同济大学数学系《高等数学》第7版上册章节题库(导数与微分)【圣才出品】
同济大学数学系《高等数学》(上册)学习辅导书(导数与微分)【圣才出品】
在区间 Ix={x|x=f(y),y∈Iy}内也可导,且
f 1 x
1 或 dy
f y dx
1 dx
dy
3.复合函数的求导法则
如果 u=g(x)在点 x 可导,而 y=f(u)在点 u=g(x)可导,则复合函数 y=f[g
(x)]在点 x 可导,且其导数为
dy f u g x或 dy dy du
3 / 69
圣才电子书 十万种考研考证电子书、题库视频学习平台
⑬ arcsin x 1
⑭ arccos x 1
1 x2
1 x2
⑮(arctanx)′=1/(1+x2) ⑯(arccotx)′=-1/(1+x2)
(2)函数的和、差、积、商的求导法则
设 u=u(x),v=v(x)都可导,则:
指函数表示为 y=evlnu,则
y evlnu
v
ln u v
u u
u
v
v
ln u
vu u
2.由参数方程所确定的函数的导数
若参数方程
x t
y
t
5 / 69
圣才电子书
是二阶可导的,则
十万种考研考证电子书、题库视频学习平台
(1)参数方程的一阶导数公式
二、函数的求导法则
1.函数的和、差、积、商的求导法则
(1)定理
如果函数 u=u(x)及 v=v(x)都在点 x 具有导数,则它们的和、差、积、商(除分
母为零的点外)都在点 x 具有导数,且
①[u(x)±v(x)]′=u′(x)±v′(x);
②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
③
u
v
x x
同济大学数学系《高等数学》第7版上册课后习题(不定积分)【圣才出品】
同济大学数学系《高等数学》第7版上册课后习题第四章不定积分习题4-1不定积分的概念与性质1.利用导数验证下列等式:解:2.求下列不定积分:(g是常数);解:3.含有未知函数的导数的方程称为微分方程,例如方程,其中为未知函数的导数,f(x)为已知函数.如果将函数y=φ(x)代入微分方程,使微分方程成为恒等式,那么函数y=φ(x)就称为这个微分方程的解.求下列微分方程满足所给条件的解:解:(1)因为,得C=0,所以所求的解为,因为,得C1=2,因此因为,得C2=-2,所以所求的解为4.汽车以20m/s的速度行驶,刹车后匀减速行驶了50m停住,求刹车加速度.可执行下列步骤:(1)求微分方程满足条件及的解;(2)求使的t值;(3)求使s=50的k值.解:(1),因为,得C1=20,因此因为,得C2=0,所以所求的解为(2)令,解得(3)根据题意,当时,s=50,即解得k=4,即得刹车加速度为-4m/s2.5.一曲线通过点(e2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程.解:设曲线方程为y=f(x),则点(x,y)处的切线斜率为f'(x),由条件得因此f(x)为的一个原函数,得又根据条件曲线过点(e2,3),有f(e2)=3解得C=1,即得所求曲线方程为y=lnx+16.一物体因为静止开始运动,经t秒后的速度是3t2(m/s),问(1)在3秒后物体离开出发点的距离是多少?(2)物体走完360m需要多少时间?解:(1)设此物体自原点沿横轴正向由静止开始运动,位移函数为s=s(t),则由假设可知s(0)=0,因此s(t)=t3,所以所求距离为s(3)=27(m).(2)因为t3=360,得7.证明函数arcsin(2x-1),arccos(1-2x)和都是的原函数.证:因此结论成立.习题4-2换元积分法1.在下列各式等号右端的空白处填入适当的系数,使等式成立(例如:。
同济大学数学系《高等数学》第7版上册配套题库【考研真题+模拟试题】【圣才出品】
4 / 106
圣才电子书
8.设函数
十万种考研考证电子书、题库视频学习平台
,则( ).[数二 2013 研]
A.x=π是函数 F(x)的跳跃间断点
B.x=π是函数 F(x)的可去间断点
C.F(x)在 x=π处连续但不可导
D.F(x)在 x=π处可导
【答案】C
【解析】由题意得
ln 1 2x ~ 2xa
1
1 cos x
~
(1
1
x2) a
(
1
)
1 a
2
xa
2
2
由题意可知
2
1
,所以
1
的取值范围是 (1,2)
.
