2018-2019学年北师大版必修五 第二章 解三角形 章末检测 (1)

合集下载

巩固测试最新2018-2019学年北师大版高中数学必修五《解三角形》单元综合练习及解析

巩固测试最新2018-2019学年北师大版高中数学必修五《解三角形》单元综合练习及解析

北师大版高中数学必修五第二章 解三角形(北师大版必修5)建议用时 实际用时满分 实际得分90分钟150分一、选择题(每小题5分,共30分)1.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为( ) A.200米 B.300米 C.400米 D.500米2.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则行驶( )h 后,两车的距离最小. A.B.C. D.3.已知a ,b ,c 为△ABC 三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A),若m ⊥n ,且 a cos B +b cos A =c sin C ,则角B=( )A. B.C. D.4.在△ABC 中, B =60°,最大边与最小边的比为3+12,则三角形的最大内角为( ) A.45° B.60° C.70° D.75°5.若△ABC 的周长是20,面积是103,A =60°,则BC 的长是( )A.5B.6C.7D.86.在△ABC 中,面积S =a 2-(b -c)2,则cos A =( )A. B. C. D.二、填空题(每小题5分,共30分) 7.在锐角△ABC 中,1,2,BC B A ==则cos ACA的值等于 ,AC 的取值范围为 .8.在△ABC 中, 2sin Acos B =sin C ,那么△ABC 一定是 . 9.在△ABC 中,cos22B =2a +c c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 .10.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c.若a =c =6+2,且A =75°,B=30°,则 b= .11.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为 km.12.轮船A 和轮船B 在中午12时同时离开海港O ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是 n mile. 三、解答题(共90分)13.(10分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.(1)若c =2,C =,且△ABC 的面积为,求a,b的值;(2)若sin C +sin(B -A)=sin 2A,试判断△ABC 的形状.14.(10分)在△ABC 中,已知23=a ,62=+c ,B=45°,求b 及A.15.(12分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足25cos 25A =,3AB AC ⋅=. (1)求△ABC 的面积;(2)若6b c +=,求a 的值.16.(12分)在△ABC 中,a 、b 、c 分别是A 、B 、C的对边,已知2b ac =,且a 2-c 2=ac -bc ,求A 的大小及cBb sin 的值.17.(10分)在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =,b =,a +c =4,求a 的值.18.(18分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC = 0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离.(计算结果精确到0.01 km,2≈1.414,6≈2.449)19.(18分)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.第二章解三角形参考答案1.C 解析:如图所示,AD 为山坡底线,AB 为行走路线,BC 垂直于水平面,作BD ⊥AD 于点D,则BC=100米,∠BDC=30°,∠BAD=30°, ∴ BD=200米,AB=2BD=400 米.故选C.2.A 解析:如图所示,设行驶t h 后,汽车由A 行驶到D (0≤t ≤2.5),摩托车由B 行驶到E ,则AD =80t ,BE =50t.因为AB =200,所以BD =200-80t , 问题就转化为求DE 最小时t 的值.由余弦定理得DE 2=BD 2+BE 2-2BD ·BEcos 60°=(200-80t)2+2 500t 2-(200-80t)·50t =12 900t 2-42 000t+40 000.当t =7043时,DE 最小.故选A. 3.C 解析:∵ m ⊥n ,∴3cos A -sin A =0,∴ tan A =3,∴ A =π3.∵ acos B +bcos A =csin C ,∴ sin A cos B +sin B cos A =sin C sin C ,∴ sin(A +B)=sin 2C ,∴ sin C =sin 2C.∵ sin C ≠0,∴ sin C =1.∴ C =π2,∴ B =π6.故选C.4.D 解析:不妨设a 为最大边,则c 为最小边.由题意得,= sin sin AC=3+12,即sin sin(120)A A ︒-=3+12,∴sin 31cos sin 22AA A +=3+12,即(3-3)sin A =(3+3)cos A ,∴ tan A =2+3,∴ A =75°.故选D.5.C 解析:依题意及面积公式S =12bc sin A ,得103=12bc sin 60︒,即bc =40.因为△ABC 周长是20,故a +b +c =20,∴ b +c =20-a.由余弦定理得:a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos 60°=b 2+c 2-bc =(b +c)2-3bc ,故a 2=(20-a)2-120,解得a =7.6.B 解析:S =a 2-(b -c)2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴ sin A =4(1-cos A),16(1-cos A)2+cos 2A =1,∴ cos A =1517或cos A=1(舍去).故选B.7. 2 ,)3,2( 解析:设,A =θ则B 2B θ=,由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角△ABC 得0290045θθ<<⇒<<, 又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2(2,3).AC ∴=∈θc os8.等腰三角形 解析一:∵ 在△ABC 中,A +B +C =π,即C =π-(A +B),∴ sin C =sin(A +B).由2sin Acos B =sin C ,得2sin Acos B =sin Acos B +cos Asin B , 即sin Acos B -cos Asin B =0,即sin(A -B)=0.又∵ -π<A -B <π,∴ A -B =0,即A =B.∴ △ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理2sin Acos B =sin C 可化为2a ·2222a +c -b ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,a 2=b 2,故a =b.∴ △ABC 是等腰三角形.9.直角三角形 解析:∵ cos22 B =2a +c c ,∴ cos 12 B +=2a +c c, ∴ cos B =,∴ 2222a +c -b ac=,∴ a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴ △ABC 为直角三角形.10.2 解析:如图所示,在△ABC 中,由正弦定理得=4,∴ b=2.11. 30解析:如图所示,依题意有AB =15×4=60.由题意易知∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得=,解得BM =30(km ).12. 70 解析:如图所示,由题意可得OA =50,OB =30.而AB 2=OA 2+OB 2-2OA ·OB cos 120°=502+302-2×50×30×(-12)=2 500+900+1 500=4 900, ∴ AB =70.13. 解:(1)∵ c =2,C =,∴ 由余弦定理=+-2abcos C 得+-ab =4.又∵△ABC 的面积为,∴ absin C =,ab =4.联立方程组解得(2)由sin C +sin(B -A)=sin 2A,得sin(A +B)+sin(B -A)=2sin Acos A, 即2sin Bcos A =2sin Acos A,∴ cos A ·(sin A -sin B)=0, ∴ cos A =0或sin A -sin B =0, 当cos A =0时,∵ 0<A <π, ∴ A =,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A,由正弦定理得a =b,即△ABC 为等腰三角形. ∴ △ABC 为等腰三角形或直角三角形. 14.解:∵ 2222cos =+-b a c ac B=22(23)(62)223(62)++-⨯⨯+cos 45° =212(62)43(31)++-+=8, ∴ 2 2.=b求A 可以利用余弦定理,也可以利用正弦定理.方法一:∵ cos 222222(22)(62)(23)1,22222(62)+-++-===⨯⨯+b c a A bc ∴ 60.A ︒= 方法二:∵ sin 23sin sin 4522a A B b ==⨯︒ =23,又62+>2.4 1.4 3.8,+=23<21.8 3.6,⨯=∴ a <c ,即0︒<A <90,︒∴ 60.A ︒=15.解:(1)∵ 25cos25A =,234cos 2cos 1,sin 255A A A ∴=-==. 又由3AB AC ⋅=,得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴==.(2)由(1)知5bc =,又6b c +=,∴ b=5,c=1或b=1,c=5.由余弦定理,得2222cos 20a b c bc A =+-=,25a ∴=.16.分析:因给出的是a 、b 、c 之间的等量关系,要求A ,需找A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cB b sin 的值.解法一:∵ b 2=ac,又a 2-c 2=ac -bc ,∴ b 2+c 2-a 2=bc.在△ABC 中,由余弦定理得cos A=bc a c b 2222-+=bc bc 2=21,∴ A=60°.在△ABC 中,由正弦定理得sin B=aAb sin .∵ b 2=ac ,A=60°,∴ ac b c B b ︒=60sin sin 2=sin 60°=23. 解法二:在△ABC 中,由面积公式得21bc sin A=21ac sin B.∵ b 2=ac ,A=60°,∴ bc sin A=b 2sin B.∴cBb sin =sin A=23.点评:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.17.解:由余弦定理=+-2accos B =+-2accos =++ac =-ac.又∵ a +c =4,b =,∴ ac =3.联立解得a =1或a =3.18.解:在△ADC 中,∠DAC = 30°, ∠ADC = 60°-∠DAC=30°, 所以CD = AC = 0.1 km .又∠BCD = 180°-60°-60° = 60°,故CB 是△CAD 底边AD 的中垂线,所以BD = BA. 在△ABC 中,∠ABC=75°-60°=15°,,ABC ACBCA AB ∠=∠sin sin即.2062315sin 60sin +==︒︒AC AB 因此,BD =≈0.33(km).故B ,D 的距离约为0.33 km.19.解:方案一:①需要测量的数据有:A 点到M ,N 点的俯角1α,1β;B 点到M , N 点的俯角22,αβ;A ,B 间的距离 d (如图所示) . ②第一步:计算AM ,由正弦定理得212sin sin()d AM ααα=+ ;第二步:计算AN ,由正弦定理得221sin sin()d AN βββ=- ;第三步:计算MN ,由余弦定理得22112cos()MN AM AN AM AN αβ=+-⨯- .方案二:①需要测量的数据有:A 点到M ,N 点的俯角1α,1β;B 点到M ,N 点的府角2α,2β;A ,B 的距离 d (如图所示). ②第一步:计算BM ,由正弦定理得112sin sin()d BM ααα=+ ;第二步:计算BN , 由正弦定理得121sin sin()d BN βββ=- ;第三步:计算MN , 由余弦定理得22222cos()MN BM BN BM BN βα=++⨯⨯+.。

2018-2019版数学学导练必修五北师大版试题:第二章 解三角形2.1.1 Word版含答案

2018-2019版数学学导练必修五北师大版试题:第二章 解三角形2.1.1 Word版含答案

第二章DIERZHANG解三角形§1正弦定理与余弦定理1.1正弦定理课后篇巩固探究A组1.在△ABC中,若sinAa =cosBb,则B的值为()A.30°B.45°C.60°D.90°解析:因为sinAa =sinBb,所以cosBb=sinBb,所以cos B=sin B,从而tan B=1,又0°<B<180°,所以B=45°.答案:B2.在△ABC中,若B=45°,C=60°,c=1,则最短边的边长是()A.√63B.√62C.12D.√32解析:由已知得A=75°,所以B最小,故最短边是b.由csinC =bsinB,得b=csinBsinC=sin45°sin60°=√63.答案:A3.在△ABC中,若b=8,c=8√3,S△ABC=16√3,则A等于()A.30°B.60°C.30°或150°D.60°或120°解析:由三角形面积公式得12×8×8√3·sin A=16√3,于是sin A=12,所以A=30°或A=150°.答案:C4.下列条件判断三角形解的情况,正确的是()A.a=8,b=16,A=30°有两解B.b=9,c=20,B=60°有一解C.a=15,b=2,A=90°无解D.a=30,b=25,A=150°有一解解析:对于A,sin B=b a sin A=1,所以B=90°,有一解;对于B,sin C=c b sin B=109√3>1,所以无解;对于C,sin B=b a sin A=215<1,又A=90°,所以有一解;对于D,sin B=b a sin A=512<1,又A=150°,所以有一解.答案:D5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A ∶B=1∶2,且a ∶b=1∶√3,则cos 2B 的值是( )A.-12B.12C.-√32D.√32 解析:由已知得a b=sinA sinB =sinA sin2A =sinA 2sinAcosA =12cosA =√3,所以cos A=√32,解得A=30°,B=60°,所以cos 2B=cos 120°=-12.答案:A 6.在△ABC 中,若a=√2,A=45°,则△ABC 的外接圆半径为 . 解析:因为2R=a sinA =√2sin45°=2,所以R=1.答案:17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知A=π6,a=1,b=√3,则B= . 解析:由正弦定理得a sinA =b sinB ,即1sin π6=√3sinB ,解得sin B=√32,又因为b>a ,所以B=π3或B=2π3. 答案:π3或2π38.导学号33194034在△ABC 中,若sin A=2sin B cos C ,sin 2A=sin 2B+sin 2C ,则△ABC 的形状是 .解析:由sin 2A=sin 2B+sin 2C ,利用正弦定理,得a 2=b 2+c 2,故△ABC 是直角三角形,且A=90°,。

(常考题)北师大版高中数学必修五第二章《解三角形》检测(包含答案解析)(1)

