.已知,则______. 1()x f x x+=0(2)(2)lim h f h f h →+-=【答案】/.14-0.25-【分析】先求出,然后代入中求解即可.(2)(2)f h f +-0(2)(2)lim h f h f h→+-【详解】因为, 11()1x f x x x+==+所以, 1111(2)(2)1122222(2)h f h f h h h -⎛⎫+-=+-+=-= ⎪+++⎝⎭所以,000(2)(2)lim lim l 112(2)2(2)4im h h h hf h f h h h h →→→+--++==-=-故答案为:.14-8.若双曲线(,)的渐近线方程为,则双曲线的离心率______.22221x y a b-=0a >0b >32y x =±e =【分析】由题知,再根据离心率公式求解即可. 32b a =【详解】解:双曲线(,)的渐近线方程为,22221x y a b-=0a >0b >32b y x x a =±=±所以,双曲线的焦点在轴上,且x 32b a =所以,双曲线的离心率e ==9.如图,在棱长为1的正方体中,点A 到平面距离是______.1111ABCD A B C D -1A DB【分析】利用等体积法求得到平面的距离.A 1A BD【详解】 11A B BD A D ===1A BD A 设到平面的距离为,根据,A 1A BD d 11A ABD A A BD V V --=则,211111113232d ⨯⨯⨯⨯=⨯⨯解得d10.函数的导函数的图像如图所示,以下结论正确的序号是______.()y f x =()y f x '=(1)是函数的极值点; 3-()y f x =(2)是函数的极小值点1-()y f x =(3)在区间上严格增; ()y f x =()3,1-(4)在处切线的斜率大于零; ()y f x =0x =【答案】(1)(3)(4);【分析】利用导函数与原函数的关系一一判定即可.【详解】由图象可得时,,且时,时,即是函3x =-()30f '-=3x <-()0f x '<3x >-()0f x ¢>3-数的极小值点,(1)正确;()y f x =而时,,但与时,,∴不是函数的极值点,=1x -()10f '-=1x <-1x >-()0f x ¢>1-()y f x =(2)不正确;由图象可知上,∴在区间上严格增,(3)正确;()3,1-()0f x ¢>()y f x =()3,1-处,所以该处切线的斜率大于零,(4)正确;0x =()0f x ¢>故答案为:(1)(3)(4);11.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则O F 2212x y +=P 的取值范围为_______. 22||||OP PF +【答案】2,5⎡+⎣【分析】设,则,由两点距离公式即可得所求取值的函数,进而(),P x y ()2212x y x ⎡=-∈⎣讨论范围即可.【详解】由题意得,,,设,则, ()0,0O ()1,0F -(),P x y ()2212x y x ⎡=-∈⎣则. ()()()2222222222|1121122,||2|5x x y x y x x OP PF x ⎛⎫⎡=++++=+++-=++∈+ +⎪⎣⎝⎭故答案为:2,5⎡+⎣12.已知数列为严格递增数列,且对任意,都有且.若对任意{}n a ,1n n ∈≥N n a ∈N 1n a ≥3n a a n =恒成立,则________. ,1n n ∈≥N 20211999a a -=【答案】66【分析】根据恒成立和严格递增可得,然后利用递推求出,的值,3n a a n =12a =3n a a n =729a 1458a 不难发现在此两项之间的所有项为连续正整数,于是可得,,然后可解.12922021a a a =12701999a a a =【详解】因为,且数列为严格递增数列,13a a ={}n a 所以或,若,则(矛盾),故11a =12a =11a =113a a a ==12a =由可得:,,,,,3n a a n =123a a a ==236a a a ==369a a a ==6918a a a ==91827a a a ==,,,,,182754a a a ==275481a a a ==5481162a a a ==81162243a a a ==162243486a a a ==243486729a a a ==,,,4867291458a a a ==72914582187a a a ==因为,,,且数列为严格递增数列,7291458a =14582187a =218714581458729729-=-={}n a ,n a ∈N 所以,,12922021a =12701999a =所以, 129220213876a a a ==127019993810a a a ==所以 199920213876381066a a a -=-=故答案为:66二、单选题13.在空间中,“直线平面”是“直线与平面内无穷多条直线都垂直 ”的 m ⊥αm αA .充分非必要条件 B .必要非充分条件 C .充要条件 D .非充分非必要条件【答案】A【详解】若“直线 平面”则“直线与平面内无穷多条直线都垂直 ”,正确;反之,若“直m ⊥αm α线与平面内无穷多条直线都垂直 ”则“直线 平面”是错误的,故直线 平面”是“直m αm ⊥αm ⊥α线与平面内无穷多条直线都垂直 ”的充分非必要条件. m α故选A.14.用数学归纳法证明等式“”,当时,等式左边应在()()()12321121n n n +++⋅⋅⋅++=++1n k =+的基础上加上( )n k =A .B .21k +23k +C . D .()()2223k k +++()()()212223k k k +++++【答案】C【分析】由数学归纳法可知时,左端为,到时,左端n k =123(21)k +++⋯++1n k =+,从而可得答案.123(23)k +++⋯++【详解】解:用数学归纳法证明等式时, 123(21)(1)(21)n n n +++⋯++=++当左边所得的项是;1n =123++假设时,命题成立,左端为;n k =123(21)k +++⋯++则当时,左端为,1n k =+123(21)(22)[2(1)1]k k k +++⋯+++++++当时,等式左边应在的基础上加上.∴1n k =+n k =(22)(23)k k +++故选:C.15.已知,,设直线,其中,给出下列结论: R α∈()ππ2k k α≠+∈Z :tan l y x m α=+0m ≠①直线的法向量与向量垂直; l ()cos ,sin a αα=②若,则直线与直线的夹角为; π04α<<l y x =π4α-③直线与直线平行;上述结论正确的个数是( ) l ()sin cos 0x y n n m αα-+=≠A .1个 B .2个C .3个D .0个【答案】B【分析】对①,写出方向向量,由向量共线与坐标的关系即可判断;对②,由斜率及倾斜角的关系求得两直线倾斜角,即可求得夹角;对③,两直线平行需进一步判断是否存在重合.【详解】对于①,直线的方向向量是,则, l ()1,tan n α=n c s ta os in ααα⨯=所以向量与向量共线, ()1,tan n α= ()cos ,sin a αα=故直线的法向量与向量垂直,即①正确; l ()cos ,sin a αα=对于②,当时,直线的斜率是,倾斜角是, π04α<<l tan αα直线的斜率是,㑔斜角是,两直线的夹角为,故②正确;y x =1π4π4α-对于③,直线的斜率是,在轴上的截距是, l tan k α=y m 直线的斜率是,且在轴上的截距是, sin cos 0x y n αα-+=tan k α=y cos nα当时,两直线重合,不平行,故③错误; cos nm α=综上,是真命题的序号是①②; 故选:B. 16.已知曲线,对于命题:①垂直于轴的直线与曲线有且只有一个交点;||||:143x x y y C +=-x C②若 为曲线上任意两点,则有,下列判断正确的是( ) ()()111222,,,P x y P x y C 12120y y x x -<-A .①和②均为真命题 B .①和②均为假命题 C .①为真命题,②为假命题 D .①为假命题,②为真命题【答案】A【分析】化简曲线方程,画出图像判断①,利用函数单调减判断② 【详解】曲线, ||||:143x x y y C +=-当当 当画出图像如图,易知①220,0,1;34y x x y ><-=220,0,1;43x y x y <>-=220,0,1;43x y x y <<+=正确;易知函数为减函数,则人任意两点斜率,②正确 12120y y k x x -=<-故选:A三、解答题17.已知数列的前n 项和.{}n a 2n S n =(1)求证:数列是等差数列; {}n a (2)令,求的表达式. 12231111n n n T a a a a a a +=++⋅⋅⋅+n T 【答案】(1)证明见解析 (2) 21n nT n =+【分析】(1)根据求出数列的通项,再根据等差数列的定义即可得证;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩{}n a (2)利用裂项相消法求和即可.【详解】(1)由,2n S n =当时,,1n =111a S ==当时,, 2n ≥()221121n n n a S S n n n -=-=--=-当时,上式也成立, 1n =所以,21n a n =-又, ()121212n n a a n n +-=+--=所以数列是等差数列;{}n a (2),()()()111111221212121n n a a n n n n +==--+-+则 12231111n n n T a a a a a a +=++⋅⋅⋅+. 11111111112335212122121n n n n n ⎛⎫⎛⎫=-+-+-=-= ⎪ ⎪-+++⎝⎭⎝⎭18.已知函数,常数.()e 1xf x mx =--0m >(1)若函数的图像在点处的切线方程为,求实数的值; ()y f x =()()0,0f 0y =m (2)求函数的单调区间和极值,说明理由; ()y f x =【答案】(1)1(2)单调递减区间为,单调递增区间为,,无极大值. (,ln )m -∞(ln ,)m +∞()ln 1f x m m m =--极小值【分析】(1)求出函数的导函数,依题意由,即可求出的值; ()00f '=m (2)求出函数的导函数,再求出函数的单调区间与极值即可.【详解】(1)因为,所以,,则,()e 1x f x mx =--()00f =()e xf x m '=-()01f m '=-因为函数的图像在点处的切线方程为, ()y f x =()()0,0f 0y =所以,解得.()010f m '=-=1m =(2)函数的定义域为,,()e 1x f x mx =--R ()e x f x m '=-又,在上单调递增,由,解得, 0m >()e x f x m '=-R ()0f x '=ln x m =当时,,当时,,ln x m <()0f x '<ln x m >()0f x '>即函数在上单调递减,在上单调递增,()f x (,ln )m -∞(ln ,)m +∞所以在取得极小值,即,无极大值, ()f x ln x m =()()ln ln 1f x f m m m m ==--极小值所以函数的单调递减区间为,单调递增区间为,()f x (,ln )m -∞(ln ,)m +∞,无极大值.()ln 1f x m m m =--极小值19.某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益; (2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余? 【答案】(1)8745,1686元 (2)37天【分析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.x x 【详解】(1)设第天的捐步人数为,则且,x ()f x ()()()15000115%,1303030x x f x f x -⎧+≤≤⎪=⎨>⎪⎩,()f x N *∈∴第5天的捐步人数为.()()455000115%8745f =⋅+≈由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15, ∴前5天的捐步总收益为元.()51 1.150.0516861150.1050-⨯≈-(2)设活动第天后公司捐步总收益可以回收并有盈余, x 若,则,130x ≤≤()1 1.150.052000001 1.015500x -⨯>-解得(舍).1.15log 9134x >≈若,则,30x >()()30291 1.1550001.1505300.052000001 1.1[]500x -+⋅>⋅-⋅-解得36.38x >∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.20.已知,点满足,记点的轨迹为.斜率为的直线过点,12(2,0),(2,0)F F -P 122PF PF -=P Γk l 2F 且与轨迹相交于两点. Γ,A B (1)求轨迹的方程; Γ(2)求斜率的取值范围;k (3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存x M l 2F M A M B ⊥在,求出定点;如果不存在,请说明理由.M 【答案】(1);(2);(3)存在,.221(0)3y x x -=>(,)-∞⋃+∞()1,0M -【分析】(1)根据双曲线的定义即可求得方程; (2)联立直线与双曲线方程,转化成方程有解问题;(3)假设存在点,联立直线和双曲线整理成二次方程,根据结合韦达定理求解. M 0MA MB ⋅=【详解】(1)因为,点满足, 12(2,0),(2,0)F F -P 12122P F F PF F -=<所以点的轨迹为以为焦点,实轴长为2的双曲线的右支,P 12(2,0),(2,0)F F -设其方程,则22221,(0)x y x a b -=>2,1,c a b ===所以轨迹的方程:;Γ221,(0)3y x x -=>(2)斜率为的直线过点,直线方程为,代入, k l 2F ()2y k x =-2213y x -=,即有两个不等正根,()22230443x k x x -+--=()222234430k x k x k -+--=12,x x , ()()2422212221223016434300343043k k k k k x x k k x x k ⎧-≠⎪∆=---->⎪⎪⎪⎨+=->⎪-⎪--⎪=>⎪-⎩由得,当时,22034k k ->-23k >23k >224303k k -->-且()()4221643430k k k ∆=---->即不等式组的解:23k >所以;(),k ∈-∞+∞(3)假设存在,设点,使, ()()()1122,0,,,,M m A x y B x y M A M B ⊥由(2):斜率为的直线过点,直线方程为,代入, k l 2F ()2y k x =-2213y x -=,即有两个不等正根,()22230443x k x x -+--=()222234430k x k x k -+--=12,x x , ()()2422212221223164343034433k k k k kx x k k x x k ⎧>⎪∆=---->⎪⎪⎪⎨+=-⎪-⎪--⎪=⎪-⎩,所以,M A M B ⊥()()11220,,,0MA MB x m y x m y ⋅=-⋅-=()()12120x m x m y y --+=()()()()1212220x m x m k x k x --+--=()()()222212121240kx x k m x x m k +-++++=()()22222222443124033k k k k m m k k k ⎛⎫--+⋅-+-++= ⎪--⎝⎭4242222244738314240k k k k m m k m k k ---+++-+-=,对恒成立,()22245330k m m m -+++-=23k >所以,解得,即,22450330m m m ⎧-++=⎪⎨-=⎪⎩1m =-()1,0M -当直线斜率不存在时,直线方程,此时,l 2x =()()2,3,2,3A B -,仍然满足,()()3,33,30MA MB ⋅=⋅-=M A M B ⊥所以这样的点存在,.()1,0M -【点睛】此题考查求双曲线方程,注意考虑图象限制范围,通过直线与双曲线位置关系求参数范围,结合韦达定理解决相关定点问题.21.设常数.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线:2t >Γ,与x 轴交于点A 、与交于点B .P 、Q 分别是曲线与线段AB 上的动()280,0y x x t y =≤≤≥l ΓΓ点.(1)用t 表示点B 到点F 距离;(2)设,,线段OQ 的中点在直线FP 上,求的面积;3t =||2FQ =AQP △(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在上?若存在,求点P 的坐Γ标;若不存在,说明理由.【答案】(1);(2;(3)存在,. 2BFt =+23P ⎛ ⎝【分析】(1)方法一:设出点坐标,根据两点间距离公式求解出的值, B BF 方法二:根据抛物线的定义,即可求得的值;BF (2)根据抛物线的性质,求得点坐标,即可求得的中点坐标,即可求得直线的方程,代Q OQ PF 入抛物线方程,即可求得点坐标,则的面积可求;P AQP △(3)设坐标,根据求得直线的方程和点坐标,再根据求得,P E 1PF FQ k k ⋅=-QF Q FP FQ FE +=E点坐标,则根据可求得点坐标. 22200048()8(6)48y y y +=+P 【详解】解:(1)方法一:由题意可知:设,则,∴(,B t ||2BF t ==+;||2BF t =+法二:由题意设,由抛物线的性质可知:,∴; (,B t ||22pBF t t =+=+||2BF t =+(2),,,,则, (2,0)F ||2FQ =3t =()3,0A ||1FA =∴∴,设的中点,||AQQ OQ D ∴,方程:, 3(2DPFk ==PF 2)y x =-联立,整理得:,解得:,(舍去), 22)8y x y x ⎧=-⎪⎨=⎪⎩2320120x x -+=23x =6x =∴的面积; AQP △117223A P S AQ x x =⋅⋅-==(3)存在,设,,则且,∴, 200(,)8y P y 2(,)8m E m 00220081628PF y yk y y ==--PF FQ ⊥200168FQ y k y -=直线方程为,∴,, QF 20016(2)8y y x y -=-22000016483(82)84Q y y y y y --=-=200483(8,)4y Q y -又因为四边形为矩形,所以,则, FPEQ FP FQ FE += 2200048(6,84y y E y ++∴,解得:,即, 22200048(8(6)48y y y +=+20165y=25P ⎛ ⎝∴存在以、为邻边的矩形,使得点在上,且.FP FQ FPEQ EΓ2(5P 【点睛】关键点点睛:解答本题第三问的关键在于利用矩形的两个特点去分析问题:(1)FPEQ ,由此可知,利用坐标完成计算;(2)平行四边形法则,由此可知向量关PF FQ ⊥1PF FQ k k ⋅=-系式.FP FQ FE +=。

2023年上海复旦大学附属中学高二下期中数学试卷及答案

2023年上海复旦大学附属中学高二下期中数学试卷及答案

复旦大学附属中学2022学年第二学期高二年级数学期中考试试卷一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.事件A 与事件B 是独立的,且11(),()23P A P B ==,则()P A B = ________.2.在100个人中,其中45人为女性,55人为男性,计划抽取20人测量身高.若按性别进行分层随机抽样,则应该抽取________位男性测量身高。

3.已知随机变量X 服从正态分布()2N 1,σ,若()()P X a P X a >=<,则=a _____________.4.7(13)x -的展开式中,2x 项的系数为________.5.已知一组数据12,,,n a a a …的平均数为6,那么1225,25,,25n a a a ++⋯+的平均数为_______.6.若曲线()2sin 384y f x x ==+在点ππ,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线383y ax =+垂直,则实数=a _____.7.从所有三位数中随机取一个,并假设取到每个三位数的可能性是相同的,则取到的是无重复数字的三位数的概率是___________.8.已知函数()7cos(37)y f x x n x ==++在定义域R 上不单调,则正整数n 的最小值是_________.9.以下是一些城市的海拔高度与该城市的大气压的对照表.我们已知大气压与海拔高度是近似线性的关系.城市海拔高度/m 大气压/Pa 北京31.299.86哈尔滨171.798.51上海4.5100.53昆明1891.480.80拉萨3658.065.23则我们可以利用一元线性回归分析(其中海拔高度为解释变量,大气压为反应变量),估计珠穆朗玛峰顶(海拔8848.9米)的大气压为________Pa (近似到小数点后两位).10.现有a 个白球、b 个黑球(其外观、大小完全一致),从中不放回地摸出k 个球,用(,,)X a b k 表示摸出的白球个数,则使得3((4,6,)2)4P X k ≥≥的k 的最小值为_______.11.已知()e ,0xf x a a =>,对于数列{}n a ,有()110,n n a a f a +==,若存在常数0M >使得对于任意的N n *∈,都有n a M≤,则a 的取值范围是________.12.小明同时掷3个骰子,在掷完后,小明有一次重掷的机会,即可以选择三个骰子中的任意多个进行重掷(可以是0个),并保留剩下骰子的点数,若最后点数之和为7则取得胜利.为了取得胜利,则小明会选择2个骰子进行重掷的概率为_______.二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.“3k =”是“2277C C k k -=”的()条件A.充要B.充分非必要C.必要非充分D.非充分非必要14.在实验“利用单摆周期估计重力加速度”中,我们依据的理论是单摆的周期公式T =,其中T 为单摆周期,g 为重力加速度,l 为单摆的摆长.改变单摆的摆长,并多次记录数据.若对以下各组数据做相关分析,相关系数最大的一组是()A .T 与lB.2T 与lC.ln T 与lD.cos T与l15.讲桌上放有两摞书,一摞3本,另一摞4本。