5.设
lim
n
a
n
a
0 ,则当 n
充分大时,下列正确的有(
).[数三 2014 研]
A. an
a 2
B. an
a 2
C. an
a
1 n
D. an
a
1 n
【答案】A
【解析】因为
f
(
x)
lim
x 1
x(
x x 1 x 1) ln
x
x ln x
lim
x 1
(
x
1)
ln
x
,故 x 1不是函数
f (x) 的可
6 、题库视频学习平台
去间断点.因此,可去间断点的个数为 2.
11.曲线
y
x2 x2
x 1
lim
n
a
n
a
0 ,所以
0 ,N
,当 n
N
时,有
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 导数与微分(圣才出品
区间 Ix={x|x=f(y),y∈Iy}内也可导,且
f 1 x
f
1
y
或
dy dx
1 dx
dy
3.复合函数的求导法则
如果 u=g(x)在点 x 可导,而 y=f(u)在点 u=g(x)可导,则复合函数 y=f[g(x)]
在点 x 可导,且其导数为
dy f ug x或 dy dy du
dx
dx du dx
u nv
nu n1v
nn
1
u
n2 v
...
n
n
1... n
k
1
u
nk
v
k
... uv
n
2!
k!
或
uv n n Cnkunkvk k 0
四、隐函数及由参数方程所确定的函数的导数
1.隐函数的导数
(1)隐函数 F(x,y)=0 导数的求法
把函数方程两边分别对 x 求导,然后化简得到 dy/dx 的结果。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 2 章 导数与微分
2.1 复习笔记
一、导数概念
1.导数
(1)导数与导函数
①导数的定义
f
x0
lim
x0
y x
lim
x0
f
x0
x
x
f
x0
(2)单侧导数
①左导数
f ( x0
)
lim
h0
f
x0 h
h
f
x0
②右导数
(1)参数方程的一阶导数公式
dy dx
dy dt dt dx
同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出
有且仅有三个实根,它们分别位于区间(1,2),(2,3),(3,4)
3 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平 台
6.证明恒等式: 证:取函数 f(x)=arcsinx+arccosx,x∈[-1,1].因
所以 f(x)≡C.取 x=0,得
.因此
7.若方程 正根 x=x0,证明方程
即
,所以
(2)取函数
,因为函数 f(t)在[1,x]上连续,在(1,x)内可导,则由
拉格朗日中值定理知,至少存在一点 ξ∈(1,x),使
6 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平
台
即
.又 1<ξ<x,所以 eξ>e,因此
即
ex>x·e.
12.证明方程 x5+x-1=0 只有一个正根. 证:取函数 f(x)=x5+x-1,f(x)在[0,1]上连续,
的正根. 证:取函
有一个 必有一个小于 x0
数
.f(x)在[0,x0]
上连续,在(0,x0)内可导,且 f(0)=f(x0)=0,由罗尔定理知至少存在一点
ξ∈(0,x0),使
,即方程
正根.
必有一个小于 x0 的
8.若函数 f(x)在(a,b)内具有二阶导数,且 f(x1)=f(x2)=f(x3),其中
4 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平
台
a<x1<x2<x3<b.证明:在(x1,x3)内至少有一点 ξ,使得
.
