(完整word版)高中数学必修四测试卷及答案,推荐文档

合集下载

(word版)高一数学必修4试题附答案详解

(word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I卷一、选择题:(每题5分,共计60分)1 .以下命题中正确的选项是〔〕A.第一象限角必是锐角B.终边相同的角相等C.相等的角终边必相同D.不相等的角其终边必不相同2.角的终边过点P4m,3m,m0,那么2sin cos的值是〔〕A.1或-1B.2或2C.1或2D.-1或255553 .以下命题正确的选项是〔〕A假设a·b=a·c,那么b=c B假设|ab||a b|,那么a·b=0C 假设a//b,b//c,那么a//cD假设a与b是单位向量,那么a·b=14 .计算以下几个式子,①tan25tan353tan25tan35,②2(sin35cos25+sin55cos65),1tan15tan63③,④,结果为的是〔〕1tan1521tan6A.①②B.①③C.①②③D.①②③④5 .函数y=cos(4-2x)的单调递增区间是〔〕A.[kπ+,kπ+5π]B.[kπ-3π,kπ+]8888C.[2kπ+,2kπ+5π]D.[2kπ-3π,2kπ+]〔以上k∈Z〕88886 .△ABC中三个内角为A、B、C,假设关于x的方程x2xcosAcosBcos2C0有一根为1,2那么△ABC一定是〔〕A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.将函数f(x)sin(2x )的图像左移,再将图像上各点横坐标压缩到原来的1,那么所332得到的图象的解析式为〔〕1Aysinx Bysin(4x)Cysin(4x 2Dysin(x) )3338.化简1sin10+1sin10,得到〔〕A-2sin5B-2cos5C2sin5D2cos59 .函数f(x)=sin2x·cos2x是()A周期为π的偶函数B周期为π的奇函数C周期为的偶函数D周期为的奇函数.2210.假设|a|2,|b|2且〔a b〕⊥a ,那么a与b的夹角是〔〕〔A〕6〔B〕〔C〕〔D〕5 431211.正方形ABCD的边长为1,记AB=a,BC=b,AC=c,那么以下结论错误的选项是..A.(a-b cB.(a+b-c a)·=0)·=0C.(|a-c|-|b|)a=0D.|a+b+c|=212.2002年8月,在北京召开的国际数学家大会会标如下列图,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是1,那么sin2cos2的值等于〔〕25A.124C.77 B.D.-252525二、填空题〔本大题共4小题,每题4分,共16分〕13.曲线 y=Asin( x+ )+k〔A>0, >0,||<π〕在同一周期内的最高点的坐标为(,4),最低点的坐标为(5。

(完整版)高中数学必修四期末测试题( 含答案 ),推荐文档

(完整版)高中数学必修四期末测试题( 含答案 ),推荐文档

8
4
第5页共6页
由于 <<,可得 = 3 .
2
4
综上,所求解析式为 y=10sin π x+ 3π +20,x∈[6,14].
2
6.C 解析:在平行四边形 ABCD 中,根据向量加法的平行四边形法则知 AD +
AB = AC .
7.B 解析:由 T= 2π =,得 =2.
8.D
解析:因为 a∥b,所以-2x=4×5=20,解得 x=-10.
9.D
解析:tan(-)=
tan+ tan

3+
4 3
=1

1+ tan tan 1+ 4 3
3.C 解析:在直角坐标系中作出- 4 由其终边即知.
3
4.D 解析:由 cos >0 知,为第一、四象限或 x 轴正方向上的角;由 sin <0 知,为第三、四象限或 y 轴负方向上的角,所以 的终边在第四象限. 5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°= 3 .
A.-1
B.1
C.-3
D.3
12.下列函数中,在区间[0, ]上为减函数的是(
).
2
A.y=cos x
B.y=sin x C.y=tan x
D.y=sin(x- )
3
13.已知 0<A< ,且 cos A= 3 ,那么 sin 2A 等于(
).
2
5
A. 4
25
B. 7
25
C. 12
25
D. 24
5
16. 3 .
4
解析:在[0,)上,满足 tan =-1 的角 只有 3 ,故 = 3 .
4

