公务员考试行测答题技巧:行测数量关系常考题型之不定方程

合集下载

最新行测数量关系解题技巧:解不定方程

最新行测数量关系解题技巧:解不定方程

行测数量关系解题技巧:解不定方程>行测数量关系解题技巧:解不定方程题型介绍 1.不定方程定义:未知数的个数多于独立方程的个数(例:2x+3y=21,未知数个数2多于方程的个数1)2.解不定方程:常见的有两个范围(正整数范围内即不定方程;任意范围内即解不定方程组);无论哪种情况其核心都为带入排除。

例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4若想求解其原则为带入选项选择符合等式即题干限制条件的答案,但在考试中若四个选项依次带入的话会浪费时间,所以有些解题技巧可以帮助快速排除选项;因此其解题核心为带入排除。

解题技巧 (一)正整数范围内1.整除:若某未知数系数与常数项存在公约数则可以用整除排除选项例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4【解析】若想求x则需将等式中的y消除,其中常数项21与y前的系数3有公约数3则观察等式,一个能被3整除的数3y加上某数其和21也能被3整除,则某数2x也要能被3整除,因为2不能被3整除所以只能是x能被3整除,因此观察选项,选C。

2.奇偶性:未知数前系数为一奇一偶的情况可以用奇偶性排除选项3.尾数法:某未知数前系数的位数为0或5的情况可以用尾数法排除选项例:(奇偶性+尾数法)已知4x+5y=31;且x、y均为正整数,求x=()A.1B.2C.3D.4【解析】观察等式,未知数前系数一奇一偶的情况,根据奇偶性4一定为偶数加上某数其和31为奇数则某数5y一定为奇数;y前系数为5则根据尾数法5y尾数为0或5,且5y为奇数的话则其尾数只能是5,则5y的尾数5加上某数的尾数的和是31的尾数1,那么某数4x尾数只能是6,观察选项,能使4x尾数是6的只有D项4,所以选D。

(二)任意范围内特值法:求解不定方程组中相关式子的值;令其中某未知数为0。

A.9B.10C.11D.12【解析】未知数的个数3个多于独立方程的个数两个,所以求解不定方程组,且求解的是x+y+z式子的结果,所以可以用特值法解不定方程组。

公务员考试行测备考:行测秒杀之不定方程题型

公务员考试行测备考:行测秒杀之不定方程题型

公务员考试行测备考:行测秒杀之不定方程题型近年来国家公务员行政能力测试,数量关系中题型较多,然而不定方程问题在整个试卷中考查的频度较高,即常考题型。

而方程问题主要包括两种形式,分为定方程和不定方程。

本文将从不定方程方面讲述。

不定方程问题包括不定方程问题和不定方程组。

不定方程的解法通常是代入排除思想、数字特性思想中的奇偶特性和尾数法。

不定方程组又分为求单个未知数和求整体两种。

求单个未知数,主要就是消元法,转化成不定方程,再用不定方程的解法求解。

求整体,主要是赋0法,消去系数复杂的未知项。

【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。

则甲、乙、丙三型产量之比为:( )?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1[答案]D[解析]数字特性思想,由3乙+6丙=4甲,得甲应为3的倍数。

观察选项只有D项满足。

【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13[答案]D[解析]不定方程、奇偶特性和尾数法。

设大盒有x个,小盒有y个,则12x+5y=99,解得x=7,y=3(舍去)或者x=2,y=15。

因此y-x=13。

【例4】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )A.36B.37C.39D.41[答案]D[解析]设每位钢琴老师带x人,拉丁老师带y人,则5x+6y=76,通过奇偶特性判定x 为偶数,又是质数,故x=2,y=11,因此还剩学员4×2+3×11=41(人)。