证:根据题意知函数 f(x)在[x1,x2],[x2,x3]上连续,在(x1,x2),(x2,x3)内可导
且
,所以由罗尔定理知至少存在点 ξ1∈(x1,x2),
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(3-4章)(圣才出品)
第3章微分中值定理与导数的应用3.1复习笔记一、微分中值定理1.罗尔定理(1)费马引理设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的x ∈U(x0),有f(x)≤f(x0)或f(x)≥(x0),则f′(x0)=0。
(2)罗尔定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导;③在区间端点处的函数值相等,即f(a)=f(b)。
则在(a,b)内至少有一点ξ(a<ξ<b),使得f′(ξ)=0。
2.拉格朗日中值定理(1)拉格朗日中值定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,则在(a,b)内至少有一点ξ(a<ξ<b),有f(b)-f(a)=f′(ξ)(b-a)。
(2)拉格朗日中值定理的证明思路引进辅助函数φ(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a),再利用罗尔定理,即可证得。
(3)有限增量公式f(x+Δx)-f(x)=f′(x+θΔx)·Δx(0<θ<1)或Δy=f′(x +θΔx)·Δx(0<θ<1)。
(4)定理如果函数f(x)在区间I上连续,I内可导且导数恒为零,则f(x)在区间I上是一个常数。
3.柯西中值定理如果函数f(x)及F(x)满足:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F′(x)≠0,则在(a,b)内至少有一点ξ,有[f(b)-f(a)]/[F(b)-F(a)]=f′(ξ)/F′(ξ)。
二、洛必达法则1.洛必达法则(1)x→a时,0/0的洛必达法则①当x→a时,函数f(x)及F(x)都趋于零;②在点a的某去心邻域内,f′(x)及F′(x)都存在且F′(x)≠0;③()()lim x a f x F x →''存在(或为无穷大),则()()()()lim lim x a x a f x f x F x F x →→'='(2)x→∞时,0/0的洛必达法则①当x→∞时,函数f(x)及F(x)都趋于零;②当|x|>N 时,f′(x)与F′(x)都存在,且F′(x)≠0;③()()limx f x F x →∞''存在(或为无穷大),则()()()()lim lim x x f x f x F x F x →∞→∞'='注:对于x→a 或x→∞时的未定式∞/∞,也有相应的洛必达法则。
同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】
第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品
(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
②无界数列:不存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
(3)保号性
如果
lim
n
xn
a
,且
a>0(或
a<0),则存在正整数
N>0,当
n>N
时,都有
xn>0
(4)初等函数
5 类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1.数列极限的定义
数列{xn}收敛于
a⇔
lim
n
xn
a
⇔∀ε>0,∃正整数
N,当
n>N
时,有|xn-a|<ε。
数列{xn}是发散⇔
lim
n
xn
不存在。
2.收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 1 章 函数与极限
1.1 复习笔记
一、映射与函数 1.函数 (1)函数的性质(见表 1-1)
表 1-1 函数的性质
(2)反函数与复合函数 ①反函数的特点 a.函数 f 和反函数 f-1 的单调性一致。 b.f 的图像和 f-1 的图像关于直线 y=x 对称。 ②复合函数 g 与 f 能构成复合函数 f°g 的条件是:f 的定义域与 g 的值域的交集不能为空集。 (3)函数的运算 设函数 f(x),g(x)的定义域为 Df,Dg,且定义域有交集为 D,则可定义这两个函
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第七章 微分方程【圣才出品
台
则
所以 y=3sinx-4cosx 是所给微分方程的解. (3)根据 y=x2ex,得
进而得
则
所以 y=x2ex 不是所给微分方程的解.
(4)根据
,得
,进而得
则
所以
是所给微分方程的解.
3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:
2 / 126
圣才电子书
十万种考研考证电子书、题库视频学习平
台
解:(1)在方程 x2-xy+y2=C 两端对 x 求导,得
即
所以所给二元方程所确定的函数是微分方程的解.
(2)在方程 y=ln(xy)两端对 x 求导,得
即(xy-x)y′-y=0,再在上式两端对 x 求导,得
即 给微分方程的解.
.所以所给二元方程所确定的函数是所
,即 tany·tanx=±C1,所以原方程的通解为
tany·tanx=C
(6)原方程分离变量,得 10-ydy=10xdx,两端积分得
可写成 (7)原方程为
. 分离变量得
两端积分得
或写成
,即
,
所以原方程的通解为
(ex+1)(ey-1)=C
(8)原方程分离变量,得
两端积分得
即 ln|sinysinx|=lnC1,或写成 sinysinx=±C1,所以原方程的通解为 sinysinx=C. (9)原方程分离变量,得(y+1)2dy=-x3dx.两端积分得
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第七章 微分方程
7.2 课后习题详解
习题 7-1 微分方程的基本概念
1.试说出下列各微分方程的阶数:
解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各题中的函数是否为所给微分方程的解:
同济大学数学系《高等数学》第7版上册配套题库【课后习题(1-3章)】【圣才出品】
(4)
,故其定义域为(-2,2).
(5)x≥0,故其定义域为[0,+∞).
(6)
,故其定义域为{x|x∈R 且
,k∈Z}.
(7)
,故其定义域为[2,4].