高中数学习题必修4及答案.docx

高中数学习题必修4及答案.docx

目录:数学4 (必修)第一章:解三角形 [基础训练A 组]一、选择题1. 在AABC 中,若C=90°,a = 6,B = 30°,则c-b 等于( )A. 1B. -1C. 2羽D. -2A /32. 若4为AABC 的内角,则下列函数中一定取正值的是( )A. sin A B ・ cos A4 1C ・ tan AD ・ -------tan A 3. 在2XABC 中,角均为锐角,且cos4〉sin则Z\ABC 的形状是( ) A. 直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形4. 等腰三角形一腰上的高是舲,这条高与底边的夹角为60°,则底边长为()数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第三章: 数学4 (必修)第三章: 数学4 (必修)第三章: 解三角形[基础训练A组]解三角形 [综合训练B 组]解三角形 [提高训练C 组]数列[基础训练A 组]数列[综合训练B 组]数列[提高训练C 组]不等式 [基础训练A 组]不等式 [综合训练B 组]不等式 [提高训练C组]A. 2B. —C. 3D. 2A/325.在△ABC 中,若b = 2asinB,则4 等于()A. 30°或60°B. 45°或60°C. 120°或60°D. 30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A. 90°B. 120°C. 135°D. 150°二、填空题1.在Rt AABC 中,C = 90°,贝Osin A sin 5的最大值是 _____________ 。

2.在AABC 中,^a2 =b~ +bc + c~,贝= _____________ 。

(完整版)高一数学必修4期末试卷及答案,推荐文档

(完整版)高一数学必修4期末试卷及答案,推荐文档

18.(本小题满分 12 分) 已知函数 f (x) cos2 x 1π2 , g(x) 121 sin 2x .
1 设 x x0 是函数 y f (x) 图象的一条对称轴,求 g(x0 ) 的值; 2 求函数h(x) f (x) g(x) 的单调递增区间.
参考答案一、选择题(每小题 4 分,共 40 分)
C.反向平行
D.既不平行也不垂直
11.
3 1
sin
70
12 cos210

12.
已知函数
f
(x)
2sin x
5
的图象与直线
y
1
的交点中最近的两个交点的距离为 3 ,则函数
f (x) 的最小正周期为

13. 已知函数 f (x) sin(x ) cos(x ) 是偶函数,且 [0, ] ,则 的值 为
高一年级数学《必修 4》试题
一、选择题(每小题 4 分,共 40 分)
E
D
1. 与 463 终边相同的角可以表示为(k Z) ( )
A. k 360 463
B. k 360 103 C. k 360 257
D.k 360 257
2 如图,在正六边形 ABCDEF 中,点 O 为其中心,则下列判断错误的是 ( )
A、B 的横坐标分别为 2 5 , 3 10 .
5 10
(1)求 tan( )的值;
(2)求 的
值.
17.(本小题满分 12 分) 已知函数
f (x) 1 cos2 x 3 sin x cos x 1 , x R .
2
2
(1) 求函数 f (x) 的最小正周期;
(2) 求函数 f (x) 在[ , ]上的最大值和最小值,并求函数取得最大值和最小值时的自变量 x 的值. 12 4

必修四数学试题及答案

必修四数学试题及答案

必修四数学试题及答案一、选择题(每题4分,共20分)1. 若函数f(x) = x^2 - 4x + 3,那么f(1)的值为:A. 0B. 1C. -1D. 2答案:B2. 已知等差数列{an}的前三项分别为2,5,8,则其公差d为:A. 1B. 2C. 3D. 4答案:C3. 函数y = sinx在x = π/2处的导数为:A. 0B. 1C. -1D. 2答案:C4. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B为:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B5. 圆的方程为(x - 3)^2 + (y + 2)^2 = 16,则圆心坐标为:A. (3, -2)B. (-3, 2)C. (-3, -2)D. (3, 2)答案:A二、填空题(每题5分,共20分)6. 若直线y = 2x + 3与x轴交于点A,与y轴交于点B,则AB的长度为______。