(常考题)北师大版高中数学必修五第二章《解三角形》检测(包含答案解析)(1)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC ,则a =( ) A .2B .3C .4D .52.一艘客船上午9:30在A 处,测得灯塔S 在它的北偏东30,之后它以每小时32海里的速度继续沿正北方向匀速航行,上午10:00到达B 处,此时测得船与灯塔S 相距里,则灯塔S 在B 处的( ) A .北偏东75 B .北偏东75或东偏南75 C .东偏南75D .以上方位都不对3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且c =3C π=,则a =( )A .1B C .1 D 4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 5.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A B C D 6.已知a ,b ,c 分别为ABC 的三个内角A ,B ,C 所对的边,3a =,2b =,且22cos ac B a b ⋅-=-,则B =( ) A .3π B .6π C .23π D .56π 7.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .45B .5C .52D .629.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916B 157C .154D .57410.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 11.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( )A .35mB .10mC .490013mD .521m 12.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin 14B C +=,则bc 的值为______. 14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.16.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.19.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短.23.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3cos cos 5a Bb Ac -= (1)求tan tan AB的值; (2)若点D 为边AB 的中点,10,5AB CD ==,求BC 的值.24.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C . (1)求cos B ; (2)求sin(2)6B π+的值.25.已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,满足()sin 2sin sin A B A C -=-.(1)求B ;(2)若点D 为BC 上一点,2DC =,π6C =,DE 平分ADC ∠交AC 于点E ,7ADE CDE S S =△△,求BD .26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 32sin 0a b A -=. (1)求角B ; (2)若7b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1315sin 24ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,215sin 1cos A A =-=, 113115315sin 224244ABCSbc A a a ==⨯⨯⨯=,解得:4a =. 故选:C2.B解析:B 【分析】根据题意作出示意图,利用正弦定理求出ASB ∠,可求得ABS ∠,即可得解. 【详解】 如下图所示:客船半小时的行程为132162AB =⨯=(海里),因为BS =30BAS ∠=,由正弦定理可得16sin 30sin ASB=∠, 所以,2sin 2ASB ∠==,45ASB ∴∠=或135. 当45ASB ∠=时,105ABS ∠=,此时,灯塔S 在B 处的北偏东75; 当135ASB ∠=时,15ABS ∠=,此时,灯塔S 在B 处的东偏南75. 综上所述,灯塔S 在B 处北偏东75或东偏南75. 故选:B. 【点睛】方法点睛:在求解测量角度问题时,方法如下:(1)对于和航行有关的问题,要抓住时间和路程两个关键量,解三角形时将各种关系集中在一个三角形中利用条件求解;(2)根据示意图,把所求量放在有关三角形中,有时直接解此三角形解不出来,需要先在其他三角形中求解相关量.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2Aπ=.∵c =3C π=,∴3sin3a ==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =.综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴2sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.5.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=,同理可得225AC AB BC =+=,在ACD ∆中,由余弦定理得2222310cos 2252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.6.B解析:B 【分析】由余弦定理化简得222b a c -+=,得到cos A =,进而求得3sin 4A =,再由正弦定理,解得1sin 2B =,即可求解. 【详解】在ABC 中,因为22cos ac B a b ⋅-=-,由余弦定理可得222222a c b ac a b ac +-⋅=-,即222222a c b a b +-=-,整理得222b ac -+=,所以222cos 2c b a A bc -+==,因为(0,)A π∈,所以3sin 4A ==, 又由正弦定理,可得sin sin a b A B=,解得sin 1sin 2b A B a ==, 因为(0,)B π∈,所以6B π=或56B π=,又因为a b >,所以A B >,所以6B π=.故选:B. 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.8.C解析:C 【解析】11sin 122224ABC S ac B c c ∆==⨯⨯⨯==,c =2222cos 13233825b a c ac B =+-=+-=-= ,5b = ,2sin 2b R B === ,选C. 9.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin 8EMF ∠==. 在三角形EFM中,由正弦定理得283sin sin 5EF EMEF EMF F=⇒==∠ 故选:D 【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.10.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即1sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =1cos A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.11.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴22213a c a c b c a ac+-+-== ∴3cos 2B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调 解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围. 【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =, b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+,令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在()2,23上单调递减,在()23,6上单调递增,所以当26x <<时,()f x 的取值范围为3,12⎡⎫⎪⎢⎪⎣⎭. 所以3cos ,12C ⎡⎫∈⎪⎢⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦. 故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=,所以23x =,3x =(海里/小时). 故答案为:3. 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.16.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长. 【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒, 即30ABC ∠=︒, 则由正弦定理sin sin AB ACACB ABC=∠∠,得:50sin 21sin 2AC ACBAB ABC⨯∠===∠.故答案为:. 【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.19.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC cS ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =,由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确. 故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.(1)3π;(2)【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】(1)∵3sin (A +B )=1+2sin 22C,且A +B +C=π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB ∠=sin3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠23sin34, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=33θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =, 由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤, 故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解. 23.(1)4;(2) 【分析】(1)由3cos cos 5a B b A c -=,带入余弦定理整理可得22235a b c -=,所以222222222222tan sin cos 2tan cos sin 2a c b a A A B ac b ac b c a B A B b c a bbc+-⋅+-===+-+-⋅,带入22235a b c -=即可得解; (2)作AB 边上的高CE ,垂足为E ,因为tan ,tan CE CE A B AE BE ==,所tan tan A BE B AE=. 又tan 4tan AB=,所以4BE AE =,因为点D 为边AB 的中点且10AB =,所以5,2,3BD AE DE ===,再根据勾股定理即可得解.【详解】(1)因为3cos cos 5a Bb Ac -=, 所以2222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=. 又222222tan sin cos 2tan cos sin 2a c b a A A B ac b c a B A Bbbc +-⋅==+-⋅, 所以22222222tan 854tan 52A a c b c B b c a c +-==⨯=+-.(2)如图,作AB 边上的高CE ,垂足为E , 因为tan ,tan CE CE A B AE BE ==,所以tan tan A BEB AE=. 又tan 4tan AB=,所以4BE AE =. 因为点D 为边AB 的中点,10AB =,所以5,2,3BD AE DE ===. 在直角三角形CDE 中,5CD =,所以22534CE =-=. 在直角三角形BCE 中,8BE =,所以224845BC =+=24.(1)14-;(2). 【分析】 (1)由正弦定理化角为边,再结合2b c a +=,把,b c 用a 表示,然后由余弦定理得cos B ;(2)由同角关系求出sin B ,利用二倍角公式求得sin 2,cos 2B B ,再由两角和的正弦公式求得结论.【详解】(1)因为3c sin B =4a sin C ,由正弦定理得34cb ac =,所以43b a =, 又2bc a +=,所以23c a =,所以222222416199cos 22423a a a a c b B ac a a +-+-===-⋅. (2)因为(0,)B π∈,所以sin 4B ==sin 22sin cos B B B ==,27cos 212sin 8B B =-=-, 所以sin(2)sin 2cos cos 2sin 666B B B πππ+=+71()82=+-⨯= 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 25.(1)π4;(2)4+. 【分析】(1)根据两角和差公式展开化简可得cos 2B =,从而得解; (2)根据面积比及题中边长可得AD =ABC中,由ππsin sin 64BAC ⎛⎫∠=+= ⎪⎝⎭BD . 【详解】(1)∵()sin sin A B A C -=-,∴()sin cos cos sin sin cos cos sin A B A B A A B A B -=-+,∴2sin cos A B A .∵sin 0A >,∴cos 2B =. ∵()0,πB ∈,∴π4B =. (2)∵1sin 2ADE S AD DE ADE =⋅∠△, 1sin 2CDE S CD DE CDE =⋅∠△,2CD =,∴AD =在ACD △中,设AC x =,由余弦定理得24428x x +-=,即2240x --=,解得43x (舍负).在ABC中,ππsin sin 64BAC ⎛⎫∠=+= ⎪⎝⎭由正弦定理得sin 6πsin 4BAC BC AC ∠==+∴4BD =+【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.出现多个三角形时,要从条件较多的三角形入手求解..26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=,∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。

2018-2019学年北师大版必修五第二章解三角形章末小结与测评课件(41张)

2018-2019学年北师大版必修五第二章解三角形章末小结与测评课件(41张)
高中同步新课标·数 学
[对点训练] π 1. 在△ABC 中, 若 b=5, ∠B= , tan A=2, 则 sin A=________; 4 a=________.
sin A 解析:因为△ABC 中,tan A=2,所以 A 是锐角,且 = cos A 2 5 2,sin A+cos A=1,联立解得 sin A= ,再由正弦定理 5
[借题发挥]
1.已知三角形的任意两个角和一边,可结合
三角形内角和定理及正弦定理解此三角形; 2.已知三角形的两边和其中一边的对角,这个三角形解 的情况是不确定的.如已知△ABC 的边长 a、b 和角 A, 根据正弦定理求角 B 时,可能出现一解、两解、无解的 情况,这时应借助已知条件进行检验,务必做到不漏解、 不多解.
高中同步新课标·数 学
b2+c2-a2 3 由余弦定理得,cos A= = ,代入数据化简得, 2bc 4 b2-9b+20=0, ∴b=4 或 b=5. 若 b=4,而在△ABC 中,a=4,∴△ABC 为等腰三角形, 且 A=B, 又 C=2A, 且 A+B+C=180°, ∴ A=B=45°, C=90°,△ABC 是等腰直角三角形,由勾股定理得 c= 4 2,这与已求出的 c=6 相矛盾,故要舍去.经检验 b=5 满足题意.
①北偏东 α 即由指北方向顺时针旋转 α 到达目标方向; ②北偏西 α 即由指北方向逆时针旋转 α 到达目标方向; ③其他方向角类似. (4)坡度:坡面与水平面所成的二面角的度数(如图④,角 θ 为 坡角 )坡比:坡面的铅直高度与水平长度之比 (如图④, i 为坡比).
高中同步新课标·数 学
[典例 1]
高中同步新课标·数 学
三、解三角形的实际应用举例 1. 实际应用题的本质就是解三角形, 无论是什么类型的题目, 都要首先抽象概括为解三角形模型,再通过正弦定理或余 弦定理进行求解. 2.注意常用的名词与术语 (1)仰角和俯角: 在视线和水平线所成的角中,视线在水平线上方的角叫仰 角,在水平线下方的叫俯角(如图①)

2018-2019版高中数学学导练必修五北师大版试题 第二章解三角形2.1.2Word版含答案

2018-2019版高中数学学导练必修五北师大版试题 第二章解三角形2.1.2Word版含答案

1.2余弦定理课后篇巩固探究A组1.在△ABC中,已知a=2,b=3,cos C=,则边c长为()A.2B.3C.D.解析:因为c2=a2+b2-2ab cos C=22+32-2×2×3×=9,所以c=3.答案:B2.在△ABC中,若C=60°,c2=ab,则三角形的形状为()A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形解析:因为在△ABC中,C=60°,c2=ab,所以c2=a2+b2-2ab cos C=a2+b2-ab=ab,所以a=b,所以a=b=c,所以三角形的形状为等边三角形,故选C.答案:C3.已知△ABC的三边满足a2+b2=c2-ab,则△ABC的最大内角为()A.60°B.90°C.120°D.150°解析:由已知得,c2=a2+b2+ab,所以c>a,c>b,故C为最大内角.由cos C=-=-,得C=150°,故选D.答案:D4.在△ABC中,若a=1,B=45°,S△ABC=2,则△ABC外接圆的直径为()A.4B.6C.5D.6解析:因为S△ABC=ac sin B=·c·sin 45°=c=2,所以c=4由余弦定理得b2=a2+c2-2ac cos B=1+32-2×1×4=25,所以b=5.所以△ABC外接圆直径2R==5.答案:C5.已知在△ABC中,a比b大2,b比c大2,最大角的正弦值是,则△ABC的面积是()A. B. C. D.解析:因为a=b+2,b=c+2,所以a=c+4,A为最大角,所以sin A=.又A>B>C,所以A=120°,所以cos A=-,即-=-,所以(c+2)2+c2-(c+4)2=-c(c+2),解得c=3.所以a=7,b=5,c=3,A=120°.S△ABC=bc sin A=×5×3×.答案:A6.在△ABC中,内角A,B,C的对边分别为a,b,c,若c=2a,b=4,cos B=,则c=.解析:因为cos B=,由余弦定理得42=a2+(2a)2-2a×2a×,解得a=2,所以c=4.答案:47.设△ABC的内角A,B,C所对边长分别为a,b,c,且3b2+3c2-3a2=4bc,则sin A的值为. 解析:由已知得b2+c2-a2=bc,于是cos A=,从而sin A=-.答案:8.已知在△ABC中,AB=7,BC=5,CA=6,则=.解析:在△ABC中,分别用a,b,c表示边BC,CA,AB,则=ca·cos B=ca·-=(a2+c2-b2)=(52+72-62)=19.答案:199.设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=.(1)求a,c的值;(2)求sin(A-B)的值.解(1)由b2=a2+c2-2ac cos B,得b2=(a+c)2-2ac(1+cos B),又b=2,a+c=6,cos B=,所以ac=9,解得a=3,c=3.(2)在△ABC中,sin B=-,由正弦定理得sin A=.因为a=c,所以A为锐角,所以cos A=-.因此sin(A-B)=sin A cos B-cos A sin B=.10.导学号33194039已知在△ABC中,三个内角A,B,C所对的边分别为a,b,c,向量p=(sin A-cos A,1-sin A),q=(2+2sin A,sin A+cos A),p与q是共线向量,且≤A≤.(1)求角A的大小;(2)若sin C=2sin B,且a=,试判断△ABC的形状,并说明理由.解(1)因为p∥q,所以(sin A-cos A)(sin A+cos A)-2(1-sin A)(1+sin A)=-cos 2A-2cos2A=0,所以1+2cos 2A=0,所以cos 2A=-.因为≤A≤,所以≤2A≤π,所以2A=,所以A=.(2)△ABC是直角三角形.理由如下:由cos A=,a=及余弦定理得b2+c2-bc=3.又sin C=2sin B,由正弦定理得c=2b.-解得联立可得所以a2+b2=()2+12=4=c2,所以△ABC是直角三角形.B组1.在△ABC中,若△ABC的面积S=(a2+b2-c2),则C=()A. B. C. D.解析:由S=(a2+b2-c2),得ab sin C=×2ab cos C,所以tan C=1,又C∈(0,π),所以C=.答案:A2.在△ABC中,若sin A-sin A·cos C=cos A sin C,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形解析:由正弦定理、余弦定理,知sin A-sin A cos C=cos A sin C可化为a---·c,整理,得a=b,所以△ABC是等腰三角形,选B.答案:B3.已知△ABC各角的对边分别为a,b,c,满足≥1 则角A的范围是()A. B.C. D.解析:将不等式≥1两边同乘以(a+c)(a+b)整理得,b2+c2-a2≥bc,所以cos A=-,所以0<A≤,故选A.答案:A4.在△ABC中,若边长和内角满足a2-b2=bc,=2,则A=.解析:因为=2,所以c=2 b.又a2-b2=bc,所以cos A=--,又A∈(0,π),所以A=.答案:5.已知在△ABC中,三个内角A,B,C所对边分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C的值为.解析:bc cos A+ac cos B+ab cos C=bc·-+ac·-+ab·-=(b2+c2-a2+a2+c2-b2+a2+b2-c2)=(a2+b2+c2)=.答案:。

数学第二章解三角形章末测试(北师大版必修5)

数学第二章解三角形章末测试(北师大版必修5)

第二章解三角形章末测试知识体系总览一、选择题(本大题共10小题,第小题3分,共30分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.在△ABC 中,已知AB=5,AC=6,BC=31,则A= ( ) A3πB32π C 6π D 4π 解:cosA=212222=∙-+AC AB BC AC AB ∴A=3π答案:A2.在ABC ∆中,︒=60A ,24,34==b a ,则B 等于( ) (A)︒45或︒135(B)︒135(C)︒45(D)以上都不对解:B b A a sin sin =∴sinB=aAb sin =342324⨯=22∴B=︒45或︒135(不合)答案:C3.三角形两边分别为5和3,他们夹角的余弦是方程5x 2-7x-6=0的根,则三角形的面积是( ) A. 12 B. 6 C. 24 D. 4 解:方程5x 2-7x-6=0的根为-53或2,余弦值为-53,则正弦值为54。

则三角形的面积为543521⨯⨯⨯=6 答案:B4在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A 等腰直角三角形 B 直角三角形 C 等腰三角形 D 等边三角形 解:由2cos B sin A =sin C 得acb c a 222-+×a =c ,∴a =b答案:C5.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( )A .0个B .1个C .2个D .3个 解: sinA :sinB :sinC =6:5:4::=c b a ∴①正确,②错误。

又 △ABC 周长为7.5cm且6:5:4::=c b a ∴cm c cm b cm a 3,5.2,2===,③正确,④错误 答案:C6.已知△ABC 的三边长分别是2m+3,m 2+2m, m 2+3m+3(m>0),则最大内角的度数是( ) A. 150B. 120C. 90D. 135解:依题意可知m 2+3m+3所对的角为最大角,设为θ,则cos θ=-21, =∴θ120答案:B7在△ABC 中,b=asinC,c=acosB,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形解:由c=acosB 得c=a ⨯acb c a 2222-+,∴a 222c b +=∴△ABC 直角三角形∴b=asinC=a a c⨯=c△ ABC 等腰直角三角形 答案:D8在△ABC 中,由已知条件解三角形,其中有两解的是 A b =20,A =45°,C =80° B a =30,c =28,B =60° C a =14,b =16,A =45° D a =12,c =15,A =120°解:由a =14,b =16,A =45°及正弦定理,得16sin B =14sin A,所以sin B =724因而B 有两值答案:C9.在△ABC 中,已知2=b ,1=c ,B=045,则=a ( )A 2B 226+ C 226± D 226- 解:由C c B b sin sin =得sinC=21c<b ∴C<B ∴C=30 则A=105 a A bc c b cos 2222-+==2+1-22⨯(-426-)=2+3, ∴a=226+ 答案:B10△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果2b=a+c ,∠B =30°,△ABC 的面积为23,那么b 等于 ( ) A231+ B1+3 C 232+ D2+3 解:∵2b =a +c 平方得a 2+c 2=4b 2-2ac又△ABC 的面积为23,且∠B =30°, 故由S △ABC =21ac sin B =21ac sin30°=41ac =23,得ac =6∴a 2+c 2=4b 2-12 由余弦定理,得cos B =ac b c a 2222-+=6212422⨯--b b =442-b =23,解得b 2=4+23又b 为边长,∴b =1+3 答案:B二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上.)11已知(a +b +c )(b +c -a )=3bc ,则∠A =_______解:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc ∴bc a c b 2222-+=21∴∠A =3π答案:3π12.在△ABC 中,tan B =1,tan C =2,b =100,则c = . 解:由tan B =1,tan C =2,得sinB=22 ,sinC=552,由Cc B b sin sin =得c=4010 答案:401013在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______ 解:若c 是最大边,则cos C >0∴abc b a 2222-+>0,∴c <5又c >b -a =1,∴1<c <5 答案:(1,5)14在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______ 解:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C ∴tan C =1∴C =4π 答案:45°15在△ABC 中,若∠C =60°,则ca bc b a +++=_______ 解:c a bc b a +++=))((c a c b bc b ac a +++++22=222c bc ac ab bc ac b a ++++++(*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab ∴a 2+b 2=ab +c 2 代入(*)式得222c bc ac ab bc ac b a ++++++=1答案:1三、解答题(本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC 中,若sin A =sin B +sin C cos B +cos C,试判断△ABC 的形状.解:∵sin A =sin B +sin C cos B +cos C ,∴cos B +cos C =sin B +sin Csin A ,应用正、余弦定理得a 2+c 2-b 22ac +a 2+b 2-c 22ab =b +ca , ∴b (a 2c 2-b 2)+c (a 2-b 2c 2)=2bc (b +c ), ∴a 2(b +c )-(b +c )(b 2-2bc +c 2)=2bc (b +c ) 即a 2=b 2+c 2故△ABC 为直角三角形.17如图,某市拟在长为8km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数 y=Asin ωx(A>0,ω>0) x ∈[0,4]的图象,且图象的最高点为S(3,);赛道的后一部分为折线段MNP ,为保证参赛 运动员的安全,限定∠MNP=120o(I )求A ,ω的值和M ,P 两点间的距离;(II )应如何设计,才能使折线段赛道MNP 最长? 解法一(Ⅰ)依题意,有A =,34T =,又2T πω=,6πω∴=。