(8)3-x≥0 且 x≠0,故其定义域为(-∞,0)∪(0,3].
(9)
,故其定义域为(-1,+∞).
(10)x≠0,故其定义域为(-∞,0)∪(0,+∞).
圣才电子书
十万种考研考证电子书、题库视频学习平台
第一章 函数与极限
习题 1-1 映射与函数 1.求下列函数的自然定义域:
解:(1)
,故其定义域为
.
(2)
,故其定义域为(-∞,-1)∪(-1,1)∪(1,+∞).
(3)x≠0 且
且|x|≤1,故其定义域为[-1,0)∪(0,1].
故 G(x)为偶函数. 设 f(x)为偶函数,g(x)为奇函数,则 f(-x)=f(x),g(-x)=-g(x).令 ,于是
故 H(x)为奇函数.
7.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数?
4 / 172
圣才电子书 十万种考研考证电子书、题库视频学习平台
3 / 172
圣才电子书 十万种考研考证电子书、题库视频学习平台
令 F(x)=f1(x)+f2(x),于是 F(-x)=f1(-x)+f2(-x)=f1(x)+f2(x)=F(x)
故 F(x)为偶函数. 设 g1(x),g2(x)均为奇函数,则 g1(-x)=-g1(x),g2(-x)=-g2(x).令 ,于是 G(-x)=g1(-x)+g2(-x)=-g1(x)-g2(x)=-G(x)
故 G(x)为奇函数. (2)设 f1(x),f2(x)均为偶函数,则 f1(-x)=f1(x),f2(-x)=f2(x).令 ,于是 F(-x)=f1(-x)·f2(-x)=f1(x)f2(x)=F(x)
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解(第10章)【圣才出品】
3 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
该体积为所求二重积分的值,有等式
这就是把二重积分化为先对 y,后对 x 的二次积分的公式.上面公式也可以写成
f (x, y)d
,作乘积
并作和
如果当各小闭区域的直径中的最大值 A→0 时,这和的极限总存在,且与闭区域 D 的分
法及点
的取法无关,则称此极限为函数 f(x,y)在闭区域 D 上的二重积分,记作
,即
其中f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,dσ称为面积元素,x 与 y 称为
积分变量,D 称为积分区域,
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-1-2
注:积分区域 D 既不是 X 型区域,又不是 Y 型区域时,可以把 D 分成几部分,使每个
部分是 X 型区域或 Y 型区域.
2.利用极坐标计算二重积分
设积分区域 D 可以用不等式
来表示(图
10-1-3),其中函数φ1(θ)、φ2(θ)在区间[α,β]上连续,则极坐标系中的二重积分化为二
在 D 上至少存在一点 ,使得
.
2 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、二重积分的计算法
1.利用直角坐标计算二重积分
(1)X 型区域
设积分区域 D 用不等式
其中函数
在区间[a,b]上连续.
来表示(图 10-1-1),
图 10-1-1 计算步骤: ①求截面面积 过区间[a,b]上任一点 x 且平行于 yOz 面的平面截曲顶柱体所得截面的面积为
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
同济大学数学系《高等数学》(上册)配套题库-章节题库-导数与微分【圣才出品】
2 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台
4.设
f
x
x
2
sin
1 x
sin 2x
x0
,则 f′(0)等于(
)。
0
x0
A.2
B.1
C.0
D.不存在
【答案】A
【解析】根据导数的定义可知
f
0
lim
x0
f
x f
x0
0
lim
x0
x
sin
1 x
sin 2x x
x
f
x0
存在,则函数
y=f
(x)在 x0 点可导,而函数 y=f(x)在 x0 点可微的充要条件就是 f(x)在 x0 点可导。
8.设 f(0)=0,则 f(x)在点 x=0 可导的充要条件为( )。
A. lim h0
1 h
f
h
f
h
存在
B. lim 1 h0 h
f
ln 1 h 存在
C.
