用AspenAdsim模拟.pdf
用AspenAdsim模拟
用Aspen Adsim 模拟VSA制氧过程本次模拟就是根据文献:《Fast Finite-V olume Method for PSA/VSA Cycle Simulations Experimental Validation》——Ind、Eng、Chem、Res、2001, 40, 3217-3224 中的一些数据来进行模拟。
由于这篇文献主要讲的就是算法上的改进来使这样一个例子在不同的算法下运行来比较它们之间在在CPU占用率与所耗时间的差别。
所以对我们来说用处并不大,在这里我们用它的一些基本数据。
基本数据:该系统包括两张床,每张床内部直径为0、104米,床层填充高度大约1、80米,外壁由3毫米厚的聚氯乙烯制成,内装有13X沸石分子筛。
本次模拟分为个步骤。
首先,本次模拟思维在空气中分离出氧气,所以有O2、N2与Ar等,但就是由于Ar比较少而其它种类的气体就更少了,并且它们与吸附剂的作用与O2类似;所以经简化后O2为22%,N2为78%,需要定我们的模拟定义O2与H2两种组分。
然后:1 定义组分:这里用到的组分为N2与O21)首先启动Aspen Adsim 2006,在界面左侧找到Component List:2)弹出对话框:3)点击“就是”,出现:先左击右击后,选Edit图框内容随之而改变4)如上图进行点击,则调用出Aspen Properties,则弹出相应界面,首先在Formula 栏中输入组分:O2,N2,CH4,然后在Component ID 中输入所需标示。
最后再点击N →:5)弹出界面,由于为非极性组分,所以尝试着选PR 方程再选择它首先,输入所需组分的分然后,填入组分标示,可以不同于分子式最后,点击它先选择它选择相应的方程,在这里选择PR方程6)弹出界面,选择温度单位为℃,继续点击N→:选择C 7)弹出界面,点击“就是”与“确定”。
选它,点OK8)点击“保存”。
点击保存9)点击Import Aspen Properties file:点击10)选择刚刚保存好的文件进行点击:11)出现:12)点击OK后,出现: 选它点击变绿点击点击消失出现点击13)切换界面,激活组分列表:14)弹出对话框,选“就是”:至此,组分定义完毕。
用AspenAdsim模拟(2020年整理).doc
用Aspen Adsim 模拟VSA制氧过程本次模拟是根据文献:《Fast Finite-V olume Method for PSA/VSA Cycle Simulations Experimental Validation》——Ind. Eng. Chem. Res. 2001, 40, 3217-3224 中的一些数据来进行模拟。
由于这篇文献主要讲的是算法上的改进来使这样一个例子在不同的算法下运行来比较它们之间在在CPU占用率和所耗时间的差别。
所以对我们来说用处并不大,在这里我们用它的一些基本数据。
基本数据:该系统包括两张床,每张床内部直径为0.104米,床层填充高度大约1.80米,外壁由3毫米厚的聚氯乙烯制成,内装有13X沸石分子筛。
本次模拟分为个步骤。
首先,本次模拟思维在空气中分离出氧气,所以有O2、N2和Ar等,但是由于Ar比较少而其它种类的气体就更少了,并且它们和吸附剂的作用与O2类似;所以经简化后O2为22%,N2为78%,需要定我们的模拟定义O2和H2两种组分。
然后:1 定义组分:这里用到的组分为N2和O21)首先启动Aspen Adsim 2006,在界面左侧找到Component List:2)弹出对话框:3)点击“是”,出现:先左击右击后,选Edit图框内容随之而改变4)如上图进行点击,则调用出Aspen Properties ,则弹出相应界面,首先在Formula 栏中输入组分:O2,N2,CH4,然后在Component ID 中输入所需标示。
最后再点击N →:再选择它首先,输入所需组分的然后,填入组分标示,可以不同于分子式最后,点击它先选择它5)弹出界面,由于为非极性组分,所以尝试着选PR方程选择相应的方程,在这里选择PR方程6)弹出界面,选择温度单位为℃,继续点击N→:选择C 7)弹出界面,点击“是”和“确定”。
8)点击“保存”。
9)点击Import Aspen Properties file:选它,点OK点击保存10)选择刚刚保存好的文件进行点击:11)出现:点击选它点击12)点击OK后,出现:变绿点击点击出现消失点击13)切换界面,激活组分列表:14)弹出对话框,选“是”:至此,组分定义完毕。
Aspen 模拟软件使用指南
第一章开始运行Aspen Pinch本章回顾了一个典型热集成研究案例。
阐述了一个类似研究案例的各个步骤,以及如何在不同的阶段应用Aspen Pinch。
同时,本章还介绍了Aspen Pinch界面,已经如何启动和推出Aspen Pinch。
一个典型的热集成案例下图表示了一个典型的热集成案例研究的主要步骤以及相应阶段Aspen Pinch的特征。
尽管本图看来是一个一次性完成的过程,但在实际过程中需要多次迭代来保证获得总体最优的结果。
一个热集成案例研究包含以下步骤:1.从你的流程中获取数据。
2.建立公用工程消耗,能量消耗和投资费用的操作目标。
3.作出一个换热网络的设计4.检查所设计换热网络的性能。
下面详细介绍这些步骤。
从你的流程模拟中获取数据一个热集成研究是从获取流程的数据开始的。
一个热集成研究所需要的数据包括每个流股的温度与热负荷信息。
对于任一个公用工程的温度和费用信息都是必要的。
如果你想作费用分析的话,就必须提供换热器的投资费用。
流股的数据可以直接从过程的物料与能量衡算获取。
另外,流股数据也可以从Aspen Plus模拟或其他软件输入。
输入数据可以运用Aspen Pinch 的数据输入功能、Aspen Plus 接口或流股分段功能来实现。
建立目标函数案例的下一个步骤是确定公用工程消耗、能量消耗和投资费用目标。
对于一个新的换热网络设计可以运用Aspen Pinch的targeting 功能。
换热网络的改造可以用retrofit targeting功能。
对于从不同过程单元回收热量的总过程来说,我们可以运用Aspen Pinch 的total site 功能。
当评价公用工程的费用与消耗时,你可能想研究一个公用工程系统的操作细节。
Aspen Pinch具有热功模块来模拟公用工程的操作从而使你可以准确的预测公用工程系统的规模及大小。
此时,本热集成案例已经可以通过运用基础案例的操作条件来预测流程的最佳操作性能与费用。
Aspen 模拟软件使用指南
第一章开始运行Aspen Pinch本章回顾了一个典型热集成研究案例。
阐述了一个类似研究案例的各个步骤,以及如何在不同的阶段应用Aspen Pinch。
同时,本章还介绍了Aspen Pinch界面,已经如何启动和推出Aspen Pinch。
一个典型的热集成案例下图表示了一个典型的热集成案例研究的主要步骤以及相应阶段Aspen Pinch的特征。
尽管本图看来是一个一次性完成的过程,但在实际过程中需要多次迭代来保证获得总体最优的结果。
一个热集成案例研究包含以下步骤:1.从你的流程中获取数据。
2.建立公用工程消耗,能量消耗和投资费用的操作目标。
3.作出一个换热网络的设计4.检查所设计换热网络的性能。
下面详细介绍这些步骤。
从你的流程模拟中获取数据一个热集成研究是从获取流程的数据开始的。
一个热集成研究所需要的数据包括每个流股的温度与热负荷信息。
对于任一个公用工程的温度和费用信息都是必要的。
如果你想作费用分析的话,就必须提供换热器的投资费用。
流股的数据可以直接从过程的物料与能量衡算获取。
另外,流股数据也可以从Aspen Plus模拟或其他软件输入。
输入数据可以运用Aspen Pinch 的数据输入功能、Aspen Plus 接口或流股分段功能来实现。
建立目标函数案例的下一个步骤是确定公用工程消耗、能量消耗和投资费用目标。
对于一个新的换热网络设计可以运用Aspen Pinch的targeting 功能。
换热网络的改造可以用retrofit targeting功能。
对于从不同过程单元回收热量的总过程来说,我们可以运用Aspen Pinch 的total site 功能。
当评价公用工程的费用与消耗时,你可能想研究一个公用工程系统的操作细节。
Aspen Pinch具有热功模块来模拟公用工程的操作从而使你可以准确的预测公用工程系统的规模及大小。
此时,本热集成案例已经可以通过运用基础案例的操作条件来预测流程的最佳操作性能与费用。
aspen塔模拟教程
RadFrac for Dummies:A How to Guide on Aspen Plus ArrayThis example will show how to use Radfrac on Aspen Plus to model distillation columns. The feed shown in the diagram above will consist of 50 lbmol/hr of Methanol and 50 lbmol/hr of water. A purity of 99.5% is desired in both thebottoms and distillate product streams using a reflux ratio of 1.5.Click on the red arrow on the left side of the column to add your feed stream. For this simulation there is only one feed stream, if there were more feed streams use the blue arrow on the left of the column to add more streams.Enter “Feed” in the ID box when prompted for this simulation.Click “OK”.If this box doesn’t appear it is because your flowsheet isn’t complete. A box will then appear telling you what part of the flowsheet you are missing.This box should appearand a title for this simulation can now be entered although is not mandatory for this simulation. Click on the Next button to continue entering numerical data.If this box doesn’t appear you can go to Setup onthe left-hand side of thebox and click on that.The Components box will be the next to appear. This allows us to enter all of the components that will be present within our system; in this simulation they will be Methanol and Water.AspenPlus will now search its database and attempt to match a chemical name with the Component ID that was entered. If this happens the other three boxes (Type, Component Name, and Formula) will fill automatically and other components can then be entered.The next screen to appear will show the interaction parameters for the components in our system using the base method we selected. If you are happy with this numbers (and we sure hope you are) click “Next.”A prompt screen will appearasking if we want to enter anymore data or change theproperty specifications.Since everything is good to go,click “OK.”Now it’s time tobegin entering thephysical data for thesystem. The firstscreen that willappear will be for theFeed stream.Before we actuallystart entering datalet’s go over acouple of thedifferent availableoptions.Now is the time we’ll all been waiting for, designing the actual column. The first step is to get at least a rough estimate for the required number of stages needed.we’re going to use AspenPlus to generate a T-XY plot and use it to do a quick McCabe-Thile diagram. At the top of the screen under Tools, click on Analysis, Property, and Binary.A box will appear prompting youfor a section number.Click “OK” to continue.This screen allows us tochoose from a list ofpossible types of trayswithin our column.Enter a 2 in the startingstage and a 9 in theending stage becausethere are 10 stages inour column as both thecondenser and reboilercount as stages.Here’s the moment we’ve been waiting for. We’re ready to run our simulation. Click “OK.”Double-click on the blue Blocks folder and then also on Dist.Next, go to the top menu bar and click on Plot and then Plot Wizard.Plot Wizard takes the profiles AspenPlus generated for the column and turns them into pretty little charts.Upon completion click on the blue folder again and go under Results Summary and then Streams. The results show that we now have 94.9% purity in each of the product streams. Moving in the right direction but still not up to the desired specs.Let’s take a look at the Liquid Composition diagram…Double-click on the blue Blocks folder and then on the blue Dist folder to look at the results for the column.Go to Plot at the top of the screen and click on Plot Wizard.Hit “Next” through the welcoming screen and click on the Composition plot. Choose to plot Both Components in the Liquid phase and hit “Finish.”From this plot it is obvious that our feed stage is a little bit too low.We want the composition to be smooth lines without any humps or bumpsin the middle.Close the Results folder and let’s go adjust our feed stage.After you’ve determined the optimum feed plate location (HINT: 9) your plot should look like this.Next check your stream results to see if we have achieved the desired purity in our Methanol Stream.Unfortunately we still haven’t reached the desired purity in our product streams. But we did increase the purity by 3% to 97.5% by optimizing the location of the feed plate.Since the reflux ratiois given at 1.5 in the problem statement,the only other option is to continue to increase the number of stagesin our column.Return to the Setupscreen under the Blocks/Dist folder.Click on the Configuration tab at the top and increase the number of stages in the column.Also, go under the Tray Sizing and Tray Rating folders and change the ending stage on each to one stage less than the actual number of stages that you entered here.Next click on the Streams tab and change the location of the feed plate. Click on “Next” to run the simulation, then check the liquid composition diagram to be sure that it is in the optimum position. If it is, check the results. Continue this procedure until you meet the given purity spec.The other way we canobserve the pressuredrop is by using PlotWizard to create agraph.Go to Plot Wizard andclick on the Pressuregraph.Choose the desiredunits and click “Finish.”A graph similar to thisone should be createdshowing the pressureprofile in the column.The temperature profilecan also be created in asimilar manner.Congratulations! You havefinished the race and you’re probably not even half as tiredas this guy, he looks beat.Now you can entercomponents, feed streams,column data and generateresults for all of your own simulations. Feel free to bragto all of your friends nowabout your superior knowledgeof Radfrac, you’ve earned it.You are truly a champion.Peace and Love,Bj。