2022--2023学年上海市上海中学高二下学期期中英语试卷

2022--2023学年上海市上海中学高二下学期期中英语试卷

2022--2023学年上海市上海中学高二下学期期中英语试卷1. ________ health experts’ belief that giving people access to their health data will inspire them to eat better and exercise more, there’s evidence ________ their promise isn’t quite paying off.A.Despite of; / B.Despite; that C.Though; that D.In spite of; for 2. When humans develop machines that are smarter than they are and machines begin to improve themselves, they risk ________ the mathematician IJ Good called an “intelligence explosion”.A.what B.that what C.even if D.whatever3. His technique has developed to the point _____ he can help kill the latest computer virus going round the city.A.that B.which C.when D.where4. Only when the war, with all its unexpected consequences, is over ________.A.that any political impacts will begin B.will any political impacts beginC.and any political impacts will begin D.any political impacts will begin5. Addicted to shopping, I found that the items I bought lost their appeal right around ________ a new item caught my eye.A.the second when B.a second when C.the second D.a second6. The collectors dreamed of ________ a place to show off the collection in Latin America as a way to spark dialogue among artists across the diverse regions.A.there to be B.there being C.there having D.there would be 7. Researching findings show we spend about two hours dreaming every night, no matter what we ________ during the day.A.would have done B.should have done C.may have done D.must have done8. The invention of telegram ________ the transmission of messages to any part of the world withina few seconds.A.made possible B.made it possible C.made possibly D.made it possibly 9. With the meeting ________ in just a couple of hours, I didn’t have the time to worry about those unimportant things.A.beginning B.begun C.to begin D.would begin 10. Yesterday, the storm delayed us. ________ the storm we would have been here in time.A.If it were not for B.But for C.Unless D.But that11. In our discussion of instincts, we saw that there was reason to believe ________ we inherit must be of some very simple sort rather than any complicated or very definite kind of behavior.A.how B.when C.whatever D.since12. The dress proved such a hit ________ the London company who made the original for Diana turned it into an off-the-peg line.A.whenever B.as C.since D.that13. ________ your phone is a worthy assistant, there’s no substitute for a real camera when it comes to ________ the perfect picture.A.As; taking B.Whether; take C.Though; take D.While; taking 14. The economist argues that no society can surely be flourishing and happy, ________ of the members are poor and miserable.A.of which the far greater part B.of which far greater partC.of whom the far greater part D.of whom far greater part15. It is likely that we may ________ great benefits from such releases of genetically engineered organisms into the environment — providing they do what we expect them to.A.invalidate B.derive C.prohibit D.reserve16. His election campaigns were infamous for their cruelty — he often made sure that those who did not vote for him would never vote again — but the ________ of his involvement has never been clear.A.vision B.vulnerability C.depth D.misconception17. In contrast to Barbie’s fantasy figure and fashionable high heels, these dolls are ________ on girls from historical eras and come with storybooks about themselves.A.modeled B.synthesized C.popularized D.imposed18. Direction: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.A. competenceB. repetitiveC. dramaticallyD. paceE. routinely AB. beatingAC. blowing AD. worthy AE. shallowly BC. ease BD. readinessHow to prevent and fight anxiety?Lingering anxiety can keep you up at night, make you easily annoyed, weaken your ability to concentrate, and ruin your appetite. And the constant state of 1 generated by anxiety -- adrenaline (肾上腺素) pumping, heart racing, palms sweating-may contribute to high blood pressure and heart disease.How to prevent anxiety then?Meditate.Maybe you’re just nervous. If so, meditation is 2 of a try. It cultivates a calmness that will 3 anxious feelings and offer a sense of control. A study at the University of Massachusetts found that volunteers who took an 8-week meditation course, were considerably less anxiousafterward. People who are nervous find that they are 4 calmer with 20 minutes of meditation in the morning and another 20 minutes after dinner.Jog, walk, swim, or cycle. If you can’t make time for meditation, be sure to make time for regular exercise. Exercise can have the same calming effect as meditati on, particularly if it’s something 5 like running or swimming laps.Treatment?Remember to breathe. When you’re anxious, you tend to hold your breath or breathe too 6 . That makes you feel more anxious. Breathing slowly and deeply can have a calming effect.Let’s say you are anxious about your 7 on the job. Ask yourself “What, in particular, am I afraid that I’ll mess up?” Maybe you’re afraid that you get further behind and miss your deadlines. Or maybe you’re worried that you’re 8 it whenever you present your ideas in meetings. Are your worries reasonable? Have you had several near misses with deadlines? Are your suggestions 9 rejected? If not, the anxiety is needless. If there is a real problem, work on a solution: 10 yourself to better meet deadlines, or join a public speaking class.19. There has, in recent years, been an outpouring of information about the impact of buildings on the natural environment. Information which explains and promotes green construction design strives to _________ others of its effectiveness and warns of the dangers of ignoring the issue. Seldom do these documents offer any advice to practitioners, such as those designing mechanical and electrical systems for a building, on how to use this knowledge on a _________ level.Although there are a good many advocates of “green” construction in the architectural industry, able to list enough reasons why buildings should be designed in a (n) _________ way, that doesn’t translate into a booming green construction industry. Likewise, the fact that plenty of architectural firms have experience in green design is not enough to make green construction _________. The driving force behind whether a building is constructed with minimal environmental impact_________ the owner of the building; that is, the person financing the project. If the owner considers green design unimportant, or of secondary importance, then more than likely, it will not be_________ into the design.The commissioning (委任) process plays a key role in _________ the owner gets the building he wants, in terms of design, costs and risk. Owners who _________ the commissioning process, or fail to take “green” issues into account when doing so, often run into trouble once their building is up and running. Materials and equipment are installed as planned, and, at first glance, appear to fulfil their purpose adequately. _________, in time, the owner realizes that operational and maintenance costs are higher than necessary, and that the occupants are dissatisfied with the results. These factors in turn lead to higher ownership costs as well as increased environmental impact.In some cases, an owner may be __________ of the latest trends in green building design, which, however, does not necessarily lead to an interpretation that the client already has an idea of how green he intends the structure to be. Indeed, this initial interaction between owner and firm is the ideal time for a designer to outline and __________ the ways that green design can meet the client’s objectives. In this way, he may turn a project originally not __________green design into a potential candidate.Typically, when condiering whether or not to adopt a green __________, an owner will ask about additional costs or return for investment. In a typical project, landscape architects, mechanical andelectrical engineers are not involved until a much later stage. However, in green design, they have a role to play from they outset, since green design demands__________between these disciplines, which requires additional cost. However, there are examples of green design which have demonstrated__________costs for long-term operation, ownership and even construnction.1.A.preserve B.convince C.exploit D.accuse2.A.pracical B.measured C.tremendous D.theoretial3.A.professional B.groundbreaking C.innovative D.sustainable4.A.tap into experience B.live up to itsnameC.rise to fame D.come into being5.A.refers to B.lies with C.races against D.calls on6.A.knocked B.loaded C.factored D.stuffed7.A.concluding B.stressing C.ensuring D.acknowledging 8.A.skip B.transport C.isolate D.cover9.A.As a result B.On the contrary C.What’s more D.However 10.A.ignorant B.aware C.critical D.capable11.A.promote B.perceive C.attribute D.impose12.A.applited to B.anxious for C.destined for D.specific about 13.A.gesture B.approach C.origin D.patent14.A.competition B.calculation C.cooperation D.distinction15.A.increased B.extra C.fixed D.lower20. St Kilda is a tiny archipelage (群岛) of the North Atlantic Ocean. The islands are among the most spectacular, but the greatest fascination is that, for over a thousand years, people lived there and possessed a sense of community. Cut off from the mainland, the islanders had a distinct way of living their lives, mainly eating the seabirds that returned to breed on the rocks.Isolation also had a big effect upon St Kildans’ attitudes and ideas. The people sacrificed themselves year in and year out, in a constant battle to secure a livelihood. In such harsh conditions, life was only possible because the whole community worked together.In the 19th century St Kilda was subject to pressures from the outside world. Education, religion and tourism all attempte d to throw the St Kildans’ way of life into doubt. In the early 20th century, the strength of the community became weakened as contact with the rest of Britain increased. When disease cut their numbers, and wind and sea made it difficult to get adequate food, the St Kildans were forced to turn to the mainland for assistance.In 1930, the St Kildans finally agreed to abandon their homes. They settled on the Scottish mainland, not realizing it meant throwing themselves into the 20 century. As adults, they had to accept those values most Scots believe in. For instance, the islanders found difficult to base their existence upon money. They had never lived in a world where they bought goods and services from each other. The islanders showed themselves indifferent to the jobs they were given on the mainland. The labours asked of them were unskilled compared with the spectacular skills they had once performed in order to kill seabirds. Moreover, killing birds had once provided the community with food to survive. On the mainland, however, the tasks they were asked to perform did not provide them immediately with what was needed to keep them fed and warm.The history of the St Kildans after the evacuation (撤离), of their inability and lack of resolution to fit into urban society, makes sad reading. When they were resettled on the mainland, the St Kildans were forced to live in a society whose values were unacceptable and incomprehensible to the majority of them. For many, the move was a tragedy.1. According to Paragraph 3, the following factors lead to St Kildans seeking help from outside EXCEPT ________.A.unbearable wind B.insufficient food supplyC.contact with Britain D.worsening health2. After the St Kildans inhabited Scotland, they ________.A.soon learned how to buy goods and services from othersB.had trouble adapting to the value of dominant societyC.exhibited willingness to carry out their given jobsD.had the opportunity to show their skills of killing seabirds3. Which of the following is NOT about how people used to live on St Kilda?A.The major source of food was found locally.B.It was essential for people to help each other.C.Very few people had visited mainland Scotland.D.Money played an insignificant role in life.4. What is the passage mainly concerned with?A.The role of money in modern communities.B.How a community adapted to a different form of life.C.The destruction of an old-fashioned community.D.How a small community fight against opposite conditions.21.Depression hurts, Prozac can helpDepression isn’t just feeling down. It’s a real illness with real causes. Depression can betriggered by stressful life events, like divorce or a death in the family. Or it can appear suddenly, for no apparent reason.Some people think you can just will yourself out of a depression. That’s not true. Many doctors believe that one thing that may cause depression is an imbalance of serotonin — a chemical in your body. If this happens, you may have trouble sleeping. Feel unusually sad or irritable easily.Find it hard to concentrate. Lose your appetite. Lack energy. Or have trouble feeling pleasure.These are some of the symptoms that can point to depression—especially if they last for more than a couple of weeks and if normal, everyday life feels like too much to handle.To help fight depression, the medicine doctors now prescribe (开处方) most often is Prozac.Prozac isn’t a “happy pill.” It’s not a tranquilizer (镇静剂) . It won’t turn you into a different person.Some people do experience mild side effects, like upset stomach, headaches, difficulty sleeping, sleepiness, anxiety and nervousness. These tend to go away. within a few weeks of starting treatment, and usually aren’t serious enough to make most people stop taking it. However, if you are concerned about a side effect, or if you develop a rash (皮疹) , tell your doctor right away. And don’t forget to tell your doctor any other medicines you are taking. Some people should not take Prozac, especially people on MAO inhibitors (单胺抑制剂) .As you start feeling better, your doctor can suggest therapy or other means to help you ●through your depression. Prozac has been carefully studied for nearly 10 years. But remember,Prozac is a prescription medicine, and it isn’t right for everyone. Only your doctor can decide if Prozac is right for you— or for someone you love. Prozac has been prescribed for more than 17 million Americans. Chances are someone you know is feeling sunny again because of it.1. All the following are true EXCEPT ________.A.Tremendous determination is essential to getting rid of depression.B.Sleep disorder is one of the signs characteristic of depression.C.Depression can be caused by a combination of factors.D.Depression is a psychological state taking the form of low mood.2. What can we learn about Prozac from this piece of information?A.Prozac infuses depression patients with energy at the cost of modest side effects.B.Taking Prozac together with other prescriptions may give you a rash.C.A medical prescription must be acquired if you intend to take Prozac.D.Over 17 million Americans have been involved in studies of Prozac so far.3. This piece of information is most probably ________.A.an introduction to a scientific projectB.a part of prescription drug instructionsC.a part of a research report in a medical journalD.an advertisement of a medicine for depression22. Why do so many Americans distrust what they read in their newspapers? The American Society of Newspaper Editors is trying to answer this painful question. The organization is deep into a long self-analysis known as the journalism credibility project.Sad to say, this project has turned out to be mostly low-level findings about factual errors and spelling and grammar mistakes, combined with lots of head-scratching puzzlement about what in the world those readers really want.But the sources of distrust go way deeper. Most journalists learn to see the world through a set of standard patterns into which they plug each day’s events. in other wor ds, there is a conventional story line in the newsroom culture that provides a backbone and a ready-made narrative structure for otherwise confusing news.There exists a social and cultural disconnect between journalists and their readers, which helpsexp lain why the “standard patterns” of the newsroom seem alien to many readers. In a recent survey, questionnaires were sent to reporters in five middle-size cities around the country, plus one large metropolitan area. Then residents in these communities were phoned at random and asked the same questions.Replies show that compared with other Americans, journalists are more likely to live in upscale neighborhoods, have maids, own Mercedeses, and trade stocks, and they’re less likely to go to church, do volunteer work, or put down roots in a community.Reporters tend to be part of a broadly defined social and cultural elite (精英) , so their work tends to reflect the conventional values of this elite. The astonishing distrust of the news media isn’t rooted in inaccuracy or poor reportorial skills but in the daily conflict of world views between reporters and their readers.This is an explosive situation for any industry, particularly a declining one. Here is a troubled business that keeps hiring employees whose attitudes vastly annoy the customers. Then it sponsors lots of conferences and a credibility project dedicated to wondering why customers are annoyed and fleeing in large numbers. But it never seems to get around to noticing the cultural and class biases that so many former buyers are complaining about. If it did, it would open up its diversity program, now focused narrowly on race and gender, and look for reporters who differ broadly by outlook, values, education, and class.1. What is the passage mainly about?A.The objectives and findings of a journalism credibility project.B.The personnel structure of the declining newspaper industry.C.The causes of the public disappointment in newspapers.D.The indefinite needs of newspaper readers in America.2. The results of the journalism credibility project turned out to be ________.A.somewhat conflicting B.rather trustworthyC.quite superficial D.very enlightening3. According to the author, the fundamental problem of journalists lies in their ________.A.conventional lifestyle in upscale communitiesB.inflexible approach to handling news storiesC.contradictory ways of making sense of the worldD.shared values disconnected from general readers4. Which one of the following statements is TRUE about the newspaper industry?A.It fails to satisfy its readers due to annoying reporters.B.It hasn’t realized the real problem despite its efforts.C.It’s urgent that it focus on accurate and skillful reporting.D.It should be aware of underlying prejudice in race and gender.23. Directions: Read the following passage. Fill in each blank with a proper sentence given in the box. Each sentence can be used only once. Note that there are two more sentences than you need.The Minoans: A Forgotten PeopleThe first advanced culture in ancient Greece was the Minoan culture. For thousands of years, knowledge of these people survived only in Greek myths. In the late 19 h century, archaeologists began to unearth ruins. This inspired Arthur Evans to begin digging on the island of Crete near mainland Greece. On a dig in Kbossos, Evans found an ancient palace Experts think that it was the palace of King Minos, acentral figure in many Greek myths.1 With his team, he uncovered a vast structure, varied works of art, and many hieroglyphic records. These finds, together with later finds, comprise all that experts know about Minoan culture.From the evidence experts gathered, it is clear that the Minoans were ahead of their time. The palace at Knossos was five floors high with hundreds of rooms. Buildings throughout the ancient city had plumbing and flush toilets. Stone pavement lined the surfaces of the roads. In addition, the Minoans possessed a highly developed naval fleet for long-distance trade. 2 These records confirm the central role of commerce in culture.Their analysis of the evidence also offers insight into some aspects of Minoan society. 3 Ruins and artwork suggest that people of all classes enjoyed a high degree of social and gender equality. Religious icons(图符)show that Minoans worshiped bulls, the natural world, and many female gods.An unusual feature of Minoans culture was the pursuit of leisure interests. Sport and visual arts were central to Minoan life. Boxing and bull jumping, a sport in which players jumped over live bulls, were popular. Although bull jumping may have served some ritual purpose, experts believe that it was done mostly for fun. Similarly, although some works of art showed political and religious themes, other works served only as pleasant decor(装饰品). 4The Minoans met their demise after a series of natural disasters. Experts believe that group from the Greek mainland capitalized on these events and looked over the island.and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.A rare hole has opened up in the ozone layer above the Arctic, in 1 scientists say is the result of unusually low temperatures in the atmosphere above the north pole.The hole has reached record dimensions, but is not expected to pose any danger to humans 2 it moves further south. 3 it extends further south to overpopulated areas, such as southern Greenland,people will be at increased risk of sunburn. However, on current trends the hole is expected to disappear altogether in a few weeks.Low temperatures in the northern polar regions led to an unusual stable polar vortex (极地漩涡), and the presence of ozone-destroying chemicals such as chlorine (氯) in the atmosphere - from human activities-caused the hole 4 (form) .It is now too early to say 5 the unusually stable Arctic polar vortex conditions are linked with the climate crisis, or part of normal stratospheric weather variability. Peuch said there were no direct implications for the climate crisis. Temperatures in the region are already increasing, 6 (slow) the destruction of ozone.7 a hole over the Arctic is a rare event, the much larger hole in the ozone layer over the Antarctic has been a major cause for concern for more than four decades. The production of ozone-destroying chemicals 8 (reduce) dramatically, under the 1987 Montreal Protocol (蒙特利尔协议) , but some sources appear still to be functioning.New sources of ozone-destroying chemicals were not a factor in the hole 9 (observe) in the Arctic, said Peuch. “However, this is a rem inder that one should not take the Montreal Protocol measures for granted, and that observations from the ground and from satellites are central to avoiding a situation 10 the ozone-destroying chemical level in the stratosphere could increase again.”25. 我从未想到,这支管弦乐队会将其人气归功于互联网的兴起。

2022-2023学年上海中学高二(下)期中语文试卷

2022-2023学年上海中学高二(下)期中语文试卷

2022-2023学年上海中学高二(下)期中语文试卷一、积累应用15分1.(6分)按要求填空。

(1),,以浮游尘埃之外。

(司马迁《屈原列传》)(2),身死人手。

(贾谊《过秦论》)(3),中原北望气如山。

(陆游《书愤》)(4)李贺《李凭箜篌引》一诗点明演奏时节及音乐效果的两句诗是,。

2.(6分)解释句中加点字的意思。

(1)沛公让.不受(《沛公约法三章》)(2)君弟.重射(《孙膑指挥若定》)(3)妻为具.食(《举案齐眉》)(4)笃.亲念故(《高允仁恕简静》)(5)楚人未既济.(《宋襄公治军》)(6)不忍委.之(《荀巨伯探病友》)3.(3分)下列有关乡土社会的特点,不能用来解释朱先生成功化解矛盾原因的一项是()白鹿原上,李寡妇先后将自家的一块水地卖给了鹿子霖和白嘉轩。

为了争夺这块地,白、鹿两家剑拔弩张,都申明绝不就此罢休,倾家荡产也要打赢官司。

可白鹿书院朱先生却用两张纸条化解了双方矛盾。

致嘉轩弟(白鹿书院朱先生)倚势恃强压对方,打斗诉讼两败伤。

为富思仁兼重义,谦让一步宽十丈。

A.差序格局B.熟人社会C.无讼D.礼治社会二、阅读45分4.(9分)阅读下文,完成各题。

《记念刘和珍君》(节选)鲁迅三在四十余被害的青年之中,刘和珍君是我的学生。

学生云者,我向来这样想,这样说,现在却觉得有些踌躇了,我应该对她奉献我的悲哀与尊敬。

她不是“苟活到现在的我”的学生,是为了中国而死的中国的青年。

她的姓名第一次为我所见,是在去年夏初杨荫榆女士做女子师范大学校长,开除校中六个学生自治会职员的时候。

其中的一个就是她;但是我不认识。

直到后来,也许已经是刘百昭率领男女武将,强拖出校之后了,才有人指着一个学生告诉我,说:这就是刘和珍。

其时我才能将姓名和实体联合起来,心中却暗自诧异。

我平素想,能够不为势利所屈,反抗一广有羽翼的校长的学生,无论如何,总该是有些桀骜锋利的,但她却常常微笑着,态度很温和。

待到偏安于宗帽胡同,赁屋授课之后,她才始来听我的讲义,于是见面的回数就较多了,也还是始终微笑着,态度很温和。

上海市2023学年高二下学期期中数学试题(解析版)

上海市2023学年高二下学期期中数学试题(解析版)