答案:57. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x) = ______。

答案:3x^2 - 12x + 118. 计算复数z = 2 + 3i的模长|z|为______。

答案:√139. 已知向量a = (1, 2),b = (-3, 1),则向量a与向量b的点积a·b为______。

答案:-1三、解答题(每题15分,共30分)10. 已知函数f(x) = x^3 - 3x^2 + 4,求f(x)的单调区间。

答案:首先求导数f'(x) = 3x^2 - 6x。

令f'(x) > 0,解得x > 2或x < 0,所以函数f(x)在(-∞, 0)和(2, +∞)上单调递增。

令f'(x) < 0,解得0 < x < 2,所以函数f(x)在(0, 2)上单调递减。

11. 已知圆C的方程为(x - 2)^2 + (y + 3)^2 = 9,求圆C的切线方程。

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。

(完整word版)高一数学必修4试题附答案详解

(完整word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I 卷一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 4. 计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan 16tan 2ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④5. 函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形7. 将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( )A -2sin5B -2cos5C 2sin5D 2cos59. 函数f(x)=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )(A )6π (B )4π (C )3π(D )π125 11. 正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是 A .(→a -→b )·→c =0 B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D .-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 。

必修4数学试题及答案

必修4数学试题及答案

必修4数学试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \(y = x^2\)B. \(y = x^3\)C. \(y = \sin x\)D. \(y = \cos x\)答案:C2. 已知函数\(f(x) = 2x + 1\),则\(f(-1)\)的值为?A. 1B. -1C. 3D. -3答案:B3. 计算\(\int_{0}^{1} x^2 dx\)的值是多少?A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. \(\frac{3}{2}\)答案:A4. 以下哪个数列是等差数列?A. \(1, 2, 4, 8\)B. \(1, 3, 5, 7\)C. \(2, 4, 6, 8\)D. \(3, 6, 9, 12\)答案:B5. 已知\(a\)和\(b\)是方程\(x^2 - 5x + 6 = 0\)的两个根,则\(a + b\)的值为?A. 2B. 3C. 4D. 5答案:B二、填空题(每题4分,共20分)1. 已知\(\cos \theta = \frac{3}{5}\),则\(\sin \theta\)的值为\(\_\_\_\_\)。

答案:\(\frac{4}{5}\)2. 函数\(y = x^2 - 6x + 5\)的顶点坐标为\(\_\_\_\_\)。

答案:\((3, -4)\)3. 等比数列\(1, 2, 4, \ldots\)的第5项为\(\_\_\_\_\)。

答案:164. 已知\(\tan \alpha = 2\),则\(\sin \alpha\)的值为\(\_\_\_\_\)。

答案:\(\frac{2\sqrt{5}}{5}\)5. 函数\(y = \log_2 x\)的定义域为\(\_\_\_\_\)。

答案:\((0, +\infty)\)三、解答题(共60分)1. 解方程\(x^2 - 5x + 6 = 0\)。

(完整word版)高中数学必修四(期末试卷含答案),推荐文档

(完整word版)高中数学必修四(期末试卷含答案),推荐文档

、选择题(本大题共函数y= sin + cos数学必修四测试卷12道小题,每题5分,共60 分)O v v丄的值域为(22 .3 .4 .5 .6 .A. (0, 1) B . ( - 1,1) C. (1, .2] D . ( - 1,. 2) 锐角三角形的内角A, B满足tan A-爲=A. sin 2A- cos B= 0C. sin 2A-sin B= 0函数f(x) = sin2A .周期为x+ n—sin24的偶函数x—寸是(tan B,则有(B. sin 2A+ cos B= 0D. sin 2A+ sin B= 0B.周期为的奇函数C.周期为2F列命题正确的是(A .单位向量都相等B. 若a与b是共线向量,b与c是共线向量,则a与c是共线向量r ui r r r rC. |a b| |a b|,贝U a b 0rn in r rD. 若a0与b0是单位向量,则b0的偶函数)D.周期为2的奇函数已知a,b均为单位向量,它们的夹角为A. 7B. 10已知向量a, b满足a7.在ABC中,8.若1600,那么 a 3lb1,b 4,且a b 2 ,则a与b的夹角为C. —D.-3 22sinA+cosB=2, sinB+2cosA= 3,则C的大小应为(A.区间(0,9.在中,A. B.10.已知角B.-6C.,则对任意实数的取值为(1)B. 1C.C.的终边上一点的坐标为(D.D..2sin -3不能确定,贝U 的大小为(),cos—),则角的最小值为311. A , B , C 是 ABC 的三个内角,且tan 代tanB 是方程3x 2 5x 10的两个实数根,则 ABC 是( )A 、等边三角形B 、锐角三角形C 、等腰三角形D 、钝角三角形2 ____________________________________________________13. 已知方程x 4ax 3a 1 0 ( a 为大于1的常数)的两根为tan ,tan 且、一,一,贝U tan ----- 的值是.2 2 214. 若向量 |;| 1,|b| 2,|; b| 2,则 I : b| ____________ 。