ASPEN软件模拟吸收
Design Procedure for an Absorption Unit onthe AspenPlus SoftwareAuthor: Brigitte McNamesThis manual presents all steps necessary to design an absorber using the AspenPlus simulation software. The manual also includes useful tips, recommendations, and explanations throughout the design procedure. The following example will be used: Example 1Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a diameter of m at293 K and kPa (1 atm). The inlet air contains mol% acetone and outletmol% acetone. The total gas inlet flow rate is kmol/h. The pure water inlet flowis kmol/h. (This example is EXAMPLE taken from reference 1). Schematic:Gas Outlet x acetone =P ure Water InletF = kmol/h AbsorberT = 293 KP = 1 atmGas Inlet x air =x acetone = F = kmol/h L iquid Outlet x acetone =Absorber Design Procedure óSDSM&T 2/15 ProcedureLogon to the AspenPlus system and start a blank simulation. The flowsheet area shouldappear. (Refer to “AspenPlus Setup for a Flow Simulation” if you need help.)Shown above is the Columns subdirectory. Choose the RateFrac block from thesubdirectory by clicking on it. If you click on the down arrow next to the RateFrac block,a set of icons will pop up. These icons represent the same calculation procedure and are for different schematical purposes only. Choose the block that best represents the process that you are designing. For our example we will use the RATEFRAC rectangular blockat the top left corner.RateFrac is a rate-based nonequilibrium model for simulating all types of multistage vapor-liquid operations such as absorption, stripping, and distillation. RateFrac simulates actual tray and packed columns, rather than the idealized representation of equilibrium stages.A column consists of segments (see schematic for a packedcolumn at right). Segments refer to a portion of packing ina packed column or one or more trays in a tray column. RateFrac performs an initialization calculation where all segments are modeled as equilibrium stages. The results from the initialization step are used to perform the rate- based nonequilibrium calculations. To learn more about RateFrac and its applications refer to the “RateFrac” help pages. Packed segment n-1 Packed segment n Packed segment n+1Absorber Design Procedure óSDSM&T 3/15First, create a schematic similar to the one above using the RateFrac block. Refer to“AspenPlus Setup for a Flow Simulation” if you need help. Attach the liquid inlet andgas inlet streams to the feed port. Attach the gas outlet to the vapor distillate port and the liquid outlet to the bottoms port. Once the flow sheet is complete, click the “Next”button ( ?) and the title screen should appear (see below). Give the example a title andchange the units from English to Metric on the same screen. Click the ?button.Absorber Design Procedure óSDSM&T 4/15 The components screen should appear next. Enter in the species used in the example (seeabove). The “Find” button on the bottom of the screen enables you to quickly search forcomponents in the databanks by formula, name, CAS registry number, molecular weight, and normal boiling point. The “Elec Wizard” button can be used to generate electrolyte components and reactions for electrolyte applications from components you entered. Acustom component that is not found in the databanks can be created using the “User Defined” button. The “Reorder” button will simply reorder the components that are already defined on the selection sheet. When all components have been entered, click the?button.On the next screen, choose aProperty Method from the list bypressing on the downbutton to the right of thebox. If you need helprefer to “AspenPlus Setupfor a Flow Simulation.”This example will useNRTL. Then click the?button.Absorber Design Procedure óSDSM&T 5/15Shown at the left is theinput page for the air/acetone inletgas.Enter all the data fromthe problem statementfor temperature, pressure, flowrate,and composition.Make sure that unitsand definitions correspond to thevalues that you areentering.The input sheet for the gas inlet stream should appear (see above). Enter the values fromthe problem statement. If values are unknown, leave the respective boxes blank. Whenfinished, click the ?button. The input sheet for the liquid inlet stream should appear.Once again, enter the respective values from the problem statement, and click the ?button.The input sheet for the absorber block will appear next. A column consists of segments that are used to evaluate mass and heat transfer rates between contacting phases. A segment refers to a portion of packing in a packed column or a series of trays in a tray column. Enter the number of segments. As a rule of thumb, there should be one segment per foot of column height. However, more segments could be used to increase the accuracy. The height of the segment should not be less than the average size of the packing used. This example will use ten. Also on this screen, you can select the condenser and reboiler type. Since we are modeling an absorber, select “none” for condenser and reboiler. Click the ?button.Absorber Design Procedure óSDSM&T 6/15 The view selector thatappears on the nextscreen allows you toselect the type of pressurespecificationthat you want to enter.Choose Top/Bottomand enter 1 atm pressure from theproblem statement forsegment 1. Segment1 will refer to the firstsegment at the top ofthe tower. Click the?button.The button will automatically bring you to the tray specification sheet. Since our columnconsists of packing rather than trays, choose “PackSpecs” from the data browser at theleft. You will be brought to the packing specification sheet. Choose “New” to createyour packing specification for the tower. Start “pack segment number” at 1, which is the top packed section in the column. The screen shown below will appear for entering packing specifications. Enter a value for the ending segment. For our example, enter ten since it is the last segment of packing in our column. For this example, I have arbitrarily chosen ceramic raschig rings as packing since the packing type was not specifiedin the problem statement. Guess a packing height that may give us the separation we need to get our final gas and liquid concentrations. Since I have already tackled this problem, I know that the required height of packing necessary to achieve the separation we need is m. Click the ?button to continue.Absorber Design Procedure óSDSM&T 7/15 The next sheet will ask you to enter the value for the column diameter. Since the columndiameter is given in the problem statement, enter the value of m. Click the ?button. The next screen shown below asks you to specify the location of feed inlets andoutlets. Notice that the number eleven was entered for the gas inlet stream. This isbecause the convention for stream location is “above segment”.Click the ?buttonafter entering all necessary information.All required input is now entered and the simulation can be run. The Results screen isshown below. You can browse through the results by clicking on the double arrow nextto the “Results” header.Notice that the heightand packing specifications thatweentered gave us theseparation specifiedin the problem statement. Fromtheproblem statement,the mole fraction ofacetone leaving in theliquid phase is equalto , and themole fraction of acetone leavingin thegas phase is equal to .Absorber Design Procedure óSDSM&T 8/15 Additional RateFrac Features on AspenPlus:Additional RateFrac features can be explored and utilized by viewing the data browser.The data browser refers to the column at the left side of the AspenPlus screen. It gives anoutline view of the available simulation input, results, and objects that have been defined.Following are additional, but not all, of the commonly used RateFrac features. Thesefeatures can be utilized through the data browser.Report Options :Report Options is found under the Setup menu of the data browser.This feature will allow you to specify report options and data toinclude or suppress in the standard AspenPlus report. The reportdocuments all of the input data and defaults used in an AspenPlus runas well as the results of the simulation. This feature allows youcontrol over final information