青浦高级中学2022学年第二学期高二年级数学期中2023.4一、填空题(第1-6题每题4分,第7-12题每题5分,共54分)1. 等差数列首项为2,公差为2,则等差数列的通项公式为______{}n a n a =【答案】 2n 【解析】【分析】直接根据基本量写出等差数列通项公式【详解】设等差数列的公差为,由题意,. {}n a d 2(1)22n a n n =+-⨯=故答案为:2n 2. 两数1与4的等比中项为______ 【答案】 2±【解析】【分析】根据等比中项的概念进行计算. 【详解】1与4的等比中项为.2=±故答案为:.2±3. 将循环小数化为分数:______(循环节为23) 0.23= 【答案】2399【解析】【分析】利用无穷等比数列的求和公式进行求解【详解】根据时,可得: 1q <111111n a a a q a q q-+++=- . 2110.23230.230.230.230.231100100991100=+⨯+⨯+==- 故答案为:23994. 无论我们对函数求多少次导数,结果仍然是它本身;这就像我们在生活中无论遇到多少艰难险e x y =阻,都要不忘初心,坚持自我,按照自己制定的目标,奋勇前行!已知函数,则它的导函()e xf x x =⋅数______ ()f x '=【答案】()1e xx +【解析】【详解】根据导数的乘法运算法则, 可知,()()()e e e 1e x x x x x x x x '''⋅=⋅+⋅=+所以,.()()1e xf x x '=+故答案为:.()1e xx +5. 设函数,则___. ()ln xf x x=(1)f '=【答案】 1【解析】【分析】求出函数的导函数,代入计算可得; 【详解】解:因为,所以,所以; ()ln x f x x =()21ln x f x x -'=()21ln1111f -'==故答案为:16. 函数在处的切线方程为______ ()sin f x x =π1,62⎛⎫⎪⎝⎭【答案】 12y =+【解析】【分析】求导,根据切点和导数的几何意义得到切线斜率,由点斜式写出方程.【详解】,则,于是在处的切线斜率为,故切线方程()sin f x x =()cos f x x '=π1,62⎛⎫⎪⎝⎭π6f ⎛⎫= ⎪⎭'⎝为:,即. 1π26y x ⎫-=-⎪⎭12y =故答案为: 12y =+7. 二项式的展开式中,所有的系数之和为______ ()51x +【答案】 32【解析】【分析】令,即可得出答案. 1x =【详解】令,1x =即可得出二项式展开式中,所有项的系数之和为. 5232=故答案为:.328. 某同学有4本相同的小说书,1本散文书.从中取出4本书送给4个朋友,每人1本,则不同的赠法有______种【解析】【分析】根据题意,分为选出的4本书都是相同的小说书和选出的4本书中3本相同的小说和1本散文书,两种情况,结合分类计数原理,即可求解.【详解】若选出的4本书都是相同的小说书时,此时只有1中赠法; 若选出的4本书中3本相同的小说和1本散文书时,有4中不同的赠法, 由分类计数原理得,共有种不同的赠法. 145+=故答案为:.59. 数列满足:,,且(,),则该数列前100项和{}n a 11a =23a =21n n n a a a ++=-n ∈N 0n >100S =______ 【答案】 5【解析】【分析】根据递推公式求得数列前几项,观察可得是以6为周期的数列.进而求出{}n a ,即可根据周期性得出答案.1234560a a a a a a +++++=【详解】由已知可得,,,,,32a =41a =-53a =-62a =-,,,711a a ==823a a ==932a a ==所以,是以6为周期的数列. {}n a 又,1234560a a a a a a +++++=所以,12345699101000S a a a a a a a a ++++++++=L .()123456123416a a a a a a a a a a =+++++++++13215=++-=故答案为:5.10. 星期一小明在参加数学期中考试,那么再过天后是星期______(填一、二、三、四、五、六、1002日) 【答案】 三【解析】 【分析】化简,结合二项展开式求得除以的余数,即可求解.333331002(2)2(71)2=⋅=+⋅7【详解】由题意,可得.333331002(2)2(71)2=⋅=+⋅又由,3303313232333333(71)22(C 7C 7C 71)+⋅=⋅⋅+⋅++⋅+ 所以除以的余数为,所以再过天后是星期三. 1002721002故答案为:三 11. 的展开式中,含有的项为______()6212x x ++4x 【答案】 4195x【分析】表示有个因式相乘,根据的来源分析即可.()6212x x++6()212x x ++4x 【详解】表示有个因式相乘,可能来源如下:()6212x x ++6()212x x++4x(1)有个提供,剩下的个提供常数,此时系数是;4()212x x ++x 214x 46C 15=(2)有个提供,剩下的个提供常数,此时系数是;2()212x x ++22x414x 2262C 60⨯=(3)有个提供,个提供,个提供常数,此时系数是;2()212x x++x 122x114x 2164C C 2120⨯⨯=于是的系数为,含有的项为. 4x 1560120195++=4x 4195x 故答案为:4195x 12. 某数学兴趣小组在阅读了《选择性必修第一册》中数列的课后阅读之后,对斐波那契数列产生了浓厚的兴趣.书上说,斐波那契数列满足:,,的通项公式为{}n F 121F F ==()123n n n F F F n --=+≥{}n F .在自然界,兔子的数量,树木枝条的数量等都符合斐波那契数n nn F ⎤⎥=-⎥⎦列.该学习兴趣小组成员也提出了一些结论:①数列是严格增数列;②数列的前n 项和满足;{}1n n F F +-{}n F n S 21n n S F +=-③;④.222121n n n F F F F F ++++= ()2122321222n n n F F F F F F F -++++= 那么以上结论正确的是______(填序号) 【答案】②③ 【解析】【分析】根据数列的特征以及递推公式,即可判断①;由已知可得,累加法即可得出11n n n F F F +--=②;,变形可得时,,然后累加,即可得出③;举例,验2112F F F =2n ≥211n n n n n F F F F F +-=-1n =证,即可判断④.【详解】对于①,由题意可知,,,. 210F F -=3211F F F -==4321F F F -==由已知,则当时,单调递增.0n F >2n ≥{}n F 所以,时,由已知可知,单调递增,且. 3n ≥11n n n F F F +--={}1n n F F +-10n n F F -->所以数列在时,为严格增数列. {}1n n F F +-3n ≥但是该数列的前三项不满足,故①错误; 对于②,当时,有2n ≥, 11F =, 210F F -=F F F -=,432F F F -=,L 11n n n F F F +--=,21n n n F F F ++-=两边同时相加可得,, 212101n n n F F F F S +=+++++=+ 所以,,故②正确;21n n S F +=-对于③,由已知可得,,2112F F F =, ()222312312F F F F F F F F =-=-,()233423423F F F F F F F F =-=-L ,()21111n n n n n n n n F F F F F F F F +-+-=-=-两边同时相加可得,22212n F F F +++ 122312342311n n n nF F F F F F F F F F F F F F +-=+-+-++- ,故③正确;1n n F F +=对于④,当时,左边为,右边为,显然不成立,故④错误. 1n =121F F =()()224239F F F =+=所以,结论正确的是②③. 故答案为:②③.【点睛】关键点睛:由递推公式推得,,进而累加法,逐项相消即可得出.11n n n F F F +--=n S 二、选择题(13,14题每题4分,15,16题每题5分,共18分)13. 5个人排一排,甲乙不相邻,不同的排法有( ) A. 144种 B. 72种 C. 36种 D. 18种【答案】B 【解析】【分析】由题意可先安排除甲乙之外的3人,再用插空法排甲乙2人,即得答案. 【详解】由题意5个人排一排,甲乙不相邻,先排其余3人,再将甲乙插空即可, 故不同的排法有种, 3234A A 72=故选:B14. 二项式的展开式中,有理项有( )项(121A. 5 B. 6C. 7D. 8【答案】C 【解析】r【详解】二项式展开式的通项为(121+,.12211212C 1C r rr rr r T x -+=⨯⨯=⨯0,1,2,,12r = 所以,当为偶数时,该项为有理项,即,共7项. r 0,2,4,6,8,10,12r =故选:C.15. 对于以下结论:①若公比,那么等比数列前n 项和存在极限;[)()1,00,1q ∈-⋃②为数列最大的项,那么对任意的n (,,)都成立; k a {}n a k n a a >n ∈N 0n >n k ≠③函数的导数为,若,那么为函数的极值点; ()f x ()f x '()00f x '=0x x =④函数的导数为,若恒成立,那么是严格增函数. ()f x ()f x '()0f x '≥()f x 正确的有( ) A. 0个 B. 1个 C. 2个 D. 3个【答案】A 【解析】【分析】取特殊值、特殊数列、特殊函数,即可说明各个结论,进而得出答案. 【详解】设数列前项和为, n n S 对于①,当时,,1q =-()111n n a a -=-所以,当为奇数时,; n 1n S a =当为偶数时,.n 0n S =又,所以此时,没有极限,故①错误;10a ≠n S 对于②,对于数列,可知中的每一项都为数列中最大的项,但是显然不成立,故②1n a ={}n a k n a a >错误;对于③,对于函数,有恒成立,()3f x x =()230f x x '=≥所以,函数为R 上的增函数,即函数没有极值点. ()f x 又,显然不是的极值点,故③错误; ()00f '=0x =()f x 对于④,对于常函数,有恒成立, ()1f x =()00f x '=≥但显然不是单调递增函数,故④错误. ()f x 所以,正确的个数为0个. 故选:A .()f x ()g x ()()f x g x ''>(),x a b ∈A.B.()()f x g x <()()f x g x >C. D.()()()()f x g b g x f b +<+()()()()f x g a g x f a +>+【答案】CD 【解析】【分析】对于AB ,利用特殊函数法,举反例即可排除;对于CD ,构造函数,利()()()h x f x g x =-用导数与函数单调性的关系证得在上单调递增,从而得以判断.()h x R 【详解】对于AB ,不妨设,,则,,满足题意, ()2f x x =()1g x =()2f x '=()0g x '=若,则,故A 错误(排除), ()1,x a b =∈()()21f x g x =>=若,则,故B 错误(排除);()0,x a b =∈()()01f x g x =<=对于CD ,因为,在上的导函数存在,且, ()f x ()g x R ()()f x g x ''>令,则,所以在上单调递增,()()()hx f x g x =-()()()0h x f x g x '=-'>'()h x R 因为,即,所以, (),x a b ∈a x b <<()()()h a h x h b <<由得, ()()h x h b <()()()()f x g x f b g b -<-则,故C 正确; ()()()()f x g b g x f b +<+由得, ()()h a h x <()()()()f a g a f x g x -<-则,故D 正确. ()()()()f x g a g x f a +>+故选:CD.三、解答题(14+14+14+18+18,共78分)17. (1)已知等比数列首项为,公比为q (),前n 项和为,请推导等比数列的求和公{}n a 1a 1q ≠n S 式:;()111n n a q S q-=-(2)已知等差数列前n 项和为,满足,,求. {}n b n T 15b =116T b =n T 【答案】(1)答案见解析 ;(2). ()112n n T n -=【解析】【分析】(1)直接利用错位相减法即可求解;(2)先求等差数列的公差,然后利用等差数列前n 项和公式即可求解. 【详解】(1)的前n 项和为{}n a ,①211231111n n n S a a a a a a q a q a q -=++++=++++两边同乘公比q 得,② 23111111n n n qS a q a q a q a q a q -=+++++ ①②得,-()()11111nnn q S a a q a q-=-=-因为,所以.1q ≠()111n n a q S q-=-(2)设等差数列的公差为,则, {}n b d 11161,51110115555255b d d T b d d b ⨯=+=+++==因为,所以,所以,所以, 116T b =555555d d +=+1d =-()116n n b b n d =+-=-所以.()()11122n n n b b n n T +-==18. 已知二项式(,)的展开式中第五项的系数与第三项的系数的比是.22nx ⎫+⎪⎭n ∈N 0n >10:1(1)求展开式中含的项 1x -(2)求系数最大的项 【答案】(1) 13112T x -=(2)或17261792T x-=1171792T x -=【解析】【分析】(1)由已知得出二项式展开式的通项为,然后根据已知列出方程式,整理求5212C n r rr r nT x-+=⋅解即可得出.进而由,得出,代入通项即可得出答案; 8n =8512r-=-2r =(2)设第项的系数为,然后求解不等式组,得出或.代入通项,1r +182C rrr a +=⋅112r rr r a a a a +++≥⎧⎨≥⎩=5r 6r =即可得出答案. 【小问1详解】由已知可得,二项式展开式的通项为,. 52122C 2C rn rn rr r rr n n T x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭0,1,2,,r n = 所以,,44222C 102C nn⋅=⋅即,()()422!2!104!4!2!2!n n n n ⋅⋅=⨯--整理可得,,解得,或(舍去负值), 25240n n --=8n =3n =-所以,.8n =由可得, , 8512r-=-2r =所以,展开式中含的项为.1x -2211382C 112T x x --=⋅⋅=【小问2详解】由(1)可知,该二项式展开的第项的系数为.1r +182C r rr a +=⋅设第项系数最大,则应有,1r +112r rr r a a a a +++≥⎧⎨≥⎩即, 118811882C 2C 2C 2C r r r r r r r r --++⎧⋅≥⋅⎨⋅≥⋅⎩即,解得.()()29128r r r r ⎧≤-⎪⎨+≥-⎪⎩56r ≤≤因为,所以或. N r ∈=5r 6r =当时,;=5r 825175522682C 1792T xx--=⋅⋅=当时,.6r =83066112782C 1792T xx --=⋅⋅=综上所述,系数最大的项为或.17261792T x-=1171792T x -=19.某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P 与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%) (1)将日利润(元)表示成日产量(件)的函数;(2)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值. 【答案】(1)y=-+3600(1≤x≤40)(2)该厂的日产量为30件时,日利润最大,其最大343x 值为72000元 【解析】【分析】(1)由题为实际问题,可利用题目给出的条件;正品率=产品的正品件数÷产品总件数×100%,和,建立相应的函数关系;(注意定义域).242004500x P -=(2)由(1)已知函数的解析式,可运用导数求出函数的单调区间和最值.即:为函数的增区()0f x '>间,反之为减区间.结合实际意义可得.【详解】(1) 224200420040002000(1)45004500x x y x x--=⨯-⨯-3436003x x =-∴ 所求的函数关系是. 343600(,140)3y x x x N x *=-∈≤≤(2) 显然,令,解得. 2'36004y x =-'0y =30x =列出的变化情况如下表所示: ,,x y y 'x (1,30) 30 (30,+∞) y′ + 0 - y ↗极大值 72000↘由上表得,当时,函数取最大值, 30x =343600(,140)3y x x x N x *=-∈≤≤最大值为(元) 3436003030720003⨯-⨯=∴ 该厂的日产量为件时,日利润最大,其最大值为元.307200020. 已知数列满足,.{}n a 11a =()1132n n n a a n --=+≥(1)求,2a 3a (2)求数列的通项公式{}n a (3)如果数列满足,,若对,恒成立,求{}n b 32nn n b a =-()1n n n S b =-2n nA SB S ≤-≤N n ∈0n >的最小值B A -【答案】(1);24a =313a =(2) 312n n a -=(3)2512【解析】【分析】(1)根据数列递推式即可求得答案; (2)利用累加法即可求得数列的通项公式;(3)利用(2)的结论可得,以及的表达式,分类讨论求得的最大值和最n b ()1nn n S b =-()1nn n S b =-小值,结合函数单调性可得的最值,再结合恒成立,可得范围,即可求得2n nS S -2nn A S B S ≤-≤,A B 答案.【小问1详解】由题意得;212112343;a a a --++===2312313934313a a a --==++==+【小问2详解】,()111132,3n n n n n n a a n a a ----=-=+≥∴ ,2213214313133,3,,3,n n n a a a a a a a a --∴-====--- 累加可得, ()1113123133 (31333332)n n n n a a --=---++++==-又,又也适合该式, 1311,2n n a a =∴-=11a =故. 312n n a -=【小问3详解】由(2)知, ()311,1,N,0231,222n n n n n n n a b a S n n ⎛⎫=-=-∴=- -∴-∈⎭=>⎪⎝当n 为奇数时,, 111122n nn S ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭单调递减,且, n S ∴n 112⎛⎫> ⎪⎝⎭1+; 1131122n S S ∴<≤=+=当n 为偶数时,, 111122n n n S ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭单调递增,且, n S ∴n 112⎛⎫< ⎪⎝⎭1-,而, 21n S S ∴≤<22133==,1244n S S ⎛⎫∴≤< ⎪⎝⎭1-综上,的最大值和最小值分别为,,函数在上单调递增, n S 32342y t t =-()0,∞+由对,恒成立, 2n nA SB S ≤-≤N n ∈0n >∴, min max 232232321,334122642n n n n A S B S S S ⎛⎫⎛⎫≤-=-=-≥-=-= ⎪ ⎪⎝⎭⎝⎭的最小值为. B A ∴-1232561212⎛⎫--= ⎪⎝⎭21. 已知函数()ln 1f x x ax =++(1)当时,求的最大值1a =-()f x (2)讨论函数的单调性()f x (3)对任意的,都有成立,求实数的取值范围 ()0,x ∈+∞()e xf x x ≤a 【答案】(1)0(2)答案见解析(3).(],1-∞【解析】 【分析】(1)求导,研究函数的单调性,从而得出最值;(2)结合函数的定义域,分类讨论的范围,解导函数的不等式即可;a (3)先证明恒成立,分析出,先找到符合题意的的范围, ()e 10xh x x =--≥(ln )0h x x +≥a 然后证明该范围的补集不符题意即可.【小问1详解】时,,1a =-()ln 1f x x x =-+由,所以, 0x >()111x f x x x-'=-=当时,,所以函数在上单调递增;01x <<()0f x ¢>()f x ()01,当时,,所以函数在上单调递减;1x >()0f x '<()f x ()1,+∞故函数;()()max 1ln1110f x f ==-+=【小问2详解】定义域为,, (0,)+∞()1f x a x '=+当时,,在上递增; 0a ≥()10f x a x'=+>()f x (0,)+∞当时,令,解得,令,解得. a<0()10f x a x '=+>10,x a ⎛⎫∈- ⎪⎝⎭()10f x a x +'=<1,x a ∈-+∞⎛⎫ ⎪⎝⎭于是时递增;时递减 10,x a ⎛⎫∈- ⎪⎝⎭()f x 1,x a ∈-+∞⎛⎫ ⎪⎝⎭()f x 【小问3详解】任意都有成立,故,即. ()0,x ∈+∞()e x f x x ≤()ln 1e xf x x ax x =++≤ln e ln 1x x x ax +≥++设,由增函数加增函数得增函数,在上单调递增,()ln g x x x =+()g x ()0,x ∈+∞又,,故存在唯一的,使得; 1110e e g ⎛⎫=-< ⎪⎝⎭(1)10g =>01,1e x ⎛⎫∈ ⎪⎝⎭0()0g x =设,,当时,单调递增, ()e 1x h x x =--()e 1xh x '=-0x >()0h x '>()h x 当时,单调递减,0x <()0h x '<()h x 于是时,取得最小值,故恒成立.0x =()h x (0)0h =()0h x ≥于是,即, ln (ln )e (ln )10x x h x x x x ++=-+-≥ln e ln 1x x x x +≥++当,即时取得等号.ln 0x x +=0x x =显然时,符合题意;1a ≤ln e ln 1ln 1x x x x x ax +≥++≥++当时,对不等式,取,即,1a >ln e ln 1x x x ax +≥++0x x =00ln 00e ln 1x x x ax +≥++根据上面的分析:,得到,即00ln 00eln 1x x x x +=++00ln 0000ln 1e ln 1x x x x x ax +++=≥++0(1)0a x -≥, 但,,即得到矛盾,于是不成立. 1a >01,1e x ⎛⎫∈ ⎪⎝⎭0(1)0a x -<1a >综上, 1a ≤。

上海市重点中学2022-2023学年高二第二学期期中测试英语试卷(含答案)

上海市重点中学2022-2023学年高二第二学期期中测试英语试卷(含答案)

上海市重点中学2022-2023学年高二第二学期期中测试英语试卷(完卷时间:120分钟满分:140分)2023年04月第I卷(共100分)I. Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. In a coffee shop. B. On a farm.C. In a furniture store.D. In a theatre.2. A. Cleaning a house. B. Finding things in the house.C. Living a simple life.D. Doing housework efficiently.3. A. Calming the woman down. B. Playing bridge.C. Reading a book.D. Reflecting on himself.4. A. The man recommends people to speak the same language.B. The woman thinks it unnecessary to save dying languages.C. The woman admires those devoted to preserving dying languages.D. The man appeals for more action to be taken to protect dying languages.5. A. He has realized his own problem.B. The woman is sure to get a second job.C. He disagrees with the woman’s comments.D. The woman should care more about money.6. A. She has many friends to text. B. She ca n’t focus her mind on study.C. She can’t make long speeches.D. She has many classes to attend.7. A. Enjoy her college life. B. Put off hard assignments.C. Set a post-college goal.D. Ease academic pressure.8. A. It makes no sense. B. It needs training.C. It can’t solve her problem.D. It is worth trying.9. A. She is a music lover. B. She is good at asking questions.C. She prefers art to sports.D. She knows Brazilians well.10. A. The specials are the man’s best choice.B. She is fully confident of the quality-steak.C. Her house is a suitable place for having steak.D. The man should find by himself the nicest wine.Section BDirections: In Section B, you will hear one longer conversation and two short passages. After each conversation or passage, you will be asked several questions. The conversation and the passages will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 14 are based on the following conversation.11. A. Cars. B. Computers. C. Dollars. D. Services.12. A. It’s the real money paid to purchase items.B. Each Time Dollar records the value of trading stuff.C. Different music lessons equal different Time Dollars.D. It represents the service time you exchange with others.13. A. To provide him with a part-time job.B. To ensure him that he can serve others.C. To guarantee him that he can make a living.D. To demonstrate to him how barter is kept on.14. A. To apply for membership. B. To sign up for walking.C. To use the free pass.D. To check the time for barter. Questions 15 through 17 are based on the following passage. 15. A. Have a whole idea of the character’s look.B. Examine the actor’s or the actress’ face and body.C. Try various colors on actors’ or actresses’ hair.D. Get a clear picture of the character’s skin tone.16. A. A film with a magic ending. B. A film stimulating her creativity.C. A film reflecting her delicacy.D. A film with several celebrities.17. A. They both lead the fashion. B. They both emphasize details.C. They both tell good stories.D. They both require harmony. Questions 18 through 20 are based on the following passage.18. A. The ability to recall. B. The invention of camera.C. The chance of revisiting.D. The application of wi-fi.19. A. To send us to sleep. B. To develop technology.C. To refresh our memory.D. To offer us comfort.20. A. Digital camera. B. Fantastic daydream.C. Memory journey.D. Virtual reality.II. Grammar and VocabularySection ADirections: After reading the passage below, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.Dear Easy,I wouldn’t put too much stock in what your “literary” friends say; they sound like bores. When it comes down to it, people who think about reading in terms of what “counts” don’t seem to actually enjoy books all that much. Their moralistic (说教的) gloom is evident in the extent (21)_______ _______ reading has come to resemble exercise, with readers tracking their word-count metrics, trying to improve their speed.(22)_______ some disciples of this culture are quick to dismiss audiobooks as a shortcut, they cannot seem to agree on why, exactly, listening is an inferior form of engagement. Some cite studies that have shown people who listen to books retain less than those who read them, which (23)_______ (bind) up with how tempting it is to do other things while listening. (24)_______ insist that audiobooks eliminate the reader’s responsibility to interpret things like irony, tone, and inflection, given that the person on the recording is doing the work of conveying the emotions in the book for them.The larger problem, however, is in viewing books as (25) _______ means to some other end. Many people who aspire to read more are motivated by the promise that doing so will prevent cognitive decline, improve brain connectivity. Some assume that the purposeof reading is (26)_______ (absorb) knowledge or nuggets of trivia that one can use in order to demonstrate being “well read”. I’d be willing to bet, Easy Listening, that your earliest experiences with the joy of literature were aural. Most of us were read to by adults before we learned to read ourselves, and listening to audiobooks recalls the distinctive delight of (27)_______ (tell) a story.If you’re like mos t people I know, you probably find it difficult to recall the last time a book regardless of (28)_______ you consumed it — succeeded in altering your consciousness, suggesting that many books you’ve encountered have failed to live up to their potential.My advice, Easy, is to be (29)_______ (discriminating) about the medium and more choosy about the books you pick up. If you find that your mind is wandering or that you’re not able to fully enter into the reality of the narrative, (30)_______ (consider) that this might be a problem with the content, not the mechanism through which you are experiencing it.Faithfully,CloudSection BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is oneword more than you need.struggle roughly major causes AB.charged AC.featureAD.significantly BC.motives BD.identify CD.potential ABC.ruled The Science Behind Why People Give Money to CharityThis question has fascinated behavioral scientists for decades: why do we give money to charityThe explanations for charitable giving fall into three broad categories, from the purely altruistic(利他的). The “impurely” altruistic — I donate because I obtain value from knowing I contribute to the social good for the charity. And the the not-at-all altruistic — I donate because I want to show off to (31)_______ mates how rich I am.But are these (32)_______ strong enough to enable people to donate as much as they would want to Most people support charities in one way or another, but often we (33)_______to make donations as often as we think we should. Although many people would like to leave a gift to charity in their will, they forget about it when the time comes. Our research shows that if the will-writer just asks someone if they would like to donate, they are more likely to consider it and the rate of donation (34)_______ doubles.Many people are also aware that they should donate to the (35)_______ that have the highest impact, but facts and figures areless attractive than narratives. In a series of experiments, it was found that people are much more responsive to charitable requests that (36)_______ a single, identifiable beneficiary(受益者), than they are to statistical information about the scale of the problem being faced. When it comes to charitable giving, we are often (37)_______ by our hearts and not our heads.Another of the (38)_______ findings from the research in this area is that giving is fundamentally a social act. One study shows that people give (39)_______ more to their university if the person calling and asking for their donation is their former roommate. Researchers found that when JustGiving donors see that the donor before them has made a large donation, they make a larger donation themselves.In summary, behavioural scientists (40)_______ a range of factors that influence our donations, and can help us to keep giving in the longer term. This is great news not just for charities, but also for donors.III. Reading ComprehensionSection ADirections: For each blank in the following passages there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.I forgot to pay my property tax last year. Was it a sign of early onset dementia(痴呆) Had I spent last September as ananti-government tax resister and the entire month of September had (41) ________ my mind Then I realized the real problem: I have notification (42) ________.Since 2020, many of us have lived (43) ________ online, relying on a trillion apps to send helpful, pinging notifications. So many notifications that they’ve become a waterfall of sound I no longer hear. I’ve grown (44) ________ of every notification. I live in a continuous state of “oops.”My bad decisions and my (45) ________ are to blame. My first error was inviting these pings and beeps into my life decades ago. As someone with a memory as reliable as an inattentive goldfish’s, I once depended on a detailed paper calendar and to-do list system to keep me on (46) ________. My careful notes worked for years. But I was eventually (47) ________ transferring all the birthdays from one year’s calendar to the next. The coming of the PalmPilot (掌上电脑) thrilled me: I could enter the info once and, five days before each loved one’s birt hday, the device would automatically inform me of the coming date.That little PalmPilot was a gateway drug. I eventually (48) ________ my brain to more powerful devices. And for years, generally theywere at a (49) ________ level. Then the pandemic hit and my notification stream became a series of alerts and even alerts for other unimaginable demands of alertness.Then the other factor (50) ________ kicked in. My actual hearing loss, a genetic gift from my father’s side, started getting worse, turning the world into a series of dull noises. Even with my hearing aids in, maybe I didn’t hear a notification.Having become deaf to alerts both (51) ________ and metaphorically, I reasoned that enduring a little wrist vibration with every notification would bring me back into being a responsible adult. (52) ________, I felt like I had severe nerve damage. After month 13 of the pandemic, my general stress level was peaking and I was too (53) ________ to turn some off.“You’re not the boss of me!” I yelled one aftern oon when seven notifications popped up (54) ________. I turned away like abad-tempered teen. The solution I’m turning off all notifications and moving my life back to (55) ________. Yes, it will be a tough adjustment. But it will force me to grab responsibility for my daily life back from all the devices.The good news: Paper doesn’t chirp, buzz, flash or “pop up.” Paper just waits, quietly, non-judgmentally and trust you.41. A. failed B. slipped C. lost D. bent42. A. attentiveness B. alertness C. unwillingness D. deafness43. A. largely B. barely C. closely D. specially44. A. guilty B. ignorant C. unaware D. incapable45. A. gene B. age C. job D. lifestyle46. A. feet B. toes C. trick D. track47. A. used to B. tired of C. exposed to D. involved in48. A. outsourced B. positioned C. swayed D. split49. A.tangible B. manageable C. approachable D. measurable50. A. at length B. at play C. at odds D. at intervals51. A. frantically B. accidentally C. literally D. excessively52. A. Furthermore B. Meanwhile C. Thereby D. However53. A. overwhelmed B. overblown C. overflown D. overtaken54. A. contemporarily B.instinctively C. spontaneously D. simultaneously55. A. ease B. work C. paper D. optimismSection BDirections: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have read.(A)Around this time last winter, at a gymnasium 45 minutes outside Budapest, I was surprised to come across a group of roughly 30 men and women with wooden axes. They had gathered to practice something called Baranta, perhaps the youngest of the world’sso-called traditional martial arts.While they took turns swinging and blocking, one member of the group, a beefy man with a tight, gray, military-style haircut, walked over to where I was standing and began excitedly talking to me in Hungarian. Even with the help of a translator, I had difficulty keeping up with what he was saying. Perhaps sensing this, he pulled out his phone to show me a series of videos, in which several groups of them were practicing Baranta.The name Baranta, I later learned, originates from an old Hungarian word mea ning, roughly, “to attack.” Today, it refers to a fighting style based on a mixture of Hungarian folk dancing. Mongolian wrestling, and the imagined fighting skills of its practitioners’ ancestors. Kata Babinszki, a student the University of Pécs who is writing an essay on Baranta, told me that the practice dates to the early 1990s. At that time, small groups of Hungarians began plunging into their country’s past, looking back to its history as part of the Austro-Hungarian empire, to its time as a kingdom, and even to the period when Hungarians were horsemen travellingacross the edges of eastern Europe and possibly central Asia. Baranta clubs have formed in most major Hungarian cities and in many smaller villages, Babinszki says. These new “traditionalists”are interested in taking up archery (射箭) and horseback riding and organizing giant “tribal meetings” at which they dress in Mongolian-style felt coats and fur hats.Though many of these trappings are rooted less in historical fact than in wistful imagination, few Hungarians seem interested in quibbling over their authenticity. “They’re reaching back to a time when our knowledge is very uncertain,” says Vendel Teszler, a professor at E tv s Loránd University, in Budapest, who has studied Hungarian tradition alists. “Nobody can tell them exactly what clothing is historically accurate. Everything can be transformed and created.” Even tradition.56. Why did the beefy man show the writer a series of videosA. He was trying to sell the writer these videos.B. He f ound the writer couldn’t understand his words.C. He had difficulty translating English into Hungarian.D. He wanted the writer to know how he practiced Baranta.57. According to the passage, what happened in the early 1990sA. Baranta made a comeback in Hungary.B. Baranta clubs moved from villages to major cities.C. Some Hungarians began exploring the country’s history.D. Some Hungarians became interested in Mongolian martial arts.58. What does the phrase “quibbling over” (in the last paragraph) most probably meanA. complaining aboutB. handing overC. insisting onD. engaging in59. Vendel Teszler is quoted in the last paragraph in order to show _____.A. tradition changes with time no matter how old it isB. the history of Hungary remains a mystery to many peopleC. wishful imagination appeals more to people than historical factD. what traditionalists believe in is likely not to be true to the fact (B)How to Survive a DisasterAt seven o’clock in the evening of 27 September 1994, the cruise ferry MS Estonia left Tallin with 989 people on board, heading for Stockholm. It never got there. Within an hour it had sunk, taking with it 852 of its passengers and crew. The death toll was so high that it appeared that many people drowned because they did nothing to save themselves. John Leach, a military survival instructor, found that in life-threatening situations, around 75% of people are so bewildered by the situation that they are unable tothink clearly or plot their escape.Why do so many people die when they need not, when they have the physical means to save themselves Why do so many give up, or fail to adjust to the unfolding crisis In most disaster scenarios, you don't need special skills to survive. You just need to know what you should do.Emergency exitWe haven’t always had a clear picture of what people really do in emergencies. Engineers designing evacuation procedures used to assume that people respond immediately when they hear an alarm, smell smoke or feel their building shake or their boat begins to list. Yet as cases in recent decades began to show, the real challenge is getting them to move quickly enough. Rather than madness, or an animalistic stampede for the exits, it is often people’s reluctance to panic that puts them at higher risk.One study found that half of those who survived delayed before trying to escape, making phone calls, tidying things into drawers, locking their office door, going to the toilet, completing emails, shutting down their computer. One woman accustomed to bicycling to work even returned to her office to change into her tracksuit before trying to leave.Survival modeThe prevailing psychological explanation for these kinds of behaviours is that they are caused by a failure to adapt to a sudden change in the environment.“In emergencies, quite often events are happening faster than you can process them” explains Leach. The situation outruns our capacity to think our way out of it. This explains why in emergencies people often fail to do things that under normal circumstances would seem obvious. So the only reliable way to shortcut this kind of impaired thinking is by preparing for an emergency in advance. Typically, survivors survive not because they are braver or more heroic than anyone else, but because they are better prepared.Stronger togetherDrury, Cocking and Reicher have documented many examples of collective resilience. Cocking thinks that people’s tendency to cooperate during emergencies increases the chances of survival for everyone.The chances are you will never find yourself in a disaster situation. But it’s a good idea to imagine that you will: to be aware that there are threats out there, and that you can prepare for them, without sliding into panic. “All you have to do is ask yourself one simple questi on,” says Leach. “If something happens, what is my firstresponse Once you can answer that, everything else will fall into place. It’s that simple.”60. What happened to the cruise ferry MS EstoniaA. It sank in an hour after its departure from Tallin.B. 75% of the people on board were killed in the end.C. Many were mentally paralyzed facing the disaster.D. People on board lacked necessary survival facilities.61.Which of the following behaviors is appropriate when a disaster happensA. Reminding others by phoneB. Recalling specific survival killsC. Being brave to help othersD. Responding to the alarm quickly62.Which of the following is TrueA. It is beneficial to imagine the threats to conquer panic when you’re facing a disaster.B. Preparation ahead of time works best to handle inability to respond to emergency.C. Emergencies often happen so fast that people can’t think out of the box on the scene.D.Engineers design evacuation procedures by fully understanding people’s responses.(C)Like many historical films, Amadeus is far from a faithful account ofwhat is known about the period and the people that it portrays. Events are exaggerated and simplified, and the complexity of real characters is reduced to suit the needs of a dramatic contrast between good and evil. Such historical liberties are often complained by experts, but few have seemed to mind the wayward story points of Amadeus. This is no doubt partly attributable to the film’s high entertainment value: it is an unusually lively and funny his torical film. Furthermore, the film’s appeal is also attributable to Mozart’s music.For all its liberties, the story is actually based on a real rumor that circulated in Vienna in the 1820s. While gravely ill, the rival composer Antonio Salieri (1750-1825) confessed he had murdered Mozart decades earlier by poisoning him. Salieri was suffering from dementia (痴呆) at the time of this confession, and he later withdrew it, but some chose to believe the claim. More than 150 years later, the English playwright Peter Shaffer based the story of Amadeus not just on Salieri’s confession but also the idea that Salieri had suffered from a deep and bitter jealousy of Mozart. In the fun-loving Mozart, the story goes, Salieri saw a true genius —one who made his own talent and accomplishments appear overshadowed — and this drove him on a vendetta (宿怨) that ultimately resulted in murder.Shaffer’s story makes for great drama biased against Salieri. If Salieri had little reason to fear or resent Mozarfs success, there was naturally a degree of rivalry between two men working in the same profession and in the same city. Salieri and Mozart belonged to separate musical groups, and Italian and German opera fell into and out of favor during this period. The composers were therefore striving for work, including post of musical tutor to the Princess of Wiirttemberg, which Salieri successfully attained, they saw their operas’ debut side by side, yet there is little evidence of any hostility Mozart did complain in a letter to his father that Joseph H favored Salieri over all other that observation was an accurate one. Both Mozart and his father suspected that, behind the scenes, Salieri tried to undermine Mozart’s success, but these were hardly unusual suspicions in a field so reliant on sponsorship. In public, fellow composers reported that Mozart, and Salieri were friendly with another. Shortly after the premiere of Mozart’s The Magic Flute, Salieri attended a performance with Mozart, and applauded warmly and vigorously. Thus, any ill feeling between Mozart and Salieri was borne by the former rather than the latter — contrary to what is strongly depicted in Amadeus — and it stemmed from Salieri’s status and success rather than his perceived averageness.63. According to the author, Amad eus’s appeal comes from thefollowing EXCEPT _________.A. depiction of Mozart’s characterB. actors’ excellent performanceC. a storyline true to historyD. Mozart’s music in the film64. There was some rivalry between Mozart and Salieri mainly because they _________.A. lived and worked in the same cityB. competed for musical work and postC. joined different musical groupsD. suspected each other on some occasions65. What does the author think of the cause of ill feeling between the two menA. Mozart’s experience of breaking up with his father.B. Salieri’s attempt to undermine Mozart’s success.C. Mozart’s success and status as a musical talent.D. Salieri’s success and status in the musical circle.66. Throughout the passage, the author mainly attempts to_________.A. correct some distorted details in the filmB. analyze how the film appeals to audienceB. highlight the entertainment value of the filmD. give an account of Mozart as a genius musicianSection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the box. Each sentence can be used only once. Note that there are two more sentences than you need. A. These demands take a toll, resulting in job dissatisfaction, workplace fatigue, burnout, and reduced occupational commitment. B. Just as beauty is said to be in the eye of the beholder, stress depends on the teacher’s unique view of their classroom. C. For example, this holds true for 25% of teachers in Great Britain and Italy; 20-22% in Malaysia and Germany; and25-26% in Australia and the U.S. D. However, if only 20-25% of teachers report high levels of stress, then that would suggest that the working environment itself is only part of the issue. AB. Teachers are isolated from colleagues for much of the day, spending less than 5% of their work time collaborating with peers. AC. Clearly, then, there must be more to the story.Teaching is widely recognized to be a stressful occupation, characterized by numerous and varied challenges: administrative burdens, long hours, classroom management difficulties, to name but a few.(67) ________ They are also paid less than other workers with similar experience and education, a gap that has grown from4.3% in 1996 to 17% in 2015. Further, teachers face significant social and political scrutiny as to how they do their jobs .(68) ________ The statistics on teacher turnover are grim: Research estimates that between 19% and 30% of new teachers leave the field within the first five years of teaching, which can reduce the team spirits of their campus community and negatively affect student learning. In the most recent PDK poll, half of teachers surveyed said they had considered leaving the profession within the last year, with low pay and high stress most frequently cited as the reasons. Of course, teacher stress is not unique to the United States. In fact, research has yielded remarkably consistent findings around the world, with roughly 20-25% of the teaching workforce reporting high levels of stress.But if it’s clear that teacher stress is widespread, it’s not always clear how teacher stress should be defined. Traditionally, educational policy research has focused on working conditions (i.e., school administration) as the main driver of occupational health. That is, teacher stress tends to be viewed as a result of working in a stressful environment, often characterized as lacking sufficient funding or effective leadership. (69) ________ In many schools, some teachers are stressed out while others are not; but if working conditions were all that mattered, then every teacher in the schoolwould be equally stressed.Chris Kyriacou and others have argued that teacher stress is better understood as resulting from a mismatch between the pressures and demands made on educators and their ability to cope with those demands. Workforce conditions alone are not sufficient to explain why some teachers are highly stressed. Rather, what matters most is how each teacher sees the demands they face in relation to the resources they have available to meet those demands. (70) ________ And if this is true, then it should be possible to identify and intervene with teachers who are most vulnerable to stress, above and beyond efforts to improve the larger working environment.IV. Summary WritingDirections: Read the following passage. Summarize the main idea and the main point(s) of the passage in no more than 60 words. Use your own words as far as possible.Every well-organized team needs to have an outstanding leader with specific skills. Sometimes the leader's abilities can come to affect the whole team. Although we students are still young, it's never too early to cultivate leadership skills.A team consists of both leaders and followers. Neither side can exist and work effectively without the other. What is essential to。

