河南省周口中英文学校2019届高三数学上学期第三次月考试题理
2019届河南省周口中英文学校高三上学期期中考试数学(理)试题
周口中英文学校高中部2018-2019学年度上学期期中考试高三 理科 数学 试卷 时间120分钟 满分150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合{|||2,}A y y x x R ==-∈,{|1}B x x =≥,则下列结论正确的是( ) A. 3A -∈ B.3B ∉ C. D.A B B = 2.下列命题正确的是( )A. 2000,230x R x x ∃∈++=B. 32,x N x x ∀∈>C. 1x >是21x >的充分不必要条件D. 若a b >,则22a b >3、 设,x y ∈R ,向量(2,),(,2),(2,4)a x b y c ==-=-且//,⊥,则x+y 等于( )A.1B.0C.8D.24、下列函数中,图像的一部分如右图所示的是( ) A .sin()6y x π=+ B. cos(2)6y x π=-C. cos(4)3y x π=- D. sin(2)6y x π=- 5、已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为( )A .322B .3152C .-322D .-31526、函数cos ()3x f x x =⋅()的图象大致是( )A. B.C. D.7、( )A .B .C .D .8. 用二分法求方程ln(2x+6)+2=3x 的根的近似值时,令f (x )=ln(2x+6)+2-3x ,并用计算器得到下表:则由表中的数据,可得方程ln(2x+6)+2=3x的一个近似解(精确度为0.1)为A .1.125B .1.3125C .1.4375D .1.468759、在ABC ∆中,E 为边BC 上的点,且向量2BE EC =,F 为线段AE 的中点,则 CF =( )A .2736AB AC - B .2536AB AC -C .1536AB AC -D .1263AB AC -10、△ABC 中,AB =2,AC =3,B =60°,则cos C =( )A .33B .±63C .-63D .6311、已知定义域为(0,)+∞的函数()f x 的图象经过点(2,4),且对任意的(0,)x ∈+∞,都有()10'x f ->,则不等式22()2x x f -<的解集为 ( ) A .(1,)+∞B .(0,2)C .(1,2)D .(0,1)12、已知函数为增函数,则的取值范围是( )A. B.B. D.二、填空题:(本大题共4小题,每小题5分,共20分)13.曲线2xy e x =+在点(0,1)处的切线方程是 ________________.14.定义在R 上的函数()f x 满足()(2)f x f x =-及()()f x f x =--,且在[0,1]上有2()f x x =,则120192f ⎛⎫= ⎪⎝⎭________.15.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°. 从C 点测得∠MCA =60°,已知山高BC =100 m , 则山高MN =______米16. 已知O 为ABC ∆的外心,AB=2,AC=3,x +2y=1,若)0(≠+=xy y x ,则BAC ∠cos 的值为三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分) .已知函数f (x )=x 2-4x +a +3,a ∈R.(1)若函数y =f (x )的图象与x 轴无交点,求a 的取值范围; (2)若函数y =f (x )在[-1,1]上存在零点,求a 的取值范围.18. (本小题满分12分)已知函数⎩⎨⎧>+≤-=0),1ln(0,1)(x x x x x f .(1)求)1()0(-+e f f 的值;(2)已知命题P :4ln )(2ln <<x f ,命题q :042≤--x x ,若q p ∨为真,q p ∧为假, 求实数x 的取值范围.19、(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos2B,-1)且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.20.(本小题满分12分)如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4. (1)求∠ACP ;(2)若△APB 的面积是sin ∠BAP .21.(本小题满分12分) 已知函数()()33xxf x R λλ-=+⋅∈.(1)是否存在实数λ使得()f x 为奇函数?若存在,求出实数λ,若不存在,请说明理由;(2)在(1)的结论下,若不等式(41)(2)0t t f f m -+->在[]1,1t ∈-上恒成立,求实数m 的取值范围.22、(本小题满分12分) 已知函数f (x )=ln x -ax +1-a x -1(a ∈R ):(1)当a ≤12时,讨论f (x )的单调性;(2)设g (x )=x 2-2bx +4,当a =14时,若对∀x 1∈(0,2),∃x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.周口中英文学校2018―2019学年上期期中考试高三数学理科试题 答案一、选择题:(每小题5分,共60分)二、填空:13、310x y -+= 14、14- 15、150_ 16、43三、解答题17(满分10分) (1)若函数y =f (x )的图象与x 轴无交点,则方程f (x )=0的根的判别式Δ<0,即16-4(a +3)<0, 解得a >1.故a 的取值范围为a >1.(2)因为函数f (x )=x 2-4x +a +3图象的对称轴是x =2, 所以y =f (x )在[-1,1]上是减函数. 又y =f (x )在[-1,1]上存在零点,所以⎩⎪⎨⎪⎧ f (1)≤0,f (-1)≥0,即⎩⎪⎨⎪⎧a ≤0,a +8≥0,解得-8≤a ≤0. 故实数a 的取值范围为-8≤a ≤0.18、 (满分12分) (1)因为⎩⎨⎧>+≤-=0),1ln(0,1)(x x x x x f ,所以011)1()0(=+-=-+e f f ……4分(2)因为4ln )(2ln <<x f ,即有4ln )1ln(2ln <+<x 31<<⇒x ,所以命题P :31<<x , ……6分 命题q :042≤--x x 42<≤⇒x ……8分 所以命题q :42<≤x又因为q p ∨为真,q p ∧为假,所以q p ,一真一假 ……10分 所以⎩⎨⎧≥<<<4231x x x 或或⎩⎨⎧<≤≥≤4231x x x 或,解得21<<x 或43<≤x故实数x 的取值范围是[)4,3)2,1( ……12分19(满分12分):(1)∵m ∥n , ∴2sin B ⎝⎛⎭⎫2cos 2B2-1=-3cos2B ,∴sin2B =-3cos2B ,即tan2B =-3, 又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3.……………………………6分 (2)∵B =π3,b =2, ∴由余弦定理cos B =a 2+c 2-b 22ac 得,a 2+c 2-ac -4=0,又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立),S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立).……………………………12分20. 解:(满分12分)(1) 在△APC 中,因为,,, 由余弦定理得 ,……2分所以 ,整理得,解得.所以.PA=2 ………………………4分 所以△APC 是等边三角形.所以.∠ACP= ……………………………………5分 (2) 由于 ∠APB 是△APC 的外角, 所以. ∠APB= 因为 △APB 的面积是 ,所以所以. PB=3 ………………8分 在 △APB 中,所以.…………………………………10分在 中,由正弦定理得 ,所以.