displayed for general information,flowsheets, blocks, and streams.Column Parameters: There are many options available to simulate all different types ofcolumns. Following is a list of options available and their primaryfunctions:Setup –Enter the number of segments, specify the condenser and the reboiler, and column operatingspecifications.TraySpecs and PackSpecs –Define the trayed or packed section, tray or packing type, and otherparameters.Reactions –Enter starting and ending segments for a reactions, as well as reaction, chemistry, anduser reactions IDs.Estimates –Provide initial liquid and vapor temperature estimates for segments in thecolumn. If you do not enter an estimate, RateFrac generates an initial profile based onthe initialization option selected.Equilibrium Segments –Specify optional groups of equilibrium segments.Heaters Coolers –Enter side heater segment numbers and duties.DesignSpecs: Design specifications can be created if you have a final design value inreach. You enter the specification type and the target value that youwould like to obtain. In the process, the stream type, components,segments, and other design information must be identified.AspenPlus will use this information to conform to your design. Thenumber of design specifications must equal the number of manipulated variables. Use the RateFracVary Form to specify manipulated variables for the design mode.Convergence: RateFrac usually performs the initialization calculations only up to arelatively relaxed tolerance. In certain situations, you might need totighten the tolerance on these calculations to generate a good startingpoint for the rate-based nonequilibrium calculations. When thecolumn has many segments, you might need to loosen the tolerance.Absorber Design Procedure óSDSM&T 9/15 Oftentimes, the value of the diameter is not given in the problem statement. Thefollowing problem is a modification of example one, where percent of flooding is givenrather than diameter. The following example will utilize Design Specs to design anabsorber under these conditions:Example 2Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a percent flooding of at293 K and kPa (1 atm). The inlet air contains mol% acetone and outletmol% acetone. The total gas inlet flow rate is kmol/h. The pure water inlet flowis kmol/h. (This example is a modification of EXAMPLE taken fromreference 1).Gas Outlet x acetone =P ure Water InletF = kmol/h AbsorberT = 293 K P = 1 atmGas Inlet x air =x acetone = F = kmol/h L iquid Outlet x acetone =Absorber Design Procedure óSDSM&T 10/15 ProcedureLogon to the AspenPlus system just as in the first example. Create an identicalflowsheet, and enter all data exactly the same as in Example one, until you get to packingspecifications. This time, we do not know the packing height, so we must make anestimate. For this example, we will estimate a packing height of 1 meter. Click the ?button.A value for thetotal packing height mustbeentered in orderfor the AspenPlussimulation to run.This estimatedvalue will be overridden intheDesign Specs areaof the program,where the heightwill be varied inorder to satisfyentered molefraction values.The diameter input screen should appear next. In this example, the value of the diameteris not known. AspenPlus can calculate the diameter based upon the percent flooding of the column. Choose “Use calculated diameter” and enter the values as shown below. An estimate must also be entered for the diameter. This example will use 1 meter.Absorber Design Procedure óSDSM&T 11/15Now, you must enter the Design Specification information. We are going to vary thepacking height in the column in order to satisfy the mole fraction of acetone leaving thecolumn in the gas outlet stream. Scroll down the data browser and choose “FlowsheetingOptions” and then “Design Specs.”Click the New button on the screen that appears.The design spec of DS-1 will appear and choose okay to accept. The screen for theFortran variable will appear. Choose new. The screen shown below will appear.In the area labeled“Spec,” enter the variable namethat weknow. In this case, itis the mole fraction ofacetone leaving thecolumn in the gas outlet stream.In ourexample we will arbitrarily callthisvariable CONC. Onthe next line, enter thetarget value of thevariable, and finallyset the tolerance. Click the ?button.The screen for the manipulated variable will appear next. For the manipulated variable type, choose Block-Var (the variable that we are manipulating is a block variable). Fill in the block name and the variable name. In the area labeled ID1 enter the number one. This refers to the column number. In the area labeled ID2, enter the number one. This refers to the starting segment number. Choose values for the lower and upper manipulated variable limits. For our example, we will use a packing height between 1 and 10 meters. Click the ? button.A list of manipulated variables can beaccessedby clicking on the downbutton to the left of the variable blank. Short descriptions of the variable abbreviations are given as each of the variable names is highlighted. Whenever you are unsurewhat information you are supposed to enter, highlight that area and refer to the dialogue box.It may contain a description of the data.Absorber Design Procedure óSDSM&T 12/15All required input has now been entered and the simulation can be run. The resultsscreen are shown below.Mole fraction valuesfor the gas outletand liquid outletstream closely match the valuesthat we were tryingto obtain in theproblem statement.The value of packing height that satisfied our design conditions was meters. Thisvalue is equal to the meters calculated by reference one.REFERENCES1. Geankopolis, . Transport Processes and Unit Operations. 3rd ed., Prentice Hall,1993.2. Help pages. AspenPlus Software.Absorber Design Procedure óSDSM&T 13/15 Example Input Summary File:;Input Summary created by ASPEN PLUS Rel. at 13:38:59 Tue Mar 7, 2000;Directory C:\My Documents\ASPEN-INTEGRATED\Absorbers Filename C:\MyDocuments\ASPEN-INTEGRATED\Absorbers\;TITLE 'Absorption of Acetone in a Packed Tower'IN-UNITS METDEF-STREAMS CONVEN ALLDATABANKS PURE10 / AQUEOUS / SOLIDS / INORGANIC / &NOASPENPCDPROP-SOURCES PURE10 / AQUEOUS / SOLIDS / INORGANICCOMPONENTSA CETONE C3H6O-1 ACETONE /W ATER H2O WATER /AIR AIR AIRFLOWSHEETBLOCK ABSORBER IN=LIQ-IN GAS-IN OUT=GAS-OUT LIQ-OUTPROPERTIES NRTLPROP-DATA NRTL-1IN-UNITS MET PROP-LISTNRTLBPVAL ACETONE WATER .00 &BPVAL WATER ACETONE .00 .00 &STREAM GAS-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=M OLE-FRAC ACETONE / WATER 0. / AIRSTREAM LIQ-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=MOLE-FRAC WATER 1.BLOCK ABSORBER RATEFRACPARAM NCOL=1 TOT-SEGMENT=10COL-CONFIG 1 10 CONDENSER=NO REBOILER=NOPACK-SPECS 1 1 10 HTPACK=1. <meter> PACK-ARRANGE=RANDOM &PACK-TYPE=RASCHIG PACK-MAT=CERAMIC PACK-DIM="" &PACK-SIZE=.0381000 SPAREA= PACK-FACTOR= &PACK-TENSION= DIAM-EST=1. <meter> BASE-SEGMENT=10 &VOID-FRACTIO=FEEDS LIQ-IN 1 1 / GAS-IN 1 11P RODUCTS LIQ-OUT 1 10 L / GAS-OUT 1 1 VP-SPEC 1 1 1.COL-SPECS 1 MOLE-RDV= Q1= QN=DESIGN-SPEC DS-1DEFINE CONC MOLE-FRAC STREAM=GAS-OUT SUBSTREAM=MIXED & COMPONENT=ACETONESPEC "CONC" TO "" TOL-SPEC ".001"VARY BLOCK-VAR BLOCK=ABSORBER VARIABLE=HTPACK &SENTENCE=PACK-SPECS ID1=1 ID2=1L IMITS "1" "10"STREAM-REPOR MOLEFLOW MOLEFRAC;;;;;GAS-OUT LIQ-INABSORBERGAS-INLIQ-OUTAbsorption of Acetone in a Packed TowerStream ID GAS-IN GAS-OUT LIQ-IN LIQ-OUTFrom ABSORBER ABSORBER T o ABSORBER ABSORBERPhase VAPOR VAPOR LIQUID LIQUID Substream: MIXEDMole Flow KMOL/HRACETONE .3643640 .0761541 .2882099 WATER .3171725AIR .0583660Mole FracACETONE .0260000WATER .0226801 .9923644AIR .9740000 .9718743Total Flow KMOL/HRTotal Flow KG/HRTotal Flow L/MINTemperature KPressure ATMVapor FracLiquid FracSolid FracEnthalpy CAL/MOLEnthalpy CAL/GMEnthalpy CAL/SEC +5 +5Entropy CAL/MOL-KEntropy CAL/GM-KDensity MOL/CC .0554232 .0543163Density GM/CC .9984660 .9931067Average MWLiq Vol 60F L/MIN。
Aspen管道模拟