2023年上海实验学校高二下期中数学试卷及答案

2023年上海实验学校高二下期中数学试卷及答案

上海实验学校高二期中考试数学试卷2023.04一.填空题(每题4分,共40分)1.过点(2,3)P ,且一个法向量为(3,1)n =-的直线的点法向式方程是________.2.若22240x y x y +--=,求圆心坐标为___________.3.椭圆22124x y +=的焦距是______.4.双曲线2213y x -=的两条渐近线夹角为________.5.已知直线():2130l ax a y a +-+-=,当a 变化时,直线l 总是经过定点,则定点坐标为______.6.若原点到直线l :80ax y ++=的距离为4,则a 的值是______.7.已知直线l 过点(1,0)-且与直线20x y -=垂直,则圆22480x y x y +-+=与直线l 相交所得的弦长为__8.设12,F F 是椭圆2214x y +=的两个焦点,P 在椭圆上,且满足1260F PF ∠=︒,则12PF F ∆的面积是___________.9.已知()1,2M -,N 是曲线22:6290C x y x y +--+=上的动点,P 为直线220x y ++=上的一个动点,则PM PN +的最小值为______.10.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为___.二.选择题(每题4分,共16分)11.“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知两点()2,1A -,()B 5,3--,直线l 过点()1,1,若直线l 与线段AB 相交,则直线l 的斜率取值范围是()A.(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭B.22,3⎡⎤-⎢⎥⎣⎦C.2,23⎡⎤-⎢⎥⎣⎦D.[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦13.已知椭圆E :()222210x y a b a b+=>>的右焦点为2F ,左顶点为1A ,若E 上的点P 满足2PF x ⊥轴,123sin 5PA F ∠=,则E 的离心率为()A.12B.25 C.14D.1514.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF 交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率e =()A.13B.3C.3D.12三.解答题(本大题满分44分,本大题共有4题,解答下列各题必须写出必要的步骤)15.设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程;(2)若与两坐标轴围成的三角形的面积为1,求a 的值.16.如图,在宽为14的路边安装路灯,灯柱OA 高为8,灯杆PA 是半径为r 的圆C 的一段劣弧.路灯采用锥形灯罩,灯罩顶P 到路面的距离为10,到灯柱所在直线的距离为2.设Q 为圆心C 与P 连线与路面的交点.(1)当r 为何值时,点Q 恰好在路面中线上?(2)记圆心C 在路面上的射影为H ,且H 在线段OQ 上,求HQ 的最大值.17.设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积;(Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由.18.设0m >,椭圆Γ:2213x y m m+=与双曲线C :2222m x y m -=的焦点相同.(1)求椭圆Γ与双曲线C 的方程;(2)过双曲线C 的右顶点作两条斜率分别为1k ,2k 的直线1l ,2l ,分别交双曲线C 于点P ,Q (P ,Q 不同于右顶点),若121k k ×=-,求证:直线PQ 的倾斜角为定值,并求出此定值;(3)设点(0,2)T ,若对于直线:l y x b =+,椭圆Γ上总存在不同的两点A 与B 关于直线l 对称,且9410TA TB <⋅<,求实数b 的取值范围.四.附加题(共20分)19.如图,过点(1,0)E 的直线与圆22:4O x y +=相交于A ,B 两点,过点C(2,0)且与AB 垂直的直线与圆O 的另一交点为D .(1)当点B 坐标为(0,-2)时,求直线CD 的方程;(2)记点A 关于x 轴的对称点为F (异于点A ,B ),求证:直线BF 恒过定点;(3)求四边形ACBD 面积S 的取值范围.20.如图,已知双曲线C 的方程为22221x y a b -=(0a b >>),两条渐近线的夹角为3arccos 5,焦点到渐近线的距离为1.M 、N 两动点在双曲线C 的两条渐近线上,且分别位于第一象限和第四象限,P 是直线MN 与双曲线右支的一个公共点,MP PN λ=.(1)求双曲线C 的方程;(2)当1λ=时,求PM PN ⋅的取值范围;(3)试用λ表示MON △的面积S ,设双曲线C 上的点到其焦点的距离的取值范围为集合Ω,若5λ∈Ω,求S 的取值范围.上海实验学校高二期中考试数学试卷2023.04一.填空题(每题4分,共40分)1.过点(2,3)P ,且一个法向量为(3,1)n =-的直线的点法向式方程是________.【答案】3(2)(3)0x y ---=【解析】【分析】根据直线的方向向量与其法向量垂直列式可得.【详解】在所求直线上任取一点(,)x y ,则所求直线的方向向量为(2,3)x y --,再根据直线的方向向量与法向量垂直可得,(3,1)(2,3)0x y -⋅--=,即3(2)(3)0x y ---=.故答案为:3(2)(3)0x y ---=.【点睛】本题考查了直线的方向向量与法向量以及直线的点法向式方程,属于基础题.2.若22240x y x y +--=,求圆心坐标为___________.【答案】(1,2)【解析】【分析】将圆的一般方程化为标准方程,即可得出答案.【详解】解:由22240x y x y +--=,可得圆的标准方程为22(1)(2)5x y -+-=,所以圆心坐标为(1,2).故答案为:(1,2).3.椭圆22124x y +=的焦距是______.【答案】【解析】【分析】根据椭圆中a ,b ,c 的数量关系求解.【详解】解:椭圆22124x y +=的焦距是2c ===.故答案为:【点睛】本题考查了椭圆中a ,b ,c 的数量关系,属于基础题.4.双曲线2213y x -=的两条渐近线夹角为________.【答案】3π【解析】【分析】首先求出双曲线的渐近线方程,求出渐近线的斜率,由夹角公式1212tan 1k k k k α-=+即可求出渐近线的夹角.【详解】因为双曲线2213y x -=,所以渐近线方程为y =或y =,设两条渐近线的夹角为锐角α,则tan α==3π.故答案为3π【点睛】本题考查双曲线渐近线方程的求法以及夹角公式,属于基础题.5.已知直线():2130l ax a y a +-+-=,当a 变化时,直线l 总是经过定点,则定点坐标为______.【答案】()5,3-【解析】【分析】把直线方程化为(21)30a x y y ++--=,令21030x y y ++=⎧⎨--=⎩,求出x ,y 的值即可.【详解】因为直线():2130l ax a y a +-+-=可化为(21)30a x y y ++--=,令21030x y y ++=⎧⎨--=⎩,解得5,3x y ==-,所以直线l 过定点(5,3)-,故答案为:(5,3)-.6.若原点到直线l :80ax y ++=的距离为4,则a 的值是______.【答案】;【解析】【分析】4=,再求解即可.【详解】解:由点到直线的距离公式可得:4d ==,解得a =,故答案为:【点睛】本题考查了点到直线的距离公式,属基础题.7.已知直线l 过点(1,0)-且与直线20x y -=垂直,则圆22480x y x y +-+=与直线l 相交所得的弦长为__【答案】【解析】【分析】先求出直线l 的方程,再求出圆心C 与半径r ,计算圆心到直线l 的距离d ,由垂径定理求弦长||AB .【详解】解:由题意可得,l 的方程为210x y ++=,22480x y x y +-+= 可化为22(2)(4)20x y -++=,圆心(2,4)-,半径r =∴圆心(2,4)-到l的距离d =,AB ∴===故答案为:【点睛】本题考查直线与圆的方程的应用问题,考查两条直线垂直以及直线与圆相交所得弦长的计算问题,属于基础题.8.设12,F F 是椭圆2214x y +=的两个焦点,P 在椭圆上,且满足1260F PF ∠=︒,则12PF F ∆的面积是___________.【答案】3【解析】【详解】由题意,得(1222201212+=4+260=PF PF PF PF PF PF cos -⋅⎧⎪⎨⎪⎩,即12221212+=4|+|=12PF PF PF PF PF PF -⋅⎧⎪⎨⎪⎩,则2123412PF PF ⋅=-,即124||||3PF PF ⋅=,所以12PF F ∆的面积为0121sin6023S PF PF =⋅=.点睛:本题考查椭圆的定义和余弦定理的应用;在处理椭圆或双曲线中涉及两个焦点问题时,往往利用椭圆或双曲线的定义(定和或定差)进行处理,往往再结合正弦定理、余弦定理进行求解.9.已知()1,2M -,N 是曲线22:6290C x y x y +--+=上的动点,P 为直线220x y ++=上的一个动点,则PM PN +的最小值为______.【答案】1【解析】【分析】根据题意,求得M 关于直线220x y ++=的对称点H ,结合图像即可得到当,,P H C 三点共线时,PM PN +取得最小值.【详解】如图,曲线22:6290C x y x y +--+=是以()3,1C 为圆心,以1为半径的圆,则根据圆的性质可知,PN 的最小值为1PC -,设M 关于直线220x y ++=的对称点为(),H m n ,则可得2211222022n m m n -⎧=⎪⎪+⎨-+⎪+⨯+=⎪⎩,解得32m n =-⎧⎨=-⎩,即(3,2)H --,连接HC ,分别交直线220x y ++=与圆C 于,P N ,则111PM PN PM PC PH PC HC +≥+-=+-≥-,当且仅当,,P H C三点共线时取等号,此时取得最小值1,所以PM PN +的最小值为1.故答案为:1-10.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为___.【答案】433【解析】【分析】设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c ,椭圆和双曲线的离心率分别为e 1,e 2,由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos 3π,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2…②,在双曲线中,化简为即4c 2=4a 12+r 1r 2…③,2212134e e +=所以,再利用柯西不等式求椭圆和双曲线的离心率的倒数之和的最大值.【详解】设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知,设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c ,椭圆和双曲线的离心率分别为e 1,e 2,∵∠F 1PF 2=3π,则∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos 3π,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2…②,在双曲线中,①化简为即4c 2=4a 12+r 1r 2…③,2212134e e +=所以,由柯西不等式得(1+13)(221213e e +)≥(121e e +)21211433e e +≤所以故答案为433【点睛】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.属于难题.二.选择题(每题4分,共16分)11.“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】直线10x ay +-=与直线10ax y -+=相互垂直得到a R ∈,再利用充分必要条件的定义判断得解.【详解】因为直线10x ay +-=与直线10ax y -+=相互垂直,所以1()(1)0a a ⨯+⨯-=,所以a R ∈.所以1a =时,直线10x ay +-=与直线10ax y -+=相互垂直,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分条件;当直线10x ay +-=与直线10ax y -+=相互垂直时,1a =不一定成立,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的非必要条件.所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分非必要条件.故选:A【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件灵活选择方法求解.12.已知两点()2,1A -,()B 5,3--,直线l 过点()1,1,若直线l 与线段AB 相交,则直线l 的斜率取值范围是()A.(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭B.22,3⎡⎤-⎢⎥⎣⎦C.2,23⎡⎤-⎢⎥⎣⎦D.[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦ 【答案】A 【解析】【分析】根据直线过定点P ()1,1,画出图形,再求出PA ,PB 的斜率,然后利用数形结合求解.【详解】如图所示:若直线l 与线段AB 相交,则PA k k ≤或PB k k ≥,因为11221PA k --==--,312135PB k --==--,所以直线l 的斜率取值范围是(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭.故选:A.【点睛】本题主要考查直线斜率的应用,还考查了数形结合的思想方法,属于基础题.13.已知椭圆E :()222210x y a b a b+=>>的右焦点为2F ,左顶点为1A ,若E 上的点P 满足2PF x ⊥轴,123sin 5PA F ∠=,则E 的离心率为()A.12B.25C.14D.15【答案】C 【解析】【分析】由题意构建方程,进而转化为,a c 的齐次式,从而得到结果.【详解】∵123 sin 5PA F ∠=,∴123tan 4PA F ∠=∴2123tan 4b a PA F ac ∠==+,即24310e e +-=∴14e =.故选:C14.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF 交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率e =()A.13B.3C.3D.12【答案】B 【解析】【分析】由△1ABF 为等腰三角形,可知1||BF BA =,可求出2AF a =,设1F B x =,结合椭圆的定义可求得32x a =,过点B 作x 轴的垂线,交x 轴于C 点,易知22AOF BCF ∽,可求出点B 的坐标,将点B 的坐标代入椭圆方程,进而可求出离心率.【详解】在直角三角形2AOF 中,2AF a ==,且1AF a =,易知1BF a >,BA a >,故等腰△1ABF 中,1||BF BA =.设1BF x =,则22||BF BA AF x a =-=-,由椭圆的定义知122F B F B a +=,则2x x a a +-=,解得32x a =,所以212BF a =,过点B 作x 轴的垂线,交x 轴于C 点,易知22AOF BCF ∽,所以211||,22BC b F C c ==,故点B 的坐标为3,22c b ⎛⎫- ⎪⎝⎭,将点B 的坐标代入椭圆方程得22229144c b a b +=,解得22213c e a ==,故33e =.故选:B.【点睛】本题考查椭圆的性质,考查离心率的求法,考查学生的计算求解能力,属于中档题.三.解答题(本大题满分44分,本大题共有4题,解答下列各题必须写出必要的步骤)15.设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程;(2)若与两坐标轴围成的三角形的面积为1,求a 的值.【答案】(1)30x y +=或20x y ++=(2)3a =±【解析】【分析】(1)讨论截距是否为0:当截距为0时,过原点,代入可得a ,进而得直线方程;当截距不为0时,使得截距相等,求得a ,进而得直线方程;(2)先求得直线在x 轴,y 轴上的截距,结合面积为1,即可解方程求得a 的值.【详解】(1)由题意知,当直线过原点时,该直线在两条坐标轴上的截距都为0,此时2a =,直线的方程为30x y +=;当直线不过原点时,由截距相等,得221a a a --=+,则0a =,直线的方程为20x y ++=,综上所述,所求直线的方程为30x y +=或20x y ++=.(2)由题意知,直线在x 轴,y 轴上的截距分别为21a a -+、2a -,()122121a a a -⨯-=+,解得3a =±.【点睛】本题考查了直线方程截距的概念,直线方程的求法,由直线围成图形面积的应用,属于基础题.16.如图,在宽为14的路边安装路灯,灯柱OA 高为8,灯杆PA 是半径为r 的圆C 的一段劣弧.路灯采用锥形灯罩,灯罩顶P 到路面的距离为10,到灯柱所在直线的距离为2.设Q 为圆心C 与P 连线与路面的交点.(1)当r 为何值时,点Q 恰好在路面中线上?(2)记圆心C 在路面上的射影为H ,且H 在线段OQ 上,求HQ 的最大值.【答案】(1)r =;(2)(12-.【解析】【分析】(1)以O 为原点,以OA 所在直线为y 轴建立平面直角坐标系,设圆心(,)C a b ,根据圆心C 到A ,P 的距离相等得到100a b +-=,再由圆心在直线PQ 上联立求解.(2)由(1)知100a b +-=,当2a =时,灯罩轴线所在直线方程为2x =,易得0HQ =;当2a ≠时,设灯罩轴线所在方程为:10(2)2a y x a --=--,令0y =得到2012,0a Q ⎛⎫- ⎪⎝⎭,然后由20||12HQ a a=--,利用基本不等式求解.【详解】(1)以O 为原点,以OA 所在直线为y 轴建立平面直角坐标系,如图所示:则(0,8),(2,10),(7,0)A P Q ,∴直线PQ 的方程为2140x y +-=.设(,)C a b ,则222222(2)(10)(8)a b r a b r⎧-+-=⎨+-=⎩,两式相减得:100a b +-=,又2140a b +-=,解得4,6a b ==,∴r ==.∴当r =时,点Q 恰好在路面中线上.(2)由(1)知100a b +-=,当2a =时,灯罩轴线所在直线方程为2x =,此时0HQ =当2a ≠时,灯罩轴线所在方程为:10(2)2ay x a --=--,令0y =可得2012x a =-,即2012,0a Q ⎛⎫- ⎪⎝⎭,∵H 在线段OQ 上,∴2012a a- ,解得210a .∴2020||12121212HQ a a a a ⎛⎫=--=-+-=- ⎪⎝⎭,当且仅当20a a=即a =时取等号.∴HQ 的最大值为(12-.【点睛】本题主要考查直线,圆的实际应用以及基本不等式的应用,还考查了数形结合的思想方法和运算求解的能力,属于中档题.17.设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积;(Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由.【答案】(Ⅰ)(Ⅱ)证明见解析;(Ⅲ)不能,证明见解析【解析】【分析】(Ⅰ)计算得到故21,2A ⎛- ⎪⎝⎭,1,2B ⎛⎫-- ⎪ ⎪⎝⎭,21,2C ⎛⎫ ⎪ ⎪⎝⎭,21,2D ⎛⎫- ⎪ ⎪⎝⎭,计算得到面积.(Ⅱ)设1l 为()y k x m =-,联立方程得到2122221224212221k mx x k k m x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,计算AB =,同理CD =AB CD =得到22m n =,得到证明.(Ⅲ)设AB 中点为(),P a b ,根据点差法得到20a kb +=,同理20c kd +=,故112PQ k k k=-≠-,得到结论.【详解】(Ⅰ)()1,0M -,()1,0N ,故21,2A ⎛⎫- ⎪ ⎪⎝⎭,21,2B ⎛⎫-- ⎪ ⎪⎝⎭,21,2C ⎛⎫ ⎪ ⎪⎝⎭,21,2D ⎛⎫- ⎪ ⎪⎝⎭.故四边形ABCD的面积为S =(Ⅱ)设1l 为()y k x m =-,则()2212x y y k x m ⎧+=⎪⎨⎪=-⎩,故()22222214220k x k mx m k +-+-=,设()11,A x y ,()22,B x y ,故2122221224212221k m x x k k m x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,12AB x =-==同理可得CD =,AB CD ==,即22m n =,m n ≠,故0m n +=.(Ⅲ)设AB 中点为(),P a b ,则221112x y +=,222212x y +=,相减得到()()()()1212121202x x x x y y y y +-++-=,即20a kb +=,同理可得:CD 的中点(),Q c d ,满足20c kd +=,故11222PQ d b d b k c a kd kb k k--===-≠---+,故四边形ABCD 不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.18.设0m >,椭圆Γ:2213x y m m+=与双曲线C :2222m x y m -=的焦点相同.(1)求椭圆Γ与双曲线C 的方程;(2)过双曲线C 的右顶点作两条斜率分别为1k ,2k 的直线1l ,2l ,分别交双曲线C 于点P ,Q (P ,Q 不同于右顶点),若121k k ×=-,求证:直线PQ 的倾斜角为定值,并求出此定值;(3)设点(0,2)T ,若对于直线:l y x b =+,椭圆Γ上总存在不同的两点A 与B 关于直线l 对称,且9410TA TB <⋅<,求实数b 的取值范围.【答案】(1)椭圆Γ的方程为2213x y +=,双曲线C 的方程为221x y -=;(2)详见解析.(3)见解析.【解析】【分析】(1)利用椭圆和双曲线的性质,结合焦点相同,建立方程,计算m 值,即可.(2)设出直线1l 方程,代入双曲线方程,建立等式,计算P 的坐标,同理得到Q 的坐标,结合121k k ×=-,可以得到P Q y y =,发现直线PQ 与x 轴平行,故证之.(3)结合题意,设出直线AB 的方程,代入椭圆解析式中,建立方程,计算出AB 的中点M 坐标,而M 又在直线l 上,代入,结合题目所提供的不等式,建立不等关系,即可得到b 的范围.【详解】解:(1)由题意,221m m =+,所以1m =.所以椭圆Γ的方程为2213x y +=,双曲线C 的方程为221x y -=.(2)双曲线C 的右顶点为()1,0,因为121k k ×=-,不妨设10k >,则20k <,设直线1l 的方程为()11y k x =-,由()1221,1y k x x y ⎧=-⎨-=⎩,得()22221111210k xk x k -+--=,则2121111P k x k +⋅=-,(2221112221112211,1,111P P k k k x x k k k ++=-=--=---),2111221112111P k k y k k k ⎛⎫+=-= ⎪--⎝⎭.同理,222211Q k x k +=-,22221Q k y k =-,又121k k ×=-,所以222122211111Q P k k x x k k ++==-=---,2122212211Q P k k y y k k -===--.因为P Q y y =,所以直线PQ 与x 轴平行,即PQ k 为定值0,倾斜角为0.,(3)设()11,A x y ,()22,B x y ,直线AB 的方程为y x n =-+,由22,1,3y x n x y =-+⎧⎪⎨+=⎪⎩整理得2346330x nx n -+-=,△()()()222616331240n n n=---=->,故22n -<<.1232nx x +=,()212314n x x -=,设AB 的中点为()00,M x y ,则120324x x n x +==,004ny x n =-+=,又()00,M x y 在直线:l y kx b =+上,所以344n n b =+,()1,12nb =-∈-.因为()11,2TA x y =- ,()22,2TB x y =-,所以()()()()11221122,2,2,2,2TA TB x y x y x x n x x n ⋅=-⋅-=-+-⋅-+-()()()()()()22212123132222222n n n x x n x x n n --=--++-=-2255542222n n b b =-+=++<,所以102b -<<.又9410TA TB <⋅< ,1b 4≠-.即111b ,244⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.【点睛】本道题考查了椭圆与双曲线的性质,直线与圆锥曲线位置关系,难度较大.四.附加题(共20分)19.如图,过点(1,0)E 的直线与圆22:4O x y +=相交于A ,B 两点,过点C(2,0)且与AB 垂直的直线与圆O 的另一交点为D.(1)当点B 坐标为(0,-2)时,求直线CD 的方程;(2)记点A 关于x 轴的对称点为F (异于点A ,B ),求证:直线BF 恒过定点;(3)求四边形ACBD 面积S 的取值范围.【答案】(1)220x y +-=;(2)直线BF 恒过定点(4,0)T ;(3)(0,.【解析】【分析】(1)当(0,2)B -时,直线AB 的斜率为2,由CD 与AB 垂直,直线CD 的斜率为12-,由此能求出直线CD 的方程;(2)由对称性可知直线BF 恒过的定点必在x 轴上,记为(,0)T t ,设AB 方程为1x my =+,11(,)A x y ,22(,)B x y ,然后联立直线AB 的方程与圆的方程消元,求出12y y +,12y y ⋅,然后利用1221122112121212121212(1)(1)2()21x y x y my y my y my y y y my y t y y y y y y y y ++++++====+++++算出答案即可;(3)当直线AB 与x 轴垂直时,求出四边形ACBD 的面积,当直线AB 与x 轴不垂直时,设直线AB 方程为kx y k 0--=,则直线CD 方程为20x ky +-=,求出点O 到直线AB 的距离,从而得到弦长AB 和CD ,然后表示出面积,然后用换元法能求出四边形ACBD 面积的范围.【详解】(1)当点B 坐标为()0,2-时,直线AB 的斜率为()02210--=-,因为CD 与AB 垂直,所以直线CD 的斜率为12-,所以直线CD 的方程为()122y x =--,即220x y +-=.(2)设11(,)A x y ,22(,)B x y ,则11(,)F x y -,由对称性可知直线BF 恒过的定点必在x 轴上,记为(,0)T t 设由题意直线AB 斜率存在且不为0,设AB 方程为1x my =+,代入圆O 可得:22(1)230m y my ++-=,∴0∆>,12221m y y m +=-+,12231y y m -⋅=+∵,,B F T 三点共线∴1211210y y y t x x x ++=--,解得121122112112()y x x x y x y t x y y y y -+=+=++∴1221122112121212121212(1)(1)2()2312142x y x y my y my y my y y y my y t m y y y y y y y y m++++++-====+=⋅+=++++-∴直线BF 恒过定点(4,0)T (3)当直线AB 与x轴垂直时,4AB CD ==,所以四边形ACBD面积1·2S AB CD ==.当直线AB 与x 轴不垂直时,设直线AB 方程为()1y k x =-(0)k ≠,即kx y k 0--=,则直线CD 方程为()12y x k=--,即20x ky +-=点O 到直线AB,所以AB ==,点O 到直线CD,所以CD ==,则四边形ACBD 面积11··222S AB CD ===令211k t +=>(当0k =时四边形ACBD 不存在),所以S=(0,=,综上:四边形ACBD 面积S 的取值范围为(0,.【点睛】结论点睛:(1)圆中的弦长要用几何法计算,较代数法简单;(2)对角线互相垂直的四边形的面积等于对角线长度相乘的一半.20.如图,已知双曲线C 的方程为22221x y a b -=(0a b >>),两条渐近线的夹角为3arccos 5,焦点到渐近线的距离为1.M 、N 两动点在双曲线C 的两条渐近线上,且分别位于第一象限和第四象限,P 是直线MN 与双曲线右支的一个公共点,MP PN λ=.(1)求双曲线C 的方程;(2)当1λ=时,求PM PN ⋅的取值范围;(3)试用λ表示MON △的面积S ,设双曲线C 上的点到其焦点的距离的取值范围为集合Ω,若5λ∈Ω,求S 的取值范围.【答案】(1)2214x y -=;(2)(],1PM PN ⋅∈-∞- ;(3)135195S ⎡⎫-∈+∞⎪⎢⎪⎣⎭.【解析】【分析】(1)先由题意,得到双曲线的渐近线方程,根据夹角公式,由题中条件,得到224a b =,再由点到直线距离公式,求出,a b ,进而可得出结果;(2)先由题意,设()2,M m m ,()2,N n n -,0m >,0n >,当=1λ,得到,2m n P m n -⎛⎫+ ⎪⎝⎭,代入双曲线方程,得到1mn =,再计算向量数量积,即可得出结果;(3)同(2),设()2,M m m ,()2,N n n -,0m >,0n >,由MP PN λ= 得22,11m n m n P λλλλ+-⎛⎫ ⎪++⎝⎭,代入双曲线方程,得到()214mn λλ+=,再由点到直线距离公式,两点间距离公式,求出()2111122S λλλλ+⎛⎫==++ ⎪⎝⎭,由题中条件,求出)10+λ⎡∈∞⎣,,进而可求出结果.【详解】(1)由题意双曲线渐近线为0bx ay ±=.根据夹角公式2222222222345b a a b a b a b a b --==⇒=++.2114b a =⇒=⇒=.所以2214x y -=.(2)由题意,设()2,M m m ,()2,N n n -,0m >,0n >,当=1λ时,MP PN = ,则,2m n P m n -⎛⎫+ ⎪⎝⎭,所以()22()144m n m n -+-=,整理得1mn =;又,2m n PM m n +⎛⎫=- ⎪⎝⎭ ,,2n m PN n m --⎛⎫=- ⎪⎝⎭,所以()()()()2222255·424444m n PM PN m n m n mn m n mn +=---=-++=-+++ 54414mn ≤-⋅+=-,当且仅当1m n ==时,等号成立;所以(]·,1PM PN ∈-∞- .(3)同(2),设()2,M m m ,()2,N n n -,0m >,0n >,由MP PN λ= 得()OP OM ON OP λ-=- ,即()1OP OM ON λλ+=+ ,则122,1111m n m n OP OM ON λλλλλλλ+-⎛⎫=+= ⎪++++⎝⎭ 所以22,11m n m n P λλλλ+-⎛⎫ ⎪++⎝⎭.把点P 的坐标代入双曲线的方程得22221141m n m n λλλλ+⎛⎫ ⎪-+⎛⎫⎝⎭-= ⎪+⎝⎭.222()()(1)m n m n λλλ+--=+所以()214mn λλ+=,因为直线MN 的斜率为22MN m n k m n +=-,则直线MN 的方程为()222m n y m x m m n+-=--,即()()2240m n x m n y mn +---=,所以点O 到直线()()2240m n x m n y mn +---=的距离为d=又MN ==所以()211222S MN d mn λλ+=⋅⋅==,由题意知,0λ>,所以()2111122S λλλλ+⎛⎫==++ ⎪⎝⎭,212111122S λλλλλ++⎛⎫=⋅=++ ⎪⎝⎭.设(),P x y 是双曲线右支上一点,记双曲线左右焦点分别为()1F ,)2F ,由双曲线的性质可得,12PF PF >,又2PF==5222x x==-=-,[)2,x ∈+∞,所以)22,PF ∈+∞,即双曲线上的点到其焦点的距离的范围是)2,-+∞,由题意可得,)10+λ⎡∈∞⎣,,令()1112f x x x ⎛⎫=++ ⎪⎝⎭,)10+x ⎡∈-∞⎣,,任取12110x x <-<<,则()()()121212121211111110222f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=--< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭显然成立,所以()1112f x x x ⎛⎫=++ ⎪⎝⎭在)10+x ⎡∈∞⎣,上单调递增,因此()()min 13519105f x f -==,即min 195S =.所以135195S⎡⎫-∈+∞⎪⎢⎪⎣⎭.【点睛】方法点睛:圆锥曲线中的取值范围问题的求解方法:(1)函数法:用其他变量表示参数,建立函数关系,利用求函数值域的方法求解;(2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的范围;(3)判别式法:建立关于某变量的一元二次方程,利用判别式求参数的取值范围;(4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.。