……………………………12分21题(满分12分(1)若()f x 为奇函数,则(0)0f =,…………1分 即1+=0λ,解得1λ=-,…………2分()33(33)()x x x x f x f x ---=-=--=-,则存在1λ=-,使得()f x 为奇函数………4分(2)()33x x f x -=-(x R ∈),()(33)l n 30x xf x -'=+>,…………5分则()f x 在R 上为增函数,…………6分 ∵()f x 为奇函数,(41)(2)0t t f f m -+->, 即(41)(2)t t f f m ->-,…………7分又()f x 在R 上为增函数,∴412t tm ->-,…………8分则2421(2)21,([1,1])t t t t m t <+-=+-∈-恒成立,令12[,2]2t n =∈,则22151()24m n n n <+-=+-,…………10分 令215()()24g n n =+-, min 1()4g n =-,…………11分 ∴14m <-…………12分22(满分12分解 (1) f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2当a ≤0时,函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝ ⎛⎭⎪⎫1,1a -1上单调递增,在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减;(2)函数的定义域为(0,+∞),f′(x)=1x-a+a-1x2=-ax2-x+1-ax2,a=14时,由f′(x)=0可得x1=1,x2=3.因为a=14∈⎝⎛⎭⎪⎫0,12,x2=3∉(0,2),结合(1)可知函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,所以f(x)在(0,2)上的最小值为f(1)=-1 2.由于“对∀x1∈(0,2),∃x2∈[1,2],使f(x1)≥g(x2)”等价于“g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值f(1)=-12”.(※)又g(x)=(x-b)2+4-b2x∈[1,2],所以①当b<1时,因为[g(x)]min=g(1)=5-2b>0,此时与(※)矛盾;②当b∈[1,2]时,因为[g(x)]min=g(b)=4-b2≥0,同样与(※)矛盾;③当b∈(2,+∞)时,因为[g(x)]min=g(2)=8-4b.解不等式8-4b≤-12,可得b≥178.综上,b的取值范围是⎣⎢⎡⎭⎪⎫178,+∞.。
河南省周口市高三数学上学期第三次月考试题 理 新人教A版
周口中英文学校2012~2013学年度上期高三第三次月考数学试题 (理科)第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分,在每小题答案中只有一项符合题目要求) 1.集合,,则下列结论正确的是( )A. B.C.D.2.已知n S 为等差数列{}n a 的前n 项的和,254a a +=,721S =,则7a 的值为( )A .6B .7C .8D . 93.已知向量(cos ,2),(sin ,1),//a b a b αα=-=则tan()4πα-等于( )A .3 B.3- C.13 D. 13- 4.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上, 则cos 2θ=( )A .45-B .35-C .35 D .455.要得到函数)32sin(π-=x y 的图象,只需将函数x y 2sin =的图象( )A .向左平移3π个单位B .向右平移3π个单位 C .向右平移6π个单位D .向左平移6π个单位6.若函数ax x x f 2)(2+-=与xa x g -+=1)1()(在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)B .(0,1]C .(0,1)D .(-1,0)∪(0,1]7.下列命题:①若p ,q 为两个命题,则“p 且q 为真”是“p 或q 为真”的必 要不充分条件;②若p 为:2,20x R x x ∃∈+≤,则p ⌝为:2,20x R x x ∀∈+>; ③命题p 为真命题,命题q 为假命题。
则命题()p q ⌝∧,()p q ⌝∨都是真命题; ④命题“若p ⌝,则q ”的逆否命题是“若p ,则q ⌝”.其中正确结论的个数 是( )A 1B 2C 3D 48.已知定义在R 上的奇函数)(x f 和偶函数)(x g 满足,0(2)()(>+-=+-a a a x g x f x x 且)1≠a ,若a g =)2(,则)2(f = ( )A. 2B.417 C. 415D. 2a 9.在三角形ABC 中,B=600,AC=3, 则AB+2BC 的最大值为( )A .3 B. 3 C. 7 D. 2710.数列{}n a 中,352,1,a a ==如果数列11n a +⎧⎫⎨⎬⎩⎭是等差数列,则11a =( ) A. 113- B. 17- C .0 D. 11111.若a 满足4lg =+x x ,b 满足410=+xx ,函数⎪⎩⎪⎨⎧>≤+++=0,20,2)()(2x x x b a x x f ,则关于x 的方程x x f =)(的解的个数是( ) A .1B .2C .3D. 412.定义在R 上的函数()f x 满足(6)()f x f x +=,当31x -≤<-时,; 2()(2)f x x =-+,当13x -≤<时,()f x x =, 则(1)(2)(3)(2012)f f f f ++++=( )A .335B .338C .2013D .2012二、填空题:(每小题5分,共20分,请将符合题意的最简答案填在题中横线上) 13.已知53)4sin(=-x π,则x 2sin 的值为 . 14.函数()sin cos ()f x x x x R =+∈的图象向左平移m ()m R +∈个单位后,得到函数()y f x '=的图象,则m 的最小值为__ ___15.如果函数()sin()(0)4f x x πωπω=->在区间(1,0)-上有且仅有一条平行于y 轴的对称轴,则ω的取值范围是16. 在等比数列{}n a 中,已知12=a ,则其前三项的和3S 的取值范围是三、解答题:(共6小题,70分,解答题应写出文字说明,证明过程及演算步骤)17、(本小题满分10分)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式:xkx k x f --+<2)1()(.18、(本小题满分12分) 已知:p :函数xa x x g 1)(++=,)(x g 在区间]2,0(上的值不小于6; q :集合{}R x x a x x A ∈=+++=,01)2(|2,{}0|>=x x B ,且φ=B A ,求实数a 的取值范围,使p 、q 中有且只有一个为真命题。
河南省周口中英文学校2019届高三10月月考数学试题及答案
一、选择题(本大题共12小题,每小题5分,共60分)
1.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()
A.{0,1,2}B.{0,1,3}
C.{0,2,3}D.{1,2,3}
2.下列四个函数中,与y=x表示同一函数的是()
A.y=( )2B.y=
A.k=0B.k>0
C.0≤k<1D.k<0
8.“ ”的含义为()A. Nhomakorabea全为0B. 全不为0
C. 至少有一个为0
D. 不为0且 为0,或 不为0且 为0
9.由方程x|x|+y|y|=1确定的函数y=f(x)在(-∞,+∞)上是()
A.增函数B.减函数
C.先增后减D.先减后增
10.已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,()
A.M∪N=MB.(∁RM)∩N=R
C.(∁RM)∩N=∅D.M∩N=M
6.若函数f(x)= 若f(a)>f(-a),则实数a的取值范围()
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)
7.函数f(x)=|x|-k有两个零点,则()
(2)求函数的定义域;
(3)求函数的值域.