【答案】B
【解析】函数在 x0 处导数与函数的关系是:可导一定连续,连续不一定可导(如 f(x)
=x),故 A 项错误,B 项正确。
函数在 x0 处有定义时,它在该点不一定连续,C 项中,f′(x0)有定义,并不能说明 f′
(x)在 x0 点的邻域内其他点也有定义,即 f′(x)在 x0 点不一定连续,f(x)在 x0 点的某
A.无穷型间断点
B.可去间断点
C.连续点
D.振荡间断点
【答案】B
【解析】由于 f(x)是奇函数,故 f(0)=0,则有
lim F x lim f x f 0 f 0
同济大学数学系《高等数学》第7版上册配套题库【课后习题(4-6章)】【圣才出品】
第四章不定积分习题4-1不定积分的概念与性质1.利用导数验证下列等式:解:2.求下列不定积分:(g是常数);解:3.含有未知函数的导数的方程称为微分方程,例如方程,其中为未知函数的导数,f(x)为已知函数.如果将函数y=φ(x)代入微分方程,使微分方程成为恒等式,那么函数y=φ(x)就称为这个微分方程的解.求下列微分方程满足所给条件的解:解:(1)因为,得C=0,所以所求的解为,因为,得C1=2,因此因为,得C2=-2,所以所求的解为4.汽车以20m/s的速度行驶,刹车后匀减速行驶了50m停住,求刹车加速度.可执行下列步骤:(1)求微分方程满足条件及的解;(2)求使的t值;(3)求使s=50的k值.解:(1),因为,得C1=20,因此因为,得C2=0,所以所求的解为(2)令,解得(3)根据题意,当时,s=50,即解得k=4,即得刹车加速度为-4m/s2.5.一曲线通过点(e2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程.解:设曲线方程为y=f(x),则点(x,y)处的切线斜率为f'(x),由条件得因此f(x)为的一个原函数,得又根据条件曲线过点(e2,3),有f(e2)=3解得C=1,即得所求曲线方程为y=lnx+16.一物体因为静止开始运动,经t秒后的速度是3t2(m/s),问(1)在3秒后物体离开出发点的距离是多少?(2)物体走完360m需要多少时间?解:(1)设此物体自原点沿横轴正向由静止开始运动,位移函数为s=s(t),则由假设可知s(0)=0,因此s(t)=t3,所以所求距离为s(3)=27(m).(2)因为t3=360,得7.证明函数arcsin(2x-1),arccos(1-2x)和都是的原函数.证:因此结论成立.习题4-2换元积分法1.在下列各式等号右端的空白处填入适当的系数,使等式成立(例如:。
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解-第四章 不定积分【圣才
第四章 不定积分4.1 复习笔记一、不定积分的概念与性质1.原函数与不定积分的概念(1)原函数①定义如果在区间I 上,可导函数的导函数为,即对任意一,都有,则函数就称为在区间I 上的一个原函数.②原函数存在定理如果函数在区间I 上连续,则在区间I 上存在可导函数使对任一都有即连续函数一定有原函数.③注意两点a .如果有一个原函数,则就有无限多个原函数.b .若和都是的原函数,则()Fx ()x φ()f x(C 0为某个常数)(2)不定积分在区间I 上,函数的带有任意常数项的原函数称为(或)在区间I上的不定积分,记作,其中称为积分号,称为被积函数,称为被积表达式,x称为积分变量.2.基本积分表3.不定积分的性质(1)性质1设函数的原函数存在,则注:性质1对于有限个函数都是成立的.(2)性质2设函数的原函数存在,k为非零常数,则二、换元积分法1.第一类换元法设具有原函数,可导,则有换元公式()[()]()[()]u x f x x dx f u du ϕϕϕ='=⎰⎰2.第二类换元法设是单调的可导函数,并且又设具有原函数,则有换元公式1()()[[()]()]t x f x dx f t t dtψψψ-='=⎰⎰其中的反函数.三、分部积分法1.分部积分法设函数具有连续导数,则两个函数乘积的导数公式为移项,得对这个等式两边求不定积分,得称为分部积分公式.注:2.运用分部积分法需注意(1)v 要容易求得;(2)要比容易积出;(3)遵循“反对幂指三”原则.①“反对幂指三”定义“反对幂指三”分别指反三角函数、对数函数、幂函数、指数函数和三角函数.②“反对幂指三”原则“反对幂指三”原则是指在用分部积分法计算积分时,若出现上面相关函数,把被积表达式按照“反对幂指三”的积分次序,排在前面的看成“u”,排在后面的看成“dv”.【例】3.常见函数的不定积分四、有理函数的积分1.有理函数的积分(1)相关概念①有理函数 两个多项式的商称为有理函数.②有理分式 有理函数又称有理分式.③真分式 当P(x)的次数小于Q(x)的次数时,称这有理函数为真分式.④假分式 当P(x)的次数大于Q(x)的次数时,称这有理函数为假分式.(2)真分式的分解对于真分式,如果分母可分解为两个多项式的乘积且Q 1(x)与Q 2(x)没有公因式,则它可分拆成两个真分式之和。