公务员考试行测数量关系答题技巧:快速解不定方程

公务员考试行测数量关系答题技巧:快速解不定方程
【例题2】:3x+4y=23,x,y均为正整数,x为()
A、2 B、 5 C、6 D、7
【中公解析】B,通过观察发现,4y是一个偶数,23是一个奇数,所以3x一定是一个奇数,所以x一定为奇数,排除A,C答案,代入B答案,此时y=2,符合题意,所以选择答案B。
方法三:特值法
秒解特征:求解不定式方程组中表达式的值
【中公解析】B,题干中最后求解x+y+z为面的结果产生影响,所以我们取z=0,则可以得到x=50,y=50,所以x+y+z=100。
总的来说,解决不定方程的难度不大,要想快速解决问题,只需要找到题干中的特征,运用相对应的办法,就可以快速得出答案!
公务员考试行测数量关系答题技巧:快速解不定方程
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
方程可以说是解决数学问题的“万精油”,不管是国考省考市考,还是事业单位特殊岗位,行测考试中方程出现的频率可谓是越来越高,很多同学对于方程也是又爱又恨,最头疼的问题是莫过于能列出方程,却解不出来。接下来,中公教育就教大家快速解一类特殊的方程——不定方程。
首先我们看这样一个式子:2x+3y=10,类似这样未知数的个数大于独立方程得个数的方程就叫做不定方程了,那这类式子按道理应该是无数组解,为什么可以快速解出答案呢?这就要说明一下我们这里的解是在正整数的范围内求解,因为一般这样的解会有一个限定条件,比如人的个数,汽车的辆数,羊的头数,他们都是一个正整数,所以我们才可以快速解出答案。

最新行测数量关系技巧:行之有效,测之有技之不定方程

最新行测数量关系技巧:行之有效,测之有技之不定方程

一、什么是不定方程未知数的个数大于独立方程个数的等式,称为不定方程。

二、不定方程求解方法1.奇偶性当方程中未知数的系数一奇一偶时,可利用奇偶性求解。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数;奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数例1.已知7x+4y=29,x、y为正整数,则x为( )。

A.5B.4C.2D.6【解析】A。

4y为偶数,29为奇数,所以7x一定为奇数,所以x为奇数,故选择A选项。

2.整除法当方程中的常数与其中一个未知数前系数有非1的公约数时,可以利用整除法求解。

例2.已知3x+7y=33,x,y均为正整数,则y为( )A.11B.10C.9D.8【解析】C。

根据题干所给信息,求不定方程中未知数y 的可能性取值,常数33与x前系数3有公约数3,考虑使用整除法。

3x与33均为3的倍数,则说明7y一定也是3的倍数,又因为7不是3的倍数,则说明y一定是3的倍数。

选项中只有y取9时符合题意,故选择C选项。

3.尾数法当方程中未知数的系数出现以0或5结尾时,可以考虑尾数法。

(一个数乘以尾数为5的数,结果的尾数要么是0要么是5,一个数乘以尾数为0的数,结果的尾数一定是0)例3.3x+10y=41,且x和y都是整数,那么请问x可能是以下哪个数据?A.3B.5C.7D.9【解析】C。

根据题干信息,未知数y前系数为10,可以考虑使用尾数法。

10y这一部分尾数一定是0,41的尾数是1,那么3x这一部分的尾数一定是1,在所给的四个选项中,只有当x=7时,3×7=21,尾数为1,符合题意,故选择C 选项。

不定方程的解是有无数组的,只能确定其中一个未知数的值,另外一个未知数才可以求出来,我们用的解题方法都是根据题目特点去限制未知数的范围,选出符合题意的正确结果。

因此在一些题目里也会将多种方法结合在一起去求解。

通过下面的例题我们一起学一学:例4.已知6x+5y=41,x、y为正整数,则x为( )A.3B.4C.5D.6【解析】D。

公务员考试行测常考题型讲解:不定方程

公务员考试行测常考题型讲解:不定方程

公务员考试行测常考题型讲解:不定方程
紧随时间的推移,2017年的省考越来越近,很多考生都已经进入了紧张的备考阶段,在
备考过程中没有复习方向和解题技巧不行,尤其是行测数学运算的备考。