21.(12分)已知函数f(x)=x3-ax-1
(1)若f(x)在(-∞,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由.
22.(12分)已知函数f(x)=3ax4-2(3a+1)x2+4x.
2019届高三数学上学期第三次月考试题理(3)
2018-2019学年第一学期第三次月考试卷高三理科数学一、选择题:本大题共12道小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的。
1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =()A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 2.若a 为实数,且2+ai1+i=3+i ,则a =()A .-4B .-3C .3D .43.下列函数中,定义域是R 且为增函数的是()A .x e y -=B .x y =C .x yln =D .3x y =4.函数xxx f +-=22lg )(的图象()A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称5.已知54)cos(=-απ,且α为第三象限角,则α2tan 的值等于()A. 34 B .-34 C -247D ..2476.要得到函数⎪⎭⎫ ⎝⎛-=34sin πx y 的图象,只需将函数x y 4sin =的图象()A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位7. 已知向量a =(1,m ),向量b =(m,2),若a ∥b ,则实数m 等于()A .-2B. 2 C .-2或2D .08. 等差数列{a n }的首项为1,公差不为0.若632,,a a a 成等比数列,则{a n }前6项的和为()A .-24B .-3C .3D .89.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢()A .8日B .9日C .12日D .16日 10.若函数)0(6sin )(>⎪⎭⎫ ⎝⎛-=ωπωx x f 的图象相邻两个对称中心之间的距离为π2,则)(x f 的一个单调递增区间为()A. ⎪⎭⎫ ⎝⎛-3,6ππ B.⎪⎭⎫⎝⎛-6,3ππ C. ⎪⎭⎫ ⎝⎛32,6ππ D.⎪⎭⎫ ⎝⎛65,3ππ11.若直线ax y=是曲线1ln 2+=x y 的一条切线,则实数a =()A .e1B .e2C .21e D .212e 12.已知函数)(xf 是定义在R 上的奇函数,)(/x f y =是)(x f y =的导函数,且当)0,(-∞∈x 时,0)()(/<+x xf x f成立.若2log )2(log 33f a =,2log )2(log 55f b =,)2(2f c =,则c b a ,,的大小关系是()A .c a b>>B .c b a >>C .b a c >> D .a b c >>二、填空题:本大题共4小题,每小题5分,共20分.13.已知m ∈R ,向量a =(m ,7),b =(14,-2),且a ⊥b ,则|a |=________. .14.若==αα2cos ,3tan 则________.15.⎪⎩⎪⎨⎧>≤⎪⎭⎫ ⎝⎛=,0,log ,0,31)(3x x x x f x则=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f ________.16.数列{}na 满足,2)12(53321n a n a a an =-+∙∙∙+++则9a = ________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本题满分12分)已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,求函数f (x )的值域.18. (本题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . ①求C ;②若c =7,△ABC 的面积为332,求△ABC 的周长..19.(本题满分12分)已知数列{a n }满足11=a ,且.22)1(21n n a n na n n +=+-+.(1)求32,a a ;(2)证明数列⎩⎨⎧⎭⎬⎫an n 是等差数列,并求{a n }的通项公式.20.(本题满分12分)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式; (2)设1log 4+=n n a b ,求{b n}的前n 项和T n..21. (本题满分12分)已知常数0≠a,x x a x f 2ln )(+=.(1)当a =-4时,求)(x f 的极值;(2)当)(x f 的最小值不小于a -时,求实数a 的取值范围.22.(本题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为θθρcos 2sin 4-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与y 轴的交点为P ,直线l 与曲线C 的交点为A ,B ,求|PA |·|PB |的值.高三理科数学答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分) 13. 2514. 54-15. 9 16. 172三、解答题(本大题共6小题,共70分) 17.(本题满分12分)解:(1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3.所以f (x )的最小正周期T =2π2=π .....................6分 (2)证明:设,32π+=x t因为-π4≤x ≤π4,所以-π6≤t ≤5π6. 所以1)32sin(21≤+≤-πx f (x )的值域为⎥⎦⎤⎢⎣⎡-1,21………………….12分18.(本题满分12分)[解]①由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .可得cos C =12,所以C =π3. ..............................................6分②由已知得12ab sin C =332. 又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25.所以△AB C 的周长为5+7.……………………..12分 19.(本题满分12分)解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.……………………..6分 (2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得nan +1-++=2,即an +1n +1-ann=2,所以数列⎩⎨⎧⎭⎬⎫an n 是首项a11=1,公差d =2的等差数列.则an n=1+2(n -1)=2n -1,所以a n =2n 2-n ....................12分 20.(本题满分12分)解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).…………..6分(2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+-2d =n2+3n4.………………12分。
2019届河南省周口中英文学校高三上学期第三次月考英语试题(PDF版)
周口中英文学校2018-2019学年上期高三第三次月考英语试题第Ⅰ卷(选择题共95分)第二部分:阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,共30分)阅读下面短文,从每题所给的A、B、C、D 四个选项中选出最佳答案。
AMy wife and I have always been friendly with the clerks at the local store. I don’t think many people appreciate what a difficult job these clerks have. They work for a little money and I often wonder how they make ends meet.One of the clerks, Charlie, was always wearing his glasses but he didn’t one day. I asked him about it and he said they’d been out of order and that he couldn’t afford a new pair. His family needed money. It was clear that he was having a difficult time.We wanted to help him, so we turned to our own eye doctor for help with a plan. We had his secretary contact him, asking him to come in for an eye exam for free. We told the doctor to let him order whatever glasses he wanted and that we would pay for them. Although Charlie questioned what was going on, the doctor just told him that someone had offered the money for his new glasses. When we went in to pay the bill, the doctor told us he was touched by our idea so that he waived the exam fee and only charged us for half the price of the