高二数北师大必修5章末检测卷:第二章 解三角形 Word含解析

高二数北师大必修5章末检测卷:第二章 解三角形 Word含解析

章末检测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ) A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403★答案★ D解析 ∵csin C =asin A =403,∴c =403sin C .∴0<c ≤403.2.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56★答案★ B解析 由正弦定理得a b =sin Asin B ,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.3.已知△ABC 的外接圆的半径是3,a =3,则A 等于( )A .30°或150°B .30°或60°C .60°或120°D .60°或150°★答案★ A解析 根据正弦定理得asin A =2R ,sin A =a 2R =12,∵0°<A <180°,∴A =30°或150°.4.在△ABC 中,已知a =5,b =15,A =30°,则c 等于()A .2 5 B. 5C .25或 5D .以上都不对★答案★ C解析 ∵a 2=b 2+c 2-2bc cos A ,∴5=15+c 2-215×c ×32. 化简得c 2-35c +10=0,即(c -25)(c -5)=0,∴c =25或c = 5.5.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0) C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫12,+∞ ★答案★ D解析 由正弦定理得:a =mk ,b =m (k +1),c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b ,即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12. 6.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为( )A .61 B.612 C.614D .122★答案★ B解析 bc cos A =bc ·b 2+c 2-a 22bc =12(b 2+c 2-a 2); 同理,ca cos B =12(a 2+c 2-b 2); ab cos C =12(a 2+b 2-c 2). ∴bc cos A +ca cos B +ab cos C =12(a 2+b 2+c 2)=612. 7.在△ABC 中,sin A =sin B +sin C cos B +cos C,则△ABC 为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰或直角三角形 ★答案★ C解析 由已知得cos B +cos C =sin B +sin C sin A, 由正、余弦定理得a 2+c 2-b 22ac +a 2+b 2-c 22ab =b +c a, 即a 2(b +c )-(b +c )(b 2-bc +c 2)=bc (b +c )⇒a 2=b 2+c 2,故△ABC 是直角三角形.8.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形★答案★ D解析 △A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,若△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1B 2=π2-B 1C 2=π2-C 1,那么,与A 2+B 2+C 2=π2相矛盾,所以△A 2B 2C 2是钝角三角形.9.根据下列情况,判断三角形解的情况,其中正确的是() A .a =8,b =16,A =30°,有两解B .b =18,c =20,B =60°,有一解C .a =5,c =2,A =90°,无解D .a =30,b =25,A =150°,有一解★答案★ D解析 A 中,∵a sin A =bsin B ,∴sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,∵sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中,∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解,故A 、B 、C 都不正确,用排除法应选D.10.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定★答案★ A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .二、填空题(本大题共5小题,每小题5分,共25分)11.在△ABC 中,若a cos A =b cos B =c cos C,则△ABC 是________三角形. ★答案★ 等边解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C ,∴A =B =C .12.已知△ABC 中,3a 2-2ab +3b 2-3c 2=0,则cos C 的大小是________.★答案★ 13解析 由3a 2-2ab +3b 2-3c 2=0,得c 2=a 2+b 2-23ab . 根据余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 2-a 2-b 2+23ab 2ab =13, 所以cos C =13. 13.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.★答案★ 2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a ,则a =5b 3,c =2a -b =7b 3,cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3. 14.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.★答案★ 1解析 在△ABC 中,A +B +C =π,A +C =2B .∴B =π3.由正弦定理知,sin A =a sin B b =12. 又a <b .∴A =π6,C =π2.∴sin C =1. 15.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.★答案★ 36解析 如图,∠CAB =15°,∠CBA =180°-75°=105°,∠ACB =180°-105°-15°=60°,AB =1 (km).由正弦定理得BC sin ∠CAB =AB sin ∠ACB, ∴BC =1sin 60°·sin 15°=6-223(km). 设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km). 三、解答题(本大题共6小题,共75分)16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a =2,cos B =35. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b 、c 的值.解 (1)∵cos B =35>0,且0<B <π, ∴sin B =1-cos 2B =45. 由正弦定理得a sin A =b sin B, 所以sin A =a b sin B =25.(2)∵S △ABC =12ac sin B =45c =4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B=22+52-2×2×5×35=17,∴b =17.17.如图,已知A 、B 、C 是一条直路上的三点,AB 与BC 各等于1 km ,从三点分别遥望塔M ,在A 处看见塔在北偏东45°方向,在B 处看塔在正东方向,在点C 处看见塔在南偏东60°方向,求塔到直路ABC 的最短距离.解 由题意∠CMB =30°,∠AMB =45°,∵AB =BC =1,∴S △MAB =S △MBC ,即12MA ·MB ·sin 45°=12MC ·MB ·sin 30°,∴MC =2MA ,在△MAC 中,由余弦定理AC 2=MA 2+MC 2-2MA ·MC ·cos 75°,∴MA 2=43-22cos 75°,设M 到AB 的距离为h ,则由△MAC 的面积得12MA ·MC ·sin 75°=12AC ·h ,∴h =2MA 22·sin 75°=22·43-22cos 75°·sin 75°=7+5313(km).答 塔到直路ABC 的最短距离为7+5313 km.18.在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2 B +C 2+cos 2A =1-cos (B +C )2+cos 2A=1+cos A2+2cos 2 A -1=5950.(2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13. 19.在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值;(2)求c 的值.解 (1)在△ABC 中,由正弦定理得a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A, ∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾. ∴c =3舍去.故c 的值为5.20.已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sinA ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积. (1)证明 ∵m ∥n ,∴a sin A =b sin B ,由正弦定理得a 2=b 2,∴a =b .∴△ABC 为等腰三角形.(2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab ,即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3. 21.在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,若cos B cos C -sin B sin C =12. (1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)∵cos B cos C -sin B sin C =12,∴cos(B +C )=12,∴B +C =π3,∴A =2π3.(2)∵(23)2=b 2+c 2-2bc cos 2π3,∴12=b 2+c 2+bc,12=(b +c )2-bc . 又b +c =4,∴12=42-bc ⇒bc =4, ∴S △ABC =12bc sin A =12×4×32= 3。

2018-2019版数学学导练必修五北师大版试题:第二章 解三角形测评 Word版含答案

2018-2019版数学学导练必修五北师大版试题:第二章 解三角形测评 Word版含答案

第二章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若B=60°,a=1,b=2,则sin A=( )A.√32B.14C.√34D.12 解析:由正弦定理得1sinA =2sin60°,所以sin A=√34.故选C . 答案:C 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2-b 2=√3ac ,则角B 的值为( )A .π6B .π3C .π6或5π6D .π3或2π3 解析:因为a 2+c 2-b 2=√3ac ,所以由余弦定理得,cos B=a 2+c 2-b 22ac =√32,所以B=π6. 答案:A3.在△ABC 中,已知a=11,b=20,A=130°,则此三角形( ) A.无解B.只有一解C.有两解D.解的个数不确定 解析:由A=130°,而a<b ,可知无解.答案:A4.在△ABC 中,如果A=60°,AC=16,△ABC 的面积为220√3,那么BC 的长度为( )A.25B.51C.49√3D.49 解析:由S △ABC =12·AB ·AC sin 60°=4√3AB=220√3,得AB=55.由余弦定理,得BC 2=162+552-2×16×55×cos60°=2 401,解得BC=49.答案:D5.在平行四边形ABCD 中,若对角线AC=√65,BD=√17,周长为18,则这个平行四边形的面积是( )A.16B.352C.18D.32解析:设AB=CD=a ,AD=BC=b ,则{2(a +b )=18,65+17=2(a 2+b 2),解得{a =4,b =5或{a =5,b =4, 所以cos ∠BAD=52+42-172×5×4=35,所以sin ∠BAD=45,S=4×5×45=16.答案:A6.若△ABC 的三个内角满足sin A ∶sin B ∶sin C=5∶11∶13,则△ABC ( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形解析:由正弦定理a sinA =b sinB =c sinC =2R (R 为△ABC 外接圆的半径)及已知条件sin A ∶sin B ∶sin C=5∶11∶13,可设a=5x ,b=11x ,c=13x ,其中x>0,由余弦定理得cos C=a 2+b 2-c 22ab =(5x )2+(11x )2-(13x )22·5x ·11x =-23110<0,所以C 为钝角,所以△ABC 为钝角三角形.答案:C7.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c.若角A ,B ,C 依次成等差数列,且a=1,b=√3.则S △ABC =( ) A.√2 B.√3 C.√32 D.2解析:因为A ,B ,C 成等差数列,所以A+C=2B.又A+B+C=180°,所以B=60°.又a=1,b=√3,由a sinA =b sinB 得sin A=asinB b =√32√3=12. 因为a<b ,所以A=30°,所以C=90°.所以S △ABC =12×1×√3=√32.答案:C8.。

巩固测试最新2018-2019学年北师大版高中数学必修五《解三角形》期末复习全章测试题及解析

巩固测试最新2018-2019学年北师大版高中数学必修五《解三角形》期末复习全章测试题及解析

北师大版高中数学必修五解三角形第1课时 三角形中的有关问题1.正弦定理:利用正弦定理,可以解决以下两类有关三角形的问题:⑴ 已知两角和一边,求其他两边和一角;⑵ 已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.2.余弦定理:利用余弦定理,可以解决以下两类有关三角形的问题.⑴ 已知三边,求三角;⑵ 已知两边和它们的夹角,求第三边和其它两个角.3.三角形的面积公式: 典型例题例1. 在△ABC 中,已知a =3,b =2,B =45°,求角A 、C 及边c .解 A 1=60° C 1=75° c 1=226+A 2=120° C 2=15° c 2=226-变式训练1:(1)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则co s B = ( )A .14 B .34 C .24 D .23解:B 提示:利用余弦定理(2)在△ABC 中,由已知条件解三角形,其中有两解的是 ( )A.020,45,80b A C === B.030,28,60a c B === C.014,16,45a b A ===D. 012,15,120a c A ===解:C 提示:在斜三角形中,用正弦定理求角时,若已知小角求大角,则有两解;若已知大角求小角,则只有一解(3)在△ABC 中,已知5cos 13A =,3sin 5B =,则cosC 的值为( )A 1665 B 5665 C 1665或 5665D 1665-解:A 提示:在△ABC 中,由sin sin A B A B >⇔> 知角B 为锐角(4)若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .解:02a << 提示:由222(1)(2)3(1)(2)(3)a a a a a a +++>+⎧⎨+++<+⎩可得(5)在△ABC 中,060,1,3,sin sin sin ABCa b cA b SA B C++∠===++则= .解:2393提示:由面积公式可求得4c =,由余弦定理可求得13a =例2. 在△ABC 中,若 sinA =2sinB cos C , sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.解:sinA =2sinBcosC ⇒sin(B +C)=2sinBcosC ⇒sin(B -C)=0⇒B =C sin 2A =sin 2B +sin 2C ⇒a 2=b 2+c 2⇒∠A =90°∴ △ABC 是等腰直角三角形。

(北师大版)2018-19年度高中数学必修5-同步习题-第二章解三角形 检测

(北师大版)2018-19年度高中数学必修5-同步习题-第二章解三角形 检测

第二章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A. B. C. D.,设底边长为a,则腰长为2a,设顶角为θ,由余弦定理,得cos θ=-.2.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2-b2=ac,则角B的正切值为()A. B. C.- D.-a2+c2-b2=ac,得cos B=-,∴sin B=,∴tan B=,故选A.3.在△ABC中,角A,B,C所对的边分别为a,b,c,且(b-c)·cos A=a cos C,则cos A的值等于()A. B. C. D.,得sin B cos A=sin C cos A+cos C sin A,∴sin B cos A=sin(A+C)=sin B.∵sin B≠0,∴A=1.∴cos A=.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=3,C=135°,则△ABC的面积等于()A. B.3 C.3 D.ABC的面积等于ab sin C=×2×3×.5.在△ABC中,角A,B,C的对边分别为a,b,c.若a=2,b=2,且三角形有两解,则A的范围是()A.,B.,C.,D.,a>b sin A,∴sin A<.∵a<b,∴0<A<,即A∈,,故选B.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定∵,∴sin B cos C+sin C cos B=sin A sin A,即sin(B+C)=sin2A,即sin A=1.∴A=.故选A.7.已知△ABC的面积为,AC=,∠ABC=,则△ABC的周长等于()A.3+B.3C.2+D.,得b2=a2+c2-2ac cos B,即a2+c2-ac=3.∵△ABC的面积为ac sin,即ac=2.∴a2+c2+2ac=9,∴a+c=3,即a+c+b=3+,故选A.8.已知△ABC的内角A,B,C所对边的长分别为a,b,c,设向量p=(a+c,b),q=(b-a,c-a).若p∥q,则C 的大小为()A. B. C. D.p∥q,∴(a+c)(c-a)=b(b-a).∴c2-a2=b2-ab,∴ab=b2+a2-c2.由余弦定理,得cos C=-,∴C=.9.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+cos2B等于()A.-B.C.-1D.1,得=2R,∴a=2R sin A,b=2R sin B,∴a cos A=b sin B可化为sin A cos A=sin2B.∴sin A cos A+cos2B=sin2B+cos2B=1.10.在△ABC中,B=60°,AC=,则AB+2BC的最大值为()A.2B.2C.D.7,得°,∴AB=2sin C,BC=2sin A.∵A+C=120°,∴AB+2BC=2sin C+4sin 120°-C)=2(sin C+2sin 120°cos C-2cos 120°sin C)=2(sin C+cos C+sin C)=2(2sin C+C)=2sin(C+α),其中tan α=,α是第一象限角.∵0°<C<120°,且α是第一象限角,∴AB+2BC有最大值2.11.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,等边三角形ABC的三个顶点分别在l1,l2,l3上,则△ABC的边长是()A.2B.C. D.,设AB=a,则由已知,得AD=a.在△ABD中,由余弦定理,知cos A=-·.①由S△ABC=BD·3=,得BD=,代入①式,得a=.12.在△ABC中,A=60°,且最大边长和最小边长是方程x2-7x+11=0的两个根,则第三边的长为()A.2B.3C.4D.5A=60°,不妨设△ABC中最大边与最小边分别为b,c,故b+c=7,bc=11.由余弦定理,得a2=b2+c2-2bc cos 60°=(b+c)2-3bc=72-3×11=16.∵a>0,∴a=4.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a,b,c分别为△ABC三个内角A,B,C的对边,若cos B=,a=10,△ABC的面积为42,则b+的值等于.14.已知△ABC的三边长成公比为的等比数列,则其最大角的余弦值为.,设△ABC三边长分别为a,a,2a(a>0),则最大边2a所对角的余弦值为-=-.·-15.在Rt△ABC中,C=90°,且A,B,C所对的边a,b,c满足a+b=cx,则实数x的取值范围=sin A+cos A=sin.∵A∈,,∴<A+,∴<sin≤1,即x∈(1,].]16.已知a,b,c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=5则c的值,所以5×4×5sin C,即sin C=,所以cos C=±.因为c2=a2+b2-2ab cos C,所以c2=42+52-2×4×5×或c2=42+52+2×4×5×.所以c=或.或三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sin A sin B+sin B sin C+cos 2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求的值.sin A sin B+sin B sin C=2sin2B.因为sin B≠0,所以sin A+sin C=2sin B.由正弦定理,得a+c=2b,即a,b,c成等差数列.C=,c=2b-a及余弦定理,得(2b-a)2=a2+b2+ab,即5ab-3b2=0,所以.18.(12分)设△ABC的内角A,B,C的对边分别为a,b,c,且(a+b+c)(a-b+c)=ac. (1)求B的大小;(2)若sin A sin C=-,求C的大小.因为(a+b+c)(a-b+c)=ac, 所以a2+c2-b2=-ac.由余弦定理,得cos B=-=-,所以B=120°.(2)由(1)知A+C=60°,所以cos(A-C)=cos A cos C+sin A sin C =cos A cos C-sin A sin C+2sin A sin C =cos(A+C)+2sin A sin C=+2×-.故A-C=30°或A-C=-30°,所以C=15°或C=45°.19.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知cos B=,sin(A+B)=,ac=2,求sin A和c的值.ABC中,由cos B=,得sin B=.因为A+B+C=π,所以sin C=sin(A+B)=.因为sin C<sin B,所以C<B,可知C为锐角,所以cos C=.因此sin A=sin(B+C)=sin B cos C+cos B sin C=.由,可得a==2c,又ac=2,所以c=1.20.(12分)设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=;(2)求sin A+sin C的取值范围.a=b tan A及正弦定理,得,所以sin B=cos A,即sin B=sin.又B为钝角,因此+A∈,,故B=+A,即B-A=.(1)知,C=π-(A+B)=π--2A>0,所以A∈,,于是sin A+sin C=sinA+sin-=sin A+cos 2A=-2sin2A+sin A+1=-2-.因为0<A<,所以0<sin A<,因此<-2-.由此可知sin A+sin C的取值范围是,.21.(12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度(如图所示),A,B,C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A,B两地相距100 m,∠BAC=60°,在A地听到弹射声音的时间比B地晚 s.在A地测得该仪器至最高点H时的仰角为30°,求该仪器的垂直弹射高度CH(声音的传播速度为340 m/s).,设AC=x m,则BC=x-×340=(x-40)m.在△ABC中,由余弦定理,得BC2=BA2+CA2-2BA·CA·cos∠BAC,即(x-40)2=x2+10 000-100x,解得x=420.在△ACH中,AC=420 m,∠CAH=30°,∠ACH=90°,所以CH=AC·tan∠CAH=140(m).答:该仪器的垂直弹射高度CH为140 m.22.(12分)如图所示,某市拟在长为8 km的道路OP的一侧修建一条运动赛道.赛道的前一部分为曲线段OSM,该曲线段为函数y=A sin ωx(A>0,ω>0),x∈[0,4]的图像,且图像的最高点为S(3,2);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.(1)求A,ω的值和M,P两点间的距离;(2)应如何设计,才能使折线段MNP最长?由题意,得A=2=3.∵T=,∴ω=.∴y=2sin.当x=4时,y=2sin=3,∴M(4,3).∵P(8,0),∴MP==5(km).(2)如图所示,连接MP,在△MNP中,∠MNP=120°,MP=5 km.设∠PMN=θ,则0°<θ<60°.,由正弦定理,得°°-∴NP=sin θ,MN=sin 60°-θ),∴MN+NP==sin(θ+60° .∵0°<θ<60°,∴当θ=30°时,折线段赛道MNP最长,故将∠PMN设计为30°时,折线段赛道MNP最长.。