一Optional inputs on the Pipe sheet include:•Absolute pipe roughness(粗糙度)•Pipe Rise (elevation change)•Resistance coefficient (阻力系数)("K" factor) of reducer following the pipe section•Resistance coefficient ("K" factor) of expander following the pipe sectionIf you do not enter values for these optional inputs, the following default values are used.Lets you enter the pipe absolute roughness. If you choose a pipe from the built-in table, roughness will be filled in from the table. Sample roughness factors are:Erosional velocity(侵蚀速度) is the velocity of the fluid in the pipe, above which the pipe material will start to break off(脱落). The fluid is traveling so fast that it starts to strip(脱落) material from the walls of the pipe. In general use, the flow rate should be below this value.You can specify the erosional velocity coefficient on the Setup | Pipe Parameters sheet.The erosional velocity is related to the erosional velocity coefficient by the following equation:二Use this sheet to specify thermal specification type, energy balance parameters, and heat flux.For the energy balance (能量平衡,选项四)you can specify a heat transfer coefficient based on the inner diameter of the pipe specified on the Pipe Parameters sheet.If you select the option to use linear temperature profile(线性温度分布), you can specify one of the following:•Outlet temperature for forward calculations•Outlet temperature and/or inlet temperature for reverse calculationsNote: You can also specify these options on the Advanced | Calculation Options sheet.If you select the option to perform energy balance, you must specify either or both:•Constant heat flux (when Include Heat Flux is checked; positive is heat into the pipe 当勾选了“Include Heat Flux”,正数表示为管道加热,负数表示管道放出热量)•Inlet and/or outlet ambient temperature and heat transfer coefficient (when Include Energy Balance Parameters is checked)Note:Normally you would only specify one of these options, but you could use both to simulate, for example, a heater that still allows the pipe to exchange heat with the environment.(管道与环境换热)For the energy balance, the rate of heat transfer at each integration step is given by(能量平衡计算中,通过下式计算每步的传热速率)where one term may be zero if not selected. The temperature difference is based on the fluid temperature in that segment and an ambient temperature which is linearly interpolated(线性插值)if different inlet and outlet ambient temperatures are specified.三Use this sheet to specify:•Fittings (配件)such as elbows(弯头), branched-tees(支三通), and straight-tees(直三通)•The type of connections between the pipe and fittings•Valves that may add to the pressure drop in the pipe•Additional frictional adjustments specified as L/D or K factor. K factor is defined as friction factor(摩擦系数) times the L/Dassociated with the additional fitting.附加摩擦调整=摩擦系数*(L/D+其他附件)Straight tees refer to tees where the flow is through the straight part of the tee (also called run or header). Branched tees refer to flow through the branch (elbow) of the tee.Correlations for Connection type (Flanged(法兰) ,welded(焊接) or Screwed(螺纹)) and fittings (Gate valves(球阀), Butterfly valves (蝶阀), Large 90 deg. Elbows(90°弯头), Straight tees (直三通)and Branched tees(支三通)) are from a proprietary(专有的) source.Pipe assumes that the pressure drop due to valves and fittings is distributed evenly along the specified length of the pipe. The total length Pipe uses in calculations corresponds to the specified pipe length, plus any equivalent pipe length due to valves, fittings, pipe entrance and exit, a sudden enlargement(扩径)and/or contraction(缩径), an orifice plate(孔板), and miscellaneous L/D or K.总长度=输入管长+配件当量管长If the pipe is not horizontal, Pipe adjusts the angle from the horizontal to achieve the same vertical rise or fall for the total length used in the calculations. This adjustment ensures the correct pressure drop due to elevation.If the order and position of the valves and fittings are important, you need to model each valve and fitting separately with a Pipe model, specifying zero length of pipe.如果阀门和配件的顺序与位置非常重要,则需要使用单独的Pipe model去模拟该部件,并将管长设为零。
Aspen模拟
西安科技大学
ASPEN PLUS 能做什么
进行工艺过程严格的能量和质量平衡计算
预测物流的流率、组成和性质
功
预测操作条件和设备尺寸
能
减少装置的设计时间、进行设计方案比较
帮助改进当前工艺
回答“如果…那会怎么样”的问题 在给定的限制内优化工艺条件 辅助确定一个工艺约束部位
西安科技大学
ASPEN PLUS 基本概念
用来计算热力学性质和迁移性质决定模拟精确性的关键西安科技大学单元操作模型及其主要功能分离器热交换器混合器和分流器?heater通用加热器器?heatx热交换器?mheatx多股物流的热交换器?hetran管壳式换热器?aerotran空冷式换热器?hxflux热传递计算?htrixist与htri的接口?mixer通用混合?split分流?fsplit子物流分流?sep组分分割?sep2两产品分离?flash2两相闪蒸?flash3三相闪蒸?decanter液液倾析器西安科技大学单元操作模型及其主要功能反应器压力改变固体处理?pyield收率反应器?rstoic化学计量反应器器?rcstr连续搅拌釜式反应器?rplug活塞流反应器?requil两相化学平衡反应器?rgibbs通用相平衡和化学平衡反应器?rbatch间歇式反应器?pump泵料浆泵?compr单级压缩膨胀机机?mcompr多级压缩膨膨胀机?pipeline多段管线压降降?pipe单段管线压降?valve阀压降?radfrac严格法精馏?multilfrac严格法多塔精馏?extrac严格法萃取?dstwu简算法精馏设计型?distl简算法精馏核算型型?scfrac简算法多塔精馏?petrofrac石油炼制分馏塔西安科技大学单元操作模型及其主要功能用户模型固体处理器流控制器?user有限进出流股?user2无限进出流股?hierarchy分层结构?cyclone旋风分离器?rsp静电除尘器?fabfl纤维过滤器?vscrub文丘里涤气器?crush破碎机?screen筛选机?hycyc水力旋风分离器?filter转鼓过滤器?cfuge离心过滤器?swash固体洗涤器?ccd逆流倾析器?crystallizer结晶器?dryer干燥器?mult乘法器?dupl复制器?clchng流股复类器?select物流选择器?analyzer物流分析器?qtvec热负荷控制器?measurement测量器西安科技大学物性方法和模型描述热力学性质传递性质方法分类理想物性方法状态方程物性方法逸度系数物性方法专用系统物性方法常用推荐方法与煤相关应用推荐的物性方法煤的粉碎研磨solids分离和清洗过滤旋风分离沉降洗涤solids煤燃烧prbmrksbm煤气化prbmrksbm煤液化prbmrksbmbwrls酸性气体吸收使用prwsrkswsprmhv2rksmhv2psr
如何使用aspen软件模拟完成精馏的设计和控制马后炮终审稿)
如何使用A S P E N软件模拟完成精馏的设计和控制马后炮Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】如何使用ASPEN TM 软件模拟完成精馏的设计和控制威廉·L·鲁平博士第6 章:使用稳态计算选择控制结构Steadt-state Calculations for Control Structure Selection 在我们转入将稳态模拟转化为动态模拟细节讨论之前,要先讨论一些重要的稳态模拟计算方法。
因为经常被用于精馏设计中帮助为其选择一个实用且高效的控制结构,。
故此类讨论可能是一定意义的。
绝大部分精馏塔的设计是为了将两种关键组分分离获得指定的分离效果。
通常是两个设计自由度指定为馏出物中重关键组分的浓度和塔底产品中轻关键组分的浓度。
因此,在精馏塔的操作和控制中,“理想的”控制结构需测定两股产品的组成并操控两输入变量(如,回流流量和再沸器的输入热量),从而能够达到两股产品中关键组分的纯度要求。
然而,由于一些现实的原因,很少有精馏塔使用这种理想的控制结构。
组分检测仪通常购价昂贵且维修成本高,其可靠性对连续在线控制而言,有时略显不足。
如果使用色层法,还会在控制回路中引入死时间。
此外,不使用直接测量组分法,通常也有可能取得非常高效的控制效果。
温度测量被广泛应用于组分的推理控制。
温度传感器廉价而又可靠,在控制回路上只有很小的测量滞后。
对恒压二元体系,温度与组成是一一对应相关的。
这在多组分体系中不适用,但精馏塔中合适位置的温度通常能够相当准确地提供关于关键组分浓度的信息。
在单端控制结构中,只需控制某块塔板的温度;选择剩下的“控制自由度”时应使产品质量可变性最小。
例如,确定一定的回流比RR 或者固定回流与进料流量的比值R/F。
有时候,需要控制两个温度(双温控制系统)。
我们将在本章中讨论这些被选方案。
如果选择使用塔板温度控制,那么问题便是选择最佳一块或数块塔板,该处的温度保持恒定。
Aspen模拟反应精馏radfrac模块.pdf
RadFrac for Dummies:A How to Guide on Aspen Plus ArrayThis example will show how to use Radfrac on Aspen Plus to model distillation columns. The feed shown in the diagram above will consist of 50 lbmol/hr of Methanol and 50 lbmol/hr of water. A purity of 99.5% is desired in both thebottoms and distillate product streams using a reflux ratio of 1.5.Click on the red arrow on the left side of the column to add your feed stream. For this simulation there is only one feed stream, if there were more feed streams use the blue arrow on the left of the column to add more streams.Enter “Feed” in the ID box when prompted for this simulation.Click “OK”.If this box doesn’t appear it is because your flowsheet isn’t complete. A box will then appear telling you what part of the flowsheet you are missing.This box should appearand a title for this simulation can now be entered although is not mandatory for this simulation. Click on the Next button to continue entering numerical data.If this box doesn’t appear you can go to Setup onthe left-hand side of thebox and click on that.。
第5讲 ASPEN PLUS 精馏模拟收敛技巧及特殊精馏过程的模拟(1)
蒸馏过程简化计算法理论基础
①
最小理论板数计算-Fenske公式 简化法根据Fenske方程求取最小理 论板数Sm:
S m = log
(
X l ,d X h ,d X h , d X l ,b
)/ log α
av
最小理论板数是在全回流下所需板数;
式中:
Sm-全部理论板数,包括冷凝器和再沸器; αav -轻重关键组分在塔内平均相对挥发度; l-轻关键组分,h-重关键组分; d-塔顶, b-塔釜;
2 1 B1 3
蒸馏塔的类型-2
复杂蒸馏塔 (Complex column) 多股进料,设有塔 顶冷凝器和塔釜 再沸器,可有多 股侧线采出,可 有中间再沸器或 中间冷凝器,塔 顶、塔釜各有采 出一股;
B2 5 4
6
蒸馏塔的类型-3
吸收塔(Absorber) 无塔顶冷凝器和塔釜 再沸器,气体进料 位置在塔釜,塔顶 有吸收剂淋下;塔 顶为气相采出,塔 釜为液相采出;
reactivedist1醋酸丁酯的合成反应精馏练习reactivedist2乙酸乙酯的合成乙酸从塔上部加入乙醇从塔下部加入受相平衡的制约乙酸在塔内有向塔底富集的趋势乙醇有向塔顶富集的趋势两者在塔内逆流接触并发生反应生成的乙酸乙酯则和乙醇水从塔顶流和常规精馏过程不同的是反应精馏涉及的不仅是相平衡的问题还涉及化学反应平衡和反应动力学的问题
④
优惠回流比R的选取:通常R=(1.1~2)Rm 随着能源价格的不断上升,目前实际回流比 的选择,愈来愈靠近最小回流比,以降低 操作费用;
精馏过程简化计算
优惠回流比R的变化:
年代 1961~ 1970 90 23 1971~ 1980 140 18 1981~ 1990 180 16 1991~ 2000 210 14 2001~ 迄今 最大256 12
化工流程模拟实训AspenPlus教程第四章简单单元模拟
4.2.2 物流复制器Dupl
4.2.2 物流复制器Dupl
物流复制器Dupl用于将一股输入物流复制为多股 完全相同的输出物流。
在同一股进料下,物流复制器Dupl可复制物流和 能流,不遵循物料和能量衡算。
4.3 简单分离器
Decanter 模块的模型参数有:
1.液-液分相器设定(Decanter Specifications) 2.关键组分(Key Component) 3. 分离效率(Separation Efficiencies)
4.3.3 液-液分相器Decanter
1.液-液分相器设定(Decanter Specifications
例4.3.3 两股进料进入液-液分相器Decanter进 行液-液分离。 进料采用例中的进料,液-液分相器温度为25℃, 压力为0.1MPa,乙醇的分离效率为0.9。
4.3.4 组分分离器Sep
组分分离器Sep可将任意股入口物流,按照 每个组分的分离规定分成两股或多股出口物 流。
当未知分离过程,但已知每个组分的分离结 果时,可以用组分分离器Sep代替严格分离 模块以节省计算时间。
出口物流的压力(或
FSplit计算时需要指定 模块压降)
出口物流的有效相态
如果不指定压力或压降,模块将自动默认进 料的最低压力为出口物流的压力。
4.1.2 分流器 FSplit
例4.1.2 将三股进料通过分流器分成三股产品 PRODUCT1、PRODUCT2、PRODUCT3,进料 物流依然选用例的三股进料,物性方法选用 CHAO-SEA。 要求:①物流PRODUCT1的摩尔流率为进料的 50%;②物流PRODUCT2中含有10kmol/hr的 正丁烷。
ASPEN软件模拟吸收