glasses!It was so wonderful to see Charlie in his new glasses and he enjoyed telling all the regular customers how the gift came about. I’m sure that upon hearing his story, ideas of kindness may have come in the minds of many people.21. Why didn’t the clerk Charlie wear glasses one day?A. It was very warm and fine.B. His glasses were missing.C. His old glasses were broken.D. He forgot to wear his glasses.22. From the passage, we can infer that ______.A. Charlie was a young man with skillsB. Charlie couldn’t support his family with enough moneyC. Charlie completely accepted the money for the new glassesD. Charlie knew who paid the money for the new glasses23. The underlined word “waived” in the third paragraph can be replaced by ______.A. took upB. gave upC. cut downD. put off24. Which of the following could be the best title for the passage?A. Customers’ Gift to an EmployeeB. A Friendly Clerk — CharlieC. The Wonderful Feeling of Helping othersD. An Expensive Pair of GlassesBAfter giving a talk at a high school,I was asked to pay a visit to a special student.An illness had kept the boy home,but he had expressed an interest in meeting me.I was told it would mean a great deal to him,so I agreed.During the nine-mile drive to his home,I found out something about Matthew.He had muscular dystrophy(肌肉萎缩症).When he was born,the doctor told his parents that he would not live to five,and then they were told he would not make it to ten.Now he was thirteen.He wanted to meet me because I was a Gold-medal power lifter,and I knew about overcoming obstacles and going for my dreams.I spent over an hour talking to Matthew.Never once did he complain or ask,"Why me?"He spoke about winning and succeeding and going for his dreams.Obviously,he knew what he was talking about.He didn't mention that his classmates had made fun of him because he was different.He just talked about his hopes for the future,and how one day he wanted to lift weights with me.When we had finished talking,I went to my briefcase(公文包)and pulled out the first gold medal I had won and put it around his neck.I told him he was more of a winner and knew more about success and overcoming obstacles than I ever would.He looked at it for a moment,then took it off and handed it back to me.He said,"You are a champion.You earned that medal.Someday when I get to the Olympics and win my own medal,I will show it to you."Last summer I received a letter from Matthew's parents telling me that Matthew had passed away.They wanted me to have a letter he had written to me a few days before: Dear Dick,My mum said I should send you a thank-you letter for the picture you sent me.I also want to let you know that the doctors tell me that I don't have long to live any more,but I still smile as much as I can.I told you someday that I would go to the Olympics and win a gold medal,but I know now I will never get to do that.However,I know I'm a champion,and God knows that too.When I get to Heaven,God will give me my medal and when you get there,I will show it to you.Thank you for loving me.Your friend,Matthew25.The boy looked forward to meeting the author because .A.he was also good at weight liftingB.he wanted to get to the Olympics and win a medalC.he was one of the author's fansD.he admired the author very much26.The underlined sentence in the third paragraph probably means that .A.the boy never complained about how unlucky he was to have this diseaseB.the boy never complained about not being able to go to schoolC.the boy never complained why the author had never come to see him beforeD.the boy never complained about not getting a medal27.Matthew didn't accept the author's medal because .A.he thought it was too expensiveB.he was sure that he could win one in the futureC.he thought it was of no use to him as he would die soonD.he would not be pitied by others28.What would be the best title for this passage?A.A sick boy.B.A special friend.C.A real champion.D.A famous athlete.CWant to find a job? Now read the following advertisements.FAIRMONT HOTELFive waiters and Ten Waitresses---Aged under 22---At least high school graduate---Good looking; men at least 1.72 meters tall and women 1.65---Those knowing foreign languages preferred---Paid 1600---2200 dollars per monthOne Secretary---Aged under 30---Female preferred---Good at writing and skilled at computerIf interested, call 465-4768 or write to: Mr. Jack Hundris Room 0825, Fairmont Hotel567 Wood Street, San Markers, 78003Fax: 6954828WILSON BOOKSTOREAccountant(会计)---Aged