北京师范大学附属实验中学必修五第二章《解三角形》检测(答案解析)

北京师范大学附属实验中学必修五第二章《解三角形》检测(答案解析)

一、选择题1.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知3b =,22cos c a b A -=,则a c +的最大值为( )A .3B .23C .32D .22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .21 3.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3534.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .)2,+∞D .[)2,+∞5.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒6.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( ) A .若a b c >>,则sin sin sin A B C >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形7.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 8.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si 3n 3b c C B -=,则B 的值是( )A .6π B .3π C .23π D .56π 9.在ABC 中,60A ∠=︒,4AC =,23BC =,则ABC 的面积为 A .43B .4C .23D .310.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .1711.在ABC 中,60A ∠=︒,1b =,3ABCS =2sin 2sin sin a b cA B C++=++( )A 263B 239C 83D .2312.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭二、填空题13.一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西45︒方向上,另一灯塔在南偏西60︒方向上,则该船的速度是____海里/小时.14.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23C B =,则A =____.15.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,①若sin A >sin B ,则A >B ;②若sin2A =sin2B ,则△ABC 一定为等腰三角形;③若222cos cos cos 1A B C +-=,则△ABC 为直角三角形;④若△ABC 为锐角三角形,则sin A <cos B .以上结论中正确的有____________.(填正确结论的序号)17.在ABC 中,角,,A B C 的对边分别为,,a b c ,22b =且ABC ∆面积为)222312S b a c =--,则面积S 的最大值为_____. 18.在ABC 中,60,12,183ABCA b S =︒==,则sin sin sin a b cA B C____________.19.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.在ABC 中,2BAC π∠=,点D 在边BC 上,满足3=AB BD .(1)若6BAD π∠=,求C ∠;(2)若2,4CD BD AD ==,求ABC 的面积.22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知()()sin cos cos sin c A A a C C -=-.(1)记AC 边上的高为h ,求b h; (2)若5c =1a =,求b .23.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若b =,且BC 边上的高为ABC 的面积. 24.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围.25.在ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,b . (Ⅰ)若2cos cos 3A C =,求ABC 的面积; (Ⅱ)试问111a c+=能否成立?若能成立,求此时ABC 的周长;若不能成立,请说明理由.26.已知半圆O 的直径MN 为2,A 为直径延长线上一点,且2OA =.B 为半圆周上任意一点,以AB 为边,作等边ABC ,角AOB 等于何值时,四边形OACB 的面积最大?最大面积为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.2.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a π==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.3.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值.【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则sin 22cos CD θθθ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴2cos θθ=,解得cos 2θ=,6πθ=,∴32CD ==,ACD △中,由角平分线定理得AC AE CD DE ==,得236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.4.B解析:B根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形.【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.6.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===, 可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误.故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.7.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.8.C解析:C 【分析】cos sin sin B C C B A =-,再由三角恒等变换化简可得sin =B B ,进而可得tan B =.【详解】因为1a =cos si n c C B -=cos sin C c B -=,cos sin sin B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,in n co c s s os in s s n n i i B C B C C B B C =-,化简得sin sin sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠,所以sin =B B 即tan B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.9.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,4sin B=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.10.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.11.B解析:B【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin6042︒=⋅⋅⋅=∴=ABCSc 由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin ++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目.12.D解析:D【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-,由正弦定理可得,sin sin 2sin cos C A C B =-,又()sin sin sin cos sin cos A B C B C C B =+=+,所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-, 因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<. 故选:D.【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.二、填空题13.【分析】由题意设得到然后在中利用正弦定理求解【详解】如图所示:设船的初始位置为半小时后行驶到两个港口分别位于和所以则设则在中所以利用正弦定理解得所以船速为故答案为:【点睛】本题主要考查正弦定理的实际解析:)101 【分析】由题意,设BA x =,得到CA x =,然后在Rt BDA 中,利用正弦定理求解.【详解】如图所示:设船的初始位置为A ,半小时后行驶到B ,两个港口分别位于C 和D ,所以45BCA ∠=︒,15CBD ∠=︒,则30CDB ∠=︒,设BA x =,则CA x =,在Rt BDA 中,10DA x =+. 所以利用正弦定理10sin 60sin 30x x +=︒︒, 解得)531x = 所以船速为)()153110312÷=. 故答案为:)1031 【点睛】 本题主要考查正弦定理的实际应用,还考查了运算求解的能力,属于中档题.14.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】 由sin 23C B =,根据正弦定理“边化角”,可得3c b =,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角A .【详解】sin 23C B =根据正弦定理:sin sin b c B C= ∴可得23c b =根据余弦定理:2222cos a b c bc A =+- 由已知可得:223a b bc -=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos A =由0A π<< ∴6A π= 故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长.【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒,即30ABC ∠=︒, 则由正弦定理sin sin AB AC ACB ABC=∠∠,得:50sin 21sin 2AC ACB AB ABC ⨯∠===∠.故答案为:.【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键. 16.①③【分析】结合三角形的性质三角函数的性质及正弦定理对四个结论逐个分析可选出答案【详解】对于①由正弦定理所以由sinA >sinB 可推出则即①正确;对于②取则而△ABC 不是等腰三角形即②错误;对于③则 解析:①③【分析】结合三角形的性质、三角函数的性质及正弦定理,对四个结论逐个分析可选出答案.【详解】对于①,由正弦定理sin sin a b A B =,所以由sin A >sin B ,可推出a b >,则A B >,即①正确;对于②,取15,75A B ︒︒==,则sin 2sin 2A B =,而△ABC 不是等腰三角形,即②错误;对于③,()()()222222cos cos cos 1sin 1sin 1sin 1A B C A B C +-=-+---=, 则222sin sin sin A B C +=,由正弦定理可得222+=a b c ,故△ABC 为直角三角形,即③正确;对于④,若△ABC 为锐角三角形,取80,40A B ︒︒==,此时sin80cos40sin50︒︒︒>=,即sin cos A B >,故④错误.故答案为:①③.【点睛】本题考查真假命题的判断,考查三角函数、解三角形知识,考查学生推理能力与计算求解能力,属于中档题. 17.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan B =,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤,代入三角形面积公式可求得最大值.【详解】()()222312cos sin 2S b a c ac B ac B =--=-=sin tan cos B B B ∴==()0,B π∈ 56B π∴= cos B ∴=1sin 2B =由余弦定理2222cos b a c ac B =+-得:(2282a c ac =++≥(当且仅当a c =时取等号)(82ac ∴≤= 11sin 424S ac B ac ∴==≤-本题正确结果:4-【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型. 18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题解析:12【分析】根据三角形面积公式以及余弦定理求解即可.【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++ 故答案为:12【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()27sin A ϕ=+,其中3tan 2ϕ=. 所以2a c +的最大值为27,当2A πϕ=-时取得. 故答案为:27.【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,22⎡⎤⎣⎦【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a b b a +的取值范围.【详解】如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC c S ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b a a b+取得最大值2由基本不等式可得2b a a b +≥=,当且仅当a b =时,等号成立, 因此,a b b a+的取值范围是2,⎡⎣.故答案为:2,⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.(1)3π;(2). 【分析】(1)在ABD △中,由正弦定理求得sin BDA ∠=,得到BDA ∠的大小,进而求得C ∠的大小; (2)由,2AB CD BD ==,得到,33AB BC AC BC ==,根据向量的线性运算,求得2133AD AB AC =+,进而得到2224199AD AB AC =+,求得,,BC AB AC 的长,利用面积公式,即可求解.【详解】(1)在ABD △中,由正弦定理得sin sin BD AB BAD BDA=∠∠,所以sin 6sin AB BDA BD π⋅∠==,因为(0,)BDA π∠∈,所以23BDA π∠=或3BDA π∠=, 当23BDA π∠=时,可得6B π∠=,可得3C π∠=; 当3BDA π∠=时,可得2B π∠=,因为2BAC π∠=(舍去), 综上可得3C π∠=.(2)因为,2AB CD BD ==,所以,AB AC ==, 由1121()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,所以2222222141441()3399999AD AB AC AB AC AB AC AB AC =+=++⋅=+, 即2224199AD AB AC =+,又由4=AD ,可得22241()()93934BC BC ⨯=⨯+,解得BC =则AB AC ==所以12ABC S AB AC =⨯=22.(1)2;(2)b =2.【分析】 (1)由正弦定理化边为角后,应用两角和的正弦公式和诱导公式变形后再由正弦定理化角为边,从而可得结论;(2)由(1)所得角的关系中用正弦定理化角为边求得sin C (用b 表示),再用余弦定理求出cos C ,然后由22sin cos 1C C +=可求得b 值.【详解】解:(1)()()sin cos cos sin c A A a C C -=-,由正弦定理可得:()()sin sin cos sin cos sin C A A A C C -=-,化为:()2sin sin sin cos cos sin sin sin C A A C A C A C B =+=+=,∴2sin c A b =,∵sin h c A =, ∴2sin b b h c A==. (2)由(1)有2sin sin sin C A B =, ∴2sin a C b =,即sin 22b b C a ==. 由余弦定理可得:2222cos c a b ab C =+-,∴2512cos b b C =+-, 可得24cos 2b C b-=, ∴222224sin cos 122b b C C b ⎛⎫-⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 化为:42680b b -+=,解得22b =或4,解得b =2.【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,考查两角和的正弦公式与诱导公式.解三角形问题已知边角关系时常用利用正弦定理进行边角转换,然后由三角恒等变换公式变形求解或由代数式运算求解.23.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.【详解】 (1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-, 由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =,由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,a =,所以11sin 22ABC S bc A a ==⨯△211124224c ⨯⨯=⨯⨯c =4b c == 111sin 222ABC S bc A ===△ 【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.24.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解.(2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=,2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=,因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 222226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭.25.(Ⅰ)3;(Ⅱ)不能成立,理由见解析. 【分析】(Ⅰ)由于3A C π+=,cos()cos cos sin sin A C A C A C +=-,得1sin sin 6A C =,结合正弦定理与面积公式可得结果;(Ⅱ)假设111a c+=能成立,得a c ac +=,由余弦定理,2222cos b a c ac B =+-可得3ac =,结合基本不等式判断即可.【详解】(Ⅰ)由23B π=,得3A C π+=,cos()cos cos sin sin A C A C A C +=-, 即1cos cos sin sin 2A C A C =-. 又∵2cos cos 3A C =,∴1sin sin 6A C =.∵sin sin a c A C===∴a A =,c C =.∴1sin 4sin sin sin 2ABC S A C B A B C =⋅⋅⋅=△146=⨯=. (Ⅱ)假设111a c+=能成立,∴a c ac +=. 由余弦定理,2222cos b a c ac B =+-,∴226a c ac =++.∴2()6a c ac +-=,∴2()60ac ac --=,∴3ac =或-2(舍),此时3a c ac +==.不满足a c +≥,∴111a c +=不成立. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”. 26.150︒,24+ 【分析】 2OA =,B 为半圆周上任意一点,那么OAB 是直角三角形,254cos AB α=-,三角形sin OAB S α=,三角形24ABC S AB =,可得四边形OACB 面积,利用三角函数的有界性,可求得面积的最大值.【详解】 ABC2AB ,半径1,2OB OA == 过B 作BE 垂直OA ,则sin sin BE OB αα=⋅=由余弦定理:2222cos 54cos AB OB OA OB OA αα=+-⋅⋅=-设所求的四边形面积S ,则)154cos sin2AOB ABCS SS OA BE ααα=+=⋅⋅+-= ()12sin 2sin 602ααα⎛⎫==-︒ ⎪ ⎪⎝⎭, ()sin 601α∴-︒=时,max 2S =+,150α⇒=︒.。

(常考题)北师大版高中数学必修五第二章《解三角形》检测题(含答案解析)(1)

(常考题)北师大版高中数学必修五第二章《解三角形》检测题(含答案解析)(1)