必修四数学测试题及答案

必修四数学测试题及答案

必修四数学测试题及答案一、选择题(每题4分,共20分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = |x| \)C. \( y = \sin x \)D. \( y = x^3 \)答案:D2. 已知 \( \cos A = \frac{1}{2} \),那么 \( \sin 2A \) 的值是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:B3. 函数 \( y = \frac{1}{x} \) 的图像在第一象限的斜率是:A. 正B. 负C. 零D. 不存在答案:A4. 已知等差数列 \( \{a_n\} \) 的首项 \( a_1 = 1 \),公差 \( d= 2 \),则 \( a_5 \) 的值是:A. 5B. 9C. 10D. 11答案:B5. 函数 \( y = \log_2 x \) 的定义域是:A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)答案:A二、填空题(每题4分,共20分)6. 已知 \( \tan \alpha = 3 \),则 \( \sin \alpha \) 的值是________。

答案:\( \frac{3\sqrt{10}}{10} \)7. 等比数列 \( \{b_n\} \) 的前三项分别为 \( 1, 2, 4 \),则\( b_5 \) 的值是 ________。

答案:168. 函数 \( y = x^2 - 6x + 8 \) 的顶点坐标是 ________。

答案:(3, -1)9. 已知 \( \cos \theta = \frac{\sqrt{3}}{2} \),且 \( \theta \) 为第二象限角,则 \( \sin \theta \) 的值是 ________。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。

高三必修四试卷数学及答案

高三必修四试卷数学及答案

一、选择题(每小题5分,共50分)1. 下列函数中,是偶函数的是()A. \( f(x) = x^2 - 3x \)B. \( f(x) = 2x^3 + 1 \)C. \( f(x) = \frac{1}{x} \)D. \( f(x) = x^2 + 1 \)2. 已知数列 \(\{a_n\}\) 的前n项和为 \(S_n = 3n^2 - n\),则数列\(\{a_n\}\) 的通项公式为()A. \(a_n = 3n - 1\)B. \(a_n = 3n^2 - n\)C. \(a_n = 6n - 2\)D. \(a_n = 6n - 3\)3. 函数 \(y = \frac{x}{x^2 - 1}\) 的定义域为()A. \((-\infty, -1) \cup (1, +\infty)\)B. \((-\infty, -1) \cup (1, +\infty)\)C. \((-\infty, -1) \cup (1, +\infty)\)D. \((-\infty, -1) \cup (1, +\infty)\)4. 已知向量 \(\vec{a} = (1, 2)\),\(\vec{b} = (3, 4)\),则 \(\vec{a} \cdot \vec{b} = \)()A. 5B. 10C. 7D. 125. 直线 \(2x + 3y - 6 = 0\) 的斜率为()A. \(-\frac{2}{3}\)B. \(\frac{2}{3}\)C. \(-\frac{3}{2}\)D. \(\frac{3}{2}\)6. 圆 \((x - 1)^2 + (y - 2)^2 = 4\) 的圆心坐标为()A. (1, 2)B. (2, 1)C. (0, 0)D. (-1, -2)7. 已知等差数列 \(\{a_n\}\) 的前三项分别为 \(a_1, a_2, a_3\),且 \(a_1 + a_3 = 6\),\(a_2 = 4\),则该数列的公差为()A. 1B. 2C. 3D. 48. 函数 \(y = \log_2(x + 1)\) 的反函数为()A. \(y = 2^x - 1\)B. \(y = 2^x + 1\)C. \(y = 2^x - 2\)D. \(y = 2^x + 2\)9. 三角形ABC的边长分别为3、4、5,则该三角形的面积为()A. 6B. 8C. 10D. 1210. 已知函数 \(y = ax^2 + bx + c\) 在 \(x = 1\) 时取得最大值,则 \(a, b, c\) 的关系为()A. \(a < 0, b^2 - 4ac > 0\)B. \(a > 0, b^2 - 4ac < 0\)C. \(a < 0, b^2 - 4ac < 0\)D. \(a > 0, b^2 - 4ac > 0\)二、填空题(每小题5分,共25分)1. 函数 \(y = \sqrt{x^2 - 1}\) 的定义域为______。