between 25 and 40---With an experience of at least two years---With a degree and an accountant certificate(证书)---Paid 3000-4000 dollars monthly---With a knowledge of computerSalesclerk---Basic education of 12 years or more---Good at computer---Paid 1800-2200 dollars monthlyTel: 447-4398 Fax: 348526929. If you don’t know how to use a computer, you can just apply for the position as _________ .A. a secretaryB. a waiter or a waitressC. an accountantD. a salesclerk30. If you want to get the position of accountant in Wilson Bookstore, you have to satisfy the following conditions EXCEPT _________ .A. being a womanB. knowing well how to use a computerC. having been an accountantD. having an accountant certificate31. If you want to try for a job in Fairmont Hotel, you _________ .A. have to be a woman and know foreign languagesB. should be a university graduateC. have to be taller than 1.72 metersD. should be younger than 30 years oldDWhat to do if you don't feel popular?● Try to take part in activities. Call your friends. Plan to do something. The worst feeling is staying home alone, because it makes you feel even more lonely.● Try to make new friends. Choose friends carefully, not just because you think they're popular. And remember, making good friends takes time. Choosing a popular person to be friends with is okay, if they are nice.● Be yourself (保持独立). If you want to become friends with someone who's popular, don't make yourself into someone you are not just to impress that person.● Be nice. Be friendly. Be outgoing (开朗的). But don't overdo it! Talk to trusted friends if you are feeling really bad. Or you might want to write it down ill a journal (期刊) or diary.● Do something special for yourself. You could take pictures of your friends, or collect their school pictures, and take a collage (拼贴画) to hang on your wall. This will remind (提醒) you, when you are feeling unpopular, that you really do have friends.● Think up your own ideas. These suggestions might not work for everyone.What to do if you have a problem with your teacher?● Talk to your parents, or another adult who will listen to you and perhaps can help. Talk to your friends. Maybe they have had problems with the same teacher, too.● Don't give the teacher a reason to have problems with you. Do your work, complete your task, attend the class seriously and take notes. Maybe you just need to give the teacher a chance (机会).● Try to find out what the problem is.● Talk to the teacher if you feel comfortable doing this. Don't be nasty (闹别扭的), but express your concerns (关心). Listen to the teacher, as well.● Just accept the fact that you're not going to love all your teachers.32.What do we mean by saying "not feeling popular"?A. Not liked by our classmates or workmates.B. Not doing what we want.C. Not showing any interest in anything.D. Not so happy.33. What does the underlined word "overdo" mean'?A. Do something too much or in an extreme way.B. Try your best to do something.C. Do something carefully.D. Work too hard.34. The writerA. believes that your friend will help you out if you take their pictures.B. suggests that you discuss the reason of problem with your teacher when you feel uncomfortable.C. wants you to know that students usually hates teachers.D. is not too sure if his advice will certainly work on you.35. What's the best title of this passage?A. Why We Have Problems at School.B. Always Be Yourself.C. How to Handle Problems at School.D. Don't Be Afraid of Problems With Others.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
河南省周口中英文学校2019届高三上学期第三次月考英语试题+Word版含答案
- 1 - 绝密★启用前 河南省周口中英文学校2019届高三上学期第三次月考 英语试题 第Ⅰ卷(选择题 共95分) 第二部分:阅读理解 (共两节,满分40分) 第一节 (共15小题;每小题2分,共30分) 阅读下面短文,从每题所给的A 、B 、C 、D 四个选项中选出最佳答案。
A My wife and I have always been friendly with the clerks at the local store. I don ’t think many people appreciate what a difficult job these clerks have. They work for a little money and I often wonder how they make ends meet. One of the clerks, Charlie, was always wearing his glasses but he didn ’t one day. I asked him about it and he said they ’d been out of order and that he couldn ’t afford a new pair. His family needed money. It was clear that he was having a difficult time. We wanted to help him, so we turned to our own eye doctor for help with a plan. We had his secretary contact him, asking him to come in for an eye exam for free. We told the doctor to let him order whatever glasses he wanted and that we would pay for them. Although Charlie questioned what was going on, the doctor just told him that someone had offered the money for his new glasses. When we went in to pay the bill, the doctor told us he was touched by our idea so that he waived the exam fee and only charged us for half the price of the glasses! It was so wonderful to see Charlie in his new glasses and he enjoyed telling all the regular customers how the gift came about. I ’m sure that upon hearing his story, ideas of kindness may have come in the minds of many people. 