在考试中,我们
经常会遇到这样一类题目,根据题目中的条件列出来的方程个数少于未知数的个数,我们
将这类方程(方程组)称为不定方程;对于不定方程的求解,常用的方法有整除法、特值法、
同余特性、代入排除以及奇偶性。

今天中公教育专家重点说一下如何应用同余特性来求解
不定方程,帮助大家迅速地排除错误答案,锁定正确答案。

首先,我们先来了解一下同余特性的性质:
性质1:余数的和决定和的余数; 性质2:余数的差决定差的余数;
性质3:余数的积决定积的余数; 性质4:余数的幂决定幂的余数;
下面我们通过几道例题来体会一下数的同余特性在运算过程中如何运用:
例1.已知7a+8b=11,其中a、b都是正整数且a>b,求a-b=?
在这道题目里面我们要求a需要消去b,就是要消去8b,则(8÷约数)…0,即可将8消掉。

(注:8的约数有2、4、8,但做题时除以8,因为约数越大选项越精确)
【答案】中公解析:根据同余特性,给方程两边同除以8,则:
所以,根据同余特性可知,a÷8…1可得:a=1或9,带入求解得:b=13或6;
题目要求a>b,所以a=9,b=6;最终求得:a-b=3。

行测数量关系技巧:巧解不定方程

行测数量关系技巧:巧解不定方程

行测数量关系技巧:巧解不定方程在行测考试的数量关系当中,经常会遇到题目中出现等量关系,然后让我们利用题中的等量关系来构建方程进行求解的题目,那么这类等量关系构建的方程我们通常可以分为两类,一类是一般方程,另一类是不定方程。

一般方程相信大家已经接触的非常多,求解起来也会比较容易,不定方程对于大家来说就可能接触的比较少,会比较陌生了,那么今天给大家讲解一下,什么是不定方程,它又是如何进行求解的。

1、整除法3x+8y=36,已知x、y为正整数,则y=?A、1B、3C、5D、7(解析)答案:B。

这个题目很明显是一个不定方程分题目,但是我们前面说,不定方程应该有无数组解,但是为什么这里只有一组解,可以放在单选题里面,那是因为在题目中有限定,下、y都是正整数,所以这个解就变得有限组解了。

那么面对这样的题目我们可以怎么去做呢,第一个大家最容易想到的当然是代入了,将每个选项代入看答案是否合适,这样当然可以,但是我们会发现比较浪费时间,所以我们有了第二种方法我们通过观察这个式子,会发现系数3和常数项36都是3的倍数,那么我们可以知道8y也应该是3的倍数,8不是3的整数倍,那么必然就应该是3的倍数结合选项可知,只有B选项才是符合条件的。

这个方法我们叫做整除法,当未知数系数跟常数项有公约数就可以使用。

2、尾数法或奇偶性4x+5y=23,已知x、y为正整数,求xA、1B、2C、3D、4(解析)那么这道题目我们会发现前面说过的整除法就不适用了,那么这里我们可以使用什么方法呢,还是首先观察系数跟常数项,我们会发现系数有5,那么5y肯定是一个以0或5结尾的数,又因为23是一个奇数,4x是一个偶数,所以5y肯定是一个奇数,一定是5结尾,那么4x肯定要是8结尾才能加成3结尾的数,所以这个题目选B。

利润问题的核心公式有:1利润=售价-成本2利润率=利润/成本3售价=成本×1+利润率4打折=折后售价/折前售价对于一般利润问题,我们会发现题干中都会存在一些明显的等量关系,因此通过这些等量关系列方程解题是利润问题解题的关键。

国考行测不定事件备考(精选3篇)

国考行测不定事件备考(精选3篇)

国考行测不定事件备考(精选3篇)国考行测不定大事备考(精选3篇)许多备考公务员考试的小伙伴中对行测数量关系始终摸不清头脑,只是对一些常见的解题方法还有印象,比如我们从学校就开头接触的方程法。

下面我给大家共享国考行测不定大事备考,盼望能够关心大家!国考行测不定大事备考(精选篇1)一、含义不定方程:是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。