一、选择题1.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形2.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒3.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形4.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si n c C B -=,则B 的值是( )A .6πB .3π C .23π D .56π 5.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 16.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .907.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若301C c a =︒==,,ABC ∆的面积为A B C .34D .329.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,CD =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m10.在△ABC 中,AC 2=BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .43二、填空题13.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续偶数,且2C A =,则a =______.14.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆2,a =___________.15.在ABC ∆中角,,A B C 的对边分别是,,a b c ,且sin sin sin 23sin sin a A b B c C B C +-=,3a =[1,3]b ∈,则c 的最小值为_____.16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.19.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.22.在锐角ABC 中,角A B C ,,的对边分別为a b c ,,,且32sin 0c b C -=. (1)求角B 的大小;(2)再从下面条件①、条件②这两个条件中选择一个作为已知,求ABC 的面积. 条件①332b a ==,;条件②:24a A π==,.注:如果选择条件①和条件②分别解答,按第一个解答计分. 23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .请在①cos 3sin b b Cc B +=;②()2cos cos b a C c A -=;③222433ABCa b c S +-=这三个条件中任选一个,完成下列问题 (1)求角C ;(2)若5a =,7c =,延长CB 到点D ,使21cos 7ADC ∠=,求线段BD 的长度. 注:如果选择多个条件分别解答,按第一个解答计分.24.如图,在ABC 中,60B ∠=︒,8AB =,7AD =,点D 在BC 上,且1cos 7ADC ∠=.(1)求BD ; (2)若3cos CAD ∠=,求ABC 的面积. 25.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.26.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论. 【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =,所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .3.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.4.C解析:C 【分析】cos sin sin B C C B A =-,再由三角恒等变换化简可得sin =B B ,进而可得tan B =.【详解】因为1a =cos si n c C B -=cos sin C c B -=,cos sin sin B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,in n co c s s os in s s n n i i B C B C C B B C =-,化简得sin sin sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠,所以sin =B B 即tan B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】 由正弦定理得:23sin sin a b A B =⇒=22sin 3A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.7.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:22a b +≤△ABC 的周长:222a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC 周长的取值范围是(4,222+. 本题选择C 选项.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 30203203ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.10.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.8【分析】根据大边对大角可得可设由已知条件利用正弦的二倍角公式和正余弦定理得到关于的方程求解即可【详解】由题意可得又角ABC 的对边abc 为三个连续偶数故可设由由余弦定理得所以即解得故故答案为:【点睛解析:8 【分析】根据大边对大角,可得a c <, 可设22,2,22a n b n c n =-==+,由已知条件,利用正弦的二倍角公式和正余弦定理得到关于n 的方程求解即可. 【详解】由题意可得A C <,a c ∴<,又角A ,B ,C 的对边a ,b ,c 为三个连续偶数,故可设22,2,22,a n b n c n =-==+由2,sin sin 2,sin 2sin cos ,C A C A C A A =∴=∴=sin sin a b A B=,()sin 1cos 2sin 221C c n A A a n +∴===-,由余弦定理得()()()()()()22222224414144cos 222222121n n n b c a n n n A bc n n n n n ++--+-++====+++. 所以()()142121n n n n ++=-+,即()()()2114,n n n +=-+ 解得5n =,故228a n =-=. 故答案为:8. 【点睛】本题考查正余弦定理在解三角形中的综合运用,关键是熟练使用二倍角公式,正弦定理角化边,正余弦定理联立得到方程求解.14.【分析】利用同角三角函数计算出的值利用三角形的面积公式和条件可求出的值再利用余弦定理求出的值【详解】且的面积是由余弦定理得故答案为【点睛】本题考查利用余弦定理解三角形同时也考查了同角三角函数的基本关解析:2【分析】利用同角三角函数计算出sin A 的值,利用三角形的面积公式和条件23b c =可求出b 、c 的值,再利用余弦定理求出a 的值. 【详解】1cos3A =,sin A ∴==23b c =,且ABC ∆,1sin2ABC S bc A ∆∴=,12233c c =⨯⨯,2c ∴=,b =由余弦定理得2229192cos 222322a b c bc A =+-=+-=,2a ∴=.故答案为2. 【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.15.【分析】由已知及正弦定理和余弦定理可得求出进而求出再由余弦定理建立关于的二次函数关系即可求解【详解】由正弦定理可得由余弦定理得时取得最小值的最小值为故答案为:【点睛】本题考查正弦定理余弦定理二次函数 解析:3【分析】由已知及正弦定理和余弦定理可得3cos C C =,求出tan C ,进而求出cos C ,再由余弦定理,建立2c 关于b 的二次函数关系,即可求解. 【详解】sin sin sin sin sin a A b B c C B C +-=,由正弦定理可得2222cos a b c C C ab +-==,3cos ,tan 0,3C C C C C ππ==<<∴=,由余弦定理得22222cos12c a b ab C b=+-=-+2[1,3](9,bb b=+∈∴=2c取得最小值9,c∴的最小值为3.故答案为:3.【点睛】本题考查正弦定理、余弦定理、二次函数的图像和性质在解三角形中的综合应用,考查了转化思想,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:1 2 -【分析】由三角形的面积公式结合等式8cos3ABCbc A S=△,可求得3tan4A=,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值.【详解】因为881cos sin332ABCbc A S bc A==⨯△,所以4cos sin3A A=,则3tan4A=,故()()22cos sin1cos sin sin cos sin cos 22sin cos2sin cos2sin cos2sin cosB CA B C A A A A AA A A A A A A Aπ++-+++--===----tan112tan12AA-==--.故答案为:1 2 -.【点睛】本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】由题意利用正弦定理边化角求得∠B的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力解析:3-【分析】由题意利用正弦定理边化角,求得∠B的值,然后结合数量积的定义求解AB BC⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+ ()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=,60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.18.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.19.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,22⎡⎤⎣⎦【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC cS ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.三、解答题21.(Ⅰ)3π;(Ⅱ)17-.【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin 3sin A B =,再由23A B π+=求出tan B =,再利用两角和的余弦公式即可求解. 【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=-∴由正弦定理得22()a b c ab -=-,即222a b c ab +-=∴1cos 2C =, 又∵(0,)C π∈∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =,∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin B B == ,∴11sin 22sin cos 214B B B B === ∴1cos(2)cos 2cos sin 2sin 7B C B C B C +=-=- 22.(1)3B π=;(2)答案不唯一,具体见解析.【分析】(12sin sin 0C B C -=,进而得sin =2B ,再结合锐角三角形即可得答案;(2)条件①,结合(1)和余弦定理得22230--=c c ,解方程得1=+c ,进而根据三角形面积公式计算即可;条件②,结合(1)与正弦定理得b =,再结合内角和定理和正弦的和角公式得sin 4C =. 【详解】解(12sin =0b C -2sin sin 0C B C -=.因为0,,sin 02C C π⎛⎫∈≠ ⎪⎝⎭,所以sin =2B . 因为0,2B π⎛⎫∈ ⎪⎝⎭,所以3B π=.(2)条件①:2b a ==;因为2b a ==,由(1)得3B π=,所以根据余弦定理得2222cos =+-⋅⋅b c a c a B ,化简整理为22230--=c c ,解得1=+c .所以△ABC 的面积1sin 22S c a B =⋅=.条件②:24a A π==,由(1)知π3B =,4A π=, 根据正弦定理得sin sin b aB A=,所以sin sin ⋅==a Bb A因为512C A B ππ=--=,所以5sin sinsin 1246C πππ⎛⎫==+=⎪⎝⎭所以△ABC 的面积13sin 22+=⋅=S b a C . 【点睛】本题考查正余弦定理解三角形,三角形的面积求解,考查运算求解能力,回归转化能力,是中档题.本题解题的关键在于利用正弦定理边角互化得sin =2B ,进而结合锐角三角形即可得3B π=;此外,第二问选择条件①,需注意余弦定理方程思想的应用.23.(1)条件选择见解析,3C π=;(2)5BD =.【分析】(1)利用所选条件,应用正余弦定理的边角关系、三角形面积公式,化简条件等式,结合三角形内角的性质,求角C ;(2)由正余弦定理,结合诱导公式及两角和正弦公式求CD ,进而求BD 的长度. 【详解】(1)若选①:∵cos sin b b C B +=,∴sin sin cos sin B B C C B +=,又sin 0B ≠,∴1cos C C +=,即1sin 62C π⎛⎫-= ⎪⎝⎭,又0C π<<,∴5666C πππ-<-<,即66C ππ-=,故3C π=. 若选②:∵()2cos cos b a C c A -=, ∴()2sin sin cos sin cos B A C C A -=,即()2sin cos sin cos sin cos sin sin B C A C C A A C B =+=+=,又sin 0B ≠,∴1cos 2C =,又0C π<<, ∴3C π=,若选③:由22243ABCa b c S +-=⋅,则有4312cos sin 2ab C ab C =⨯, ∴tan 3C =,又0C π<<, ∴3C π=.(2)ABC 中,由余弦定理:22525cos 493AC AC π+-⋅⋅=,得8AC =或3AC =- (舍), 由21cos ADC ∠=,可得27sin ADC ∠=,△ACD 中,()()32112757sin sin sin 272714CAD C ADC C ADC π∠=--∠=+∠=⋅+⋅=, 由正弦定理得:sin sin CD ACCAD ADC=∠∠,即5727=,解得10CD =,∴5BD CD BC =-=.【点睛】 关键点点睛:(1)根据所选条件,应用正余弦定理的边角关系、三角形性质求角; (2)利用正余弦定理及三角恒等变换求边长. 24.(1)3;(21763. 【分析】(1)先求出cos ADB ∠,再由余弦定理求出BD ;(2)先求出sin CAD ∠,sin C ,再由正弦定理求出CD ,进而得出BC ,再由三角形面积公式求解即可; 【详解】(1)∵()1cos cos πcos 7ADB ADC ADC ∠=-∠=-∠=-在ABD △中,由余弦定理得2228727cos 3BD BD ADB BD =+-⋅⋅⋅∠⇒=或5-(舍). (2)由已知sin ADC ∠=,1sin 2CAD ∠=∴()1113sin sin 7214C ADC CAD =∠+∠+⨯= 由正弦定理得17sin 49213sin 1314AD CAD CD C ⨯∠=== ∴498831313BC =+=∴1888213ABC S =⨯⨯=△【点睛】关键点睛:解决本题一的关键是由诱导公式求出cos ADB ∠,再由余弦定理求出BD . 25.(1)23C π=;(2)10AB .【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小. (2)利用余弦定理和韦达定理可求AB 的长. 【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-,而C 为三角形内角,故23C π=. (2)由韦达定理可得2a b ab +==,由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=, 故10AB.26.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)123A π-<-≤则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

北师大版高中数学必修五章末综合测评(二) 解三角形

北师大版高中数学必修五章末综合测评(二) 解三角形

高中数学学习材料 (灿若寒星 精心整理制作)章末综合测评(二) 解三角形(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC 中,a =2,b =3,B =60°,那么A 等于( ) A .135° B .120° C .60°D .45°【解析】 由正弦定理a sin A =b sin B 得2sin A =332,可得sin A =22, 又∵a =2<3=b , ∴A <B ,A =45°. 【答案】 D2.在△ABC 中,若sin A =34,a =10,则边长c 的取值范围是( )【导学号:47172130】A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403【解析】 由正弦定理a sin A =c sin C 得c =1034·sin C =403·sin C ,又sin C ∈(0,1],所以c ∈⎝ ⎛⎦⎥⎤0,403.【答案】 D3.如图1,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的()图1A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°【解析】 由条件及图可知,A =B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.【答案】 D4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =ac ,则B 的值是( )A.π3 B.π6 C.π3或2π3D.π6或5π6【解析】 由余弦定理得a 2+c 2-b 2=2ac cos B . ∴2ac cos B ·tan B =ac , ∴sin B =12, ∴B =π6或5π6. 【答案】 D5.在△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,若A ∶B =1∶2,a ∶b =1∶3,则角A 等于( )A .45°B .30°C.60°D.75°【解析】由正弦定理得ab=sin Asin B,∵A∶B=1∶2,a∶b=1∶3,∴13=sin Asin 2A=12cos A,∴cos A=3 2,即A=30°.【答案】 B6.△ABC的三个内角A,B,C所对的边分别为a,b,c,若a sin A sin B+b cos2A=2a,则ba等于()A.2 3 B.2 2 C. 3 D. 2 【解析】∵a sin A sin B+b cos2A=2a,∴sin2A sin B+sin B cos2A=2sin A,sin B=2sin A,∴b=2a,∴ba= 2.【答案】 D7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=() 【导学号:47172131】A.30°B.60°C.120°D.150°【解析】由sin C=23sin B及正弦定理,得c=23b,∴a2-b2=3bc=6b2,即a2=7b2.由余弦定理,cos A=b2+c2-a22bc=b2+12b2-7b22b·23b=6b243b2=32,又0°<A<180°,∴A=30°.【答案】 A8.在△ABC中,A=60°,b=1,其面积为3,则a+b+csin A+sin B+sin C等于()A.3 3 B.239 3C.833 D.392【解析】∵a+b+csin A+sin B+sin C=2R,∴由S△ABC =12bc sin A知3=12×1×c×sin 60°,∴c=4.又由余弦定理a2=b2+c2-2bc cos A,得a=13.故2R=asin A=2393.【答案】 B9.在△ABC中,∠ABC=π4,AB=2,BC=3,则sin∠BAC=()A.1010 B.105C.31010 D.55【解析】由余弦定理可得AC2=9+2-2×3×2×22=5,所以AC=5,再由正弦定理得ACsin∠ABC=BCsin∠BAC,所以sin∠BAC=BC·sin∠ABCAC=3×225=31010.【答案】 C10.如图2所示,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为()图2A.1762海里/时 B .346海里/时 C.1722海里/时D .342海里/时【解析】 由题意知PM =68,∠MPN =120°,N =45°, 由正弦定理知PM sin 45°=MN sin 120°,∴MN =68×32×2=346, ∴速度为3464=1762海里/小时. 【答案】 A11.在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4【解析】 由题意知,sin A =-2cos B ·cos C =sin(B +C ) =sin B ·cos C +cos B ·sin C ,∴-2cos B ·cos C =sin B ·cos C +cos B ·sin C , 在等式两端同除以cos B ·cos C 得 tan B +tan C =-2,tan(B +C )=tan B +tan C 1-tan B ·tan C =-22=-1=-tan A ,∴tan A =1,即A =π4. 【答案】 A12.如图3所示,在△ABC 中,已知A ∶B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( ) 【导学号:47172132】图3A.13B.12C.34D .0【解析】 在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由A ∶B =1∶2得∠ABC =2α,∵A <B ,∴AC >BC , ∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2, ∴12AC ·DC ·sin β12BC ·DC ·sin β=32,∴AC BC =32.由正弦定理得AC sin B =BC sin A ,AC sin 2α=BCsin α, ∴AC BC =sin 2αsin α=2cos α,∴cos α=34, 即cos A =34. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.在△ABC 中,∠A =2π3,a =3c ,则bc =________.【导学号:47172133】【解析】 在△ABC 中,∠A =2π3, ∴a 2=b 2+c 2-2bc cos 2π3,即a 2=b 2+c 2+bc .∵a =3c ,∴3c 2=b 2+c 2+bc ,∴b 2+bc -2c 2=0, ∴(b +2c )(b -c )=0,∴b -c =0,∴b =c ,∴bc =1.【答案】 114.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________. 【解析】 由正弦定理得sin A sin C =ac ,由余弦定理得 cos A =b 2+c 2-a 22bc ,∵a =4,b =5,c =6,∴sin 2A sin C =2sin A cos A sin C =2·sin A sin C ·cos A =2×46×52+62-422×5×6=1.【答案】 115.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.【解析】 在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝ ⎛⎭⎪⎫-14,解得⎩⎨⎧a =8,b =6,c =4.【答案】 816.已知等腰三角形腰上的中线长为3,则该三角形的面积的最大值是________.【解析】 如图,设AB =AC =2x ,则在△ABD 中, 由余弦定理,得3=x 2+4x 2-4x 2cos A , 所以cos A =5x 2-34x 2. 所以sin A =1-cos 2A=-9x 4+30x 2-94x 2,所以S △ABC =12(2x )2sin A =12-9x 4+30x 2-9. 故当x 2=53时, (S △ABC )max =12 -9×⎝ ⎛⎭⎪⎫532+30×53-9=1216=2. 【答案】 2三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C ;(2)若∠BAC =60°,求∠B . 【解】 (1)由正弦定理,得 AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B . 由(1)知2sin B =sin C ,所以tan B =33, 所以∠B =30°.18.(本小题满分12分)在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.【解】 设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c , 由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a =310. 又由正弦定理得sin B =b sin ∠BAC a =3310=1010, 由题设知0<B <π4, 所以cos B =1-sin 2B =1-110=31010.在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B ,故由正弦定理得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B =10.19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值. 【解】 (1)∵cos A 2=255, ∴cos A =2cos 2A 2-1=35,sin A =45. 又由AB →·AC →=3, 得bc cos A =3,∴bc =5, ∴S △ABC =12bc sin A =2. (2)∵bc =5,又b +c =6. ∴b =5,c =1或b =1,c =5,由余弦定理,得a 2=b 2+c 2-2bc cos A =20, ∴a =2 5.20.(本小题满分12分)在△ABC 中,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C2+12,试判断△ABC 的形状.【解】 依题意得2sin A cos B =sin C =sin(A +B ),2sin A cos B -sin(A +B )=sin(A -B )=0,因此B =A ,C =π-2A ,于是有sin 2A (2+cos 2A )=cos 2A +12,即sin 2A (3-2sin 2A )=1-sin 2A +12=3-2sin 2A 2,解得sin 2A =12,因此sin A =22,又B =A 必为锐角,因此B =A =π4,△ABC 是等腰直角三角形.21.(本小题满分12分)甲船在A 处遇险,在甲船西南10海里B 处的乙船收到甲船的求救信号后,测得甲船正沿着北偏西15°的方向,以每小时9海里的速度向某岛靠近.如果乙船要在40分钟内追上甲船,问乙船应以多大速度、向何方向航行?⎝ ⎛⎭⎪⎫注:sin 21°47′=3314.【导学号:47172134】【解】 设乙船速度为v 海里/时,在△ABC 中,由余弦定理可知 BC 2=AC 2+AB 2-2AC ·AB ·cos ∠CAB , ⎝ ⎛⎭⎪⎫23v 2=⎝ ⎛⎭⎪⎫23×92+102-2×23×9×10×cos 120°,∴v =21海里/时. 又由正弦定理可知BC sin ∠BAC=AC sin B ,∴sin B =AC ·sin ∠BAC BC=23×923×21×sin 120°=3314,∴B ≈21°47′,即乙船应按北偏东45°-21°47′=23°13′的方向航行.22.(本小题满分12分)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知cos A -2cos C cos B=2c -a b . (1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【解】 (1)由正弦定理,设a sin A =b sin B =c sin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B, 即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A ,因此sin C sin A =2.(2)由sin C sin A=2得c =2a . 由余弦定理b 2=a 2+c 2-2ac cos B 及cos B =14,b =2,得4=a 2+4a 2-4a 2×14,解得a =1,从而c =2.又因为cos B =14,且0<B <π.所以sin B =154,因此S =12ac sin B =12×1×2×154=154.。