21. Why didn ’t the clerk Charlie wear glasses one day?A. It was very warm and fine.B. His glasses were missing.此卷只装订不密封 班级 姓名 准考证号 考场号 座位号C. His old glasses were broken.D. He forgot to wear his glasses.22. From the passage, we can infer that ______.A. Charlie was a young man with skillsB. Charlie couldn’t support his family with enough moneyC. Charlie completely accepted the money for the new glassesD. Charlie knew who paid the money for the new glasses23. The underlined word “waived” in the third paragraph can be replaced by ______.A. took upB. gave upC. cut downD. put off24. Which of the following could be the best title for the passage?A. Customers’ Gift to an EmployeeB. A Friendly Clerk — CharlieC. The Wonderful Feeling of Helping othersD. An Expensive Pair of GlassesBAfter giving a talk at a high school,I was asked to pay a visit to a special student.An illness had kept the boy home,but he had expressed an interest in meeting me.I was told it would mean a great deal to him,so I agreed.During the nine-mile drive to his home,I found out something about Matthew.He had muscular dystrophy(肌肉萎缩症).When he was born,the doctor told his parents that he would not live to five,and then they were told he would not make it to ten.Now he was thirteen.He wanted to meet me because I was a Gold-medal power lifter,and I knew about overcoming obstacles and going for my dreams.I spent over an hour talking to Matthew.Never once did he complain or ask,"Why me?"He spoke about winning and succeeding and going for his dreams.Obviously,he knew what he was talking about.He didn't mention that his classmates had made fun of him because he was different.He just talked about his hopes for the future,and how one day he wanted to lift weights with me.When we had finished talking,I went to my briefcase(公文包)and pulled out the first gold medal I had won and put it around his neck.I told him he was more of a winner and knew more about success and overcoming- 2 -。
河南省周口中英文学校2019届高三上学期第三次月考数学(文)试题+Word版含答案
绝密★启用前 河南省周口中英文学校2019届高三上学期第三次月考 文科数学试题 一 、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的. 1.已知集合A ={(x ||x |<2)},B ={−2,0,1,2},则( ) A . {0,1} B . {−1,0,1} C . {−2,0,1,2} D . {−1,0,1,2} 2.已知角的终边在第一象限,且,则( ) A .B .C .D .3.设a ,b 均为单位向量,则“”是“a ⊥b ”的( ) C . 充分必要条件 D . 既不充分也不必要条件4.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 ( ) C .75 D .63 5.设,,,则,,的大小关系是( ) A .B .C .D .6.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则ABC ∆的形状是( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形 D .无法确定7.设函数的图象为,则下列结论正确的是( ) A . 函数的最小正周期是此卷只装订不密封 班级 姓名 准考证号 考场号 座位号B . 图象关于直线对称C . 图象可由函数的图象向左平移个单位长度得到D . 函数在区间上是增函数8.平面上有四个互异点A .B .C .D ,已知(DB →+DC →-2DA →)·(AB→-AC →)=0,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .无法确定 9.已知曲线在点处的切线与曲线相切,则( )A .B .C .D .10.函数33()x x f x e -=的大致图象是( )11.函数( )A . 没有零点B . 有一个零点C . 有两个零点D . 有一个零点或有两个零点12.设函数的导函数为,且,则 ( ) A .B .C .D .二.填空题: 本大题共4小题,每小题5分,满分20分.13.已知→→b a ,为单位向量,其夹角为︒60,则∙-→→)2(b a →b =______________. 14.不等式224x x -<的解集为________.已。
河南省周口中英文学校2019届高三上学期第三次月考地理试题+Word版
绝密★启用前河南周口中英文学校2018-2019年度上期高三第三次月考地理试卷第I卷一、单项选择题(每小题只有一个正确选项,请把正确答案的代号填在题后的括号内,每小题2分,共60分)读我国某地区1月份等温线图(单位:℃),回答1—2题。
1.关于图中各处的叙述,正确的是()A.ABC三处均位于我国第一级阶梯上B.A处气温偏高,为湖泊C.B处气温低于-18℃,为祁连山脉D.C处气温低于-12℃2.关于图中河流附近河段水文特征的叙述,正确的是()①泥沙含量较小②水位季节变化小③无结冰期④水流湍急A.①②B.①④C.②③D.③④读世界某地区水平衡分布图(水平衡:年降水量减年蒸发量),完成3—4题。
3.从图中可以判断()A.气温越高,水平衡数值就越小B.赤道穿过的东部数值比西部低与地形有关C.降水越少,水平衡数值就越小D.热带草原气候地区的水平衡数值都为正值4.近年来,图中某区域土地沙化出现了南扩速度加快的现象,“南扩”其自然原因是()A.位于东北信风带,沙丘容易向西南移动B.草原上的野生食草动物数量增加C.沙漠南侧的农业生产方式要比北侧落后D.气温升高,暴雨增多,水土流失严重巴拿马( 8°57'N, 79°3'W)时间2017年6月12日晚8时,巴拿马总统胡安·卡洛斯·巴雷拉在国家电视台正式向全世界宣布:巴拿马共和国与中国建立外交关系。
读资料回答5—6题。
5.当巴拿马总统正式向全世界宣布与中国建交时,此时北京时间为()A12日21时. B.13日19时 C.12日7时 D.13日9时6.巴拿马总统正式向全世界宣布与中国建交后的1个月内()A.巴拿马城正午太阳高度变小B.地球位远日点附近,公转速度较慢C.南极圈内极夜范围变小D.北京日出方位由东北转为东南下图中,①~④箭头表示洋流的流向。
读图,回答7—8题。
7.关于图中①~④洋流的叙述正确的是()A.①洋流的形成与季风有关B.②洋流可能在8月出现C.③洋流属于上升补偿流D.④洋流沿岸地区为热带雨林带8.当赤道以北海域洋流流向为②时,下列叙述正确的是()A.非洲热带草原一片枯黄B.亚欧大陆等温线向低纬凸出C.夏威夷高压势力强盛D.北半球正午太阳高度达一年中最小值图为某城市3月底的垂直气温分布及热力环流示意图。
河南省周口中英文学校2019届高三数学上学期第三次月考试题理