二、常用方法及适用条件1、整除法:某一个未知数的系数与常数项有公约数;2、奇偶性:未知数的系数一奇一偶;3、尾数法:某一未知数的系数为5的倍数;4、特值法:求解不定方程组,且所求为一个式子。

三、例题精讲例1.某批发市场有大、小两种规格的盒装鸡蛋,每个大盒里装有23个鸡蛋,每个小盒里装有16个鸡蛋。

餐厅选购员小王去该市场买了500个鸡蛋,则大盒装一共有多少盒?A.6B.8C.10D.12【答案】D。

解析:设大盒数量为x,小盒数量为y,则23x+16y=500,由于500能够被4整除,16y也能够被4整除,因此则23x也是能够被4整除,即x是能够被4整除,排解A、C,代入B、D验证即可,,x=12、y=14符合题意,故选择D。

例2. 办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。

每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。

要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为( )个。

A.1、6B.2、4C.4、1D.3、2【答案】D。

解析:设需要红色文件袋x个、蓝色y个,则有7x+4y=29,4y为偶数,29为奇数,则7x为奇数,x为奇数。

排解B、C,代入A项,x=1时,y取不到整数,排解,直接选D,验证D项,当x=3时,y=2,满意题意。

例3. 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装金应个装5个苹果,共用了十多个盒子同好装完。

问题:两种包装盒相差多少个?A.3B.4C.7D.13【答案】D。

行测解题技巧——特性分析法巧解不定方程

行测解题技巧——特性分析法巧解不定方程

特性分析法巧解行测数量关系中的不定方程数量关系,是公务员考试的一个重要题型,这个题型在公务员考试初期,就一直存在,并且在近几年的试题中,数字推理消失了,数学运算部分的题量逐渐增大,同时在近几年的公务员考试数量关系部分,不定方程出现的概率呈现逐渐上升的趋势,单单就是国考里面,已经连续几年对不定方程的考察,相关题目基本集中在采用特性分析法解答上面,采用赋值分析法的,相对较少,那具体什么是不定方程,什么是特性分析法呢?所谓不定方程,就是说我们列出来的方程或者方程组中,未知数个数多于方程个数,比如说5x-6y-34。

如果我们对x、y没有任何限制,那么我们得到的解一定是无穷个的,但是在公务员考试中,试题都是有唯一的解的,这就要求对方程的解有一定的限制,通常要求是整数,或者是质数等比较特殊的数值,所以我们在解答的时候,往往是有据可依的。

所谓特性分析法,就是利用未知数的某些特性,比如是整数,是质数等等,从而确定出未知数的具体值。

我们在使用特定分析法的时候,通常会从三个方面来考虑解答不定方程,(1)整除;(2)奇偶性;(3)尾数。

一般来说,只要我们合理的利用上面的整除、奇偶以及尾数,我们就可以快速的得到试题的答案。

【真题示例1】某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元。

某部门所有人员共捐款320元,已知该部门总人数超过10人,问该部门可能有几名部门领导?A.1B.2C.3D.4【答案】B【解析】根据题意,假设这个单位有部门领导x人,有员工y人,则有x+y>10,50x+20y=320,也就是5x+2y=32。

由于32、2y均为偶数,那么5x只能是偶数,则x=2、4(选项最大的是4);如果是2,那么y=11,此时x+y=13,满足条件,故本题的正确答案为B选项。

【真题示例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

行测数量关系技巧:如何巧解不定方程

行测数量关系技巧:如何巧解不定方程

行测数量关系技巧:如何巧解不定方程不定方程在行测中经常考到,为大家提供行测数量关系技巧:如何巧解不定方程,一起来看看吧!希望大家顺利通过考试!行测数量关系技巧:如何巧解不定方程方程法是在公务员考试行测中比较常用且最基础的一种方法。