数学北师大版必修5章末综合测评2 解三角形

数学北师大版必修5章末综合测评2 解三角形

章末综合测评(二) 解三角形(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,下列关系式①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C ,一定成立的有( )A .1个B .2个C .3个D .4个C [由正弦定理知①正确,由余弦定理知③正确;②中由正弦定理得sin A =sin B cos C +cos B sin C ,显然成立;④中由正弦定理得sin B =2sin A sin C ,未必成立.]2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a 2-b 2=3bc 且sin (A +B )sin B=23,则A 等于( )A .π6B .π3C .2π3D .5π6A [由sin (A +B )sin B =23,得sin C sin B =23,∴cb =23,即c =23b ,把c =23b代入a 2-b 2=3bc ,得a =7b ,∴cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b 2=32.又A ∈(0,π),则A =π6.]3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ) A .⎝ ⎛⎭⎪⎫152,+∞B .(10,+∞)C .(0,10)D .⎝ ⎛⎦⎥⎤0,403D [由正弦定理可知c =a sin C sin A =403sin C ,因为0<sin C ≤1,所以0<c ≤403,即c ∈⎝ ⎛⎦⎥⎤0,403,故选D .] 4.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78 B .78 C .-87D .87B [设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78.]5.已知△ABC 的外接圆的半径是3,a =3,则A 等于( ) A .30°或150° B .30°或60° C .60°或120°D .60°或150°A [由正弦定理得sin A =a 2R =32×3=12,因为A ∈(0,π),所以A =30°或150°.]6.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A .322 B .332 C .32D .3 3B [由题意得cos A =AB 2+AC 2-BC 22AB ·AC =12,∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332.]7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3A [由a sin A -b sinB =4c sinC ,得a 2-b 2=4c 2,∵cos A =-14,∴b 2+c 2-a 22bc=cos A=-14,∴-3c22bc=-14,∴bc=6.]8.在△ABC中,A=π3,a=6,b=4,则满足条件的△ABC()A.不存在B.有一个C.有两个D.不确定A[由正弦定理asin A=bsin B,∴sin B=b sin Aa=4·326=2>1,∴B不存在.]9.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点D测得水柱顶端的仰角为45°,沿点D向北偏东30°前进100 m到达点C,在C点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 m B.100 mC.120 m D.150 mA[如图,AB为水柱,高度设为h,D在A的正西方向,C在D的北偏东30°方向.且CD=100 m,∠ACB=30°,∠ADB=45°.在△ABD中,AD=h,在△ABC中,AC=3h.在△ACD中,∠ADC=60°,由余弦定理得cos 60°=1002+h2-(3h)22·100·h=12,∴h=50或-100(舍).]10.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5D [由倍角公式得23cos 2 A +cos 2A =25cos 2A -1=0,cos 2 A =125,△ABC 为锐角三角形cos A =15,由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-125b -13=0.即5b 2-12b -65=0, 解方程得b =5.]11.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若2b =a +c ,∠B =30°,△ABC 的面积为32,则b 等于( )A .1+ 3B .1+32C .2+32D .2+ 3A [由已知12ac sin 30°=32,2b =a +c ,∴ac =6,∴b 2=a 2+c 2-2ac cos 30° =(a +c )2-2ac -3ac =4b 2-12-63, ∴b =3+1.]12.在△ABC 中,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形B [∵2a cos B =c ,∴2sin A cos B =sinC =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B ,∴sin(A -B )=0.∴A =B . 又∵sin A sin B (2-cos C ) =sin 2C 2+12,∴sin A sin B ⎣⎢⎡⎦⎥⎤2-⎝ ⎛⎭⎪⎫1-2sin 2C 2=sin 2C 2+12,∴2sin A sin B ⎝ ⎛⎭⎪⎫sin 2C 2+12=sin 2C 2+12,∴2sin A sin B =1, 即sin 2 A =12,∵0<A <π2,∴sin A =22. ∴A =π4=B , ∴C =π-π4-π4=π2.]二、填空题(本大题共4个小题,每小题5分,共20分,将答案填在题中横线上)13.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c = .4 [∵3sin A =2sin B ,∴3a =2b . 又a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C . ∴c 2=22+32-2×2×3×⎝ ⎛⎭⎪⎫-14=16.∴c =4.]14.在△ABC 中,M 是线段BC 的中点,AM =3,BC =10,AB →·AC →= .-16 [法一 AB →·AC →=(AM →+MB →)·(AM →+MC →) =|AM→|2-|MB →|2=9-5×5=-16. 法二 特例法,假设△ABC 是以AB ,AC 为腰的等腰三角形,如图所示,AM =3,BC =10,则AB =AC =34,cos ∠BAC =34+34-1002×34=-817,AB →·AC →=|AB →|·|AC →|·cos ∠BAC =-16.]15.在△ABC 中,已知BC =3,AB =10,AB 边上的中线为7,则△ABC 的面积为 .1523 [如图,设△ABC 中AB 边上的中线为CD .则在△BCD 中,BC =3,BD =5,CD =7, ∴cos B =32+52-722×3×5=-12,又∵B ∈(0°,180°), ∴B =120°, ∴sin B =32,∴S △BCD =12BC ·BD ·sin B =12×3×5×32=1543, ∴S △ABC =2S △BCD =1523.]16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10米到O ,测得塔A 仰角为30°,则塔高为 .10米 [画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°,∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,BO =3x ,在△BCO 中,由余弦定理,得(3x )2=x 2+100-2x ×10×cos(80°+40°), 整理得x 2-5x -50=0, 解得x =10,x =-5(舍去), 故塔高为10米.]三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,若(a -c ·cos B )·sin B =(b -c ·cos A )·sin A ,判断△ABC 的形状.[解] 结合正弦定理及余弦定理知,原等式可化为 ⎝⎛⎭⎪⎫a -c ·a 2+c 2-b 22ac ·b =b -c ·b 2+c 2-a 22bc ·a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2, ∴a 2+b 2-c 2=0或a 2=b 2, ∴a 2+b 2=c 2或a =b .故△ABC 为直角三角形或等腰三角形.18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b 、c 的值. [解] (1)∵cos B =35>0,且0<B <π, ∴sin B =1-cos 2 B =45. 由正弦定理得a sin A =bsin B ,所以sin A =a b sin B =25.(2)∵S △ABC =12ac sin B =45c =4,∴c =5. 由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17, ∴b =17.19.(本小题满分12分)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.[解] (1)在△ABC 中,由正弦定理,得 a sin A =b sin B ⇒3sin A =26sin 2A = 262sin A cos A , ∴cos A =63.(2)由余弦定理a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63, 则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾. ∴c =3舍去.故c 的值为5.20.(本小题满分12分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/时的速度追击,求我艇追上走私船所需要的时间.[解] 设我艇追上走私船所需时间为t 小时,且我艇在C 处追上走私船,则BC =10t ,AC =14t ,在△ABC 中,∠ABC =180°+45°-105°=120°,AB =12,根据余弦定理得(14t )2=(10t )2+122-2·12·10t cos 120°,∴t =2小时(t =-34舍去).所以我艇追上走私船所需要的时间为2小时.21.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B 2·cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求BA→在BC →方向上的射影.[解] (1)由2cos 2A -B 2cos B -sin(A -B )·sin B +cos(A +C )=-35, 得[cos(A -B )+1]cos B -sin(A -B )·sin B -cos B =-35, 即cos(A -B )cos B -sin(A -B )sin B =-35, 则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,π2<A <π,得sin A =45.由正弦定理有a sin A =bsin B , 所以sin B =b sin A a =22.由题意知a >b ,则A >B ,故B =π4.根据余弦定理有(42)2=52+c 2-2×5×c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(舍去).又∵cos B =cos π4=22,故BA→在BC →方向上的射影为|BA →|cos B =22. 22.(本小题满分12分)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A sin B +sin 2A =sin 2C .(1)求证:sin C2cos A =sin A ;(2)若B为钝角,且△ABC的面积S满足S=(b sin A)2,求A.[解](1)证明:由sin A sin B+sin2A=sin2C,得ab+a2=c2,∴c2=a(a+b),∴ca=a+bc,如图,在△ABC中,延长BC到D,使CD=AC=b,连接AD,则△ABC∽△DBA.∴∠D=∠BAC,又∠ACB=2∠D,则∠ACB=2∠BAC,∴sin∠ACB=2sin ∠BAC cos∠BAC,∴sin∠ACB2cos∠BAC=sin ∠BAC.因此,结论成立.(2)由S=(b sin A)2,得12bc sin A=(b sin A)2,∴c=2b sin A,∴sin C=2sin B sin A,由(1)知,sin C=2sin A cos A,∴cos A=sin B,∴cos A=cos π2-B=cos B-π2.又A,B-π2∈0,π2,则A=B-π2,又C=2A,∴A+A+π2+2A=π,∴A=π8.由Ruize收集整理。

(常考题)北师大版高中数学必修五第二章《解三角形》测试(有答案解析)(1)

(常考题)北师大版高中数学必修五第二章《解三角形》测试(有答案解析)(1)