周口中英文学校2018-2019学年上期高三第三次月考(理科数学试卷)一 、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合A ={(|||<2)},B ={−2,0,1,2},则( )A . {0,1}B . {−1,0,1}C . {−2,0,1,2}D . {−1,0,1,2} 2.已知角的终边在第一象限,且,则( )A .B .C .D . 3.设a ,b 均为单位向量,则“”是“a ⊥b ”的( )C . 充分必要条件D . 既不充分也不必要条件4.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 ( ) C .75 D .635.设,,,则,,的大小关系是( )A .B .C .D .6.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则ABC ∆的形状是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .无法确定 7.设函数的图象为,则下列结论正确的是( )A . 函数的最小正周期是B . 图象关于直线对称C . 图象可由函数的图象向左平移个单位长度得到D . 函数在区间上是增函数8.平面上有四个互异点A .B .C .D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .无法确定9.已知曲线在点处的切线与曲线相切,则( )A .B .C .D .10.已知函数(为自然对数的底数),则的图像大致为( )11.等比数列{n a }中,a 1=2,a 10=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 10),则(0)f ' 的值为( )A .62 B .92 C .122 D .152 12.已知函数是定义在上的可导函数,且对于,均有,则有( )A .B .C .D .二.填空题: 本大题共4小题,每小题5分,满分20分.13.已知→→b a ,为单位向量,其夹角为︒60,则∙-→→)2(b a →b =______________.14.已知实数,满足约束条件,则的最小值为_______.15.已知cos ()=,则sin ()=____.16.在△ABC 中,若(sin A +sin B ) :(sin A +sin C ) :(sin B +sin C )=4 :5 :6,且该 三角形的面积为ABC 的最大边长等于__________.三.解答题:(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知集合;设p :x ∈M , q :∈N ,若是的充分不必要条件,求实数的取值范围.18.(本小题满分12分)已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值;(2) 求)32sin(π+x 的值.19. (本小题满分12分)已知函数.(1)求函数的最小正周期和单调递减区间;(2)在中,角的对边分别为,若,,,求的值.20.(本小题满分12分)设函数f (x )=x m x ln 221-,g (x )=2x -(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥1时,求函数()()()h x f x g x =-的极值.21.(本小题满分12分)已知数列的前项和为,,. (1)求数列的前项和为;(2)令,求数列的前项和.22. (本小题满分12分) 设函数(1)若,求的单调递增区间;(2)当时,存在,使成立,求实数的最小值,(其中e是自然对数的底数)18. (本小题满分12分)19. (本小题满分12分)20. (本小题满分12分)21. (本小题满分12分)22. (本小题满分12分)高三第三次月考理科数学试题参考答案一.选择题:二.填空题:13.0. 14 -3 15. 16.14三.解答题:17解:∵log2(2x﹣2)<1,∴0<2x﹣2<2,解得:1<x<2,故M={x|1<x<2},∵x2+(3﹣a)x﹣2a(3+a)<0,a<﹣1,∴(x+a+3)(x﹣2a)<0,∵a<﹣1,∴2a<﹣3﹣a,故N={x|2a<x<﹣3﹣a},∵p是q的充分不必要条件,∴,①②中等号不同时成立,即a≤﹣5.18.19.解:(1),周期为.因为,所以,所以所求函数的单调递减区间为.(2)因为,又,所以,所以,①又因为,由正弦定理可得,,②由①②可得.20.21.解:(1)由,得,又,所以数列是首项为3,公差为1的等差数列,所以,即.(2)当时,,又也符合上式,所以()所以,所以,①,②①-②,得故.22.解:(1)当,,定义域为,,若,则无单调递增区间;若,令,得,的单调增区间为;若,令,得或,的单调增区间为和(2),则,,所以,当时,有最大值,因为存在,使成立,所以存在,使得,即,设,,则,所以在上单调递减,,所以。
河南省周口市中英文学校高三上学期第三次月考数学试题.pdf
一、选择题(本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. B. C. D. 2.,,若,则实数的取值范围是( ) A.B.C.D. 3.对于非零向量,“”是“”成立的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 .下列函数中,既是奇函数又是增函数的为( ) A.B.C.D..、、不在同一条直线上,点为该平面上一点,且,则 ( ) A.点P在线段AB上 B.点P在线段AB的反向延长线上 C.点P在线段AB的延长线上 D.点P不在直线AB上 6.已知是函数的零点,若,则的值满足 A. B. C. D.的符号不确定.A BC D 5 8、如图,是函数的导函数的图象,则下面判断正确的是 ( ) (A)在区间(-2,1)上是增函数 (B)在(1,3)上是减函数 (C)在(4,5)上是增函数 (D)当时,取极大值 9、函数在上为减函数,则的取值范围是A.B.C. D. 10、如图,在矩形OABC中,点E,F分别在AB,BC上,且满足AB=3AE,BC=3CF,若=+则=A.B. C D.l 对任意的都满足,当 时,,若函数至少6个零点,则取值范围是( ) (A) (B) (C) (D) 12.满足:对任意,都存在使得,则称为集合A的聚点.用Z表示整数集,则在下列集合中, (1) (2)不含0的实数集R (3) (4)整数集Z 以0为聚点的集合有 ( ) A.(1)(3) B.(1)(4) C.(2)(3) D.(1)(2)(4) 二、填空题(本题共5小题,每小题4分,共20分) 13.已知函数的定义域为,则函数的定义域为14.曲线在处的切线方程为______; 1 (理科做)计算 215.已知函数的图像如图所示,则 .命题“对任意的x,x3-x2+1≤0”的否定是“存在x,x3-x2+1>0” ②函数的零点有2个;③若函数f(x)=x2-|x+a|为偶函数,则实数a=函数f(x)=在R上是单调递增函数,则实数a的取值范围为.三、解答题:本大题共小题,共分.解答应写出文字说明,证明过程或演算步骤.p:x∈[1,2],x2-a≥0;命题q:x0∈R,使得x+(a-1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围。
河南省周口中英文学校高一数学上学期第三次(12月)月考试题
河南省周口中英文学校2014-2015学年高一数学上学期第三次(12月)月考试题一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.1.下列命题正确的是 ( ).①平行于同一平面的两直线平行;②垂直于同一平面的两直线平行;③平行于同一直线的两平面平行;④垂直于同一直线的两平面平行. A .①②B .③④C .①③D .②④2. 已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a =f (-3),b =f ⎝⎛⎭⎪⎫log 312,c =f ⎝ ⎛⎭⎪⎫43,则a ,b ,c 的大小关系是( )A .a <c <bB .b <a <cC .b <c <aD .c <b <a3. 已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .4B.14C .-4D .-144. 已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2 B.223 C.423D.4335.函数f (x )=πx +log 2x 的零点所在区间为( )A.⎣⎢⎡⎦⎥⎤0,18B.⎣⎢⎡⎦⎥⎤18,14C.⎣⎢⎡⎦⎥⎤14,12 D.⎣⎢⎡⎦⎥⎤12,16.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ).A .球B .三棱锥C .正方体D .圆柱7.若P ={x |x <1},Q ={x |x >-1},则( )A .P ⊆QB .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P8.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ).A.4 0003 cm 3 B.8 0003cm 3 C .2 000 cm 3 D .4 000 cm 39设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .410.定义运算a ⊕b =⎩⎪⎨⎪⎧a a ≤b ,ba >b ,则函数f (x )=1⊕2x的图象是( )11.设f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是( )A .{x |x <-3或0<x <3}B .{x |-3<x <0或x >3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}12. 函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1,的值域是( )A.⎣⎢⎡⎭⎪⎫34,+∞ B .(0,1) C.⎣⎢⎡⎭⎪⎫34,1 D .(0,+∞)二.填空题 本大题共4小题,每小题5分,满分20分.13.