而在具体使用中,普通方程大家都较为熟悉,而对于不定方程不太了解。

其实,不定方程也是在考试中常考查的一种题型,同时也是较为简单的部分,学习不定方程,巧解方程,不定方程将变为送分题,下面就来带领大家学习了解不定方程。

一、不定方程定义:未知数的个数大于独立方程的个数。

例:3X+4Y=16二、不定方程的求解:方程法主要根据题干的条件,构建等量关系,列出方程式,接下来进行求解。

对于不定方程来说,只看不定方程,如3X+4Y=16是有无数组解的,那要如何求出具体X、Y为多少呢?其实题干一般会给出限制条件,例如:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果共用了十多个盒子刚好装完。

问两种包装盒相差多少个?我们可以直接设大包装盒用了X个,小包装盒用了Y个,列出方程:12X+5Y=99。

接下来就是具体求解,通过题意可以看到无论大小盒子,个数肯定为整数,因此对X、Y就限定了范围便于求解。

在考试中一般题目都会有正整数的限定条件,我们就可以利用这个进行求解。

1、整除法:存在未知数系数与常数存在共同因数时使用例:已知6X+7Y=49,X、Y为正整数,求X=?A.3B.4C.5D.7【解析】D。

我们通过式子可以看出来,7Y和49都可以被7整除,所以6X肯定也可以被7整除,6不能够被7整除,那么X 一定能够被7整除,选择D。

2、奇偶性:利用最多的方式例:已知7X+8Y=43,X、Y为正整数,求X=?A.5B.4C.3D.2【解析】D。

8Y为偶数,43为奇数,所以7X为奇数,所以X 为奇数,排除B、C,代入A选项若X=5,则Y=1,所以选择D。

3、尾数法:利用0、5尾数的特性,0乘任何数尾数为0.5乘奇数尾数为5,乘偶数尾数为0例:已知6X+5Y=41,X、Y为正整数,求X=?A.6B.5C.4D.3【解析】A。

2020国家公务员考试行测数量关系答题技巧:不定方程的3种常见解法

2020国家公务员考试行测数量关系答题技巧:不定方程的3种常见解法

2020国家公务员考试行测数量关系答题技巧:不定方程的3种常见解法首先,大家要知道什么是不定方程,不定方程是未知数个数大于独立方程个数。

比如说X+2Y=10这个方程有无数组解,但是在行测中,对于未知数往往会限定为正整数。

那么就会大大缩减解的数量。

下面来介绍一些常见的解法。

一、整除法:未知数系数和常数存在公因数例1:已知3x+7y=36,x、y分别为正整数,求y=?A、1B、2C、3D、4【解析】答案:C。

观察3x和36都能被3整除。

由整数的特性可知7y一定也能被3整除。

因此y一定能被3整除。

直接锁定C。

二、奇偶特性:系数一奇一偶例题2:办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。

每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。

要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量共有多少个?A、2B、3C、4D、5【解析】答案:D。

设红色文件袋为x个,设蓝色文件袋为y个,则可得到方程7x+4y=29。

已知偶数乘任一数都是偶数可知4y一定是偶数。

由奇+偶=奇可知7x一定为奇数。

因此x一定为奇数。

将x=1,3,5....依次带入可知x=3,y=2。

x+y=5。

选择D。

三、尾数法:利用末尾0或5的数字位数特性例3:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?A、3B、4C、7D、13【解析】答案:D。

设大包装盒的个数为x,小包装盒为y,可得到12x+5y=99,由题意可知x+y>10。

由整数的性质可知5y尾数只能是0、5,和为99。

则对应的12x的尾数只能是9、4,2相乘尾数不可能是9,所以12x尾数只能是4。

可知x尾数一定是2或者7。

又因为和为99,x小于10。

所以x只能为2或者7。

x=2时,y=15,x+y=17,满足题意。

15-2=13;当x=7,y=3,x+y=10,不满足题意,选择D。

2020国家公务员考试行测最容易拿分的题型之不定方程

2020国家公务员考试行测最容易拿分的题型之不定方程

2020国家公务员考试行测最容易拿分的题型之不定方程一、概念未知数的个数大于独立方程的个数。

比如7x+8y=111,典型的不定方程。

二、解法1、整除法当等式后边的常数项与前边某一未知数系数有相同整除特性(有公共因数)考虑用整除法。

例1:幼儿园向小朋友发放小红花,其中表现优秀的小朋友每人发6朵小红花,表现良好的小朋友每人发1朵小红花,获花的所有小朋友一共获得18朵小红花,已知表现优秀、良好的小朋友都有,问可能有多少小朋友表现良好?A.5B. 6C.7D.8解析:B。