上海市青浦高级中学2023-2024学年高二下学期期中质量检测数学试卷(解析版)

上海市青浦高级中学2023-2024学年高二下学期期中质量检测数学试卷(解析版)

上海市青浦高级中学2023学年第二学期期中质量检测高二数学试卷考试时间120分钟 满分150分一、填空题(本大题共12题,满分54分;第1-6题每题4分;第7-12题每题5分)1. 与的等差中项是________.【答案】-5【解析】【分析】根据等差中项的定义计算即可.【详解】设等差中项为,则,故答案为:-52. 乘积的展开式中共有______项.【答案】24【解析】【分析】根据分步乘法计数原理可得答案.【详解】由中取一项共3种不同取法,从中取一项有2种不同取法,从中取一项共4种不同取法,由分步乘法计数原理知,该展开式共3×2×4=24(项)故答案为:24.3. 已知事件A 与事件B 互斥,如果,,那么_____________.【答案】0.2##【解析】【分析】根据互斥事件与对立事件的概率公式计算.【详解】由题意.故答案为:0.2.4. 某高中的三个年级共有学生2000人,其中高一600人,高二680人,高三720人,该校现在要了解学生对校本课程的看法,准备从全校学生中抽取50人进行访谈,若采取分层抽样,且按年级来分层,则高一年级应抽取的人数是______.【答案】152-8-x ()2285x x =-+-⇒=-()()()123121234a a a b b c c c c ++++++123,,a a a 12,b b 1234,,,c c c c ()0.3P A =()0.5P B =()P A B = 15()1()1[()()]1(0.30.5)0.2P A B P A B P A P B =-=-+=-+=【解析】【分析】根据分层抽样原则直接计算即可【详解】由题意,从全校2000人中抽取50人访谈,按照年级分层,则高一年级应该抽人.故答案为:155. 2位教师和3名学生站成一排,要求2位教师相邻,则不同排法的种数为______.【答案】48【解析】【分析】利用捆绑法,结合全排列即可求解.【详解】先将2位教师捆绑在一起,再与3名学生进行全排列,所以排法有:种.故答案为:486. 有一列正方体,棱长组成以1为首项,为公比的等比数列,体积分别记为,则_________.【答案】【解析】【详解】易知V 1,V 2,…,V n ,…是以1为首项,3为公比的等比数列,所以7. 已知函数,则函数的单调递增区间为__________.【答案】【解析】【分析】求出函数的导数,解不等式,即可求得答案.【详解】由函数可得,令,即函数的单调递增区间为,故答案为:50600152000⨯=2424A A 48=1212,,,n V V V ()12lim n n V V V →∞+++= 871128lim()1718n n V V V V →∞+++==- ()ln x f x x=()f x (0,e)()0f x ¢>()ln ,(0)x f x x x =>()21ln x f x x -'=()21ln 0,0,0e x f x x x -'>∴>∴<<()f x (0,e)(0,e)8. 设一组样本数据,,,的方差为,则数据,,,的方差为___________.【答案】【解析】【分析】根据方差的性质,若,,,的方差为,则,,的方差为,计算即得答案.【详解】根据题意,一组样本数据,,,的方差,则数据,,,的方差为;故答案:.9. _____________.【答案】##【解析】【分析】利用导数的定义及求导公式可得答案.【详解】设函数,则;.故答案为:.10. 已知在等比数列中,、分别是函数的两个驻点,则_____________.【解析】【分析】根据题意利用导数及韦达定理可得,的关系,后利用等比数列的性质可得答案.【详解】由题意可得:,则、是函数零点,则,且为等比数列,设公比为,为的1x 2x L n x 0.01110x 210x L 10n x 11x 2x L n x 2s 1ax 2ax L n ax 22a s 1x 2x L n x 20.01s =110x 210x L 10n x 22101s ⨯=1()0ln 42ln 2lim h h h→+-=140.25()ln f x x =1()f x x'=()()00ln 42ln 2ln 4ln 41lim lim (4)4h h h h f h h →→+-+-'===14{}n a 3a 7a 32661y x x x =-+-5a =3a 7a 23126y x x '=-+3a 7a 23126y x x '=-+37374020a a a a +=>⎧⎨=>⎩{}n a 0q ≠可得,解得注意到,可得.11. 若函数的图像上点与点、点与点分别关于原点对称,除此之外,不存在函数图像上的其它两点关于原点对称,则实数的取值范围是____________.【答案】【解析】【分析】由题意将问题转化为在的图像关于原点对称后与的图像有两个交点,即转化为方程在上有两根,孤立参数为在上有两根,求导确定函数的单调性与取值情况,作出大致图象,即可求得实数的取值范围.【详解】若有两组点关于原点对称,则在的图像关于原点对称后与的图像有两个交点.由时,;得其关于原点对称后的解析式为.问题转化为与在上有两个交点,即方程有两根,化简得,即与在上有两个交点.对于,求导,令,解得:,即:当时,单调递增;令,解得:.即:当时,单调递减,∴为其极大值点,,时,;画出其大致图像:372537002a a a a a >⎧⎪>⎨⎪==⎩5a =2530a a q =>5a =32,0e ,0x x x y ax x ⎧≥⎪=⎨⎪<⎩A B C D a 1,0e ⎛⎫- ⎪⎝⎭()f x (),0∞-()0,∞+32ex x ax =-()0,∞+e x x a -=()0,∞+e x x y =a ()f x ()f x (),0∞-()0,∞+0x <()2f x ax =2y ax =-3ex y x =2y ax =-()0,∞+32e x x ax =-e xx a -=y a =-e x x y =()0,∞+e x x y =1'e x x y -=1'0ex x y -=>1x <()0,1x ∈ex x y =1'0ex x y -=<1x >()1,x ∈+∞ex x y =1x =max 1e y =x →+∞0y →欲使与在时有两个交点,则,即.12. 已知数列满足:对于任意有,且,.若,数列的前项和为,则_________.【答案】【解析】【分析】对求导,可证得是以为首项,1为公差的等差数列,可求出,再由并项求和法求出.【详解】因,则,由,,,所以是以为首项,1为公差的等差数列,所以,,,则,所以,所以.故答案:二、选择题(本大题共4题,满分18分;第13-14题每题4分,第15-16题每题5分)13. 在下列统计指标中,用来描述一组数据离散程度的量是( )为为y a =-e x x y =0x >10,e a ⎛⎫-∈ ⎪⎝⎭1,0e a ⎛⎫∈- ⎪⎝⎭{}n a *Nn ∈π0,2n a ⎛⎫∈ ⎪⎝⎭1π4a =()1nf a +=()tan f x x =()11tan tan n n n n b a a +-=-{}n b n n T 120T =10()f x {}2tan n a 21tan 1a=tan=n a 120T()tan f x x =()()222coscos sin sin sin 11tan cos cos cos x x x x x f x x x x x '⋅-⋅-⎛⎫====+ ⎪⎝⎭'1π4a =()1n f a +=1tan +=n a 221tan tan 1n n a a +-={}2tan n a 21tan 1a =2tan =n a n π0,2n a ⎛⎫∈ ⎪⎝⎭tan 0n a ∴>tan =n a ()()111tan tan nn n n n b a a +-===--120123119120T b b b b b =+++++ )1=-++-++ 111110==-=10A. 平均数B. 众数C. 百分位数D. 标准差【答案】D【解析】【分析】根据中位数,平均数、百分位数和标准差的定义即可判断.【详解】平均数、众数都是描述一组数据的集中趋势的量,所以说平均数、众数都是描述一组数据的集中趋势的统计量,故A 、B 不正确;百分位数是指将一组数据从小到大排列,并计算相应的累计百分位,则某一个百分位所对应的数据的值称为这一百分位数的百分位数.所以百分位数不能用来描述一组数据离散程度的量,故C 不正确;标准差反映了数据分散程度的大小,所以说标准差都是描述一组数据的离散程度的统计量,故D 正确.故选:D .14. 某社区通过公益讲座宣传交通法规.为了解讲座效果,随机抽取10位居民,分别在讲座前、后各回答一份交通法规知识问卷,满分为100分.他们得分的茎叶图如图所示(“叶”是个位数字),则下列选项叙述错误的是( )A. 讲座后的答卷得分整体上高于讲座前的得分B. 讲座前的答卷得分分布较讲座后分散C. 讲座后答卷得分的第80百分位数为95D. 讲座前答卷得分的极差大于讲座后得分的极差【答案】C【解析】【分析】根据茎叶图即可判断AB ;再根据百分位数的计算公式即可判断C ;根据极差的定义即可判断D.【详解】有茎叶图可知讲座后的答卷得分整体上高于讲座前的得分,故A 正确;讲座前的答卷得分主要分布在之间,而讲座后主要分布在之间,则讲座前的答卷得分分布较讲座后分散,故B 正确;讲座后答卷得分依次为,因为,所以第80百分位数是第8个数与第个数的平均数,为,故C 错误;5075 8085 80,85,85,85,90,90,95,95,100,10080%108⨯=91952讲座前答卷得分的极差为,讲座后得分的极差为,所以讲座前答卷得分的极差大于讲座后得分的极差,故D 正确.故选:C .15. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内极值点(包括极大值点和极小值点)有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据函数图象,结合极值点定义即可判断在开区间内极值点个数.【详解】根据极值点定义,在极值点处导函数为0,且在极值点左右两侧单调性性不同,结合函数图象可知,导函数在内与轴有4个交点,但在两侧均为单调递增函数,因而不极值点,所以在开区间内极值点有3个,故选:C【点睛】本题考查了导函数图象性质的应用,极值点的意义,属于基础题.16. 已知数列,设(n 为正整数).若满足性质Ω:存在常数c ,使得对于任意两两不等的正整数i 、j 、k ,都有,则称数列为“梦想数列”.有以下三个命题:①若数列是“梦想数列”,则常数;②存在公比不为1的等比数列是“梦想数列”;③“梦想数列”一定是等差数列.以上3个命题中真命题的个数是( )个A. 3B. 2C. 1D. 0【答案】B【解析】是905040-=1008020-=()f x (),a b ()'f x (),a b ()f x (),a b ()f x (),a b ()'f x (),a b x 0x =0x =()f x (),a b {}n a 12n n a a a m n+++= {}n a ()()()k i j i j m j k m k i m c -+-+-={}n a {}n a 0c =【分析】分析条件,可得,可判断①;先验证,,时,、、成等差数列,再令,,,得数列的前项和的表达式,从而求得数列的通项公式,可判断②③.【详解】对于①,,所以,,故①正确;对于②③,令,,,所以,,即:、、成等差数列,令,,,,化简为:,两式相减得:所以,,当时也成立.综上可得,“梦想数列”必是等差数列,故③正确,故②不正确.故选:B .三、解答题(本大题共5题,满分78分)17. A 校为了了解学生对食堂的满意程度,随机调查了50名就餐学生,根据这50名学生对食堂满意度的评分,绘制出如图所示的频率分布直方图,其中样本数据分组为,,…,.()()()k i j i j m j k m k i m c -+-+-=0c =1i =2j =3k =1a 2a 3a 1i =2j =()3k n n =≥{}n a n n S {}n a ()()()k i j i j m j k m k i m c-+-+-=()()()k j i j i m i k m k j m c -+-+-=0c =1i =2j =3k =()()()1231121223310312a a a a a a +++-+-+-=1322a a a +=1a 2a 3a 1i =2j =()3k n n =≥()()()21122102n S S n a n n -+-+-=()()2122310n S n n a n n a +---=()()21122210n S n n a n n a ++---+=11121122220n n a na a na a a nd+++--=⇒=+()()114n a a n d n =+-≥1,2,3n ={}n a [)40,50[)50,60[]90,100(1)求频率分布直方图中a 的值;(2)若A 校共有3000名学生,试估计全体学生中对食堂满意度不低于80分的人数.【答案】(1)(2)【解析】【分析】(1)根据频率分布直方图中各个小矩形的面积之和为1,可求出a 的值;(2)先计算出样本中对食堂满意度不低于80分的频率,用样本估计总体,即可求解.【小问1详解】由题意可知:,解得;【小问2详解】样本中对食堂满意度不低于80分的频率为,用样本估计总体,所以估计全体学生中对食堂满意度不低于80分的人数为人.18. 记为数列的前项和,已知,(为正整数).(1)求数列的通项公式;(2)设,若,求正整数的值.【答案】(1) (2)【解析】【分析】(1)计算,确定数列从第2项开始构成以为首项,2为公比的等比数列,得到通项公式.(2)验证时不成立,当时,确定,代入计算得到,解得答案.【小问1详解】由,,得,且当时,,即. 故数列从第2项开始构成以为首项,2为公比的等比数列,,0.006a =1200100.0040.0220.0280.0220.0181()a ⨯+++++=0.006a =(0.0220.018)100.4+⨯=30000.41200⨯=n S {}n a n 12a =1n n a S +=n {}n a 2log n n b a =129145m m m m b b b b +++++++= m 12,1 2,2n n n a n -=⎧=⎨≥⎩11m =22a ={}n a 22a =1m =2m ≥1n b n =-()527145m +=12a =1n n a S +=2112a S a ===2n ≥11n n n n n a S S a a -+=-=-()122n na n a +=≥{}n a 22a =12n n a -=故数列的通项公式为,【小问2详解】当时,,又.当时,,不满足条件;当时,由,解得.19. 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.【答案】(1),,;(2)【解析】【分析】(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,则再利用独立事件的概率计算公式,解方程组即可得到答案.(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,利用对立事件,即计算即可.【详解】(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,由题设条件有即{}n a 12,1 2,2n n n a n -=⎧=⎨≥⎩2n ≥122log log 21n n n b a n -===-1212log log 21b a ===1m =()12310112946b b b b ++++=++++= 2m ≥()()()()129118527145m m m m b b b b m m m m m +++++++=-++++++=+= 11m =1411229131423561(),41(),122(),9P A B P B C P A C ⎧⋅=⎪⎪⎪⋅=⎨⎪⎪⋅=⎪⎩()1()P D P D =-1(,41(),122(),9P A B P B C P A C ⎧⋅=⎪⎪⎪⋅=⎨⎪⎪⋅=⎪⎩1()[1()],41()[1()],122()().9P A P B P B P C P A P C ⎧⋅-=⎪⎪⎪⋅-=⎨⎪⎪⋅=⎪⎩解得,,.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是,,;(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.【点晴】本题主要考查独立事件的概率计算问题,涉及到对立事件的概率计算,考查学生的数学运算能力,是一道容易题.20. 已知数列是公差为2的等差数列,其前8项的和为64.数列是公比大于0的等比数列,,.(1)求数列和的通项公式;(2)记,求数列的前项和;(3)记,求数列的前项和.【答案】(1),(2)(3)【解析】【分析】(1)设等差数列的首项为,利用等差数列的前项和公式求出,进而求出等差数列的通项公式;设等比数列的公比为,利用通项公式和已知条件求出,进而求出等比数列的通项公式;(2)先求出,再利用分组求和法和等差数列的求和公式进行求解;(3)先得到,再利用裂项抵消法进行求和.【小问1详解】1()3P A =1()4P B =2()3P C =131423()1()1[1()][1()][1()]P D P D P A P B P C =-=----231513436=-⨯⨯=56{}n a {}n b 13b =3218b b -={}n a {}n b 2*(1),N n n n c a n =-∈{}n c 2n 2n S *211,N n n n n na d n a ab ++-=∈{}n d n n T 21n a n =-3n n b =228n S n =1122(21)3n n T n =-+⋅1a n 1a q q 212168n n c c n -+=-1111[2(21)3(21)3n n nd n n -=--⋅+⋅因为是公差为2的等差数列,且,所以,解得,所以;设等比数列的公比为(),因为,,所以,即,解得(舍去)或,所以.【小问2详解】由(1)得,则,则【小问3详解】由(1)得,则{}n a 864S =18782642a ⨯+⨯=1=1a 12(1)21n a n n =+-=-{}nb q 0q >13b =3218b b -=23318q q -=260q q --=2q =-3q =1333n n n b -=⨯=22(1)(1)(21)n n n nc a n =-=-⋅-21222212(1)[2(21)1](1)(41)n n n n c c n n --+=-⋅--+-⋅-2222(1)(43)(1)(41)n n n n =--⋅-+-⋅-22(41)(43)168n n n =---=-21234212()()()n n n S c c c c c c -=++++⋅⋅⋅++8[135(21)]n =+++⋅⋅⋅+-2[1(21)]882n n n +-=⨯=2112(2)2(21)(21)3n n nn n n a n d a a b n n ++-+-==-+⋅()()()()122111212132213213n n n n n n n n -⎡⎤+==-⎢⎥-+⋅-⋅+⋅⎢⎥⎣⎦123n nd d d d T +++⋅⋅⋅+=0112231111111111[((()(2133333535373(21)3(21)3n n n n -=-+-+-+⋅⋅⋅+-⨯⨯⨯⨯⨯⨯-⋅+⋅,【点睛】方法点睛:本题中考察了数列求和的两种采用方法,第二问考察了并项求和法,第三问考察了裂项抵消法,技巧性较强.21. 若函数在处取得极值,且(常数),则称是函数的“相关点”.(1)若函数存在“相关点”,求的值;(2)若函数(常数)存在“1相关点”,求的值:(3)设函数的表达式为(常数且),若函数有两个不相等且均不为零的“2相关点”,过点存在3条直线与曲线相切,求实数的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)函数在 上单调递减,在上单调递增,可得为函数的极值点,进而结合题意即可求解;(2)由题意可得,即得,设,结合导数可得函数在上单调递增,且,进而求解;(3)由,可得,设,为函数的“2相关点”,则,,进而可得,,,故0111()213(21)3n n =-⨯+⋅1122(21)3nn =-+⋅()y f x =0x x =()00f x x λ=R λ∈0x ()y f x =λ222=++y x x λλ22ln y kx x =-k ∈R k ()y f x =()32f x ax bx cx =++a b c ∈R 、、0a ≠()y f x =()1,2P ()y f x =a 1λ=-1k =(),1-∞-222=++y x x (),1-∞-()1,-+∞1-222=++y x x 202000102ln kx kx x x ⎧-=⎨-=⎩002ln 10x x +-=()()2ln 10x x x x ϕ=+->()2ln 1x x x ϕ=+-()0,∞+()10ϕ=()322f x ax bx cx x =++=220ax bx c ++-=1x 2x ()f x ()21212Δ4202b a c b x x a c x x a ⎧⎪=-->⎪⎪+=-⎨⎪-⎪=⎪⎩21212Δ4120233b ac b x x a c x x a ⎧⎪=->⎪⎪+=-⎨⎪⎪=⎪⎩0b =3c =0a <,再结合导数的几何意义求解即可.【小问1详解】函数的对称轴为,且函数在 上单调递减,在上单调递增,所以为函数的极值点,因为函数存在“相关点”,由题意可得,,解得.【小问2详解】由,则 ,由题意可得,,即,即,设,则,所以函数在上单调递增,且,所以方程存在唯一实数根1,即,即,此时,则,令,即;令,即,即函数在上单调递减,在上单调递增,所以函数的极值点为1,所以1是函数的“1相关点”,所以.【小问3详解】由,得,即,()33f x ax x =+222=++y x x =1x -222=++y x x (),1-∞-()1,-+∞1-222=++y x x 222=++y x x λ()()21212λ-+⨯-+=-1λ=-()22ln 0y kx x x =->()22122kx y kx x x -'=-=202000102ln kx kx x x ⎧-=⎨-=⎩0012ln x x -=002ln 10x x +-=()()2ln 10x x x x ϕ=+->()210x xϕ'=+>()2ln 1x x x ϕ=+-()0,∞+()10ϕ=002ln 10x x +-=01x =1k =()22ln 0y x x x =->22222x y x x x -'=-=0'>y 1x >0'<y 01x <<22ln y x x =-()0,1()1,+∞22ln y x x =-22ln y kx x =-1k =()322f x ax bx cx x =++=()3220ax bx c x ++-=220ax bx c ++-=设,为函数的“2相关点”,则,另一方面,,所以,所以且,解得,,,故,则,因为过点存在3条直线与曲线相切,设其中一个切点为,则,整理得,设,且函数有三个不同的零点,则,令,则;令,则或.所以函数在和上单调递减,在上单调递增,所以,即,即实数的取值范围为.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.1x 2x ()f x ()21212Δ4202b a c b x x a c x x a ⎧⎪=-->⎪⎪+=-⎨⎪-⎪=⎪⎩()232f x ax bx c '=++21212Δ4120233b ac b x x a c x x a ⎧⎪=->⎪⎪+=-⎨⎪⎪=⎪⎩23b b a a -=-23c c a a-=0b =3c =0a <()33f x ax x =+()233f x ax '=+()1,2P ()y f x =()3,3m am m +()3213233a m am m m f m '+-=+=-322310am am --=()()322310p x ax ax a =--<()p x ()()26661p x ax ax ax x '=-=-()0p x '>01x <<()0p x '<0x <1x >()p x (),0∞-()1,+∞()0,1()()01012310p p a a ⎧=-<⎪⎨=-->⎪⎩1a <-a (),1-∞-。