Design Procedure for an Absorption Unit on the AspenPlus SoftwareAuthor: Brigitte McNamesThis manual presents all steps necessary to design an absorber using the AspenPlus simulation software. The manual also includes useful tips, recommendations, and explanations throughout the design procedure. The following example will be used: Example 1Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a diameter of 0.4866 m at 293 K and 101.32 kPa (1 atm). The inlet air contains 2.6 mol% acetone and outlet 0.5 mol% acetone. The total gas inlet flow rate is 14.0148 kmol/h. The pure water inlet flow is 45.36 kmol/h. (This example is EXAMPLE 10.6-2 taken from reference 1). Schematic:ProcedureLogon to the AspenPlus system and start a blank simulation. The flowsheet area should appear. (Refer to “AspenPlus Setup for a Flow Simulation” if you need help.)Shown above is the Columns subdirectory. Choose the RateFrac block from the subdirectory by clicking on it. If you click on the down arrow next to the RateFrac block, a set of icons will pop up. These icons represent the same calculation procedure and are for different schematical purposes only. Choose the block that best represents the process that you are designing. For our example we will use the RATEFRAC rectangular block at the top left corner.RateFrac is a rate-based nonequilibrium model for simulating all types of multistage vapor-liquid operations such as absorption, stripping, and distillation. RateFrac simulates actual tray and packed columns, rather than the idealized representation of equilibrium stages.A column consists of segments (see schematic for a packeda packed column or one or more trays in a tray column.RateFrac performs an initialization calculation where allsegments are modeled as equilibrium stages. The resultsfrom the initialization step are used to perform the rate-based nonequilibrium calculations. To learn more aboutRateFrac and its applications refer to the “RateFrac” helppages.First, create a schematic similar to the one above using the RateFrac block. Refer to “AspenPlus Setup for a Flow Simulation” if you need help. Attach the liquid inlet and gas inlet streams to the feed port. Attach the gas outlet to the vapor distillate port and the liquid outlet to the bottoms port. Once the flow sheet is complete, click the “Next”button (→) and the title screen should appear (see below). Give the example a title and change the units from English to Metric on the same screen. Click the →button.The components screen should appear next. Enter in the species used in the example (see above). The “Find” button on the bottom of the screen enables you to quickly search for components in the databanks by formula, name, CAS registry number, molecular weight, and normal boiling point. The “Elec Wizard” button can be used to generate electrolyte components and reactions for electrolyte applications from components you entered. A custom component that is not found in the databanks can be created using the “User Defined” button. The “Reorder” button will simply reorder the components that are already defined on the selection sheet. When all components have been entered, click the →button.The input sheet for the gas inlet stream should appear (see above). Enter the values from the problem statement. If values are unknown, leave the respective boxes blank. When finished, click the →button. The input sheet for the liquid inlet stream should appear.Once again, enter the respective values from the problem statement, and click the →button.The input sheet for the absorber block will appear next. A column consists of segments that are used to evaluate mass and heat transfer rates between contacting phases. A segment refers to a portion of packing in a packed column or a series of trays in a tray column. Enter the number of segments. As a rule of thumb, there should be one segment per foot of column height. However, more segments could be used to increase the accuracy. The height of the segment should not be less than the average size of the packing used. This example will use ten. Also on this screen, you can select the condenser and reboiler type. Since we are modeling an absorber, select “none” forcondenser and reboiler. Click the → button.Shown at the left is theinput page for theair/acetone inlet gas.Enter all the data fromthe problem statementfor temperature,pressure, flow rate,and composition.Make sure that unitsand definitionscorrespond to thevalues that you areentering.The button will automatically bring you to the tray specification sheet. Since our column consists of packing rather than trays, choose “PackSpecs” from the data browser at the left. You will be brought to the packing specification sheet. Choose “New” to create your packing specification for the tower. Start “pack segment number” at 1, which is the top packed section in the column. The screen shown below will appear for entering packing specifications. Enter a value for the ending segment. For our example, enter ten since it is the last segment of packing in our column. For this example, I have arbitrarily chosen 1.5-in ceramic raschig rings as packing since the packing type was not specified in the problem statement. Guess a packing height that may give us the separation we need to get our final gas and liquid concentrations. Since I have already tackled this problem, I know that the required height of packing necessary to achieve the separation we need is 1.94 m. Click the →button to continue.The next sheet will ask you to enter the value for the column diameter. Since the column diameter is given in the problem statement, enter the value of 0.4866 m. Click the →button. The next screen shown below asks you to specify the location of feed inlets and outlets. Notice that the number eleven was entered for the gas inlet stream. This is because the convention for stream location is “above segment”. Click the →button after entering all necessary information.All required input is now entered and the simulation can be run. The Results screen is shown below. You can browse through the results by clicking on the double arrow next to the “Results” header.Additional RateFrac Features on AspenPlus:Additional RateFrac features can be explored and utilized by viewing the data browser. The data browser refers to the column at the left side of the AspenPlus screen. It gives an outline view of the available simulation input, results, and objects that have been defined. Following are additional, but not all, of the commonly used RateFrac features. These features can be utilized through the data browser.Report Options: Report Options is found under the Setup menu of the data browser.This feature will allow you to specify report options and data toinclude or suppress in the standard AspenPlus report. The reportdocuments all of the input data and defaults used in an AspenPlus runas well as the results of the simulation. This feature allows youcontrol over final information displayed for general information,flowsheets, blocks, and streams.Column Parameters: There are many options available to simulate all different types of columns. Following is a list of options available and their primaryfunctions:Setup – Enter the number of segments, specify the condenser and thereboiler, and column operating specifications.TraySpecs and PackSpecs – Define the trayed or packed section,tray or packing type, and other parameters.Reactions – Enter starting and ending segments for a reactions, aswell as reaction, chemistry, and user reactions IDs.Estimates – Provide initial liquid and vapor temperature estimates for segments in the column. If you do not enter an estimate, RateFrac generates an initial profile based on the initialization option selected.Equilibrium Segments – Specify optional groups of equilibrium segments.Heaters Coolers – Enter side heater segment numbers and duties.DesignSpecs: Design specifications can be created if you have a final design value inreach. You enter the specification type and the target value that youwould like to obtain. In the process, the stream type, components,segments, and other design information must be identified.AspenPlus will use this information to conform to your design. Thenumber of design specifications must equal the number ofmanipulated variables. Use the RateFrac Vary Form to specifymanipulated variables for the design mode.Oftentimes, the value of the diameter is not given in the problem statement. The following problem is a modification of example one, where percent of flooding is given rather than diameter. The following example will utilize Design Specs to design an absorber under these conditions:Example 2Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a percent flooding of 0.8 at 293 K and 101.32 kPa (1 atm). The inlet air contains 2.6 mol% acetone and outlet 0.5 mol% acetone. The total gas inlet flow rate is 14.0148 kmol/h. The pure water inlet flow is 45.36 kmol/h. (This example is a modification of EXAMPLE 10.6-2 taken from reference 1).ProcedureLogon to the AspenPlus system just as in the first example. Create an identicalflowsheet, and enter all data exactly the same as in Example one, until you get to packing specifications. This time, we do not know the packing height, so we must make an estimate. For this example, we will estimate a packing height of 1 meter. Click the →button.The diameter input screen should appear next. In this example, the value of the diameter is not known. AspenPlus can calculate the diameter based upon the percent flooding of the