同济大学数学系《高等数学》第7版上册课后习题(微分方程)【圣才出品】
同济大学数学系《高等数学》第7版上册课后习题第七章微分方程习题7-1微分方程的基本概念1.试说出下列各微分方程的阶数:解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各题中的函数是否为所给微分方程的解:解:(1)根据y=5x2,得y′=10x,xy′=10x2=2y,所以y=5x2是所给微分方程的解.(2)根据y=3sinx-4cosx,得y′=3cosx+4sinx,进而得y″=-3sinx+4cosx则所以y=3sinx-4cosx是所给微分方程的解.(3)根据y=x2e x,得进而得则所以y=x2e x不是所给微分方程的解.(4)根据,得,进而得则所以是所给微分方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:解:(1)在方程x2-xy+y2=C两端对x求导,得即所以所给二元方程所确定的函数是微分方程的解.(2)在方程y=ln(xy)两端对x求导,得即(xy-x)y′-y=0,再在上式两端对x求导,得即.所以所给二元方程所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初值条件:解:(1)根据y|x=0=5,将x=0,y=5代入函数关系中,得C=-25,即x2-y2=-25(2)根据,得将x=0,y=0及y′=1代入以上两式,得所以C1=0,C2=1,y=xe2x.(3)根据y=C1sin(x-C2),得将x=π,y=1及y′=0代入以上两式,得根据①2+②2得,不妨取C1=1,根据①式得,所以5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x,y)处的切线的斜率等于该点横坐标的平方;(2)曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分.解:(1)假设曲线方程为y=y(x),它在点(x,y)处的切线斜率为y′,依条件有y′=x2此为曲线方程所满足的微分方程.(2)假设曲线方程为y=y(x),因它在点P(x,y)处的切线斜率为y′,所以该点处法线斜率为.由条件知PQ之中点位于y轴上,所以点Q的坐标是(-x,0),则有即微分方程为yy′+2x=0.6.用微分方程表示一物理命题:某种气体的气压P对于温度T的变化率与气压成正比,与温度的平方成反比.解:因为与P成正比,与T2成反比,如果比例系数为k,则有7.一个半球体形状的雪堆,其体积融化率与半球面面积A成正比,比例系数k>0.假设在融化过程中雪堆始终保持半球体形状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的;问雪堆全部融化需要多少时间?解:假设雪堆在时刻t的体积为,侧面积S=2πr2.根据题设知则积分得r=-kt+C根据r|t=0=r0,得C=r0,r=r0-kt.又,即得,从而因雪堆全部融化时,r=0,所以得t=6,即雪堆全部融化需6小时.习题7-2可分离变量的微分方程1.求下列微分方程的通解:解:(1)原方程为,分离变量得两端积分得即lny=±C1x,所以通解为lny=Cx,即y=e Cx.(2)原方程可写成5y′=3x2+5x,积分得,即通解为(3)原方程为,分离变量得两端积分得arcsiny=arcsinx+C,即为原方程的通解.(4)原方程可写成,分离变量得两端积分得即是原方程的通解.(5)原方程分离变量,得两端积分得可写成,即tany·tanx=±C1,所以原方程的通解为tany·tanx=C(6)原方程分离变量,得10-y dy=10x dx,两端积分得可写成.(7)原方程为分离变量得。
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(第7章)(圣才出品)
yn2 f x dx C1dx C 2
依此进行,接连积分 n 次,可得方程的含有 n 个任意常数的通解。
2.y′′=f(x,y′)型的微分方程 方程 y′′=f(x,y′),设 y′=p,则 y′′=dp/dx=p′,即 p′=f(x,p)。 设通解为 p=φ(x,C1),又 p=dy/dx,得 dy/dx=φ(x,C1),进行积分,得通解 为
h 及 k 使其满足上述方程组,故可以化为齐次方程 dY/dX=(aX+bY)/(a1X+b1Y)。
1 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、一阶线性微分方程 1.线性方程 齐次线性方程 dy/dx+P(x)y=0 的通解
2.常数变易法(非齐次线性方程的通解) (1)将齐次线性方程 dy/dx+P(x)y=0 的通解