数学必修四试题及答案

数学必修四试题及答案

数学必修四试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:C2. 已知等差数列的首项为3,公差为2,第10项的值是多少?A. 23B. 27C. 29D. 31答案:A3. 计算下列极限:\[\lim_{x \to 0} \frac{\sin x}{x}\]A. 0B. 1C. 2D. 不存在答案:B4. 一个圆的面积为9π,那么它的半径是多少?A. 3B. 4C. 5D. 6答案:B二、填空题(每题5分,共20分)1. 已知函数f(x) = 2x - 3,求f(4)的值。

答案:52. 一个等比数列的前三项分别为2,6,18,那么第四项是多少?答案:543. 如果一个三角形的两边长分别为3和4,且这两边的夹角为60°,那么第三边的长度是多少?答案:54. 计算圆的周长,半径为7。

答案:44π三、解答题(每题10分,共60分)1. 已知函数f(x) = x^2 - 6x + 8,求函数的最小值。

答案:函数f(x) = x^2 - 6x + 8可以重写为f(x) = (x - 3)^2 - 1,这是一个开口向上的抛物线,其顶点在(3, -1)。

因此,函数的最小值为-1。

2. 计算等差数列1, 4, 7, ...的前10项和。

答案:等差数列的前n项和公式为S_n = n/2 * (a_1 + a_n),其中a_1是首项,a_n是第n项。

首项a_1 = 1,公差d = 3,第10项a_10 = a_1+ (n - 1) * d = 1 + (10 - 1) * 3 = 28。

因此,前10项和S_10 = 10/2 * (1 + 28) = 145。

3. 已知一个圆的直径为14,求圆的面积。

答案:圆的半径r = 直径/2 = 14/2 = 7。

圆的面积A = πr^2 = π * 7^2= 49π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修四检测题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1 、在下列各区间中,函数y =sin (x +4π
)的单调递增区间是( )
A.[2π,π]
B.[0,4π]
C.[-π,0]
D.[4π,2π]
2 、已知sin αcos α=81,且4π<α<2π
,则cos α-sin α的值为 ( )
(A)2
3 (B)4
3 (C)
3-
(D)±
2
3
3 、已知sin cos 2sin 3cos αα
αα-+=51,则tan α的值是 ( )
(A)±83 (B)83 (C)8
3-
(D)无法确定
4 、 函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤
-⎢⎥⎣⎦
,的简图是( )
5 、要得到函数sin y x =的图象,只需将函数
cos y x π⎛
⎫=- ⎪
3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π
6个单位
6 、函数π
πln cos 2
2y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )
7 、设x R ∈ ,向量(,1),(1,2),a x b ==-r r 且a b ⊥r r
,则||a b +=r r
(A
(B
(C
) (D )10
8 、 已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( ) A .
6563 B .65 C .5
13 D .13 9、 计算sin 43°cos 13°-cos 43°sin 13°的结果等于 ( ) A.12
B.33
C.22
D.32 10、已知sin α+cos α= 1
3 ,则sin2α=
( )
A .89
B .-89
C .±89
D .322
11 、已知cos(α-π
6)+sin α=4
53,则sin(α+7π
6)的值是 ( )
A .-
235 B.235 C .-45 D.4
5
12 、若x = π
12 ,则sin 4x -cos 4x 的值为
( )
A .21
B .21-
C .23-
D .2
3
x
x
A .
B .
C .
D .
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题4小题,每小题4分,共16分. 把正确答案填在题中横线上.
13 、若)sin(2)(ϕω+=x x f (其中2
,0π
ϕω<
>)的最小正周期是π,且1)0(=f ,则
=ω ,=ϕ 。

14、设向量)2,1(m a =,)1,1(+=m b ,),2(m c =,若b c a ⊥+)(,则=||a ______.[
15、函数)
62sin()(π
-
=x x f 的单调递减区间是
16、函数
π()3sin 23f x x ⎛
⎫=- ⎪
⎝⎭的图象为C ,则如下结论中正确的序号是 _____ ①、图象C 关于直线
11π12x =对称; ②、图象C 关于点2π03⎛⎫ ⎪⎝⎭,
对称; ③、函数()f x 在区间π5π1212⎛⎫- ⎪
⎝⎭,内是增函数; ④、由3sin 2y x =的图角向右平移π
3个单位长度可以得到
图象C .
三、解答题:本大题共6题,共74分,解答应写出文字说明,证明过程或演算步骤.
17、(12分)已知向量 = , 求向量b ,使|b|=2| |,并且 与b 的夹角为 。