column. Choose “Use calculated diameter” and enter the values as shown below. Anestimate must also be entered for the diameter. This example will use 1 meter.A value for thetotal packingheight must beentered in orderfor the AspenPlussimulation to run.This estimatedvalue will beoverridden in theDesign Specs areaof the program,where the heightwill be varied inorder to satisfyentered molefraction values.Now, you must enter the Design Specification information. We are going to vary thepacking height in the column in order to satisfy the mole fraction of acetone leaving the column in the gas outlet stream. Scroll down the data browser and choose “Flowsheeting Options” and then “Design Specs.” Click the New button on the screen that appears.The design spec of DS-1 will appear and choose okay to accept. The screen for theThe screen for the manipulated variable will appear next. For the manipulated variable type, choose Block-Var (the variable that we are manipulating is a block variable). Fill in the block name and the variable name. In the area labeled ID1 enter the number one.This refers to the column number. In the area labeled ID2, enter the number one. This refers to the starting segment number. Choose values for the lower and uppermanipulated variable limits. For our example, we will use a packing height between 1and 10 meters. Click theAll required input has now been entered and the simulation can be run. The resultsscreen are shown below.The value of packing height that satisfied our design conditions was 1.94 meters. This value is equal to the 1.94 meters calculated by reference one.REFERENCES1. Geankopolis, C.J. Transport Processes and Unit Operations. 3rd ed., Prentice Hall,1993.2. Help pages.AspenPlus Software.Example Input Summary File:;Input Summary created by ASPEN PLUS Rel. 10.0-1 at 13:38:59 Tue Mar 7, 2000 ;Directory C:\My Documents\ASPEN-INTEGRATED\Absorbers Filename C:\My Documents\ASPEN-INTEGRATED\Absorbers\absorberdesign.inp;TITLE 'Absorption of Acetone in a Packed Tower'IN-UNITS METDEF-STREAMS CONVEN ALLDATABANKS PURE10 / AQUEOUS / SOLIDS / INORGANIC / &NOASPENPCDPROP-SOURCES PURE10 / AQUEOUS / SOLIDS / INORGANIC COMPONENTSACETONE C3H6O-1 ACETONE /WATER H2O WATER /AIR AIR AIRFLOWSHEETBLOCK ABSORBER IN=LIQ-IN GAS-IN OUT=GAS-OUT LIQ-OUT PROPERTIES NRTLPROP-DATA NRTL-1IN-UNITS METPROP-LIST NRTLBPVAL ACETONE WATER 6.398100000 -1808.991000 .3000000000 &0.0 0.0 0.0 293.1500000 368.2500000BPVAL WATER ACETONE .0544000000 419.9716000 .3000000000 0.0 & 0.0 0.0 293.1500000 368.2500000STREAM GAS-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=14.014MOLE-FRAC ACETONE 0.026 / WATER 0. / AIR 0.974STREAM LIQ-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=45.36MOLE-FRAC WATER 1.BLOCK ABSORBER RATEFRACPARAM NCOL=1 TOT-SEGMENT=10COL-CONFIG 1 10 CONDENSER=NO REBOILER=NOPACK-SPECS 1 1 10 HTPACK=1. <meter> PACK-ARRANGE=RANDOM & PACK-TYPE=RASCHIG PACK-MAT=CERAMIC PACK-DIM="1.5-IN" & PACK-SIZE=.0381000 SPAREA=1.213900 PACK-FACTOR=3.116760 &PACK-TENSION=61.00000 DIAM-EST=1. <meter> BASE-SEGMENT=10 & VOID-FRACTIO=0.73FEEDS LIQ-IN 1 1 / GAS-IN 1 11PRODUCTS LIQ-OUT 1 10 L / GAS-OUT 1 1 VP-SPEC 1 1 1.COL-SPECS 1 MOLE-RDV=1.0 Q1=0.0 QN=0.0DESIGN-SPEC DS-1DEFINE CONC MOLE-FRAC STREAM=GAS-OUT SUBSTREAM=MIXED & COMPONENT=ACETONESPEC "CONC" TO "0.005"TOL-SPEC ".001"VARY BLOCK-VAR BLOCK=ABSORBER VARIABLE=HTPACK &SENTENCE=PACK-SPECS ID1=1 ID2=1LIMITS "1" "10"STREAM-REPOR MOLEFLOW MOLEFRAC;;;;;Absorption of Acetone in a Packed TowerStream ID GAS-IN GAS-OUT LIQ-IN LIQ-OUT From ABSORBER ABSORBER T o ABSORBER ABSORBERPhase VAPOR VAPOR LIQUID LIQUID Substream: MIXEDMole Flow KMOL/HRACETONE .3643640 .0761541 0.0 .2882099 WATER 0.0 .3171725 45.36000 45.04283 AIR 13.64964 13.59127 0.0 .0583660 Mole FracACETONE .0260000 5.44557E-3 0.0 6.34972E-3 WATER 0.0 .0226801 1.000000 .9923644 AIR .9740000 .9718743 0.0 1.28590E-3 Total Flow KMOL/HR 14.01400 13.98460 45.36000 45.38940 Total Flow KG/HR 416.3316 403.6166 817.1731 829.8881 Total Flow L/MIN 5615.509 5611.735 13.64048 13.92747 Temperature K 293.0000 293.4187 293.0000 292.2765 Pressure ATM 1.000000 1.000000 1.000000 1.000000 Vapor Frac 1.000000 1.000000 0.0 0.0 Liquid Frac 0.0 0.0 1.000000 1.000000 Solid Frac 0.0 0.0 0.0 0.0 Enthalpy CAL/MOL -1376.595 -1623.627 -68319.40 -68199.92 Enthalpy CAL/GM -46.33711 -56.25579 -3792.303 -3730.086 Enthalpy CAL/SEC -5358.779 -6307.159-8.6082E+5-8.5988E+5 Entropy CAL/MOL-K -1.227476 -.3513392 -39.14193 -39.35059 Entropy CAL/GM-K -.0413176 -.0121732 -2.172707 -2.152218 Density MOL/CC 4.15931E-5 4.15338E-5 .0554232 .0543163 Density GM/CC 1.23566E-3 1.19873E-3 .9984660 .9931067 Average MW 29.70827 28.86151 18.01528 18.28374 Liq Vol 60F L/MIN 7.937254 7.645211 13.64580 13.93784。
如何用aspen做塔模拟
如何用asp en做塔模拟?ASPEN2008-03-18 23:25:06 阅读225评论0 字号:大中小订阅1. 如用何用DS TUW 和 RadFRa c 进行精馏塔模拟计算经过简单的训练,初学都便能够用DSTU W 和 RadFRa c 进行塔模拟计算,似乎会用as pen做塔的设计和操作模拟了。
但计算思路是不是很清楚就不一定了。
如可用DST UW 和 RadFRa c 完成一个塔的设计,或对一个已知的塔进行模拟,需要有清晰的过程思路,这样才能用好模拟软件。
使用DSTU W 和 RadFRa c塔单元模块,首先我们应该知道模块能做什么?然后知道如何用它做我们想做的事?需要输入那些参数?在有aspe n之前你首先回答不用aspen你能不能做塔设计?如果答案是肯定的,那就可以往下用aspe n了,否则先进搞清楚精馏塔的设计原理与方法,再来研究如何用aspe n做精馏模拟。
DSTUW能做什么?DSTUW是塔的简捷计算模块,它能够对进行设计计算和操作计算(也就是核算)。
如何用DST UW进行设计和操作模拟?这两种功能通过选择输入回流比和理论板数来实现。
设计计算:输入参数:回流比(或最小回流比倍数)和其它设计必须的工艺参数,但不需要结构尺寸数据。
计算结果:实际回流比、实际塔板数、进料板位置、蒸出率(D/F)和传热面积及其它的工艺数据等。
为精确设计计算提供必要的设计参数。
操作模拟:输入参数:塔板数、进料板位置等必要的操作参数。
计算结果:为回流比、塔顶组成等。
当然很多输入参数是可以选择的,但一定要保证设计或操作必须的自由度数。
也就是条件必须足够,且不能有多余。
RadFRa c能做什么?RadFRa c能对板式塔、填料塔等进行严格模拟计算。
ASPEN软件模拟吸收
Design Procedure for an Absorption Unit onthe AspenPlus SoftwareAuthor: Brigitte McNamesThis manual presents all steps necessary to design an absorber using the AspenPlus simulation software. The manual also includes useful tips, recommendations, and explanations throughout the design procedure. The following example will be used: Example 1Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a diameter of m at293 K and kPa (1 atm). The inlet air contains mol% acetone and outletmol% acetone. The total gas inlet flow rate is kmol/h. The pure water inlet flowis kmol/h. (This example is EXAMPLE taken from reference 1). Schematic:Gas Outlet x acetone =P ure Water InletF = kmol/h AbsorberT = 293 KP = 1 atmGas Inlet x air =x acetone = F = kmol/h L iquid Outlet x acetone =Absorber Design Procedure óSDSM&T 2/15 ProcedureLogon to the AspenPlus system and start a blank simulation. The flowsheet area shouldappear. (Refer to “AspenPlus Setup for a Flow Simulation” if you need help.)Shown above is the Columns subdirectory. Choose the RateFrac block from thesubdirectory by clicking on it. If you click on the down arrow next to the RateFrac block,a set of icons will pop up. These icons represent the same calculation procedure and are for different schematical purposes only. Choose the block that best represents the process that you are designing. For our example we will use the RATEFRAC rectangular blockat the top left corner.RateFrac is a rate-based nonequilibrium model for simulating all types of multistage vapor-liquid operations such as absorption, stripping, and distillation. RateFrac simulates actual tray and packed columns, rather than the idealized representation of equilibrium stages.A column consists of segments (see schematic for a packedcolumn at right). Segments refer to a portion of packing ina packed column or one or more trays in a tray column. RateFrac performs an initialization calculation where all segments are modeled as equilibrium stages. The results from the initialization step are used to perform the rate- based nonequilibrium calculations. To learn more about RateFrac and its applications refer to the “RateFrac” help pages. Packed segment n-1 Packed segment n Packed segment n+1Absorber Design Procedure óSDSM&T 3/15First, create a schematic similar to the one above using the RateFrac block. Refer to“AspenPlus Setup for a Flow Simulation” if you need help. Attach the liquid inlet andgas inlet streams to the feed port. Attach the gas outlet to the vapor distillate port and the liquid outlet to the bottoms port. Once the flow sheet is complete, click the “Next”button ( ?) and the title screen should appear (see below). Give the example a title andchange the units from English to Metric on the same screen. Click the ?button.Absorber Design Procedure óSDSM&T 4/15 The components screen should appear next. Enter in the species used in the example (seeabove). The “Find” button on the bottom of the screen enables you to quickly search forcomponents in the databanks by formula, name, CAS registry number, molecular weight, and normal boiling point. The “Elec Wizard” button can be used to generate electrolyte components and reactions for electrolyte applications from components you entered. Acustom component that is not found in the