圣才电子书
第 7 章 微分方程
十万种考研考证电子书、题库视频学习平台
7.1 复习笔记
一、可分离变量的微分方程
1.隐式解
设 y=φ(x)是方程 g(y)dy=f(x)dx(7-1-1)的解,代入得
g x x dx f x dx
将两端积分,得
g y dy f x dx
y x,C1 dx C2
3 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
3.y′′=f(y,y′)型的微分方程
方程 y′′=f(y,y′),令 y′=p 得 y′′=dp/dx=(dp/dy)(· dy/dx)=pdp/dy,即 pdp/dy
=f(y,p)。
x
e Pxdx P
x
ue
P
x
dx
Q
x
即
同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题精选+章节题库】
目 录第一部分 考研真题精选第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第二部分 章节题库第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第一部分 考研真题精选第1章 函数与极限一、选择题1若,则f(x)第二类间断点的个数为( )。
[数二、数三2020研] A.1B.2C.3D.4【答案】C【解析】由f(x)表达式知,间断点有x=0,±1,2。
因为存在,故x=0为可去间断点;因,故x=1为第2类间断点;因,故x=-1为第2类间断点;因,故x=2为第2类间断点;综上,共有3个第二类间断点,故应选C项。
2当x→0时,若x-tanx与x k是同阶无穷小,则k=( )。
[数一2019研]A.1B.2C.3D.4【答案】Ctanx在x=0处的泰勒展开式为:tanx=x+(1/3)x3+o(x3),因此当x→0时有x-【解析】tanx~-(1/3)x3,即x-tanx与-(1/3)x3是x→0时的等价无穷小,进一步可得x-tanx与x3是同阶无穷小,所以k=3,故选C。
3已知方程x5-5x+k=0有3个不同的实根,则k的取值范围( )。
[数三2019研] A.(-∞,-4)B.(4,+∞)C.{-4,4}D.(-4,4)【答案】D【解析】方程x5-5x+k=0有3个不同实根等价于曲线y=x5-5x与直线y=-k有3个不同的交点,因此研究曲线y=x5-5x的曲线特点即可。
令f(x)=x5-5x,则f(x)在R上连续,且f′(x)=5x4-5,再令f′(x)=0,得x=±1,通过分析f′(x)在稳定点x=±1左右两侧的符号,可知当x∈(-∞,-1)时,f′(x)>0,f(x)单调递增;当x∈(-1,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和
在
处连续,故
则
14.
8 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】A
【解析】由题意可知,点
既是两曲线相切的切点,又是两曲线的一个交点,且
两曲线在该点的切线斜率相等.
由点
在曲线
上,将点代入得
.
又相切于该点,故切线的斜率相等,即导数相等,即
,将
有定义,并不能说明
在 点的邻域内其他点也有定义,即
在 点不一定连续. 在 点的某
3 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
邻域内有定义且
仍在该邻域内时,
存在,则称
在
点处可导,故排除 D.
7.函数 y=f(x)在 x 点可微的充要条件是( ).
【答案】C 【解析】由于
在 x=0 处连续,即
又
,故
即
故
在 =0 处连续,排除 C 项.
又
1 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
故
在 x=0 处可导即可微,且
.
2.若 f (x) 是奇函数且
A.无穷型间断点
存在,则 x=0 是函数
的( ).
B.可去间断点
C.连续点
D.振荡间断点
【答案】C 【解析】
具有相同的周期.故
则其法线方程为
.
20.已知 f(x)为可导偶函数,且 则曲线 y=f(x)在(-1,2)处的切线方程为( ).
11 / 55
,则曲线 y=f(x)
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】A
【解析】若
为可导偶函数,则其导函数为奇函数.故
则 f(x)在 x=0 处( ).
【答案】D
【解析】
时,
,有
故
10 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
18.
【答案】D 【解析】
具有相同的周期.故
即曲线在点
处的切线斜率为-2.