18、(12分)若0,02

π
αβ<<-
<<
,1cos ,cos 4342ππβα⎛⎫⎛⎫
+=-=
⎪ ⎪⎝⎭⎝⎭,求cos 2βα⎛⎫+ ⎪⎝⎭.
19、(12分)

2
()6cos 2f x x x =-. (1)求()f x 的最大值及最小正周期;(2)若锐角α
满足()3f α=-,求
4
tan 5α
的值.
20、(12分)
如右图所示函数图象,求)sin()(ϕω+=x A x f (π
ϕω<>,0)的表达式。

21、设平面三点A (1,0),B (0,1),C (2,5).
(1)试求向量2+AC 的模; (2)试求向量与AC 的夹角; (3)试求与BC 垂直的单位向量的坐标.
22、(14分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且
函数()y f x =图象的两相邻对称轴间的距离为π
2
. (Ⅰ)求π8f ⎛⎫
⎪⎝⎭
的值; (Ⅱ)将函数()y f x =的图象向右平移π
6
个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.
答案
1-5BCBAA 6-10ABAAB 11-12CC 13、 2 6
π 14、2 15、z k k k ∈++],6
5,
3
[
ππ
ππ
16、①②③ 17、由题设
, 设 b=
, 则由
,得
. ∴
,
解得 sin α=1或 。

当sin α=1时,cos α=0;当 时, 。

故所求的向量 或。

18、
9
3
5 19、1)
1cos 2()6322
x
f x x
+=⋅
3cos 2323x x =-+ 31232sin 232x x ⎫=-+⎪⎪⎭23236x π⎛⎫=++ ⎪⎝⎭.故()f x 的最大值为233;
最小正周期22T π
=
=π.21世纪教育网 ☆
(2)由()323f α=-23233236απ⎛⎫++=- ⎪⎝⎭cos 21
6απ⎛⎫+=- ⎪⎝⎭.
又由
02απ<<
得2666απππ<+<π+,故26απ+=π,解得
512α=π
. 从而4tan tan 353απ
==
20、)4
2sin(2π
+
=x y
21、(1)∵ =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7). ∴ |2AB +AC |=227)1(+-=50.
(2)∵ ||=2
21)1(+-=2.||=2251+=26,
AB ·=(-1)×1+1×5=4.
∴ cos θ |
|||AC AB ⋅=
26
24⋅=
13
13
2. (3)设所求向量为=(x ,y ),则x2+y2=1. ①
又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ②
由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩
⎪⎪⎨⎧==.
-555
5
2y x ∴ (552,-55)或(-552,55)即为所求.
22、 解:(Ⅰ
)())cos()f x x x ωϕωϕ=+-+
1
2)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦
π2sin 6x ωϕ⎛
⎫=+- ⎪⎝
⎭.
因为()f x 为偶函数,
所以对x ∈R ,()()f x f x -=恒成立, 因此ππsin()sin 6
6x x ωϕωϕ⎛⎫-+-=+-
⎪⎝

. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛
⎫--
+-=-+- ⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭⎝
⎭,
整理得πsin cos 06x ωϕ⎛⎫
-
= ⎪⎝

. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫
-
= ⎪⎝

. 又因为0πϕ<<, 故ππ62
ϕ-
=. 所以π()2sin 2cos 2f x x x ωω⎛⎫
=+= ⎪⎝

. 由题意得

π
22
ω=g ,所以2ω=. 故()2cos 2f x x =.
因此ππ2cos 84f ⎛⎫==
⎪⎝⎭
(Ⅱ)文:将()f x 的图象向右平移
π
6
个单位后,得到π6f x ⎛
⎫- ⎪⎝
⎭的图象,
所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛
⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝
⎭⎝⎭⎣⎦. 当π
2π22ππ3k x k -
+≤≤(k ∈Z )
, 即π2πππ63
k x k ++≤≤(k ∈Z )时,()g x 单调递减,
因此()g x 的单调递减区间为π2πππ63k k ⎡

++⎢⎥⎣

,(k ∈Z ).。

相关文档
最新文档