设表现优秀的小朋友人数为x,表现良好的人数y,x>0,y>0。

根据题意有:6x+y=18,一个独立方程两个未知数为不定方程,观察等式后边常数项与前边未知数x的系数6有公共的因数6,既都能被6整除,因此y一定能被6整除,结合选项排除A、C和D选项,选择B项。

注意:以找最大公约数为准。

2、奇偶法未知数系数中出现偶数考虑用奇偶法。

注:奇数±奇数=偶数±偶数=偶数,奇数±偶数=奇数例2:装某种产品的盒子有大、小两种,大盒每盒装11个,小盒每盒装8个,要把89个产品装入盒中,要求每个盒子都恰好装满,需要大、小盒子各多少个?A.3、7B. 4、6C.5、4D.6、3解析:A。

设大盒个数为x,小盒个数为y,x>0,y>0。

根据题意有:11x+8y=89,一个独立方程两个未知数为不定方程,观察等式,未知数y的系数8是偶数,8y一定是偶数,常数项89是奇数,所以11x一定是奇数,x一定是奇数,排除B、D选项。

带入选项A符合题意。

验证D项,把x=6,y=3带入方程11×6+8×3=90不符合题意,错误。

正确选项为A。

3、尾数法当未知数系数中出现以0或5结尾的数字考虑用尾数法。

例3:某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元,某部门所有人员共捐款320元,已知该部门总人数超过10人,问该部门可能有几名部门领导?A.1B. 2C.3D.4解析:B。

2024年国考行测指导:不定方程的速解方法

2024年国考行测指导:不定方程的速解方法

2024年国考行测指导:不定方程的速解方法行测考试时间争分夺秒,留给数量关系的时间更是少之又少。

我们应该选择什么样的题目在短时间内进行解答,其中不定方程就是“不二选择”。

一、不定方程特征未知数的个数大于独立方程的个数,一般具有无数个解。

二、不定方程解题技巧1、整除法:某一未知数的系数,与常数项存在非1的公约数。

例题:2x+3y=30,已知x,y均为正整数,则x可能为:A、4B、5C、6D、7【答案】C。

参考解析:要想求x,我们可以把x移到等式左边,其他移到等式右边,会得到2x=30-3y;再整理一下2x=3(10-y);到这我们可以观察到,“2x”整体是3的倍数,但是在这里“2”不是3的倍数,所以只能是“x”是3的倍数。