19.设 f(x)为可导的以 4 为周期的周期函数,且
在点(-4,0)处的法线方程为( ).
【解析】根据导数的定义可知
5.设曲线
在原点处与
等于( ).
相切, 为常数,且
,则
A.
B.
C.
【答案】A
【解析】由所给条件知:
,
D. ,于是
6.下列结论中正确的是( ).
【答案】B
【解析】函数在 处导数与函数的关系是:可导一定连续,连续不一定可导(如
).故 A 项错误,B 项正确.
函数在 处有定义时,它在该点不一定连续,如 C 项中,
www.Biblioteka
其中
和
分别在较大的区间(x0-δ,+∞)和(-∞,x0+δ)(δ>0 是一个
常数)中具有任意阶导数,则
在分界点 x=x0 具有 k 阶导数的充分必要条件是
和
有相同的泰勒公式,即
评注:在
的定义中,分界点 也可以属于
上述一般结论用于本题,取
所在区间,结论是完全一样的.把
因为
11. 【答案】A 【解析】由题意得
12.
【答案】C 【解析】先根据导数的定义求出函数在
处的导数
再求出
时函数的导数,有
7 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
故
的导函数为
最后根据极限的定义求导函数
在
处的连续性,有
故
在
处连续.
13
.
【答案】D
【解析】由于
所以 a,b,c 应分别是 a=-2,b=2,c=1.
解法二:首先要求
在 x=0 连续,即要求
当
时,
可写成
,得 c=1.
其次要求
存在,即
,当 c=1 时,有
解上式,得 b=2. 评注:当 b=2,c=1 时,有
则
6 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台
故
,即
时, 与 等价无穷小.
23. .
【答案】A 【解析】根据题意可以画出函数图象如下图所示, 升且向上凹的.
,则图像是上
24.设 ( ).
【答案】B 【解析】由题意得
其中,若 在 点可导.而函数
时,
存在,则函数
在 点可微的充要条件就是
在 点可导.
8.设 A.
,则
在点
可导的充要条件为( ).
存在
B.
存在
C.
存在
D.
存在
【答案】B
【解析】本题运用排除法,取
三项中的极限均存在,故知 A、C、D 三项均不是
或直接推导:由
4 / 55
,但
不存在,易知 A、C、D
在
可导的充分条件.
圣才电子书 十万种考研考证电子书、题库视频学习平台
同济大学数学系《高等数学》第 7 版上册章节题库 第二章 导数与微分
一、选择题.
1.设函数
,且
,则
在点 x=0 处
( ).
A.连续但不可导
B.可导但
C.极限存在但不连续
D.可微且
【答案】D
【解析】由
知
在 x=0 处可导;也可知
代
入得
,故
.
15.
【答案】C
【解析】
的导函数为
若要让
在
处连续,则必须满足
又
和
故最小自然数为 3.
都不存在,所以必须有
.
,并且
.,
9 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
16.
【答案】D 【解析】因
故 f(x)在 x=0 处可导,且
.
17.设 f(x)在 x=0 的一个邻域内有定义,且 f(0) =0,若
圣才电子书 十万种考研考证电子书、题库视频学习平台
存在,可推出 9.
存在.
【答案】B 【解析】逐次求导,可得
10.设
分别是( ). A. B. C. D. 【答案】A 【解析】解法一 :考虑分段函数
,在点
处二阶导数存在,则常数
5 / 55
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】B
【解析】由于
是奇函数,故
,则有
又
在
处无定义,所以
是可去间断点.
3.
【答案】B
【解析】
在
排除 D 项.设
项.设
,则
处可导,则必在
处连续,故
在
处必连续,
在
处可导,但
在
处不可导,排除 A
和
在
处都可导,排除 C 项.
4.
2 / 55
圣才电子书
【答案】A
十万种考研考证电子书、题库视频学习平台
.
又
则
,切线方程为
即
.
21.设
则在
内( ).
【答案】A 【解析】
为偶函数,
,则
为奇函数.又
存在且为奇函数,故在
内,
可导,则 .
22.设函数 f(x)可导,且曲线 y=f(x)在点
处的切线与直线 y=2-x 垂直,
则当
时,该函数在
处的微分 dy 是( ).
【答案】B
【解析】由题意可知,
,则
12 / 55