一、选择题1.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .62.在ABC 中,π6A =,1,2a b ==,则B =( ) A .4π B .34π C .4π或34πD .6π或56π3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =5cos A ,则a =( ) A .1 B . 5 C . 13D . 175.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A 85B .4153C .153D .57.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为6a ,则c bb c+的最大值是( )A .8B .6C .D .49.在ABC ∆中,30,10B AC =︒=,D 是AB 边上的一点,CD =ACD ∠为锐角,ACD ∆的面积为20,则BC =( )A .B .C .D .10.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( )A .2a >B .02a <<C .2a <<D .2a <<11.在△ABC 中,AC =BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.在ABC 中,内角A B C ,,的对边分别为a b c ,,,a =24sin cos sin 2Aa Bb A =,则ABC 外接圆的面积为_________.14.在ABC 中,已知,cos 45A B π==,若BC =D 为AB 的中点,则CD 的长为________.15.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 16.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若cos cos a B b A =+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,且ABC 的面积为223a c +的最小值为__________.18.在锐角ABC ∆中,2AC =,AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.三、解答题21.已知在△ABC 中,a ∶b ∶c =2∶6∶(3+1),求角A 的大小.22.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值.23.在ABC 中,内角A 、B 、C 对应的边长分别为a b c 、、,且,,a b c 满足5cos 44cos 5sin sin cos a B b c B A B C -=+.(1)求cos A ;(2)若3a =,求b c +的最大值.24.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.25.在△ABC 中,角A ,B ,C 所对的变分别为a ,b ,c ,已知2cos 212sin 2B B += (1)求角B 的大小; (2)若3b =,求a c +的最大值.26.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.2.C解析:C 【分析】由正弦定理解三角即可求出B . 【详解】在ABC 中,π6A =,1,a b ==, 所以sin sin a b A B=,即112=sin B =故4B π=或34π, 故选:C【点睛】本题主要考查了正弦定理在解三角中的应用,考查了运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cosA ,运用余弦定理可求得边a . 【详解】因为b =2,c S cos A =12bc sin A A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A .所以a 2=b 2+c 2-2bc cos A =4+5-=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.B解析:B 【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值. 【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin120sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin45sin sin60CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:AB =所以A 与B 的距离3AB =. 故选B 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.7.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =,2a ∴=,24c a ==,因此,ABC 的周长是6a b c ++=+故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.8.D解析:D首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c+2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.9.C解析:C 【分析】先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sin ACD∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin ACBC B A=可知sin sin 2AC A BC B ===.故选C .本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.10.C解析:C 【分析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.11.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】由正弦定理及降幂角公式可求得角的余弦值进而求得角的正弦值以及外接圆半径故可得解【详解】由正弦定理得:则设外接圆的半径为则外接圆的面积为故答案为:【点睛】解三角形的基本策略:一是利用正弦定理实 解析:7π【分析】由正弦定理及降幂角公式可求得角A 的余弦值,进而求得角A 的正弦值以及外接圆半径,故可得解. 【详解】 由正弦定理得:sin sin a bA B=则 sin sin a B b A = 24sin cos sin2Aa Bb A = ∴21cos 24A = ∴21cos 2cos 122A A =-=-∴sin2A===设ABC∆外接圆的半径为R,则2sinaRA===∴R=ABC∆外接圆的面积为27S Rππ==.故答案为:7π.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.14.【分析】由条件求得利用正弦定理求得在中利用余弦定理即可求得【详解】故由正弦定理知即解得在中所以故答案为:【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出利用余弦定理求解考查了运算能力属于中档题【分析】由条件求得sin B,sin C,利用正弦定理sin sinBC ABA C=求得AB , 在BCD△中,利用余弦定理即可求得CD.【详解】cos(0,),B Bπ=∈sin5B∴==故333cos cos()cos cos sin sin444C B B Bπππ=-=+252510⎛⎛⎫⎛⎫=-⨯+=-⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,nsi C===∴,由正弦定理知sin sin BC ABA C=310, 解得6AB =, 在BCD △中,222222cos 3235CD BC AD BC AD B =+-⋅=+-⨯⨯=所以CD =【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出cos B ,利用余弦定理求解CD , 考查了运算能力,属于中档题.15.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的解析:a <<【解析】由三角形中三边关系及余弦定理可得a 应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得a << ∴实数a的取值范围是.答案: 点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.16.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】cos cos a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】由cos cos 3S a B b A =+可知1sin cos cos 32ab C a B b A =+,根据正弦定理知1sin sin sin cos sin cos sin 32A b C AB B AC ⋅⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a =.【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.17.80【分析】由已知结合正弦定理以及三角形内角和性质有根据面积公式有再应用余弦定理可得结合目标式有利用基本不等式即可求最小值;【详解】由及正弦定理可得∴即又故故因为的面积为所以即故由余弦定理可得∴当且解析:80 【分析】由已知结合正弦定理,以及三角形内角和性质有23C π=,根据面积公式有16ab =,再应用余弦定理可得22216c a b =++,结合目标式有22223164a c a b +++=,利用基本不等式即可求最小值; 【详解】由2cos 2c B a b =+及正弦定理可得2sin cos 2sin sin C B A B =+,∴2sin cos 2sin()sin C B B C B =++,即2sin cos sin 0B C B +=,又sin 0B >, 故1cos 2C =-,故23C π=.因为ABC 的面积为1sin 2ab C =12ab =16ab =, 由余弦定理可得222222212cos 216162c a b ab C a b a b ⎛⎫=+-=+-⨯⨯-=++ ⎪⎝⎭,∴2222233a c a a b +=++221641641680a b ab +=++≥+=,当且仅当2a b ==时等号成立,故223a c +的最小值为80. 故答案为:80. 【点睛】本题考查了正余弦定理,应用了三角形内角和性质、三角形面积公式以及基本不等式求最值;18.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC AC CAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BDDC =,所以12sin 2DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则sin sin 46BAC ππ⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为12124⨯⨯=.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.19.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小解析:417【分析】 结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.20.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的解析:3【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a bc c c c C ab c c +-+-===+⨯⨯⨯=,(0,)C π∈,c =时取等号. 此时,a =06Cπ∴<,∴当C 取最大值6π时,ABC的面积11222S =⨯=故答案为:3.【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题21.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)ak b c kk ===>,由余弦定理得,222222644cos 22k k k b c aA bc+-+-===, 而A 为三角形内角,故45A =︒. 22.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=- ⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =, 故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin 5A =,cos 5A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.23.(1)45-;(2 【分析】(1)利用正弦定理边化角,结合两角和的正弦公式、余弦公式,化简整理,即可求得答案.(2)由(1)可得4cos 5A =-,根据余弦定理,可得25()92bc b c ⎡⎤=+-⎣⎦,根据基本不等式,即可求得b c +的最大值. 【详解】(1)由题意得5cos cos 4cos 4cos 5sin sin a C B b C c B c A B -=+,正弦定理边化角得:5sin cos cos 4sin cos 4sin cos 5sin sin sin A C B B C C B C A B -=+,所以5sin (cos cos sin sin )4(sin cos sin cos )A C B C B C B B C -=+, 所以5sin cos()4sin()A B C B C +=+, 又A B C π++=,所以sin()sin()sin ,cos()cos()cos B C A A B C A A ππ+=-=+=-=-, 所以5sin cos 4sin A A A -=, 又因为(0,)A π∈,所以sin 0A ≠, 所以4cos 5A =-. (2)由(1)可得4cos 5A =-, 由余弦定理得2222()294cos 225b c a b c bc A bc bc +-+--===-,所以25()92bc b c ⎡⎤=+-⎣⎦, 由基本不等式可得22b c bc +⎛⎫≤ ⎪⎝⎭,所以225()922b c b c +⎛⎫⎡⎤+-≤ ⎪⎣⎦⎝⎭,解得b c +≤ 当且仅当b c =时等号成立,所以b c + 【点睛】解题的关键是熟练掌握正余弦定理、基本不等式等知识,并灵活应用,考查计算化简的能力,属中档题. 24.(1)23C π=;(2)10AB .【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小. (2)利用余弦定理和韦达定理可求AB 的长. 【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-,而C 为三角形内角,故23C π=.(2)由韦达定理可得2a b ab +==,由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=, 故10AB.25.(1)3π;(2) 【分析】(1)根据降幂公式和升幂公式可求得结果;(2)利用正弦定理边化角得到)6a c A π+=+,根据角A 的范围可得结果.【详解】(1)由2cos 212sin2BB +=,得22cos 1cos B B =-, 得(2cos 1)(cos 1)0B B -+=,得1cos 2B =或cos 1B =-(舍), 因为0B π<<,所以3B π=.(2)由正弦定理可得2sin ,2sin a A c C == 所以22(sin sin )2(sin sin())3a c A C A A π+=+=+- 222sin 2sincos 2cos sin 33A A A ππ=+-2sin sin A A A =++3sin A A =1cos )2A A =+6A π⎛⎫=+ ⎪⎝⎭,又20,3A π⎛⎫∈ ⎪⎝⎭,可得当3A π=时,a c +最大为 【点睛】关键点点睛:利用正弦定理边化角得到)6a c A π+=+是解题关键.26.1. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CB ,然后在Rt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB ,在Rt ACD 中可得tan 1CD AC α===。

最新北师大版高中数学必修五第二章《解三角形》测试(有答案解析)(1)

最新北师大版高中数学必修五第二章《解三角形》测试(有答案解析)(1)

一、选择题1.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .()353+2.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定4.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916B 157C .154D 575.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .332⎫⎪⎪⎝⎭B .22⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .)3,26.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若23b =cos 3sin 20B B -=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .158.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .909.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形 10.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=,则bc 的值为______. 14.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A 、B 两点间的距离,现在珊瑚群岛上取两点C 、D ,测得45m CD =,135ADB ∠=,15BDC DCA ∠=∠=,120ACB ∠=,则A 、B 两点的距离为______m .15.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,ABC 的面积为24b c,且221sin ()(1)sin sin 2A B c B b A ++-=,则A =_______. 16.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b ,3sin B =5sin A ,则C =_____.19.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 的面积43ABCS=a 的取值范围.22.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知:5,2,45b c B =∠=︒.(1)求边BC 的长和三角形ABC 的面积; (2)在边BC 上取一点D ,使得4cos 5ADB ,求tan DAC ∠的值. 23.如图,在ABC 中,2AB =,3B π∠=,点D 在线段BC 上.(1)若4BAD π∠=,求AD 的长;(2)若3BD DC =,且23ABCS=sin sin BADCAD∠∠的值.24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.在△ABC 中,角A ,B ,C 所对的变分别为a ,b ,c ,已知2cos 212sin 2B B += (1)求角B 的大小;(2)若3b =a c +的最大值.26.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ()3cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan 3tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值. 【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.2.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .3.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.4.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin 8EMF ∠==在三角形EFM中,由正弦定理得283sin sin 5EF EMEF EMF F=⇒==∠ 故选:D 【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.5.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围. 【详解】由222a cb ++和余弦定理得222cos 22a cb B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,1cos sin cos sin cos sin cos cos 662A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=++ ⎪ ⎪⎝⎭⎝⎭3cos 23A A A π⎛⎫=+=+ ⎪⎝⎭, 32A ππ<<,即25336A πππ<+<,所以,1sin 23A π⎛⎫<+< ⎪⎝⎭,3cos sin 2A C <+<,因此,cos sin A C+的取值范围是32⎫⎪⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =,2a ∴=,24c a ==,因此,ABC 的周长是6a b c ++=+故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.8.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】 由正弦定理得:23sin sin sin sin a b A B A B =⇒=,22sin sin 3A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.9.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-, 即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭,所以211cos 23sin sin sin sin 23244B B B B B B B π⎫-⎛⎫-=+=+=⎪⎪⎪⎝⎭⎝⎭,2cos22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.10.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案.根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】在中利用正弦定理计算出分析出为等腰三角形可求得然后在中利用余弦定理可求得【详解】在中在中由正弦定理可得在中由余弦定理可得因此故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边解析:【分析】在BCD △中,利用正弦定理计算出BD ,分析出ACD △为等腰三角形,可求得AD ,然后在ABD △中,利用余弦定理可求得AB . 【详解】在ACD △中,150ADC ADB BDC ∠=∠+∠=,15DCA ∠=,15DAC ∴∠=,()45AD CD m ∴==,在BCD △中,15BDC ∠=,135BCD ACB ACD ∠=∠+∠=,30CBD ∴∠=,由正弦定理可得sin sin CD BDCBD BCD=∠∠,)45212BD m ∴==,在ABD △中,()45AD m =,)BD m =,135ADB ∠=, 由余弦定理可得22222cos 455AB AD BD AD BD ADB =+-⋅∠=⨯,因此,)AB m =.故答案为: 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.15.【分析】先由的面积为得到再用正弦定理余弦定理化简已知得解【详解】由三角形的面积公式可知得由得由正弦定理得即所以所以又所以又故故答案为:【点睛】方法点睛:化简三角形中的三角恒等式时要注意观察等式再利用解析:4π【分析】先由ABC 的面积为24b c得到sin 2b A =,再用正弦定理余弦定理化简已知得解.【详解】由三角形的面积公式可知21sin 24b cS bc A ==,得sin 2b A =,由221sin ()(1)sin sin 2A B c B b A ++-=得222sin (1)sin sin C c B A +-=, 由正弦定理得222(1)c c b a +-=即2222c b a b c +-=, 所以2cos b A = , 所以sin cos A A =, 又2A π≠,所以tan 1A =,又0A π<<,故4A π=故答案为:4π 【点睛】方法点睛:化简三角形中的三角恒等式时,要注意观察等式,再利用正弦定理余弦定理角化边或边化角化简求解.16.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=,又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π)故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴ =c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos 3A =.. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.【分析】由正余弦定理可得的余弦值进而求出的值【详解】因为则由正弦定理可得所以又所以由余弦定理可得又因为所以故答案为:【点睛】本题主要考查了正余弦定理的应用考查了运算能力属于中档题 解析:23π 【分析】由正余弦定理可得C 的余弦值,进而求出C 的值. 【详解】因为3sin 5sin B A =,则由正弦定理可得35b a =,所以35a b =, 又2a c b +=,所以725c b a b =-=,由余弦定理可得22222294912525cos 32225b b b a bc C ab b b+-+-===-⋅⋅, 又因为(0,)C π∈, 所以23C π=, 故答案为:23π.【点睛】本题主要考查了正余弦定理的应用,考查了运算能力,属于中档题.19.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos 2cos 22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos 2cos 22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长.【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC ,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.(1)π3;(2)[)4,+∞. 【分析】(1)由条件和正弦定理化简得到2cos sin sin 0A C C -=,求得1cos 2A =,即可求解; (2)由(1)和三角形的面积公式,求得16bc =,结合余弦定理和基本不等式,即可求解. 【详解】(1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=, 又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=, 所以2cos sin sin 0A C C -=,因为0πC <<,所以sin 0C ≠,所以1cos 2A =, 因为()0,πA ∈,所以,π3A =. (2)由(1)知π3A =,所以11πsin sin 2234ABC S bc A bc ====△16bc =, 由余弦定理得22222π2cos 2cos3a b c bc A b c bc =+-=+- 22216b c bc bc bc bc =+-≥-==,当且仅当4b c ==时取等号,所以216a ≥, 因为0a >,所以a 的取值范围是[)4,+∞. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 22.(1)3BC =;32ABCS =;(2)211. 【分析】(1)法一:ABC 中,由余弦定理求BC 的长,应用三角形面积公式求ABC 的面积;法二:过A 作出高交BC 于F ,在所得直角三角形中应用勾股定理求,BF FC ,即可求BC ,由三角形面积公式求ABC 的面积;(2)由正弦定理、三角形的性质、同角三角函数的关系,法一:求sin C 、cos C 、sin ADB ∠、cos ADB ∠,由sin sin()DAC ADB C ∠=∠-∠结合两角差正弦公式求值即可;法二:求tan C 、tan ADB ∠,再由tan tan(())DAC ADC C π∠=-∠+∠结合两角和正切公式求值即可;法三:由(1)法二所作的高,直角△AFD 中求sin ADB ∠,进而求sin ADC ∠,再根据正弦定理及同角三角函数关系求值即可. 【详解】(1)法一:在ABC 中,由45b c B ==∠=︒,由余弦定理,2222cos b a c ac B =+-,得2522a a =+-,解得3a =或1a =-(舍),所以3BC a ==,113sin 32222ABCSac B ==⋅=. 法二:(1)过点A 作出高交BC 于F ,即ABF 为等腰直角三角形,2AB =1AF BF ==,同理△AFC 为直角三角形,1,5AF AC ==2FC ∴=,故3BC BF FC =+=,13||||22ABCSBC AF =⋅=. (2)在ABC 中,由正弦定理sin sin b c B C =52sin C=,得5sin C =,又52b c =>=,所以C ∠为锐角,法一:由上,225cos 1sin C C =-=,由4cos 5ADB (ADB ∠为锐角),得2163sin 1cos 1255ADB ADB ∠=-∠=-, sin sin()DAC ADB C ∠=∠-∠3254525sin cos cos sin 55ADB C ADB C =∠⋅∠-∠⋅∠==由图可知:DAC ∠为锐角,则2115cos 1sin 25DAC DAC ∠=-∠=,所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.法二:由上,1tan 2C =,由4cos 5ADB (ADB ∠为锐角),得3tan 4ADB ∠=, ADB ADC π∠+∠=,3tan 4ADC ∴∠=-,故tan tan(())DAC ADC C π∠=-∠+∠tan()tan()tan()1tan()tan()ADC C ADC C ADC C ∠+∠=-∠+∠=--∠⋅∠312423111142⎛⎫-+ ⎪⎝⎭=-=⎛⎫--⋅ ⎪⎝⎭.法三:△AFD 为直角三角形,且4||1,cos 5AF ADB =∠=,所以2163sin 1cos 1255ADB ADB ∠=-∠=-=, 5423,cos ,,sin sin 3335AF AD DF AD ADB CD ADC ADB ∴===⋅∠==∠=∠,在ADC 中,由正弦定理得,sin sin CD AC DAC ADC =∠∠,故25sin DAC ∠=由图可知DAC ∠为锐角,则2115cos 1sin DAC DAC ∠=-∠=,所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】关键点点睛:(1)应用余弦定理的边角关系或勾股定理求边长,由三角形面积公式求面积;(2)综合应用三角形性质、正弦定理、同角三角函数关系以及三角恒等变换求三角函数值. 23.(1)326AD =2)sin 33sin BADCAD∠∠=【分析】(1)利用正弦定理求解即可.(2)用余弦定理求出23AC =sin 3sin 2BAD ACCAD ∠=∠,代入AC 值求解即可. 【详解】解:(1)∵sin sin AD AB B ADB=∠,且75ADB ︒∠=∴362=+∴326AD =(2)∵123sin 23ABCA SB BC π==⋅⋅, 故算得4,3,1BC BD DC ===, 在ABD △中,利用正弦定理有32sin sin BAD ADB=∠∠,在ADC 中,有1sin sin AC DAC ADC =∠∠ ∴sin 3sin 2BAD AC CAD ∠=∠, ∵21416224122AC =+-⨯⨯⨯=,∴AC =∴sin sin BAD CAD∠∠=24.(1)120︒;(2)等腰钝角三角形.【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++,所以22(2)(2)a b c b c b c =+++,即222b c a bc +-=-, 所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1sin sin 6012B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.(1)3π;(2)【分析】(1)根据降幂公式和升幂公式可求得结果;(2)利用正弦定理边化角得到)6a c A π+=+,根据角A 的范围可得结果. 【详解】(1)由2cos 212sin 2B B +=,得22cos 1cos B B =-, 得(2cos 1)(cos 1)0B B -+=, 得1cos 2B =或cos 1B =-(舍), 因为0B π<<,所以3B π=.(2)由正弦定理可得2sin ,2sin a A c C == 所以22(sin sin )2(sin sin())3a c A C A A π+=+=+- 222sin 2sin cos 2cos sin 33A A A ππ=+-2sin sin A A A =+3sin A A =1cos )2A A =+6A π⎛⎫=+ ⎪⎝⎭,又20,3A π⎛⎫∈ ⎪⎝⎭,可得当3A π=时,a c +最大为 【点睛】关键点点睛:利用正弦定理边化角得到)6a c A π+=+是解题关键.26.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=; 方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c+2bc=,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sinA CB BC A+=()2sin sinA CB A+=,2sin sinA A A=又()0,Aπ∈,所以sin0A≠,所以tan A所以3Aπ=方案②:由已知正弦定理得()2cos sin2sin sin2sin sin2sin cos2cos sin sinC A B C A C C A C A C C=-=+-=+-所以2cos sin sin0,A C C-=即2cos sin sin,A C C=又()0,Cπ∈,所以sin0,C≠所以1cos2A=所以3Aπ=方案③:因为tan tan tan tanA B C B C++所以tan tan tan tan tan tan()(1tan tan)A B C B C A B C B C++==++⋅-()tan tan1tan tan tan tan tanA ABC A B C=--=tan tan tan tanB C A B C=又()A B Cπ∈,,,,所以tan0,tan0B C≠≠,所以1tan,2A A==所以3Aπ=()2由余弦定理2222cos,2,3a b c bc A a Aπ=+-==,得224b c bc=+-即()243b c bc+=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.。