databanks can be created using the “User Defined” button. The “Reorder” button will simply reorder the components that are already defined on the selection sheet. When all components have been entered, click the?button.On the next screen, choose aProperty Method from the list bypressing on the downbutton to the right of thebox. If you need helprefer to “AspenPlus Setupfor a Flow Simulation.”This example will useNRTL. Then click the?button.Absorber Design Procedure óSDSM&T 5/15Shown at the left is theinput page for the air/acetone inletgas.Enter all the data fromthe problem statementfor temperature, pressure, flowrate,and composition.Make sure that unitsand definitions correspond to thevalues that you areentering.The input sheet for the gas inlet stream should appear (see above). Enter the values fromthe problem statement. If values are unknown, leave the respective boxes blank. Whenfinished, click the ?button. The input sheet for the liquid inlet stream should appear.Once again, enter the respective values from the problem statement, and click the ?button.The input sheet for the absorber block will appear next. A column consists of segments that are used to evaluate mass and heat transfer rates between contacting phases. A segment refers to a portion of packing in a packed column or a series of trays in a tray column. Enter the number of segments. As a rule of thumb, there should be one segment per foot of column height. However, more segments could be used to increase the accuracy. The height of the segment should not be less than the average size of the packing used. This example will use ten. Also on this screen, you can select the condenser and reboiler type. Since we are modeling an absorber, select “none” for condenser and reboiler. Click the ?button.Absorber Design Procedure óSDSM&T 6/15 The view selector thatappears on the nextscreen allows you toselect the type of pressurespecificationthat you want to enter.Choose Top/Bottomand enter 1 atm pressure from theproblem statement forsegment 1. Segment1 will refer to the firstsegment at the top ofthe tower. Click the?button.The button will automatically bring you to the tray specification sheet. Since our columnconsists of packing rather than trays, choose “PackSpecs” from the data browser at theleft. You will be brought to the packing specification sheet. Choose “New” to createyour packing specification for the tower. Start “pack segment number” at 1, which is the top packed section in the column. The screen shown below will appear for entering packing specifications. Enter a value for the ending segment. For our example, enter ten since it is the last segment of packing in our column. For this example, I have arbitrarily chosen ceramic raschig rings as packing since the packing type was not specifiedin the problem statement. Guess a packing height that may give us the separation we need to get our final gas and liquid concentrations. Since I have already tackled this problem, I know that the required height of packing necessary to achieve the separation we need is m. Click the ?button to continue.Absorber Design Procedure óSDSM&T 7/15 The next sheet will ask you to enter the value for the column diameter. Since the columndiameter is given in the problem statement, enter the value of m. Click the ?button. The next screen shown below asks you to specify the location of feed inlets andoutlets. Notice that the number eleven was entered for the gas inlet stream. This isbecause the convention for stream location is “above segment”.Click the ?buttonafter entering all necessary information.All required input is now entered and the simulation can be run. The Results screen isshown below. You can browse through the results by clicking on the double arrow nextto the “Results” header.Notice that the heightand packing specifications thatweentered gave us theseparation specifiedin the problem statement. Fromtheproblem statement,the mole fraction ofacetone leaving in theliquid phase is equalto , and themole fraction of acetone leavingin thegas phase is equal to .Absorber Design Procedure óSDSM&T 8/15 Additional RateFrac Features on AspenPlus:Additional RateFrac features can be explored and utilized by viewing the data browser.The data browser refers to the column at the left side of the AspenPlus screen. It gives anoutline view of the available simulation input, results, and objects that have been defined.Following are additional, but not all, of the commonly used RateFrac features. Thesefeatures can be utilized through the data browser.Report Options :Report Options is found under the Setup menu of the data browser.This feature will allow you to specify report options and data toinclude or suppress in the standard AspenPlus report. The reportdocuments all of the input data and defaults used in an AspenPlus runas well as the results of the simulation. This feature allows youcontrol over final information displayed for general information,flowsheets, blocks, and streams.Column Parameters: There are many options available to simulate all different types ofcolumns. Following is a list of options available and their primaryfunctions:Setup –Enter the number of segments, specify the condenser and the reboiler, and column operatingspecifications.TraySpecs and PackSpecs –Define the trayed or packed section, tray or packing type, and otherparameters.Reactions –Enter starting and ending segments for a reactions, as well as reaction, chemistry, anduser reactions IDs.Estimates –Provide initial liquid and vapor temperature estimates for segments in thecolumn. If you do not enter an estimate, RateFrac generates an initial profile based onthe initialization option selected.Equilibrium Segments –Specify optional groups of equilibrium segments.Heaters Coolers –Enter side heater segment numbers and duties.DesignSpecs: Design specifications can be created if you have a final design value inreach. You enter the specification type and the target value that youwould like to obtain. In the process, the stream type, components,segments, and other design information must be identified.AspenPlus will use this information to conform to your design. Thenumber of design specifications must equal the number of manipulated variables. Use the RateFracVary Form to specify manipulated variables for the design mode.Convergence: RateFrac usually performs the initialization calculations only up to arelatively relaxed tolerance. In certain situations, you might need totighten the tolerance on these calculations to generate a good startingpoint for the rate-based nonequilibrium calculations. When thecolumn has many segments, you might need to loosen the tolerance.Absorber Design Procedure óSDSM&T 9/15 Oftentimes, the value of the diameter is not given in the problem statement. Thefollowing problem is a modification of example one, where percent of flooding is givenrather than diameter. The following example will utilize Design Specs to design anabsorber under these conditions:Example 2Problem Statement: Absorption of Acetone in a Packed TowerAcetone is being absorbed by water in a packed tower having a percent flooding of at293 K and kPa (1 atm). The inlet air contains mol% acetone and outletmol% acetone. The total gas inlet flow rate is kmol/h. The pure water inlet flowis kmol/h. (This example is a modification of EXAMPLE taken fromreference 1).Gas Outlet x acetone =P ure Water InletF = kmol/h AbsorberT = 293 K P = 1 atmGas Inlet x air =x acetone = F = kmol/h L iquid Outlet x acetone =Absorber Design Procedure óSDSM&T 10/15 ProcedureLogon to the AspenPlus system just as in the first example. Create an identicalflowsheet, and enter all data exactly the same as in Example one, until you get to packingspecifications. This time, we do not know the packing height, so we must make anestimate. For this example, we will estimate a packing height of 1 meter. Click the ?button.A value for thetotal packing height mustbeentered in orderfor the AspenPlussimulation to run.This estimatedvalue will be overridden intheDesign Specs areaof the program,where the heightwill be varied inorder to satisfyentered molefraction values.The diameter input screen should appear next. In this example, the value of the diameteris not known. AspenPlus can calculate the diameter based upon the percent flooding of the column. Choose “Use calculated diameter” and enter the values as shown below. An estimate must also be entered for the diameter. This example will use 1 meter.Absorber Design Procedure óSDSM&T 11/15Now, you must enter the Design Specification information. We are going to vary thepacking height in the column in order to satisfy the mole fraction of acetone leaving thecolumn in the gas outlet stream. Scroll down the data browser and choose “FlowsheetingOptions” and then “Design Specs.”Click the New button on the screen that appears.The design spec of DS-1 will appear and choose okay to accept. The screen for theFortran variable will appear. Choose new. The screen shown below will appear.In the area labeled“Spec,” enter the variable namethat weknow. In this case, itis the mole fraction ofacetone leaving thecolumn in the gas outlet stream.In ourexample we will arbitrarily callthisvariable CONC. Onthe next line, enter thetarget value of thevariable, and finallyset the tolerance. Click the ?button.The screen for the manipulated variable will appear next. For the manipulated variable type, choose Block-Var (the variable that we are manipulating is a block variable). Fill in the block name and the variable name. In the area labeled ID1 enter the number one. This refers to the column number. In the area labeled ID2, enter the number one. This refers to the starting segment number. Choose values for the lower and upper manipulated variable limits. For our example, we will use a packing height between 1 and 10 meters. Click the ? button.A list of manipulated variables can beaccessedby clicking on the downbutton to the left of the variable blank. Short descriptions of the variable abbreviations are given as each of the variable names is highlighted. Whenever you are unsurewhat information you are supposed to enter, highlight that area and refer to the dialogue box.It may contain a description of the data.Absorber Design Procedure óSDSM&T 12/15All required input has now been entered and the simulation can be run. The resultsscreen are shown below.Mole fraction valuesfor the gas outletand liquid outletstream closely match the valuesthat we were tryingto obtain in theproblem statement.The value of packing height that satisfied our design conditions was meters. Thisvalue is equal to the meters calculated by reference one.REFERENCES1. Geankopolis, . Transport Processes and Unit Operations. 3rd ed., Prentice Hall,1993.2. Help pages. AspenPlus Software.Absorber Design Procedure óSDSM&T 13/15 Example Input Summary File:;Input Summary created by ASPEN PLUS Rel. at 13:38:59 Tue Mar 7, 2000;Directory C:\My Documents\ASPEN-INTEGRATED\Absorbers Filename C:\MyDocuments\ASPEN-INTEGRATED\Absorbers\;TITLE 'Absorption of Acetone in a Packed Tower'IN-UNITS METDEF-STREAMS CONVEN ALLDATABANKS PURE10 / AQUEOUS / SOLIDS / INORGANIC / &NOASPENPCDPROP-SOURCES PURE10 / AQUEOUS / SOLIDS / INORGANICCOMPONENTSA CETONE C3H6O-1 ACETONE /W ATER H2O WATER /AIR AIR AIRFLOWSHEETBLOCK ABSORBER IN=LIQ-IN GAS-IN OUT=GAS-OUT LIQ-OUTPROPERTIES NRTLPROP-DATA NRTL-1IN-UNITS MET PROP-LISTNRTLBPVAL ACETONE WATER .00 &BPVAL WATER ACETONE .00 .00 &STREAM GAS-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=M OLE-FRAC ACETONE / WATER 0. / AIRSTREAM LIQ-INSUBSTREAM MIXED TEMP=293. <K> PRES=1. MOLE-FLOW=MOLE-FRAC WATER 1.BLOCK ABSORBER RATEFRACPARAM NCOL=1 TOT-SEGMENT=10COL-CONFIG 1 10 CONDENSER=NO REBOILER=NOPACK-SPECS 1 1 10 HTPACK=1. <meter> PACK-ARRANGE=RANDOM &PACK-TYPE=RASCHIG PACK-MAT=CERAMIC PACK-DIM="" &PACK-SIZE=.0381000 SPAREA= PACK-FACTOR= &PACK-TENSION= DIAM-EST=1. <meter> BASE-SEGMENT=10 &VOID-FRACTIO=FEEDS LIQ-IN 1 1 / GAS-IN 1 11P RODUCTS LIQ-OUT 1 10 L / GAS-OUT 1 1 VP-SPEC 1 1 1.COL-SPECS 1 MOLE-RDV= Q1= QN=DESIGN-SPEC DS-1DEFINE CONC MOLE-FRAC STREAM=GAS-OUT SUBSTREAM=MIXED & COMPONENT=ACETONESPEC "CONC" TO "" TOL-SPEC ".001"VARY BLOCK-VAR BLOCK=ABSORBER VARIABLE=HTPACK &SENTENCE=PACK-SPECS ID1=1 ID2=1L IMITS "1" "10"STREAM-REPOR MOLEFLOW MOLEFRAC;;;;;GAS-OUT LIQ-INABSORBERGAS-INLIQ-OUTAbsorption of Acetone in a Packed TowerStream ID GAS-IN GAS-OUT LIQ-IN LIQ-OUTFrom ABSORBER ABSORBER T o ABSORBER ABSORBERPhase VAPOR VAPOR LIQUID LIQUID Substream: MIXEDMole Flow KMOL/HRACETONE .3643640 .0761541 .2882099 WATER .3171725AIR .0583660Mole FracACETONE .0260000WATER .0226801 .9923644AIR .9740000 .9718743Total Flow KMOL/HRTotal Flow KG/HRTotal Flow L/MINTemperature KPressure ATMVapor FracLiquid FracSolid FracEnthalpy CAL/MOLEnthalpy CAL/GMEnthalpy CAL/SEC +5 +5Entropy CAL/MOL-KEntropy CAL/GM-KDensity MOL/CC .0554232 .0543163Density GM/CC .9984660 .9931067Average MWLiq Vol 60F L/MIN。
aspen换热器的模拟计算
第 18 页
第 19 页
演示3:采用2t 100C热水,将5t常温常压下苯(44%wt)、
甲苯混合液加热。
1)已知K=500、S=5,求冷热出口温度。(63,62) 2)已知K=500、热物流出口温度50C,求面积。(10) 注意:a、冷热物料进口对应 b、有相变时很难收敛,改变Options中的闪蒸类型
第 16 页
管嘴
管嘴即换热器的物料进出接口,需从 Nozzle表单中输入以下参数: 输入壳程管嘴直径 Enter shell side nozzle diameters 进口管嘴直径 Inet nozzle diameter 出口管嘴直径 Outlet nozzle diameter 输入管程管嘴直径 Enter tube side nozzle diameters 进口管嘴直径 Inlet nozzle diameter 出口管嘴直径 Outlet nozzle diameter
两股物流的换热器
MHeatX
Hetran
多股物流的换热器
在多股物流之间换热
提供B-JAC Hetran管 壳式换热器程序界面 提供B-JAC Aerotran 空冷换热器程序界面
管壳式换热器
Aerotran 空冷换热器
1.2模块应用说明
1.2.1加热器(heater) 特点:流程模拟中应用,与结构无关,主要精力放在工艺上
Mellapak250Y,分离含苯44 % wt甲苯混和物。进料量5000kg/h,
演示一:求各个换热器的热负荷
分析:确定理论板数,查手册:2.5块/m,
– 共2.5×8+1=21块, – 进料位置2.5×5=13块
二甲醚aspen仿真
《化工过程数学模型与计算机模拟》课程案例研究之一甲醇→二甲醚 + 水前言概念设计又称为“预设计”,在根据开发基础研究成果、文献的数据、现有类似的操作数据和工作经验,按照所开发的新技术工业化规模而作出的预设计,用以指导过程研究及提出对开发性的基础研究进一步的要求,所以它是实验研究和过程研究的指南,是开发研究过程中十分关键的一个步骤。
概念设计不同于工程设计,因而不能作为施工的依据,但是成功的概念设计不但可以节省大量的人力和物力,而且又可以加快新技术的开发速度,提高开发的水平和实用价值。
即使一个很普通的单一产品的生产过程,也可能有104~109个方案可供选择。
如何从技术、经济的角度把最有希望的方案设计出来,是作为强化研究开发工作的方向,这是一种系统化的分级决策过程,也正是概念设计的真谛。
概念设计是设计者综合开发初期收集的技术经济信息,通过分析研究之后。
对开发项目作出一种设想的方案,其主要内容包括:原料和成品的规格,生产规模的估计,工艺流程图机简要说明,物料衡算和热量衡算,主要设备的规模,型号和材质的要求,检测方法,主要技术和经济指标,投资和成本的估算,投资回收预测,三废治理的初步方案以及对中试研究的建议。
随着计算技术和计算机技术的发展,化工流程过程模拟软件也越来越成熟,计算机辅助设计也日趋广泛。
在进行概念设计时,采用流程系统模拟物料衡算和热量衡算,投资和成本估算等问题以及采用流程模拟软件进行整体优化业越来越普遍。
本文采用国际上最成功和最流行的过程模拟软件之一的ASPLEN PLUS作为辅助设计的主要工具。
与过程有关的物料和能量的衡算基本上有该软件给出,并从设计流程计算的收敛与否来检验该流程是否可行。
本文通过概念设计,其目标是寻找最佳工艺流程(即:选择过程单元以及这些单元之间的相互连接)和估算最佳设计条件。
采用分层次决策的方法和简捷设计能消去大量无效益的方案。
本文按照以下基本步骤进行设计计算:1. 间歇对连续;2. 流程图的输入−输出结构;3. 流程图的循环结构;4. 分离系统的总体结构;a. 蒸气回收系统;b. 液体回收系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学海无涯 2】 Vf2、Vf3 阀的特性: 3】 VW1 阀的特性: 4】 Vb1、Vb2 阀的特性: 5】 V1 阀的特性:
学海无涯 6】 VF1 阀的特性: 7】 VF1 阀的特性:
5 定义进出口物料的特性:
1)定义进口物料的各种特性:
经简化后 O2 为 22%,N2 为 78%
2】能量平衡的特性
学海无涯 3】平衡特性
学海无涯
4】流向的特性 5】几何尺寸的特性 6】动力学特性 7】数学计算方法
学海无涯
同理可定义第 2 个吸附床模块的各种特性。 2)依次定义各类缓冲罐的各种特性:
同理可定义其它几个缓冲罐的各种特性。 3)依次定义各类吸附床上下部的区间模块的各种特性:
同理可定义其它几个吸附床上下部的区间模块的各种特性。 4)依次定义各个阀模块的各种特性:
改为 8 步
选择 True,
输入每一步 的时间步长
3 画流程图:
1)画出所需的模块:
学海无涯 在左侧的 Exploring 中找到所需的模块,左键点击拖拽到右侧释放, 1】画出床层模块:
找到它的 目录
找到它的分 目录,选择 相应的模块
选择一般床层模块的 图标左击,拖拽到右侧 空白处释放
同理,可画出其他相应的模块: 2】画出缓冲部分模块:
右击后,选 Edit
2)弹出对话框:
3)点击“是”,出现:
学海无涯
先选择它
再选择它
4)如上图进行点击,则调用出 Aspen Properties,则弹出相应界面,首先在 Formula 栏中输入组分:O2,N2,CH4,然后在 Component ID 中输入所需标 示。最后再点击 N→:
最后,点击它
学海无涯
选择缓 冲器模 块
选择相应 的模块拖 拽到右侧
3】画出阀模块:
选择阀 模块
选择相应 的模块拖 拽到右侧
2)修改模块的名子: 选择要修改的模块,右击:
学海无涯
选择要修改的模 块,右击,选择重 命名模块
键入新名字,同理可修改其他模块的名子。
3)连接各个已经画好的模块: 在左侧的 Exploring 中找到所需的物流模块,左键点击拖拽到右侧所需连接
点击
至此,组分定义完毕。
2 定义结构类型:
1)创建结构类型:
学海无涯
在 Library 下 的 Adsim 下 找到它右击
再点击
2)输入名字 输入名字, 再点击
3)这时在 flowsheet 下出现了:
学海无涯
出现它,点 击 CSSInfo
出现它,右击, 点 Open
4)点击,弹出对话框,把 NonIsothermal 项改为 True,把步骤数改为 8,并输 入每一步的时间。
学海无涯
用Aspen Adsim 模拟VSA制氧过程
本次模拟是根据文献:《Fast Finite-Volume Method for PSA/VSA Cycle Simulations Experimental Validation》——Ind. Eng. Chem. Res. 2001, 40, 3217-3224 中的一些数据来 进行模拟。由于这篇文献主要讲的是算法上的改进来使这样一个例子在不同的算法下运 行来比较它们之间在在CPU占用率和所耗时间的差别。所以对我们来说用处并不大,在 这里我们用它的一些基本数据。
2)定义循环选项,并激活该任务:
学海无涯
再点击它,激 活这个任务
在 Cycle Option 中定义 所需变量,如设定最大 循环周期数为 20
由
变为:
6 对要观察变量作图:
1)建立一幅图:
学海无涯
先点击
然后选择 所需类型
再次,输入 文件名
最后,点 击 OK
2)出现图文件,找到需要作图的模块的变量右击选择全部变量:
的模块所产生的蓝色或红色的小箭头上释放:
在物流类型中
找到所需的物 流模块,左键 点击拖拽到右 侧所需连接的 模块所产生的 蓝色或红色的 小箭头上释放
在模块所 产生的蓝 色或红色 的小箭头 上释放,指 向模块的 为进料,指 出的为出 料
学海无涯 同理可连接好的各个其它的模块,完成流程图。
4 定义各种模块的特性:
1)依次定义吸附床模块的各种特性:
学海无涯
右击床模 块,选择 Forms,再依 次定义各种 特性。
依次定义各种特性: 1、吸附剂特性 2、 能量平衡特性 3、 吸附平衡特性 4、 流向特性 5、 几何尺寸特性 6、 动力学特性 7、 数学计算方法
1】吸附剂的特性
红框内,颜色由 蓝色变黑色,为 修改过的变量
然后,填入组 分标示,可以 不同于分子式
首先,输入 所需组分的 分子式
学海无涯 5)弹出界面,由于为非极性组分,所以尝试着选 PR 方程
选择相应的方 程,在这里选 择 PR 方程 6)弹出界面,选择温度单位为℃,继续点击 N→:
选择 C
7)弹出界面,点击“是”和“确定”。
学海无涯
选它,点 OK
8)点击“保存”。
2)定义起始时刻产品物料的各种特性:
学海无涯 产品物料为常压, 所以为 1.013bar
3)定义起始时刻抽空物料的各种特性: 为抽真空,所以为
负压,小于 1bar
6 定义循环组织步骤:
1)添加循环步骤:
学海无涯
点击
出现并点击添加 或插入步骤
2)定义各步时间:
学海无涯
分别点击各 步,为每一 步输入所需 时间
出现图 文件
找到需要 作图的模 块,右击
选择全 部变量
3)左击需要作图的变量,拖拽至出现的图文件的 Y 轴处释放,同理可作两个 Y 轴变量:
学海无涯
左击需要作图的变 量,拖拽至 Y 轴处释 放
出现图线
7 点击运行,观察图形:
点击运行
随着运行时间的 增加,曲线慢慢 移动和增长
输入各步所 需时间,选 择好单位
3)添加各步循环控制变量: 每步的控制变量如何来设置,变量的值如何来设置 时序图 时序表如何设置
学海无涯
先点击 再点击
学海无涯
Variable 选 项出现
每一步都有各自的控制变 量,分别点击每一步的标 签,选择所需的控制变量
学海无涯
先点击 再点击
学海无涯
弹出对话框,选 择所需控制变量 再点击
学海无涯
用与 O2 类似;所以经简化后 O2 为 22%,N2 为 78%,需要定我们的模拟定义 O2 和 H2 两种组分。然后:
1 定义组分:
这里用到的组分为 N2 和 O2 1)首先启动 Aspen Adsim 2006,在界面左侧找到 Component List:
先左击
图框内容随 之而改变
点击保存
9)点击 Import Aspen Properties file:
学海无涯
点击
10)选择刚刚保存好的文件进行点击:
选它 点击
11)出现:
学海无涯
12)点击 OK 后,出现:
变绿 点击
点击
学海无涯
消失 点击
出现
13)切换界面,激活组分列表:
学海无涯
右击 再点击
14)弹出对话框,选“是”:
基本数据:
该系统包括两张床,每张床内部直径为 0.104 米,床层填充高度大约 1.80 米,外壁 由 3 毫米厚的聚氯乙烯制成,内装有 13X 沸石分子筛。
本次模拟分为 个步骤。首先,本次模拟思维在空气中分离出氧气,所以有 O2、 N2 和 Ar 等,但是由于 Ar 比较少而其它种类的气体就更少了,并且它们和吸附剂的作