观察选项可知C选项符合性质。

2、奇偶性:未知数前面的系数奇偶不同时。

例题:7x+4y=29,已知x,y均为正整数,则x可能为:A、1B、2C、4D、3【答案】D。

参考解析:这个题目,显然任意未知数前的系数都与常数项不存在整除关系,所以整除性质不能利用,可以来考虑其他性质,例如奇偶性。

观察题干可知“29”是奇数,“4y”是偶数(一个偶数乘任何数都是偶数),只有奇数加偶数结果为奇数。

那么“7x”整体应为奇数,所以x为奇数。

观察选项B、C排除。

验证A、D项,代入A项得:7+4y=29,4y=22,y=5.5。

要求y为正整数,所以A不成立,选择D。

3、尾数法:某一未知数的系数存在5或者5的倍数时。

常和奇偶性联系着一起用。

例题:4x+5y=49,已知x,y均为正整数,则x可能为:A、8B、9C、10D、11【答案】D。

参考解析:观察数据,等式中存在5y,因为5乘以任何一个数尾数是5或者0。

尾0的数值是偶数,尾5的数值是奇数。

所以在这一部分中,可以利用奇偶性判别尾0还是尾5。

其中49是奇数,“4x”是偶数,所以“5y”整体是奇数,可知“5y”整体为5,49尾9,所以可知“4x”整体尾4。

观察选项只有D满足。

公考行测中的不定方程如何解

公考行测中的不定方程如何解

公考行测中的不定方程如何解中公教育资深专家李海军方程思想在近几年公务员考试行测中占据很大的比例,是国考数量关系考察频率较高的知识点,尤其是不定方程的求解,所以这一部分知识是至关重要的,中公教育专家建议考生们要引起足够重视。

一、什么就是不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。

例如:3x+2y=10。

二、不定方程的数学分析1、利用奇偶性解题原理:奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数,奇数*奇数=奇数,奇数*偶数=偶数,偶数*偶数=偶数。

例题:某地劳动部门租用甲、乙两个教室开展农村实用人才计划。

两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。

两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。

问甲教室当月共举办了多少次这项培训?【国考-2021】a.8b.10c.12d.15【中公解析】d。

根据题意,甲教室一次可以坐50人,乙教室可以坐45人,设甲教室举办x次,乙教室举办y次,则可以得到:x+y=27,50x+45=1290。

很多人会去计算,实际上,利用我们讲的方法,就可以“看出”答案。

由x+y=27可知x,y一定是一个奇数,一个偶数。

若x是偶数,y是奇数,则50x是偶数,45y是奇数,加和是奇数,与题干加和为1290(偶数)矛盾,所以x是奇数,y是偶数,答案显然为d。

2、利用质合性解题原理:一般和奇偶性结合使用。

2是唯一的偶质数(既是质数,又是偶数)。

例题:某儿童艺术培训中心存有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均值地让给各个老师老师率领,刚好能分配回去,且每位老师所带的学生数量都就是质数。

后来由于学生人数增加,培训中心只留存了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量维持不变,那么目前培训中心剩学员多少人?【国考-2021】a.36b.37c.39d.41【中公解析】d。

公务员行测数量关系答题技巧:不定方程的几种解法

公务员行测数量关系答题技巧:不定方程的几种解法

公务员行测数量关系答题技巧:不定方程的几种解法不定方程或不定方程组的定义:未知数的个数大于独立方程的个数。

独立方程:所给出的方程不能由其它所给的方程通过线性组合得到。

不定方程得解法主要有以下几种:1、整除法:一般当某个未知数得系数与等式右边得常数项存在共同的整数因素时使用。

Egg:3x+7y=24(x、y均为正整数)解析:x的系数3与右边的常数24均为3的倍数,所以7y为3的倍数,所以y为3的倍数,推出y只能为3,把y=3带入,得到x 为1。

例1:小明去超市买文具,一支钢笔9元,一个文具盒11元,最终小明总共花费了108元,则钢笔与文具盒共买了多少?(每种至少买一个)A.12B.11C.10D.9【答案】C。

解析:设钢笔买了X支,文具盒买了Y个,则有9X+11Y=108,X的系数9与常数108均为9的倍数,所以11Y为9的倍数,即Y为9的倍数,Y只能为9,Y=9代入,得到X=1,X+Y=10,所以总共购买的数量为10,答案选C。

2、尾数法:一般当某个未知数的系数为5或者5的倍数时使用。

Egg:5X+7Y=43(X、Y均为正整数)解:X为正整数,所以5X的尾数只能为0或者5,当5X的尾数为0时,7Y的尾数为3,Y最小为9,此时X为-4,不满足题干要求,当5X的尾数为5,此时7Y的尾数为8,Y最少为4,当Y=4,此时X=3,满足条件。

3、奇偶性:结合奇偶性的基本性质,且当等式当中的某个未知数或者所求的式子的奇偶性可以确定时使用,一般需要结合代入排除法。

Egg:7X+8Y=43,1求X=?(X、Y均为正整数)A.5B.4C.3D.2解析:8Y为偶数,43为奇数,所以7X为奇数,所以X为奇数,排除B、C,代入A选项若X=5,则Y=1,所以选择A。