2023年上海中学高二下期中数学试卷及答案

2023年上海中学高二下期中数学试卷及答案

上海中学2023学年第二学期高二年级数学期中2023.04一、填空题(本大题满分36分,本大题共有12题)1.已知直线l在x轴上的截距是3,在y轴上的截距是2-,则l的方程是______.2.若动点A,B分别在直线1:70l x y+-=和直线2:50l x y+-=上移动,求线段AB的中点M到原点的距离的最小值为________.3.点M与两个定点()0,0O,()2,0P的距离的比为3:1,则点M的轨迹方程为______.4.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是________.5.将3个红球,4个篮球,2个黄球排成一排(相同颜色的球是一样的),有______种排法.6.点()1,2A,点()2,4B--,点P在坐标轴上,且APB∠为直角,这样的点P有______个.7.二项式321nxx⎛⎫+⎪⎝⎭的展开式中含有非零常数项,则正整数n的最小值为______.8.已知点()2,0A-,动点B的纵坐标小于等于零,且点B的坐标满足方程221x y+=,则直线AB的斜率的取值范围是______.9.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_________种(用数字作答).10.在某种没有平局的比赛中,选手每赢一局可以得到1点积分,每输一局会失去1点积分,若选手连赢了3局或更多的比赛,则从连赢的第三局开始,每赢一局会得到2点积分,现在设某选手的胜率为60%,则他第6局的获得的分数的数学期望是______.11.如图,在55⨯的方格表中按照下面的条件填入6个圆圈,满足各行.各列至少有一个圆圈;同一格不能填2个圆圈.则不同的符合条件的填入方法有______种.12.已知,,,,,A B C D E F 六个字母以随机顺序排成一行,若小明每次操作可以互换2个字母的位置,则小明必须进行5次操作才能将六个字母排成ABCDEF 的顺序的排列情况有______种.二、选择题(本大题满分12分,本大题共有4题)13.已知一个圆的方程满足:圆心在点()3,4-,且过原点,则它的方程为()A.()()22345x y -+-= B.()()223425x y +++=C.()()22345x y ++-= D.()()223425x y ++-=14.掷两颗均匀的大小不同的骰子,记“两颗骰子的点数和为10”为事件A ,“小骰子出现的点数大于大骰子出现的点数”为事件B ,则()P B A 为()A.12B.16C.115D.1315.过点()3,0P作一条直线l ,它夹在两条直线1l :220x y --=和2l :30x y ++=之间的线段恰被点P 平分,则直线l 的方程为()A.8240x y +-=B.8240x y --=C.8240x y ++= D.8240x y ++=16.两个黑帮帮主甲和乙决定以如下方式决斗:甲带了一名手下A ,而乙带了两名手下B 和C ,规定任意一名手下向敌方成员开枪时,会随机命中敌方的一个尚未倒下的人,且命中每个人的概率相等,并且,三名手下被命中一次之后就会倒下,而甲被命中三次后倒下,乙被命中两次后倒下,只要甲或者乙任意一人倒下,决斗立刻结束,未倒下的一人胜出.决斗开始时,A 先向敌方成员开枪,之后若B 未倒下,则B 向敌方成员开枪,之后按C ,A ,B ,C ,A ,B ,……的顺序依次进行,则甲最终获胜的概率是()A.518B.736C.14 D.19三、解答題(本大题满分52分,本大题共有5题)17.已知随机变量(),X B n p ,若()2E x =,()43D x =,求p 的值.18.求抛物线C :2y x =上的点到直线l :112y x =-的最小距离.19.某校举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生(男女生各一半)的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出如图所示的频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为16,4.(1)求样本容量n 和频率分布直方图中的a ,b 的值;(2)70分以下称为“不优秀”,其中男.女姓中成绩优秀的分别有24人和30人,请完成列联表,并判断是否有90%的把握认为“学生的成绩优秀与性别有关”?男生女生总计优秀不优秀总计()20P K k ≥0.100.050.0100.0050.0010k 2.7063.8416.6357.87910.828附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20.为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:直径mm5859616263646566676869707173合计件数11356193318442121100经计算,样本的平均值65μ=,标准差 2.2σ=,以频率值作为概率的估计值,用样本估计总体.(1)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品,从设备M 的生产流水线上随意抽取3个零件,计算其中次品个数Y 的数学期望()E Y ;(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率):①()0.6827P X μσμσ-<≤+≥;②(22)0.9545P X μσμσ-<≤+≥;③(33)0.9973P X μσμσ-<≤+≥.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级并说明理由.21.(1)已知k 、n 为正整数,k n ≤,求证:11C C k k n n k n --=:(2)已知k 、n 为正整数,求证:1121C C C C C nnnn n n n n k n k n+++++++++⋅⋅⋅+=;(3)m 、n 为正整数,2n ≥,求证:()()1111111C 1111C C C C 121n n n n n n mn n n n m n n n n n m n m n ----+-++-+++⋅⋅⋅+<++++-.上海中学2023学年第二学期高二年级数学期中2023.04一、填空题(本大题满分36分,本大题共有12题)1.已知直线l 在x 轴上的截距是3,在y 轴上的截距是2-,则l 的方程是______.【答案】2360x y --=【解析】【分析】由题意利用截距式求直线的方程,再化为一般式.【详解】因为直线l 在x 轴上的截距是3,在y 轴上的截距是2-,则直线l 的方程是132x y +=-,即2360x y --=,故答案为:2360x y --=.2.若动点A ,B 分别在直线1:70l x y +-=和直线2:50l x y +-=上移动,求线段AB 的中点M 到原点的距离的最小值为________.【答案】【解析】【分析】由题意线段AB 的中点M 的集合为与直线1:70l x y +-=和直线2:50l x y +-=距离相等的直线,记为l ,则M 到原点距离最小值为原点到l 的距离,结合点到直线的距离公式可求.【详解】由题意线段AB 的中点M 的集合为与直线1:70l x y +-=和直线2:50l x y +-=距离相等的直线,记为l ,则M 到原点距离最小值为原点到l 的距离,设直线:0l x y m ++=,=解得6m =-,所以:60l x y +-=,根据点到直线的距离公式可得,M=故答案为:3.点M 与两个定点()0,0O ,()2,0P 的距离的比为3:1,则点M 的轨迹方程为______.【答案】2299(416x y -+=【解析】【分析】设出动点(,)M x y3=,再化简即可得到结果.【详解】设点(,)M x y ,3=,两边平方化简得2222990x y x +-+=,即2299(416x y -+=,所以点M 的轨迹方程为2299(416x y -+=.故答案为:2299(416x y -+=.4.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是________.【答案】96【解析】【详解】试题分析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×44A =96种考点:排列、组合及简单计数问题5.将3个红球,4个篮球,2个黄球排成一排(相同颜色的球是一样的),有______种排法.【答案】1260【解析】【分析】利用排列知识即可求出结果.【详解】因为相同颜色的球是一样的,所以将3个红球,4个篮球,2个黄球排成一排,共有99342342A 1260A A A =种.故答案为:1260.6.点()1,2A ,点()2,4B --,点P 在坐标轴上,且APB ∠为直角,这样的点P 有______个.【答案】4【解析】【分析】分情况讨论,设出轴上P 点坐标,利用向量的数量积为0建立方程,由判别式确定解得个数即可.【详解】若P 在x 轴上,可设(,0)P x ,则(1,2),(2,4)AP x BP x →→=--=+,由APB ∠为直角可得(1)(2)80AP BP x x →→⋅=-+-=,即2100x x +-=,214(10)0∆=-⨯->,故有两解;当P 在y 轴上,可设(0,)P y ,则(1,2),(2,4)AP y BP y →→=--=+,由APB ∠为直角可得2(2)(4)0AP BP y y →→⋅=-+-+=,即22100y y +-=,224(10)0∆=-⨯->,故两解.综上,四个解且无重合点,可知符合条件的点有4个,故答案为:47.二项式321nx x ⎛⎫+ ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为______.【答案】5【解析】【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为 0方程有解,即可求出正整数n 的最小值.【详解】由题意,在321nx x ⎛⎫+ ⎪⎝⎭中,展开式中含有非零常数项,展开式的通项为()335121C C rn rrn n rr n r T xxx --+⎛⎫== ⎪⎝⎭,∵展开式中含有非零常数项,∴当350n r -=时,解得:53rn =∴当3r =时,n 最小,为 5故答案为:5.8.已知点()2,0A -,动点B 的纵坐标小于等于零,且点B 的坐标满足方程221x y +=,则直线AB 的斜率的取值范围是______.【答案】,03⎡⎤-⎢⎥⎣⎦【解析】【分析】利用条件,将问题转化成求直线AB 与圆相切时的斜率,再根据图形即可得出结果.【详解】由题知,动点B 的纵坐标小于等于零,且点B 的坐标满足方程221x y +=,所以点B 的轨迹方程为221(0)xy y +=≤,当直线AB 与圆相切时,设直线AB 方程为(2)y k x =+,即20kx y k -+=,1=,解得3k =±,因为B 的纵坐标小于等于零,所以33k =-,由图易知,直线AB的斜率的取值范围,03k ⎡⎤∈-⎢⎥⎣⎦,故答案为:,03⎡⎤-⎢⎥⎣⎦9.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_________种(用数字作答).【答案】1080【解析】【分析】该问题属于平均分组(堆)再分配的问题,先将6位志愿者分成4组,其中两个组各2人,另两个组各1人,再将其分配到四个不同场馆即得.【详解】将6位志愿者分成4组,其中两个组各2人,另两个组各1人有2216422222C C C 45A A =种方法,进而将其分配到四个不同场馆,有44A 24=种情况,由分步计数原理可得,不同的分配方案有45×24=1080种.故答案为:1080.【点睛】易错题,在分组过程中,要注意分组重复的情况,理解2216422222C C C A A 中分母的意义.10.在某种没有平局的比赛中,选手每赢一局可以得到1点积分,每输一局会失去1点积分,若选手连赢了3局或更多的比赛,则从连赢的第三局开始,每赢一局会得到2点积分,现在设某选手的胜率为60%,则他第6局的获得的分数的数学期望是______.【答案】0.38144【解析】【分析】根据题意结合独立事件概率公式、数学期望的公式进行求解即可..【详解】前6局中,连赢六局的概率为()660%,前6局中,连赢五局且第6局也赢的概率为()()560%160%⨯-,前6局中,连赢四局且第6局也赢的概率为()()560%160%⨯-,前6局中,连赢三局且第6局也赢的概率为()()()()44260%160%60%160%⨯-+⨯-,所以第6局的获得2分的概率为:()660%()()5260%160%+⨯⨯-()()()()44260%160%60%160%+⨯-+⨯-0.18144=,第6局的获得1-分的概率为160%0.4-=,第6局的获得1分的概率为10.181440.40.41856--=,⨯+⨯+-⨯=,所以第6局的获得的分数的数学期望是20.1814410.41856(1)0.40.38144故答案为:0.3814411.如图,在55⨯的方格表中按照下面的条件填入6个圆圈,满足各行.各列至少有一个圆圈;同一格不能填2个圆圈.则不同的符合条件的填入方法有______种.【答案】4200【解析】【分析】6个圆圈填入5行、5列的表格中,按照题目要求,易知必有某行2个,其他行1个;某列2个,其他列1个,据此分两类讨论,分别求出安排种数,再由分类加法计数原理得解.【详解】6个圆圈填入5行、5列的表格中,按照题目要求,易知必有某行2个,其他行1个;某列2个,其他列1个.①如果该行和该列的交界处有圆圈,则去掉这个圆圈恰好每行每列1个,有5!=120种,新增的这个交界处圆圈有20种填法,共计:120×20=2400种;C C=25种,在该行该列分②如果该行和该列的交界处没有圆圈,选定该行该列的方式有1155C C=36种,最后再把剩下2个圆圈填入方格,有2种填法,共别填入2个圆圈的方法有2244⨯⨯种;计:25362=1800综上,不同的符合条件的填入方法有4200种.故答案为:4200种A B C D E F六个字母以随机顺序排成一行,若小明每次操作可以互换2个字12.已知,,,,,母的位置,则小明必须进行5次操作才能将六个字母排成ABCDEF的顺序的排列情况有______种.【答案】120【解析】【分析】利用条件,分析得到每个字母均不在自己位置,且交换过程中只存在一次,即最后一次交换使两个字母同时归位,再利用分步计数原理即可求出结果.【详解】因为小明必须经过5次操作才能将六个字母排成ABCDEF的顺序,这里研究排序混乱到什么程度才需要“必须经过5次操作”排成ABCDEF的顺序,这里不妨记A,B,C,D,E,F六个字母对应的位次分别为1,2,3,4,5,6,首先,考虑一种情况:假设字母“A”已经排在自己的位置,即排在1号位,其他字母均不在自己位置,易知把其他五个字母调换到自己的位置至少需要经过4次操作,即第一次让“B”归位,第二次让“C”归位,第三次让“D”归位,第四次将“E”与“F”同时归位,这样仅需进行4次操作,不满足题意;若A,B,C,D,E,F均不在对应的自己位置,但经过一次交换后,可使得两个字母同时归位,此时也不能满足“必须进行5次操作”的情况,C E F A B D,同时交换,B E可使两者同时归位,此时只需交换四次即可,例如,,,,,,F E D C B A,只需交换三次即可,不合要求,而,,,,,所以,要满足“必须进行5次操作”的情况,则每个字母均不在自己位置,且交换过程中只存在一次,即最后一次交换使两个字母同时归位,B C D E F中的一个,有5种选择,不妨设放的为C,1号位可放,,,,B D E F中选一个,有4种选择,不妨设放的为F,则3号位不能放A,可从剩余,,,则5号位不能放A,否则可先交换,A F,再交换,A C,交换过程中出现交换一次使两个字母同时归位的情况,B D E种选择一个,有3种选择,不妨设放的为B,故5号位可从,,字母A可选择4号位或5号位,有2种选择,剩余,D E只有1种放法,才能满足要求,⨯⨯⨯⨯=种.综上,总的排序方法有54321120故答案为:120【点睛】关键点点睛:解决本题的关键在于,分析出要满足“必须进行5次操作”的情况,则每个字母均不在自己位置,且交换过程中只存在一次,即最后一次交换使两个字母同时归位.二、选择题(本大题满分12分,本大题共有4题)13.已知一个圆的方程满足:圆心在点()3,4-,且过原点,则它的方程为()A.()()22345x y -+-= B.()()223425x y +++=C.()()22345x y ++-= D.()()223425x y ++-=【答案】D 【解析】【分析】利用条件求出半径,再根据圆的标准方程求解.【详解】设圆的半径为r ,因为圆心是()3,4C -,且过点(0,0),所以5r ==,所以半圆的方程为()223(4)25x y ++-=,故选:D.14.掷两颗均匀的大小不同的骰子,记“两颗骰子的点数和为10”为事件A ,“小骰子出现的点数大于大骰子出现的点数”为事件B ,则()P B A 为()A.12B.16C.115D.13【答案】D 【解析】【分析】根据题意,利用古典概型公式分别计算事件A 发生的概率与事件AB 发生的概率,再利用条件概率计算公式即可算出P (B |A )的值.【详解】根据题意,记小骰子的点数为x ,大骰子的点数为y ,事件A 包含的基本事件有“4,6x y ==”,“5x y ==”,“6,4x y ==”共3个,∴事件A 发生的概率31()6612P A ==⨯,而事件A B 包含的基本事件有“6,4x y ==”一个,可得事件AB 发生的概率1()36P AB =,()1(|)()3P AB P B A P A ∴==.故选:D 15.过点()3,0P作一条直线l ,它夹在两条直线1l :220x y --=和2l :30x y ++=之间的线段恰被点P 平分,则直线l 的方程为()A.8240x y +-=B.8240x y --=C.8240x y ++=D.8240x y ++=【答案】B 【解析】【分析】当斜率不存在时,不符合题意,当斜率存在时,设所求直线方程为()3y k x =-,进而得出交点,根据点P 为两交点的中点建立等式,求出k 的值,从而即可解决问题.【详解】如果直线斜率不存在时,直线方程为:3x =,不符合题意;所以直线斜率存在设为k ,则直线l 方程为()3y k x =-,联立直线1l 得:()323242202k x y k x k k x y y k -⎧=⎪⎧=-⎪-⇒⎨⎨--=⎩⎪=⎪-⎩,联立直线2l 得:,()33316301k x y k x k kx y y k -⎧=⎪⎧=-⎪+⇒⎨⎨-++=⎩⎪=⎪+⎩,所以直线l 与直线1l ,直线2l 的交点为:324336,,,2211k k k k k k k k ---⎛⎫⎛⎫⎪ ⎪--++⎝⎭⎝⎭,又直线l 夹在两条直线1l 和2l 之间的线段恰被点P 平分,所以3233466,02121k k k kk k k k ---+=+=-+-+,解得:8k =,所以直线l 的方程为:8240x y --=,故选:B.16.两个黑帮帮主甲和乙决定以如下方式决斗:甲带了一名手下A ,而乙带了两名手下B 和C ,规定任意一名手下向敌方成员开枪时,会随机命中敌方的一个尚未倒下的人,且命中每个人的概率相等,并且,三名手下被命中一次之后就会倒下,而甲被命中三次后倒下,乙被命中两次后倒下,只要甲或者乙任意一人倒下,决斗立刻结束,未倒下的一人胜出.决斗开始时,A 先向敌方成员开枪,之后若B 未倒下,则B 向敌方成员开枪,之后按C ,A ,B ,C ,A ,B ,……的顺序依次进行,则甲最终获胜的概率是()A.518B.736C.14 D.19【答案】A 【解析】【分析】分析按被击中顺序来表示的甲获胜的事件,分别求出概率,利用互斥事件概率加法公式求和得解.【详解】对于甲来说,一旦唯一一名手下A 被击毙,则甲方必败,同理,若乙方B 、C 两名手下被击毙,则乙方必败(题目定义开枪顺序是三名手下轮流开枪,甲与乙不参与开枪),按照被击中的顺序表示事件,易知甲获胜的方式有如下几种:乙甲甲乙,B 甲C ,C 甲B ,B 甲乙甲,C 甲乙甲,事件概率分别记为(1,2,3,4,5)i P i =,则111111322336P =⨯⨯⨯=,2111132212P =⨯⨯=,3111132212P =⨯⨯=,411111322224P =⨯⨯⨯=,511111322224P =⨯⨯⨯=,所以甲最终获胜的概率是11152236122418P =+⨯+⨯=,故选:A三、解答題(本大题满分52分,本大题共有5题)17.已知随机变量(),X B n p ,若()2E x =,()43D x =,求p 的值.【答案】13【解析】【分析】根据二项分布的期望、方差公式计算可得.【详解】因为随机变量(),X B n p ,所以()2E x np ==,()()413D x np p =-=,两式相除可得213p -=,解得13p =.18.求抛物线C :2y x =上的点到直线l :112y x =-的最小距离.【答案】8【解析】【分析】设出抛物线上的点坐标,利用点到直线的距离公式求解作答.【详解】设抛物线2y x =上的点200(,)P x x ,则点P 到直线112y x =-,即220x y --=的距离2201152(35488x d -+==,当且仅当014x =时取等号,所以所求最小距离为8.19.某校举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生(男女生各一半)的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出如图所示的频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为16,4.(1)求样本容量n 和频率分布直方图中的a ,b 的值;(2)70分以下称为“不优秀”,其中男.女姓中成绩优秀的分别有24人和30人,请完成列联表,并判断是否有90%的把握认为“学生的成绩优秀与性别有关”?男生女生总计优秀不优秀总计()20P K k ≥0.100.050.0100.0050.0010k 2.7063.8416.6357.87910.828附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)1000.0040.030,,n b a ===(2)联表见解析,没有【解析】【分析】(1)根据频率分布直方图,计算样本容量n 及,a b 的大小即可;(2)由题意列出联表,计算2K 与临界值比较得出结论.【小问1详解】由题意可知,样本容量161000.01610n ==⨯,40.00410010b ==⨯,0.1000.0040.0100.0160.0400.030.a =----=【小问2详解】100位学生中男女生各有50名,成绩优秀共有54名,所以学生的成绩优秀与性别列联表如下表;男生女生总计优秀243054不优秀262046总计5050100()22100242030261001.4492.705050465469K ⨯⨯-⨯==≈<⨯⨯⨯ ,∴没有90%的把握认为“学生的成绩优秀与性别有关”.20.为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:直径mm5859616263646566676869707173合计件数11356193318442121100经计算,样本的平均值65μ=,标准差 2.2σ=,以频率值作为概率的估计值,用样本估计总体.(1)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品,从设备M 的生产流水线上随意抽取3个零件,计算其中次品个数Y 的数学期望()E Y ;(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率):①()0.6827P X μσμσ-<≤+≥;②(22)0.9545P X μσμσ-<≤+≥;③(33)0.9973P X μσμσ-<≤+≥.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级并说明理由.【答案】(1)9()50E Y =;(2)设备M 的性能为丙级别.理由见解析【解析】【分析】(1)对于次品个数Y 的数学期望()E Y 的求法可采取古典概率的算法,先求出次品率,用符合条件的次品数/样本总数,次品可通过寻找直径小于等于2μσ-或直径大于2μσ+的零件个数求得,再根据该分布符合3~3,50Y B ⎛⎫⎪⎝⎭,进行期望的求值(2)根据(2)提供的评判标准,再结合样本数据算出在每个对应事件下的概率,通过比较发现80()0.800.6826100P X μσμσ-<≤+==>,94(22)0.940.9544100P X μσμσ-<≤+==<,98(33)0.980.9974100P X μσμσ-<≤+==<,三个条件中只有一个符合,等级为丙【详解】解:(1)由图表知道:直径小于或等于2μσ-的零件有2件,大于2μσ+的零件有4件,共计6件,从设备M 的生产流水线上任取一件,取到次品的概率为6310050=,依题意3~3,50Y B ⎛⎫ ⎪⎝⎭,故39()35050E Y =⨯=;(2)由题意知,62.8μσ-=,67.2μσ+=,260.6μσ-=,269.4μσ+=,358.4μσ-=,371.6μσ+=,所以由图表知道:80()0.800.6826100P X μσμσ-<≤+==>,94(22)0.940.9544100P X μσμσ-<≤+==<,98(33)0.980.9974100P X μσμσ-<≤+==<,所以该设备M 的性能为丙级别.【点睛】对于正态分布题型的数据分析,需要结合μσ,的含义来进行理解,根据题设中如()0.6827P X μσμσ-<≤+≥;②(22)0.9545P X μσμσ-<≤+≥;③(33)0.9973P X μσμσ-<≤+≥来寻找对应条件下的样品数,计算出概率值,再根据题设进行求解,此类题型对数据分析能力要求较高,在统计数据时必须够保证数据的准确性,特别是统计个数和计算μσ-,μσ+等数据时21.(1)已知k 、n 为正整数,k n ≤,求证:11C C k k n n k n --=:(2)已知k 、n 为正整数,求证:1121C C C C C nnnn n n n n k n k n+++++++++⋅⋅⋅+=;(3)m 、n 为正整数,2n ≥,求证:()()1111111C 1111C C C C 121n n n n n n mn n n n m n n n n n m n m n ----+-++-+++⋅⋅⋅+<++++-.【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据组合数的公式及阶乘的定义化简变形即可得证;(2)由组合数的性质11C C C mm m n nn -++=可证明;(3)利用(1)和(2)的结论,及()2212121C 1C C n n k n n n k n k n k n n k n k-+---+-+-+--=<++可证明.【详解】(1)()()()()()111!!C C !!1![11]!k k nn n n n k k n k n k k n k --⋅-===----- ,11C C k k n n k n --=∴.(2)由11C C C mm m n nn -++=知,12C C C C n n n n n n n n k++++++⋅⋅⋅+1112C C C C n n n n n n n n k +++++=++++ 122C C C n n n n n n k ++++=+++ 133C C C n n n n n n k++++=+++ ⋯⋯11C n n k +++=.(3)由(1)可知,2n ≥时,()()()()()1111C C C 111n n n n m n m n m m n n n m n m n n n --+-++-+==+-+--,而()2212121C 1C C n n k n n n k n k n k n n k n k-+---+-+-+--=<++,故11111111111C C C 12n n n n n n n n m n n n n n n n n m-----++-----+++++++ ,2222212C C C C n n n n n n n n m ------+-<++++ 11n n m C -+-=,故()()1111111C 1111C C C C 121n n n n n n mn n n n m n n n n n m n m n ----+-++-+++⋅⋅⋅+<++++-,其中2n ≥.。