北师大版高中数学必修五第二章《解三角形》检测(包含答案解析)

北师大版高中数学必修五第二章《解三角形》检测(包含答案解析)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2 km C .3 km D . 2 km2.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .43kmB .210kmC 10kmD .62km3.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B =,且2b ac =,则a cb+ 的值为( ) A 2 B 2C .2D .44.设a ,b ,c 分别为ABC 内角A ,B ,C 的对边.已知4cos 5C =,sin 5sin b C c A =,则ca=( ) A .5B 17C .32D 345.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A .223+ B .31+C .232-D .31-6.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形7.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .178.在ABC 中,2C A π-=,1sin 3B =,3AC =,则ABC 的面积为( ) A .322B .32C .22D .3329.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A .33B 33C .32D 311.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .4312.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④36cos BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( ) A .103mB .12mC .122mD .123m二、填空题13.在△ABC 中,已知AB =9,BC =7,cos (C ﹣A )=1921,则ABC 的面积为_____. 14.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,4c =,1cos 4C =-且3sin 2sin A B =,则a =________.15.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23sin C B =,则A =____.16.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.17.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.18.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 19.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.20.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.三、解答题21.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 22.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos b A a B ,sin 4sin C A =.(1)求B ;(2)在ABC 的边AC 上存在一点D 满足4AD CD =,连接BD ,若BCD △的面积为235,求b . 23.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .24.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)3cos cos A c a C =.(1)求cb; (2)若cos 2c A b =,且ABC 911,求a . 25.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.26.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+.(1)求B 的值;(2)求22sin cos()A A C +-的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解. 【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛- ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案.由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC中,由正弦定理得sin 2sin sin 75CD ADC AC DAC⋅∠===∠︒在BDC中,由正弦定理得1sin 1sin CD BDCBC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.3.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.4.C【分析】先根据正弦定理对sin 5sin b C c A =边角互化得5b a =,再结合余弦定理整理得32ca=. 【详解】解:因为sin 5sin b C c A =,所以5bc ac =,即5b a =. 所以由余弦定理得:222242525185c a a a a a =+-⋅⋅=, 整理化简得:32ca=. 故选:C. 【点睛】本题考查边角互化,余弦定理解散三角形,考查运算能力,是基础题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.7.D解析:D 【分析】由题意得出点D 为AF 的中点,由余弦定理得出7AB AD =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB=)22ABC1()sin601217sin602DEFADSS︒︒∴==故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.8.A解析:A【分析】先利用已知条件得到22B Aπ=-,再利用诱导公式和二倍角公式得到21sin3A=,又Aπ<<,可得sin A=;已知AC=BC的长度,再根据三角形的面积公式in12sS ab C=,即可得出结果.【详解】由题意得:A B Cπ++=,()B A Cπ∴=-+,又22C A C Aππ-=⇒=+,()2222B AC A Aππππ⎛⎫∴=-+=-+=-⎪⎝⎭,21sin sin2cos212sin23B A A Aπ⎛⎫∴=-==-=⎪⎝⎭,21sin3A∴=,0Aπ<<,sin A∴=由正弦定理得,sin sinBC ACA B=,即3BC=,2C Aπ=+,A∴为锐角,cos A ==,sin sin cos 2C A A π⎛⎫∴=+==⎪⎝⎭,11sin 32232ABCSBC AC C ∴=⋅=⨯=. 故选:A. 【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.9.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203sin120BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.10.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=,∴△ABC 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.11.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.12.D解析:D【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解.【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,3OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠,即2223122233h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =; 选①②③④,则3AB h =,2AC h =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠,即()222361222233h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =. 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.二、填空题13.【分析】设AD =CD =xBD =9﹣x 在中利用余弦定理可得x =6再利用余弦定理求出cosB 进而求出sinB 根据三角形的面积公式即可求解【详解】∵AB >BC ∴C >A 作CD =AD 则∠DCA =∠A 则∠BCD解析:125【分析】设AD =CD =x ,BD =9﹣x ,在BDC 中,利用余弦定理可得x =6,再利用余弦定理求出cos B ,进而求出sin B ,根据三角形的面积公式即可求解.【详解】∵AB >BC ,∴C >A ,作CD =AD ,则∠DCA =∠A ,则∠BCD =C ﹣A ,即cos ∠BCD =cos (C ﹣A )=1921, 设AD =CD =x ,则BD =9﹣x , 在BDC 中,由余弦定理得:BD 2=CD 2+BC 2﹣2CD ⋅BC ⋅cos ∠BCD ,即(9﹣x )2=x 2+49﹣2×7x 1921⋅=x 2+49﹣283x ,整理解得:x =6, ∴AD =6,BD =3,CD =6, 在BDC 中,由余弦定理得cos B =2222BD BC CD BD BC +-⋅=222376237+-⨯⨯=1121. 则sin B =21cos B -=85, 则△ABC 的面积S =12×7×9×8521=125,故答案为:125【点睛】 本题考查了余弦定理解三角形、三角形的面积公式,考查了基本运算能力,属于中档题. 14.【分析】根据正弦定理得到之间的关系再根据角对应的余弦定理结合已知条件即可求解出的值【详解】因为所以所以又因为所以解得故答案为:【点睛】本题考查利用正余弦定理解三角形其中涉及利用正弦定理完成角化边主要 解析:2【分析】根据正弦定理得到,a b 之间的关系,再根据角C 对应的余弦定理结合已知条件即可求解出a 的值.【详解】因为3sin 2sin A B =,所以32a b =,所以32b a =, 又因为4c =,1cos 4C =-,所以22316123422a a a a ⎛⎫+- ⎪⎝⎭-=⎛⎫⋅⋅ ⎪⎝⎭,解得2a =,故答案为:2.【点睛】本题考查利用正、余弦定理解三角形,其中涉及利用正弦定理完成角化边,主要考查学生对公式的熟练运用,难度一般.15.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sin C B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角A .【详解】sin C B = 根据正弦定理:sin sin b c B C= ∴可得c =根据余弦定理:2222cos a b c bc A =+-由已知可得:22a b -=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos A =由0A π<< ∴6A π= 故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值.【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BD CBD BCD=∠∠, 所以()3sin sin 60x x θθ=-,所以()13sin sin 60sin 2θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】 本题主要考查正弦定理,三角函数恒等变换,属于中档题型.17.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得【分析】 延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<, 由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案.【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BE E BCE =∠∠, 即:2sin(2)sin x παα=-,可得22cos x α=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BF BFC BCF =∠∠, 即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=, 又02<<πα,故2cos 4α=, 2 【点睛】 本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题. 18.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解.【详解】设BD DC x ==,ABD △中,22222cos 224x x ADB x +-∠==⋅⋅, ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x-∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯, 2115sin 14BAC ⎛⎫∴∠=--= ⎪⎝⎭11524152ABC S ∴=⨯⨯= 15【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.19.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角 解析:)431 【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得3cos CBD ∠=,由三角恒等变换得sin BDC ∠,再由正弦定理即可得解. 【详解】 在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=,所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅, 又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠12== 在BCD △中,由正弦定理得sin sin BC BD BDC BCD ===∠∠所以)41BC BDC =∠==.故答案为:)41. 【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题. 20.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的【分析】在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果.【详解】因为cos cos ADB ADC ∠=-∠, 所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠, 所以22192()422AB AB AB AB =+-⨯⨯⨯-, 整理得出2794AB =,所以2367AB =,所以7AB =,. 【点睛】 该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.三、解答题21.B =30°,90C =,b =c =【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可.【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c a B C A ==,∴sin 3sin 30sin sin 60a B b A ︒===︒sin 3sin 90sin sin 60a C c A ︒===︒. 22.(1)3π;(2【分析】 (1)利用正弦定理把sin cos b A B =化为sin sin cos A B A B =,从而可得tan B ,进而可求出角B ;(2)由于4AD CD =,所以51ABC BCD S AC S DC ==,从而可得ABC 的面积为用三角形面积公式可得8ac =,而由sin 4sin C A =得 4c a =,从而可求出,a c 的值,再利用余弦定理可求出b 的值.【详解】解:(1) ∵sin cos b AB =,∴sin sin cos A B A B=,∴tan B∵()0,B π∈ ∴3B π=; (2)依题意可知:51ABC BCD S AC S DC ==, ∵BCD △,∴ABC 的面积为 ∵ABC 的面积为1sin 2S ac B ==∴8ac =,∵sin 4sin C A =,∴4c a =,c =a =∴b .23.(1)证明见解析;(2 【分析】 (1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B += 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C B A C A C A c A c 所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=. 解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c +=因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin 4B =.所以1sin 2sin 22===ABC S ac B B . 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.24.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果;(2)根据三角形的面积公式以及余弦定理可求得结果.【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos A =,则sin A =又ABC 的面积为21sin 244bc A ==,则3c =,b =由余弦定理得2222cos 2792327a b c bc A =+-=+-⨯=,解得a =【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键.25.(1)120︒;(2)等腰钝角三角形.【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++,所以22(2)(2)a b c b c b c =+++,即222b c a bc +-=-, 所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.26.(1)3B π=;(2)1(,12-+. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围. 【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π= (2)∵3B π=, ∴23A C π+= ∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-, ∵203A π<<,233A πππ-<-<∴sin(2)13A π<-≤则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年北师大版必修五 第二章 解三角形 章末检测 (1)
一、选择题
1.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度是( )
A. 海里/小时
B. /小时
C. 海里/小时
D. 海里/小时
2.如图,从气球A 上测得正前方的河流的两岸,B C 的俯角分别为75,30︒︒,此时气球的高是60m ,则河流的宽度BC 等于( )
A. )240
1m -
B. )1801m -
C. )1201m
D. )301m 3.已知两灯塔A 和B 与海洋观测站C 的距离相等,灯塔A 在观察站C 的北偏东40,灯塔B 在观察站C 的南偏东60,则灯塔A 在灯塔B 的( )
A.北偏东40
B.北偏西10
C.南偏东10
D.南偏西10
4.某人从甲地去乙地共走了500m ,途经一条宽为xm 的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品未掉在河里,则能找到,已知该物品能被找到的概率为
45
,则河宽大约为( ) A. 80m
B. 50m
C. 40m
D. 100m
5.某人朝正北方向走x 千米后,向北偏东转150并走3千米,千米,那么x 的值为( )
A.
B.
C. 或
D. 3
6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60,再由点C 沿北偏东15方向走10米到位置D,测得45BDC ∠=︒,则塔AB 的高是( )
A. 10米
B. 米
C.
D.
7.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30和60,则塔高是
( )
A.400 3
m
B.
C.
D.200 3
m
8.如图,某海上缉私小分队驾驶缉私艇以40/
km h的速度由A处出发,沿北偏东60方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45方向有一艘船C,若船C位于A的北偏东30方向上,则缉私艇所在的B处与船C的距离是( )
A.km
B.km
C.km
D.km
二、填空题
9.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D的西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD=m.
10.一艘海轮从A 出发,沿北偏东60的方向航行30nmile 后到海岛B ,然后从B 出发沿南偏东60的方向航行50n mile 到达海岛C . 如果下次航行此船沿南偏东θ角的方向,直接从A 出发到达C ,则cos θ的值为
11.图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米, 水位上升1米后,水面宽 米.
12.江岸边有一炮台髙30m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距 m
三、解答题
13.如图,货轮在海上以35?/n mile h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为32︒.求此时货轮与灯塔之间的距离.
14.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105︒方向的1B 处,此时两船相距20海里,当甲船
航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距海里,问乙船每小时航行多少海里?
参考答案
一、选择题
1.答案:A
解析:由题意知754512045MPN PNM ∠=︒+︒=︒∠=︒,.,
在PMN ∆中,由正弦定理,得
sin120sin 45MN PM =︒︒
∴MN ==,
又由M 到N 所用时间为14104-= (小时),
∴船的航行速度V ==海里/时) 2.答案:C
解析:如图, 30,75,60ACD ABD AD m ∠=︒∠=︒=,
在Rt ACD ∆中,
60tan tan 30AD CD ACD ===∠︒
, 在Rt ABD ∆中,
(60602tan tan 75AD BD m ABD ====∠︒,
∴(
)
6021201BC CD BD m =-=--=-
.
3.答案:B
解析:如图,由已知得
()180406080ACB ∠=︒-︒+︒=︒,∴()1180802
A CBA ∠=∠=︒-︒.
又∵//EC BD ,∴60CBD BCE ∠=∠=︒,则605010,ABD ∠=︒-︒=
∴灯塔A 在灯塔B 的北偏西10,故选B .
4.答案:D
解析:
5.答案:C
解析:
6.答案:D
解析:在△BCD 中, 10,45,1590105,30,CD BDC BCD DBC =∠=︒∠=︒+︒=︒∠=︒由
正弦定理知
sin 45sin 30BC CD =︒︒,所以sin 45sin 30CD BC ︒==︒
.
在Rt ABC ∆中, tan 60AB BC ︒=,所以tan 60AB BC =︒=. 7.答案:A
解析:如下图,设AB 为山高, D 、C 分别为建筑物顶端与建筑物低端.
在ABC ∆中,由正弦定理,得200sin 90sin 60AC ︒=
=︒米. 在ACD ∆中,由正弦定理,得sin 30400sin1203AC CD ︒=
=︒米. 故该建筑物高为4003
米.
8.答案:D
解析:由题意可知30BAC ∠=︒,75ACB ∠=︒,
根据正弦定理,得
sin 75sin 30AB BC =︒︒,
∴10)sin 75BC km ==︒
二、填空题
9.答案:解析:在ABC ∆中, 30CBA ∠=︒,105ABC ∠=,
∴45ACB ∠=︒,又∵600AB m =, 由正弦定理得sin 45sin 30
AB BC =,
代入AB 解得BC =,
在Rt BCD ∆中, tan 30)CD BC m =⨯== 10.答案:
17 解析:
11.答案:
解析:
12.答案:解析:如图,
()tan 4530OM AO m ==,
)3
tan 3030ON AO m ===, 在MON ∆中,由余弦定理得,
)
MN m ===. 三、解答题
13.答案:船与灯塔间的距离为35 4
n mile n 试题解析:在ABC ∆中152?122?30?B ∠=-=,180152?32?60?o C ∠=-+=,180?30?60?90?A ∠=--=, 352BC =, ∴3535sin 30?=24
AC =.
答:船与灯塔间的距离为
35 4
n mile n . 解析:
14.答案:如图,连结12A B ,由已知22A B =海里,
122060
A A == (海里), ∴1222A A A
B =,
又12218012060A A B ∠=︒-︒=︒,
∴122A A B ∆是等边三角形,
∴1212A B A A == (海里),
由已知, 1120A B =海里,
1121056045B A B ∠=︒-︒=︒,
在121A B B ∆中,由余弦定理,得
22212111211122cos 45B B A B A B A B A B =+-⋅⋅︒
2220220=+-⨯⨯ 200=.
∴12B B = (海里).
因此,60= (海里/小时).
答:乙船每小时航行海里.
解析:。

相关文档
最新文档