Egg:9X+11Y=108,求X+Y=?(X、Y均为正整数)A.12B.11C.10D.9解析:除了之前在例1中用整除法以外,还可以用奇偶性结合代入排除法,因为X的奇偶性与9X的奇偶性一致,Y的奇偶性与11Y的奇偶性一致,所以X+Y得奇偶性与9X+11Y的奇偶性一致,为一个偶数,所以排除B、D,代入A,即假设X+Y=12,又9X+11Y=108,联立方程组,得到X=12,Y=0,不满足,所以选择C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公务员考试行测答题技巧:行测数量关系常考题型之不定方程行测答题技巧:在公务员考试的行测数学运算部分中,涉及方程的题很多,而不定方程是其中的难点。

不定方程是指未知数的数量多于方程的数量,且未知数受到某些限制(如规定是整数)的方程。

在数学运算中最常见的不定方程是形如ax+by=c的二元一次不定方程,其中a、b、c均为整数。

北京人事考试网为广大考生提供公务员考试行测答题技巧:行测数量关系常考题型之不定方程。

中公教育专家指出,解不定方程最常见的是利用整数的奇偶性、质合性、尾数等性质来缩小解题的范围。

另外还可以根据选项通过代入排除来得出正确答案。

1.利用尾数法
例1.某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?
A.3
B.4
C.6
D.8
中公解析:设需要x枚5份和y枚7分的硬币恰好支付142分货款,由题意可列
5x+7y=142,因为5x的尾数只能是0或5,则7y的尾数为2或7,那么y可以取1,6,11,16这四种情况,所以所求的方法数为4,选择B。

但是对于不定方程组来说,上述方法就显得有些不太够用了,中公教育专家在此另外再给各位考生讲解一下快速解不定方程组的方法。

2.利用换元法
例2.小明去商店给学校购买办公用品,若买3个记事本、7支钢笔、1把尺子共需32元钱,若买4个记事本、10支钢笔、1把尺子共需43元钱。

那么,若记事本、钢笔、尺子各买一件,则需要多少钱?
A.8
B.10
C.12
D.14
中公解析:设每个记事本x元,每支钢笔y元,每把尺子z元。

则可以列出两个方程:3x+7y+z=32,4 x+10y+z=43。

这个有3个求知数,2个方程,很明显是不定方程组。

这道题只需要求x+y+z=?即可。

因此可以把x+y+z当作一个整体,用另外一个未知数来代替。

将前面两个方程可以化简为:3x+7y+z=(x+y+z)+2(x+3y)32,4 x+10y+z=(x+y+z)+3(x+3y)=43。

令x+y+z=k,x+3y =t,原来的方程组化简为:k+2 t=32,k+3 t=43。

通过这样换元,将原来的三元一次不定方程组,化简为二元一次方程组。

很容易可以解出:k=10, t=11。


x+y+z=10,选B。

3.利用特值法
例3.某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2倍之和等于丙型产量的7倍。

则甲、乙、丙三型产量之比为:
A.5:4:3
B.4:3:2
C.4:2:1
D.3:2:1
中公解析:设甲、乙、丙三型产量分别为x、y、z,则可以列出两个方程:3y+6z= 4x,x+2y=7z。

这道题需求出x:y:z=?由于是求出的三个未知数的比例,因此这三个未知数的具体值是不会影响最终的比例的。

那么我们设这三个未知数中的任意一个为特值,那么三元一次不定方程组就化简成二元一次方程组了。

假设z=1,那么原方程组变为:4x-3y=6,x+2y=7。

可以很容易解得:x=3,y=2。

因此x:y:z=3:2:1,故正确答案为D。

中公教育专家建议考生熟练掌握以上解题技巧,提高做题效率,在考试中一举拿下不定方程题。

相关文档
最新文档