2022-2023学年上海市松江二中高二下学期期中数学考试卷含详解

2022-2023学年上海市松江二中高二下学期期中数学考试卷含详解

2022学年第二学期松江二中期中考试试卷高二数学(完卷时间:120分钟满分:150分)一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分4分,第7~12题每题满分5分.考生应在答题纸相应编号的空格内直接填写结果.)1.焦点在x 轴上,长轴长为10,离心率为45的椭圆的标准方程为__________.2.()42x +展开式中3x 的系数为______.3.已知函数()sin2f x x x =+,则()πf '=__________.4.小智和电脑连续下两盘棋,已知小智第一盘获胜的概率是0.5,小智连续两盘都获胜的概率是0.4,那么小智在第一盘获胜的条件下,第二盘也获胜的概率是__________.5.已知点()0,8A -,()2,2B -,()4,C m ,若线段AB ,AC ,BC 不能构成三角形,则m 的值是________.6.函数()e x f x x =在(]0,2上的最小值为__________.7.已知函数()y f x =的图象在点()()1,1M f 处的切线方程是21y x =+,则()()11f f '+=______.8.已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(,0)B m (0)m >,若圆C 上存在点P 使得090APB ∠=,则m 的最大值为__________.9.函数()y f x =的导函数()y f x '=的图像如图所示,给出下列命题:①3-是函数()y f x =的极小值点;②1-是函数()y f x =的最小值点;③()y f x =在区间()3,1-上严格增;④()y f x =在32x =-处切线的斜率小于零.以上所有正确命题的序号是__________.10.从双曲线2213yx-=的左焦点F引圆221x y+=的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则MO MT-的值是__________.11.已知函数()3(1)f x x x=-+,若在平面直角坐标系xOy中,所有满足()()2f a f b+>的点(),a b都不在直线l上,则直线l的方程可以是__________(写出满足条件的一个直线方程即可).12.定义两个点集S T、之间的距离集为(){},|,d S T PQ P S Q T=∈∈,其中PQ表示两点P、Q之间的距离.已知m t∈R、,在平面直角坐标系xOy中,点集()((){}22,()1,,,0S x y x y a a T x y x my t⎧⎫=+-=∈=+-=⎨⎬⎩⎭R∣∣,若()(),0,d S T∞=+,则t的值为__________.二、选择题(本大题共有4题,满分20分.每题有且只有一个正确答案,考生在答题纸相应位置作答,选对得5分,否则一律得零分.)13.“4a=”是“直线0ax y a++=和直线()4350x a y a+-++=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.数学与生活密不可分,在一次数学讨论课上,老师安排5名同学讲述圆、椭圆、双曲线、抛物线在实际生活中的应用,要求每位学生只讲述一种曲线,每种曲线至少有1名学生讲述,则可能的安排方案的种数为()A.240B.480C.360D.72015.美术绘图中常采用“三庭五眼”作图法.三庭:将整个脸部按照发际线至眉骨,眉骨至鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的13,五眼:指脸的宽度比例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为2cm,五眼中一眼的宽度为1cm,若图中提供的直线AB近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为()A.1.8cmB.2.5cmC.3.2cmD.3.9cm16.已知函数()33f x x x =-的定义域为[](),,Z a b a b ∈,其值域[],A a b ⊆,则满足条件的函数的个数为()A.1个B.2个C.3个D.无数个三、解答题(本大题共有5题,满分76分.解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.)17.已知抛物线2:4,C y x F =是它的焦点.(1)过焦点F 且斜率为1的直线与抛物线C 交于,A B 两点,求线段AB 的长;(2)M 为抛物线C 上的动点,点()2,1P ,求MP MF +的最小值.18.已知圆C 经过()10A -,,()23B ,两点,且圆心C 在直线240x y --=上.(1)求圆C 的方程;(2)过点()32,的直线l 与圆C 交于P ,Q 两点,如果2PQ =,求直线l 的方程.19.外形是双曲面的冷却塔具有众多优点,如自然通风和散热效果好,结构强度和抗变形能力强等,其设计原理涉及到物理学、建筑学等学科知识.如图1是中国华电集团的某个火力发电厂的一座冷却塔,它的外形可以看成是由一条双曲线的一部分绕着它的虚轴所在直线旋转而成,其轴截面如图2所示.已知下口圆面的直径为80米,上口圆面的直径为40米,高为90米,下口到最小直径圆面的距离为80米.(1)求最小直径圆面的面积;(2)双曲面也是直纹曲面,即可以看成是由一条直线绕另一条直线旋转而成,该直线叫做双曲面的直母线.过双曲面上的任意一点有且只有两条相交的直母线(如图3),对于任意一条直母线l ,均存在一个轴截面和它平行,此轴截面截双曲面所得的双曲线有两条渐近线,且直母线l 与其中一条平行.广州电视塔(昵称“小蛮腰”,如图4)就是根据这一理论设计的,极大地方便了建造、节约了成本(主钢梁在直母线上,钢筋不需要弯曲).若图1中的冷却塔也采用直母线主钢梁,求主钢梁的长度(精确到0.010.655≈).20.如图,已知椭圆221:184x y Γ+=的两个焦点为12,F F ,且12,F F 为双曲线2Γ的顶点,双曲线2Γ的离心率e =设P 为该双曲线2Γ上异于顶点的任意一点,直线12,PF PF 的斜率分别为12,k k ,且直线1PF 和2PF 与椭圆1Γ的交点分别为,A B 和,C D .(1)求双曲线2Γ的标准方程;(2)证明:直线12,PF PF 的斜率之积12k k ⋅为定值;(3)求AB CD的取值范围.21.设函数()()()212ln f x x a x a x a =+--∈R .(1)若1a =-,求函数()y f x =的单调区间;(2)若函数()f x 在区间()1,+∞上.是增函数,求实数a 的取值范围;(3)若0a >,过坐标原点O 作曲线()y f x =的切线,证明:切线有且仅有一条.2022学年第二学期松江二中期中考试试卷高二数学(完卷时间:120分钟满分:150分)一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分4分,第7~12题每题满分5分.考生应在答题纸相应编号的空格内直接填写结果.)1.焦点在x 轴上,长轴长为10,离心率为45的椭圆的标准方程为__________.【答案】221259x y +=【分析】由椭圆的长轴长为10,离心率为45,可得,,a b c ,从而得到椭圆的方程.【详解】设椭圆的标准方程为22221(0)x y a b a b+=>>,由题意,得4210,5c a e a ===,所以4,5c a ==,所以2229b a c =-=,所以椭圆的标准方程为221259x y +=.故答案为:221259x y +=.2.()42x +展开式中3x 的系数为______.【答案】8【分析】先求出展开式的通项,再令x 的指数为3,即可求出.【详解】()42x +的展开式通项为4414422r r r r r r r T C x C x --+=⋅⋅=⋅,令43r -=,解得1r =,则3x 的系数为11428C =.故答案为:8.3.已知函数()sin2f x x x =+,则()πf '=__________.【答案】3【分析】先求导,然后再求()πf '.【详解】由导数的运算可知,()12cos2f x x =+',()π3f ∴'=.故答案为:34.小智和电脑连续下两盘棋,已知小智第一盘获胜的概率是0.5,小智连续两盘都获胜的概率是0.4,那么小智在第一盘获胜的条件下,第二盘也获胜的概率是__________.【答案】0.8##45【分析】利用条件概率公式求解.【详解】设小智第一盘获胜为事件A ,第二盘获胜为事件B ,则()()0.5,0.4P A P A B =⋂=,则()()()0.4|0.80.5P A B P B A P A === ,故答案为:0.85.已知点()0,8A -,()2,2B -,()4,C m ,若线段AB ,AC ,BC 不能构成三角形,则m 的值是________.【答案】4【分析】由线段AB ,AC ,BC 不能构成三角形知,,A B C 三点共线,由AB AC k k =求得m 的值.【详解】因为线段AB ,AC ,BC 不能构成三角形,所以,,A B C 三点共线,显然直线AB 的斜率存在,故AB AC k k =,即288204m -++=-,解得4m =,故答案为:46.函数()e x f x x=在(]0,2上的最小值为__________.【答案】e【分析】对()f x 求导,从而得到()f x 在(]0,2上的单调性,进而求出()f x 在(]0,2上的最小值.【详解】()()(]2e 1,0,2x x f x x x -'=∈,由()0f x ¢>得12x <≤,由()0f x '<得01x <<,所以()f x 在(]0,1上单调递减,在(]1,2上单调递增,所以()min ()1e f x f ==.故答案为:e .7.已知函数()y f x =的图象在点()()1,1M f 处的切线方程是21y x =+,则()()11f f '+=______.【答案】5【分析】由导数的几何意义可得()1f '的值,将点M 的坐标代入切线方程可得()1f ,即可得解.【详解】由导数的几何意义可得()12f '=,将点M 的坐标代入切线方程可得()12113f =⨯+=,因此,()()115f f '+=.故答案为:5.8.已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(,0)B m (0)m >,若圆C 上存在点P 使得090APB ∠=,则m 的最大值为__________.【答案】6【详解】圆C :(x ﹣3)2+(y ﹣4)2=1的圆心C (3,4),半径r=1,设P (a ,b )在圆C 上,则=(a+m ,b ),=(a ﹣m ,b ),∵∠APB=90°,∴,∴=(a+m )(a ﹣m )+b 2=0,∴m 2=a 2+b 2=|OP|2,∴m 的最大值即为|OP |的最大值,等于|OC|+r=5+1=6.故答案为6.9.函数()y f x =的导函数()y f x '=的图像如图所示,给出下列命题:①3-是函数()y f x =的极小值点;②1-是函数()y f x =的最小值点;③()y f x =在区间()3,1-上严格增;④()y f x =在32x =-处切线的斜率小于零.以上所有正确命题的序号是__________.【答案】①③【分析】观察()y f x '=的图像在3-左右的符号即可判断①;观察()y f x '=的图像,利用导函数的正负与原函数的单调性的关系可判断②③;利用导数的几何意义即可判断④.【详解】有图像可知,3-的左侧导数值为负,右侧为正,故3-是函数()y f x =的极小值点;1-的左右两侧导数值均为正,故1-不是函数()y f x =的最值点;在区间()3,1-导数值为正,故()y f x =在区间()3,1-上严格增;302f ⎛⎫-> ⎪⎝⎭',故()y f x =在32x =-处切线的斜率大于零.故正确命题的序号是①③.故答案为:①③.10.从双曲线2213y x -=的左焦点F 引圆221x y +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MO MT -的值是__________.【答案】1-##1-【分析】设出双曲线右焦点1F ,连接1,,PF OT OM ,利用双曲线的定义和中位线进行解题.【详解】不妨将点P 置于第一象限.设1F 是双曲线的右焦点,连接1,,PF OT OM .,M O 分别为1,FP FF 的中点,故112MO PF =.又由双曲线定义得,12,PF PF a FT b -===故()1111122MO MT PF MF FT PF PF FT b a -=-+=-+=-=.111.已知函数()3(1)f x x x =-+,若在平面直角坐标系xOy 中,所有满足()()2f a f b +>的点(),a b 都不在直线l 上,则直线l 的方程可以是__________(写出满足条件的一个直线方程即可).【答案】20x y +-=(答案不唯一,在2x y +≤表示的半平面内的直线l 均可)【分析】利用导数法求函数的单调性,结合函数的对称性和函数的单调性即可求解.【详解】由()3(1)f x x x =-+,得()23(1)10f x x =-+>',故()f x 在R 上为单调增函数,又()()32(1)22f x x x f x -=-+-=-,故()f x 的图像关于()1,1对称,所以()()22f a f a =--,代入()()2f a f b +>,可得()()2f b f a >-,即2b a >-,可得20a b +->.所以满足条件的一条直线方程为20x y +-=,(答案不唯一,在2x y +≤表示的半平面内的直线均可).故答案为:20x y +-=(答案不唯一,在2x y +≤表示的半平面内的直线l 均可).12.定义两个点集S T 、之间的距离集为(){},|,d S T PQ P S Q T =∈∈,其中PQ 表示两点P 、Q 之间的距离.已知m t ∈R 、,在平面直角坐标系xOy 中,点集()((){}22,()1,,,0S x y x y a a T x y x my t ⎧⎫=+-=∈=+-=⎨⎬⎩⎭R ∣∣,若()(),0,d S T ∞=+,则t 的值为__________.【答案】【分析】集合S 表示以)a 为圆心,半径为1的圆上的点,而圆心)a 在双曲线221x y -=的右支上,集合T 表示直线0x my t +-=上的点.画出图形可知,当直线0x my t +-=与双曲线的渐近线0x y ±=平行且距离为1时,满足条件,从而可解.【详解】集合S 表示以)a 为圆心,半径为1的圆上的点,集合T 表示直线0x my t +-=上的点.而圆心)a 在双曲线221x y -=的右支上,又因为()(),0,d S T ∞=+,所以由图像可知,当直线0x my t +-=与双曲线的渐近线0x y ±=平行且距离为1时,满足条件,即1m =±.当1m =-时,此时直线0x y t --=在双曲线的渐近线0x y -=的左上方且距离为1,1,0t =<,解得t =当1m =时,此时直线0x y t +-=在双曲线的渐近线0x y +=的左下方且距离为1,1,0t =<,解得t =所以t 的值为.故答案为:.二、选择题(本大题共有4题,满分20分.每题有且只有一个正确答案,考生在答题纸相应位置作答,选对得5分,否则一律得零分.)13.“4a =”是“直线0ax y a ++=和直线()4350x a y a +-++=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【分析】根据两直线平行求出参数a ,再根据充分条件和必要条件的定义即可得出答案.【详解】∵直线0ax y a ++=和直线()4350x a y a +-++=平行,∴()3140a a ⨯--⨯=,解得4a =或1a =-,当4a =,两直线分别为440,490x y x y ++=++=,两直线平行,符合题意;当1a =-,两直线分别为10,4440x y x y -+-=-+=,即为10,10x y x y -+=-+=,两直线重合,不符合题意;综上所述:4a =.故“4a =”是“直线0ax y a ++=和直线()4350x a y a +-++=平行”的充要条件.故选:C.14.数学与生活密不可分,在一次数学讨论课上,老师安排5名同学讲述圆、椭圆、双曲线、抛物线在实际生活中的应用,要求每位学生只讲述一种曲线,每种曲线至少有1名学生讲述,则可能的安排方案的种数为()A.240B.480C.360D.720【答案】A【分析】先分组再分配,平均分组注意消序,最后根据分步乘法计数原理,即可得到可能的安排方案的种数.【详解】解:有四种曲线,要求每位学生只讲述一种曲线,则5名同学分成2,1,1,1四组,共有2111532133C C C C 10A =种情况,再将四组学生分配给四种曲线,一共有44A 24=种情况,则可能的安排方案的种数为1024240⨯=种,15.美术绘图中常采用“三庭五眼”作图法.三庭:将整个脸部按照发际线至眉骨,眉骨至鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的13,五眼:指脸的宽度比例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为2cm,五眼中一眼的宽度为1cm,若图中提供的直线AB近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为()A.1.8cmB.2.5cmC.3.2cmD.3.9cm【答案】B【分析】建立平面直角坐标系,求出直线AB的方程,利用点到直线距离公式进行求解【详解】解:如图,以鼻尖所在位置为原点O,中庭下边界为x轴,垂直中庭下边界为y轴,建立平面直角坐标系,则1,42A⎛⎫⎪⎝⎭,3,22B⎛⎫- ⎪⎝⎭,所以4211322ABk-==⎛⎫-- ⎪⎝⎭,利用点斜式方程可得到直线AB:322y x-=+,整理为2270x y-+=,所以原点O到直线AB距离为()72 2.5cm4d==≈,故选:B16.已知函数()33f x x x=-的定义域为[](),,Za b a b∈,其值域[],A a b⊆,则满足条件的函数的个数为()A.1个 B.2个 C.3个 D.无数个【分析】利用导数法求出函数的极值,作出函数的大致图象,结合函数的定义域是值域的子集关系即可求解.【详解】依题意,()33f x x x =-,其导数()()()()223331311f x x x x x '=-=-=-+,令()0,f x '=则()()3110x x -+=,解得=1x -或1x =,当()(),11,x ∈-∞-⋃+∞时,()0,f x '>当()1,1x ∈-时,()0,f x '<所以()f x 在()(),1,1,-∞-+∞上单调递增,在()1,1-上单调递减.当=1x -时,()f x 取得的极小值为()12f -=-,当1x =时,()f x 取得的极大值为()12f =.若()f x x =,即33x x x -=,解可得2,0x =-或2,即函数()f x 与y x =的交点为()()2,2,0,0--和()2,2,在同一坐标系中作出函数()33f x x x =-和y x =的图像,如图所示若函数()y f x =的定义域为[]()(),,Z ,a b a b y f x ∈=的值域为[],a b 的子集,则有22a b -≤<≤,且,Z a b ∈,若2a >-时,即1,0,1a =-时,不能满足()f x 的值域为[],a b 的子集,同理,2b <时,即1,0,1b =-时,不能满足()f x 的值域为[],a b 的子集,故只有当2a =-月.2b =时,()f x 的值域为[]22-,,满足()f x 的值域为[],a b 的子集,符合题意;故这样的函数有且只有一个.故选:A.三、解答题(本大题共有5题,满分76分.解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.)17.已知抛物线2:4,C y x F =是它的焦点.(1)过焦点F 且斜率为1的直线与抛物线C 交于,A B 两点,求线段AB 的长;(2)M 为抛物线C 上的动点,点()2,1P ,求MP MF +的最小值.【答案】(1)8AB =(2)3【分析】(1)根据题意写出直线AB ,然后和抛物线联立,根据韦达定理和抛物线的焦点弦长公式计算;(2)利用抛物线的定义将折线段转化后进行求解.【小问1详解】由题意知()1,0F ,直线AB 的方程为:1y x =-,设()()1122,,,A x y B x y ,联立21,4,y x y x =-⎧⎨=⎩,整理可得:2610x x -+=,126x x ∴+=,∴弦长12628AB x x p =++=+=.【小问2详解】设点M 在准线=1x -上的射影为N ,根据抛物线的定义可知MF MN =.所以MP MF MP MN +=+,要使MP MF +最小,只需要MP MN +最小即可.由()2,1P 在抛物线内,故当,,M N P 三点共线时,此时MP MN +最小,故最小值为()13P PN x =--=.18.已知圆C 经过()10A -,,()23B ,两点,且圆心C 在直线240x y --=上.(1)求圆C 的方程;(2)过点()32,的直线l 与圆C 交于P ,Q两点,如果PQ =,求直线l 的方程.【答案】(1)()2229x y -+=(2)3x =或3410x y --=.【分析】(1)计算AB 的垂直平分线,计算交点得到圆心,再计算半径得到答案.(2)考虑直线斜率存在和不存在两种情况,根据点到直线的距离公式结合弦长公式计算得到答案.【小问1详解】3121AB k ==+,,A B 的中点为13,22⎛⎫ ⎪⎝⎭,故AB 的垂直平分线为1322y x ⎛⎫=--+ ⎪⎝⎭,即2y x =-+,2 240y x x y =-+⎧⎨--=⎩,解得20x y =⎧⎨=⎩,故圆心为()2,0C ,半径3R ==,故圆方程为()2229x y -+=.【小问2详解】当直线l斜率不存在时,此时PQ =,满足条件,直线方程为3x =;当直线l 斜率存在时,设直线方程为()32y k x =-+,即320kx y k --+=,PQ =,故圆心到直线的距离为1d ===,解得34k =,故直线方程为3332044x y --⨯+=,即3410x y --=.综上所述:直线l 的方程为3x =或3410x y --=.19.外形是双曲面的冷却塔具有众多优点,如自然通风和散热效果好,结构强度和抗变形能力强等,其设计原理涉及到物理学、建筑学等学科知识.如图1是中国华电集团的某个火力发电厂的一座冷却塔,它的外形可以看成是由一条双曲线的一部分绕着它的虚轴所在直线旋转而成,其轴截面如图2所示.已知下口圆面的直径为80米,上口圆面的直径为40米,高为90米,下口到最小直径圆面的距离为80米.(1)求最小直径圆面的面积;(2)双曲面也是直纹曲面,即可以看成是由一条直线绕另一条直线旋转而成,该直线叫做双曲面的直母线.过双曲面上的任意一点有且只有两条相交的直母线(如图3),对于任意一条直母线l ,均存在一个轴截面和它平行,此轴截面截双曲面所得的双曲线有两条渐近线,且直母线l 与其中一条平行.广州电视塔(昵称“小蛮腰”,如图4)就是根据这一理论设计的,极大地方便了建造、节约了成本(主钢梁在直母线上,钢筋不需要弯曲).若图1中的冷却塔也采用直母线主钢梁,求主钢梁的长度(精确到0.0130.6557≈).【答案】(1)800021π;(2)98.25【分析】由题设22221x y a b-=,则有(40,80),(20,10)A B -在双曲线上,代入得解双曲线方程,得到最小直径圆面是以双曲线的实轴为直径的圆面得解(2)求得一条渐近线方程为212y x =,由题意知上下轴截面平行且直母线l 与渐近线其中一条平行,所以四边形BCDE 是平行四边形,求得2016080)2121C D -得解【详解】由题设22221x y a b-=,则有(40,80),(20,10)A B -在双曲线上,所以22224001001160064001a b ab ⎧-=⎪⎪⎨⎪-=⎪⎩解得228000212000a b ⎧=⎪⎨⎪=⎩因为最小直径圆面是以双曲线的实轴为直径的圆面此时圆面的面积为2800021a ππ=(2)由(1)问得:22180********x y -=的一条渐近线方程为212y x =如图由题意知上下轴截面平行且直母线l 与渐近线其中一条平行,所以四边形BCDE 是平行四边形,所以所求主钢梁的长度即为BE CD=(40,80),(20,10)A B -80)C D ∴-98.25CD ==≈【点睛】建立适当坐标系得到双曲线方程,利用直母线l 与渐近线其中一条平行,得到四边形BCDE 是平行四边形是解题关键.20.如图,已知椭圆221:184x y Γ+=的两个焦点为12,F F ,且12,F F 为双曲线2Γ的顶点,双曲线2Γ的离心率e =设P 为该双曲线2Γ上异于顶点的任意一点,直线12,PF PF 的斜率分别为12,k k ,且直线1PF 和2PF 与椭圆1Γ的交点分别为,A B 和,C D.(1)求双曲线2Γ的标准方程;(2)证明:直线12,PF PF 的斜率之积12k k ⋅为定值;(3)求AB CD的取值范围.【答案】(1)22144x y -=(2)证明见解析(3)()1,11,22⎛⎫ ⎪⎝⎭【分析】(1)根据椭圆和双曲线的标准方程求解即可;(2)设点()00,P x y ,由斜率的定义可知00120022y y k k x x =⋅+-,再将()00,P x y 代入双曲线方程即可求解;(3)利用(2)中结论设直线AB 的方程为()2y k x =+,CD 的方程为()12y x k=-,分别代入椭圆方程求得,AB CD 即可求解.【小问1详解】设双曲线2Γ的标准方程为22221(0,0)x y a b a b-=>>,由题意知2a =,且c a=,所以2a b ==,所以双曲线2Γ的标准方程为:22144x y -=;【小问2详解】设点()00,P x y ,由题可知()()122,0,2,0F F -,则001200,22y y k k x x ==+-,所以2000122000224y y y k k x x x =⋅=+--,由点P 在双曲线上,可知2200144x y -=,即有22004x y -=,所以202014y x =-,故121k k =;【小问3详解】由(2)可知121k k =,且1212,,0k k k k ≠≠,所以可设直线AB 的方程为()2y k x =+,则直线CD 的方程为()12y x k=-,把直线AB 的方程()2y k x =+代入椭圆方程22184x y +=,整理得()()2222128810k x k x k +++-=,设()()1122,,,A x y B x y ,则有()22121222818,1212k k x x x x k k -+=-=++,因此AB =)22112k k +==+,把直线CD 的方程()12y x k =-代入椭圆方程22184x y +=,整理得22222811810x x k k k ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭,设()33,C x y ,()44,D x y ,则有34282x x k +=+,2342882k x x k-=+,因此CD =)2212k k +=+,所以)222222121212,122122k AB k k CD k k k ++===++++又0,1,1k ≠-,所以()()20,11,k ∈+∞ ,所以()223311311220,,,,11,2122222122k k ⎛⎫⎛⎫⎛⎫∈⋃+∈⋃ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,所以AB CD 的取值范围为()1,11,22⎛⎫ ⎪⎝⎭.【点睛】解决直线与圆锥曲线相交(过定点、定值)问题的常用步骤:(1)得出直线方程,设交点为()11,A x y ,()22,B x y ,(2)联立直线与曲线方程,得到关于x 或y 的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.21.设函数()()()212ln f x x a x a x a =+--∈R .(1)若1a =-,求函数()y f x =的单调区间;(2)若函数()f x 在区间()1,+∞上.是增函数,求实数a 的取值范围;(3)若0a >,过坐标原点O 作曲线()y f x =的切线,证明:切线有且仅有一条.【答案】(1)严格增区间为()0,∞+,无减区间(2)1a ≤(3)证明见解析【分析】(1)代入求导得()123f x x x =++',根据()0,x ∈+∞,可知()0f x ¢>恒成立,则得到其单调区间;(2)()()()21x x a f x x+-=',分0a ≤和0a >讨论即可;(3)设切点为()(),(0)M t f t t >,根据函数导数有()()212a f t t a t=+--',写出切线方程并代入原点有2ln 0t a t a +-=,设新函数再次利用导数判断其零点个数即可.【小问1详解】1a =-吋,()()213ln (0),23f x x x x x f x x x'=++>∴=++, 当()0,x ∈+∞时,()()0,f x f x '>为单调增函数.()f x \在()0,∞+上单调递增,()f x \严格增区间为()0,∞+,无减区间.【小问2详解】()()()()()21212,x x a a f x x a f x x x+-=+--=' 在区间()1,+∞上是增函数,()0f x '∴≥对任意()1,x ∈+∞恒成立,当0a ≤吋,()0f x '≥对任意()1,x ∈+∞恒成立,符合题意,当0a >时,若x a ≥,则()0,01f x a ≥∴<≤'综上,1a ≤;【小问3详解】设切点为()(),(0)M t f t t >,由题意得()()212a f x x a x=+--',()()212a f t t a t ∴=--'+,∴曲线在点()(),M t f t 处的切线方程为()()()y f t f t x t '-=-,又切线过原点,()()()f t f t t '∴-=-,整理得2ln 0t a t a +-=,设()2ln (0)t t a t a t ϕ=+->,则()20(0)a t t t tϕ=+>>'恒成立,()t ϕ在()0,∞+上单调递增,又当0t →时,()t ϕ→-∞;当t →+∞时,()t ϕ∞→+;()t ϕ∴在()0,∞+上有且只有一个零点,∴过原点的切线有且仅有一条,【点睛】关键点睛:本题第三问的关键是设出切点为()(),(0)M t f t t >,从而得到切线方程,再代入原点坐标化简得2ln 0t a t a +-=,再设新函数()2ln (0)t t a t a t ϕ=+->,利用导数,极限以及零点存在定理即可判断其零点个数.。

上海市南洋模范中学2023-2024学年高二下学期期中考试数学试卷

上海市南洋模范中学2023-2024学年高二下学期期中考试数学试卷

上海市南洋模范中学2023-2024学年高二下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.直线2210ax y ++=与20x y --=平行,则实数=a .2.已知圆()22:24C x y -+=,直线:1l y x =-+被圆C 截得的弦长为. 3.设函数()f x 在=1x 处存在导数为2,则()()11lim3x f x f x∆→+∆-=∆=.4.若直线()12y k x -=-与椭圆22116x y m+=恒有两个不同的公共点,则m 的取值范围是. 5.已知抛物线()20y mx m =>上的点()02x ,到该抛物线焦点F 的距离为114,则m 等于.6.已知点,A B 分别是直线1:220l x y +-=与直线24210:l x y ++=上的点,则AB 的取值范围是.7.如图,椭圆①,②与双曲线③,④的离心率分别为1234,,,e e e e ,其大小关系为.8.已知点()0,1A ,()10B ,,点P 为椭圆22:143x y C +=上的动点,则PA PB +的最小值为.9.定义:点P 为曲线L 外的一点,,A B 为L 上的两个动点,则APB ∠取最大值时,APB ∠叫点P 对曲线L 的张角.已知点P 为抛物线2:4C y x =上的动点,设P 对圆22:(3)1M x y -+=的张角为θ,则cos θ的最小值为.10.已知曲线Γ:221045x y ⎛--= ⎝,要使直线()y m m =∈R 与曲线Γ有四个不同的交点,则实数m 的取值范围是.11.在直角坐标平面xoy 中,已知两定点()11,0F -与()21,0F 位于动直线:0l ax by c ++=的同侧,设集合{P l =∣点1F 与点2F 到直线l 的距离之差等于1},()22{,|1,}Q x y x y x y R =+≤∈、,记()(){,|,,}S x y x y l l P =∉∈,()(){,|,}T x y x y Q S =∈⋂.则由T 中的所有点所组成的图形的面积是.12.已知12,F F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,00(,)P x y 是双曲线C 右支上的一点,连接1PF 并过1F 作垂直于1PF 的直线交双曲线左支于,R Q ,其中00(,)R x y --,1QF P △为等腰三角形.则双曲线C 的离心率为.二、单选题13.已知直线:30l x y ++=,直线:260m x y -+=,则m 关于l 对称的直线方程为( )A .630x y ++=B .630x y -+=C .260x y ++=D .230x y -+=14.若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线与直线21y x =+垂直,则C 的离心率为( )A .5B C .54D15.已知221:(2)(3)4O x y -+-=e ,1O e 关于直线210ax y ++=对称的圆记为2O e ,点E ,F 分别为1O e ,2O e 上的动点,EF 长度的最小值为4,则=a ( )A .32-或56B .56-或32C .32-或56-D .56或3216.已知点P 是椭圆22143x y +=上一点,1F ,2F 分别为椭圆的左、右焦点,M 为12PF F ∆的内心,若1122MPF MF F MPF S S S λ∆∆∆=-成立,则λ的值为A .32B .12C D .2三、解答题17.已知直线l 的倾斜角为α,cos α=)A .(1)求直线l 的方程;(2)直线10kx y -+=恒过定点B ,求点B 到直线l 的距离.18.直线230x y --=与圆C 交于E 、F 两点,E 、F 两点的坐标分别为11(,)x y ,22(,)x y ,且12,x x 是方程25450x x --=的两根. (1)求弦EF 的长;(2)若圆C 的圆心为(2,3)-,求圆C 的一般方程.19.已知函数()31f x x x =-+,直线l :22y x =-与x 轴交于点A .(1)求过点A 的()f x 的切线方程;(2)若点B 在函数()f x 图象上,且()f x 在点B 处的切线与直线l 平行,求B 点坐标. 20.设抛物线Γ的方程为y 2=4x ,点P 的坐标为(1,1).(1)过点P ,斜率为﹣1的直线l 交抛物线Γ于U ,V 两点,求线段UV 的长; (2)设Q 是抛物线Γ上的动点,R 是线段PQ 上的一点,满足PR =u u u r2RQ u u u r ,求动点R 的轨迹方程;(3)设AB ,CD 是抛物线Γ的两条经过点P 的动弦,满足AB ⊥CD .点M ,N 分别是弦AB 与CD 的中点,是否存在一个定点T ,使得M ,N ,T 三点总是共线?若存在,求出点T 的坐标;若不存在,说明理由.21.已知椭圆Γ:22142x y +=,A 是其左顶点,过点()1,0S 且不与x 轴重合的直线l 与Γ交于P 、Q 两点.(1)若直线l 垂直于x 轴,求线段PQ 的长度;(2)若90APQ ∠=︒,且点P 在x 轴上方,求P 、Q 两点的坐标;(3)设直线AP 与y 轴交于点M ,直线AQ 与y 轴交于点N ,是否存在直线l ,使得APQ △的面积是AMN V 的两倍?若存在,求出直线l 的方程;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容高二(下)期中物理模拟试卷一、单项选择题1.恒星的寿命取决于它的( ) A .质量 B .体积 C .温度 D .亮度2、如图所示,在磁感应强度为B 的水平匀强磁场中,有两根竖直放置的平行金属导轨,顶端用一电阻R 相连,两导轨所在的竖直平面与磁场方向垂直.一根金属棒以初速度v0沿导轨竖直向上运动,到某一高度后又向下运动返回到原出发点.整个过程中金属棒与导轨保持垂直且接触良好,导轨与棒间的摩擦及它们的电阻均可忽略不计.则在金属棒上行与下行的两个过程中,下列说法不正确的是 A .回到出发点的速度v 等于初速度v0 B .上行过程中通过R 的电量等于下行过程中通过R 的电量 C .上行过程中R 上产生的热量大于下行过程中R 上产生的热量 D .上行的运动时间小于下行的运动时间3.用某单色光照射金属表面,金属表面有光电子飞出。

若照射光的频率增大,强度减弱,则单位时间内飞出金属表面的光电子的(A )能量增大,数量增多 (B )能量减小,数量减少 (C )能量增大,数量减小(D )能量减小,数量增多4下列说法符合历史事实的是 ( ) A .贝可勒尔通过对天然放射现象的研究,发现了原子中存在原子核B .汤姆孙通过阴极射线在电场中偏转的实验,发现了阴极射线是由带负电的粒子组成的C .查德威克发现中子促使原子的核式结构模型的建立D .相对论的创立表明经典力学已不再适用5.如图所示的4种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器和同一单缝衍射仪器形成的图样 (灰黑色部分表示亮纹)。

则属于蓝光的干涉图样的是6.质量为m 的物体A 在地球表面受到地球的万有引力大小为F ,质量为2m 的物体B 离地面高度等于地球半径,物体B 受到地球的万有引力大小为( ) A .2F B .F C . D .RB v 07.如图所示,正方形区域MNPQ 内有垂直纸面向外的匀强磁场.在外力作用下,一正方形闭合刚性导线框沿QN 方向匀速运动,t =0时刻,其四个顶点M ′、N ′、P ′、Q ′恰好在磁场边界中点.下列图象中能反映线框所受安培力f 的大小随时间t 变化规律的是8.在水平桌面上,一个圆形金属框置于匀强磁场B 1中,线框平面与磁场垂直。

圆形金属框与一个水平的平行金属导轨相连接,导轨上放置一根导体棒ab ,导体棒与导轨接触良好。

导体棒处于另一匀强磁场B 2中,该磁场的磁感应强度恒定,方向垂直导轨平面向下,如图甲所示。

磁感应强度B 1随时间t 的变化关系如图乙所示。

0~1.0s 内磁场方向垂直线框平面向下。

若导体棒始终保持静止,并设向右为静摩擦力的正方向,则导体棒所受的静摩擦力f 随时间变化的图象是图丙中的 [ ]A9.如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长。

从置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN 。

第一次ab 边平行MN 进入磁场.线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1:第二次bc 边平行MN 进入磁场.线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则 ( ) (A )Q 1>Q 2 q 1=q 2(B )Q 1>Q 2 q 1>q 2 (C )Q 1=Q 2 q 1=q 2 (D )Q 1=Q 2 q 1>q 210 由天然放射性元素钋(Po )放出的α射线轰击铍(Be )时会产生A 粒子流,用粒子流A 轰击石蜡时,会打出粒子流B 。

下述正确的是(A)该实验核反应方程:941314260Be+He C+n (B)该实验是查德威克发现质子的实验 (C)粒子A 为中子,粒子B 为质子 (D)粒子A 为质子,粒子B 为中子丙1 2 3 4 5 6 t /sfDfC1 2 3 4 5 6 t /s 0 1 2 3 4 5 6t /s 0 fA 1 2 3 4 5 6 t /s 0fBB 2B 1甲ab1 2 3 4 5 6 t /sB 1乙钋(Po)铍(Be)石蜡Aα射线B二、多项选择题(1 用可见光照射金属板,发现与该金属板相连的验电器指针张一定角度,下列说法中正确的有( ). A .验电器指针带正电B .有一部分电子从金属板表面逸出C .如果改用相同强度的红外线照射,验电器指针也一定会张 开一定角度D .如果改用相同强度的紫外线照射,验电器指针也一定会张开一定角度2.如图所示,有五根完全相同的金属杆,其中四根固连在一起构成正方形闭合框架,固定在绝缘水平桌面上,另一根金属杆ab 搁在其上且始终接触良好。

匀强磁场垂直穿过桌面,不计ab 杆与框架的摩擦,当ab 杆在外力F 作用下匀速沿框架从最左端向最右端运动过程中 A .外力F 是恒力 B .桌面对框架的水平作用力先变小后变大C .ab 杆的发热功率先变小后变大D .正方形框架产生的总热量大于ab 杆产生的总热量3.用两根足够长的粗糙金属条折成“┌”型导轨,右端水平,左端竖直,与导轨等宽的粗糙金属细杆ab 、cd 与导轨垂直且接触良好。

已知ab 、cd 杆的质量、电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场中。

当ab 杆在水平向右的拉力F 作用下沿导轨向右匀速运动时,cd 杆沿轨道向下运动,以下说法正确的是( ) (A )cd 杆一定向下做匀加速直线运动 (B )拉力F 的大小一定不变 (C )回路中的电流强度一定不变(D )拉力F 的功率等于ab 棒上的焦耳热功率与摩擦热功率之和4.均匀带负电的塑料圆环绕垂直于圆环平面过圆心的轴旋转,在环的圆心处有一闭合小线圈,小线圈和圆环在同一平面,则(A )只要圆环在转动,小线圈内就一定有感应电流. (B )不管环怎样转动,小线圈内都没有感应电流. (C )圆环在作变速转动时,小线圈内一定有感应电流. (D )圆环作匀速转动时,小线圈内没有感应电流.5.如图所示,MN 、GH 为足够长平行金属导轨(忽略导轨的电阻),两个相同的金属棒AB 、CD 垂直放在两导轨上。

整个装置在同一水平面内。

匀强磁场垂直于导轨所在的平面向下,若给CD 棒一个水平向右的速度,同时给CD 棒施加水平向右的外力F ,使CD 棒保持匀速直线运动状态,AB 棒也随之运动,两棒与导轨间的滑动摩擦力f 不变,则(A ) AB 棒做变加速运动,直到两棒的速度相等(B ) AB 棒中的电流逐渐减小到某一不为零的稳定值,方向由A 到B (C )力F 先减小,最终保持恒定不变Fab cd B ab B F彭老师物理工作室——诚信 爱心 创新 共赢 4(D )力F 的瞬时功率始终大于摩擦力的瞬时功率6.如图所示,两根弯折的平行的金属轨道AOB 和A 'O 'B '固定在水平地面上,与水平地面夹角都为θ,AO=OB=A 'O '=O 'B '=L ,OO '与AO 垂直。

两虚线位置离顶部OO '等距离,虚线下方的导轨都处于匀强磁场中,左侧磁场磁感应强度为B 1,垂直于导轨平面向上,右侧磁场B 2(大小、方向未知)平行于导轨平面。

两根金属导体杆a 和b 质量都为m ,与轨道的摩擦系数都为μ。

将它们同时从顶部无初速释放,能同步到达水平地面且刚到达水平地面速度均为v 。

除金属杆外,其余电阻不计,重力加速度为g 。

则下列判断正确的是( )(A )匀强磁场B 2的方向一定是平行导轨向上 (B )两个匀强磁场大小关系为:B 1=μB 2 (C )整个过程摩擦产生的热量为Q 1 =2μmgL cos θ(D )整个过程产生的焦耳热Q 2 = mgL sin θ-μmgL cos θ-21mv 2三 计算题1、如图(1)所示,两足够长平行光滑的金属导轨MN 、PQ 相距为0.8m ,导轨平面与水平面夹角为α,导轨电阻不计。

有一个匀强磁场垂直导轨平面斜向上,长为1m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg 、与导轨接触端间电阻为1Ω。

两金属导轨的上端连接右端电路,电路中R 2为一电阻箱。

已知灯泡的电阻R L =4Ω,定值电阻R 1=2Ω,调节电阻箱使R 2=12Ω,重力加速度g =10m/s 2。

将电键S 打开,金属棒由静止释放,1s 后闭合电键,如图(2)所示为金属棒的速度随时间变化的图像。

求:(1)斜面倾角α及磁感应强度B 的大小;(2)若金属棒下滑距离为60m 时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;(3)改变电阻箱R 2的值,当R 2为何值时,金属棒匀速下滑时R 2消耗的功率最大;消耗的最大功率为多少?2、足够长的平行金属导轨MN 和PQ 表面粗糙,与水平面间的夹角370,间距为1.0m ,动摩擦因数为0.25。

垂直于导轨平面向上的匀强磁场磁感应强度为4.0T ,PM 间电阻8.0。

质量为2.0kg 的金属杆ab 垂直导轨放置,其他电阻不计。

用恒力沿导轨平面向下拉金属杆ab ,由静止开始运动,8s 末杆运动刚好达到最大速度为8m/s ,这8s200v / m/s 18.7550 1 t /s 图(2)MPQB αaNα bR 2R 1SR L图(1)彭老师物理工作室——诚信 爱心 创新 共赢5。

相关文档
最新文档