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,则实数m 的取值范围是____14.三棱锥P -ABC 的两侧面PAB 、PBC 都是边长为2的正三角形,AC =3,则二面角A -PB -C 的大小为_____15.函数f(x)=4-x2+1x-的定义域是_____16) 给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是_____ ___(填序号).三.解答题(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分).)已知集合A={x|x2-5x-6=0},B={x|mx+1=0},若B⊆A,求实数m组成的集合.18.(本小题满分12分))将长方体ABCD-A1B1C1D1沿相邻三个面的对角线截去一个棱锥得到如图甲所示的几何体,已知该几何体的正视图与俯视图如图乙.(1)画出该几何体的侧视图;(2)求该几何体的体积.图甲图乙19.(本小题满分12分).如图,在四棱锥SABCD中,底面ABCD是菱形,SA⊥底面ABCD,M 为SA的中点,N为CD的中点.证明:(1)平面SBD⊥平面SAC;(2)直线MN∥平面SBC.20.(本小题满分12分).已知函数f(x)=(m+6)x2+2(m-1)x+m+1恒有零点.(1)求m的取值范围;(2)若函数有两个不同的零点,且其倒数之和为-4,求m的值.21. (本小题满分12分)如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=2,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;B1C1EF.②BA(2)求BC1与平面B1C1EF所成的角的正弦值.22. (本小题满分12分) 已知函数f(x)=x2-2x-3,x∈.(1)画出函数y=f(x)的图象,并写出其值域;(2)当m为何值时,函数g(x)=f(x)+m在上有两个零点?高一数学试题参考答案三.解答题:17解 ∵A ={x |x 2-5x -6}={-1,6},B ={x |mx +1=0},又B ⊆A ,∴B =∅或B ={-1}或B ={6}. 当B =∅时,m =0; 当B ={-1}时,m =1; 当B ={6}时,m =-16.∴实数m 组成的集合为⎩⎨⎧⎭⎬⎫-16,0,1. 18.解 (1)如图所示(2)对于所截去的三棱柱B 1-CC 1D 1其体积V 三棱锥B 1-CC 1D 1=13B 1B ·S △CC 1D 1=13×5×12×3×4=10, V 长方体ABCD -A 1B 1C 1D 1=5×4×3=60故所求几何体的体积为V 长方体ABCD -A 1B 1C 1D 1-V 三棱锥B 1-CC 1D 1=60-10=50.19. 证明 (1)∵ABCD 是菱形,∴BD ⊥AC . ∵SA ⊥底面ABCD ,∴BD ⊥SA . ∵SA ∩AC =A ,∴BD ⊥平面SAC .又∵BD ⊂平面SBD ,∴平面SBD ⊥平面SAC .(2)如图,取SB 中点E ,连接ME ,CE . ∵M 为SA 中点, ∴ME ∥AB 且ME =12AB .又∵ABCD 是菱形,N 为CD 的中点, ∴CN ∥AB 且CN =12CD =12AB .∴CN 綉ME .∴四边形CNME 是平行四边形,∴MN ∥CE . 又MN ⊄平面SBC ,CE ⊂平面SBC , ∴直线MN ∥平面SBC .20. 解 (1)当m +6=0时,f (x )=-14x -5,显然有零点x =-514.当m +6≠0时,由Δ=4(m -1)2-4(m +6)·(m +1)=-36m -20≥0,得m ≤-59,∴m ≤-59且m ≠-6时,二次函数有零点.综上,m ≤-59.(2)设x 1,x 2是函数的两个零点, 则有x 1+x 2=-m -m +6,x 1x 2=m +1m +6. ∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4,∴-m -m +1=-4,解得m =-3,且当m =-3时,m ≠-6,Δ>0符合题意,∴m =-3.(2)解 设BA 1与B 1F 交点为H ,连接C 1H .由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与平面B 1C 1EF 所成的角. 在矩形AA 1B 1B 中,AB =2,AA 1=2,得BH =46.在Rt△BHC 1中,BC 1=25,BH =46,得sin∠BC 1H =BH BC 1=3015. 所以BC 1与平面B 1C 1EF 所成角的正弦值是3015.22.解(1)依题意:f(x)=(x-1)2-4,x∈,其图象如图所示.由图可知,函数f(x)的值域为.(2)∵函数g(x)=f(x)+m在上有两个零点.∴方程f(x)=-m在x∈上有两相异的实数根,即函数y=f(x)与y=-m的图象有两个交点.由(1)所作图象可知,-4<-m≤0,∴0≤m<4.∴当0≤m<4时,函数y=f(x)与y=-m的图象有两个交点,故当0≤m<4时,函数g(x)=f(x)+m在上有两个零点。
河南省周口中英文学校高一上学期第三次(12月)月考数学试题
河南省周口中英文学校2014-2015学年高一上学期第三次(12月)月考数学试题一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的. 1.下列命题正确的是 ( ). ①平行于同一平面的两直线平行;②垂直于同一平面的两直线平行;③平行于同一直线的两平面平行;④垂直于同一直线的两平面平行. A .①②B .③④C .①③D .②④2. 已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a =f (-3),b =f ⎝ ⎛⎭⎪⎫log 312,c =f ⎝ ⎛⎭⎪⎫43,则a ,b ,c 的大小关系是( ) A .a <c <b B .b <a <c C .b <c <aD .c <b <a3. 已知函数f (x )=⎩⎨⎧log 3x ,x >0,2x ,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .4B.14C .-4D .-144. 已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2 B.223 C.423D.4335.函数f (x )=πx +log 2x 的零点所在区间为( ) A.⎣⎢⎡⎦⎥⎤0,18 B.⎣⎢⎡⎦⎥⎤18,14 C.⎣⎢⎡⎦⎥⎤14,12 D.⎣⎢⎡⎦⎥⎤12,1 6.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ).A .球B .三棱锥C .正方体D .圆柱7.若P ={x |x <1},Q ={x |x >-1},则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆Q D .Q ⊆∁R P8.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ).A.4 0003 cm 3B.8 0003cm 3 C .2 000 cm 3 D .4 000 cm 39设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .410.定义运算a ⊕b =⎩⎨⎧a (a ≤b ),b (a >b ),则函数f (x )=1⊕2x 的图象是( )11.设f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是( )A .{x |x <-3或0<x <3}B .{x |-3<x <0或x >3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3} 12. 函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1,的值域是( )A.⎣⎢⎡⎭⎪⎫34,+∞ B .(0,1) C.⎣⎢⎡⎭⎪⎫34,1 D .(0,+∞) 二.填空题 本大题共4小题,每小题5分,满分20分.13.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,则实数m 的取值范围是____14.三棱锥P -ABC 的两侧面PAB 、PBC 都是边长为2的正三角形,AC =3,则二面角A -PB -C 的大小为_____15.函数f(x)=4-x2+1lg(x-1)的定义域是_____16)给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是________(填序号).三.解答题(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分).)已知集合A={x|x2-5x-6=0},B={x|mx+1=0},若B⊆A,求实数m组成的集合.18.(本小题满分12分))将长方体ABCD-A1B1C1D1沿相邻三个面的对角线截去一个棱锥得到如图甲所示的几何体,已知该几何体的正视图与俯视图如图乙.(1)画出该几何体的侧视图;(2)求该几何体的体积.图甲图乙19.(本小题满分12分).如图,在四棱锥SABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.证明:(1)平面SBD⊥平面SAC;(2)直线MN∥平面SBC.20.(本小题满分12分).已知函数f(x)=(m+6)x2+2(m-1)x+m+1恒有零点.(1)求m的取值范围;(2)若函数有两个不同的零点,且其倒数之和为-4,求m的值.21. (本小题满分12分)如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=2,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.(2)求BC1与平面B1C1EF所成的角的正弦值.22. (本小题满分12分) 已知函数f(x)=x2-2x-3,x∈.(1)画出函数y=f(x)的图象,并写出其值域;(2)当m为何值时,函数g(x)=f(x)+m在上有两个零点?高一数学试题参考答案三.解答题:17解 ∵A ={x |x 2-5x -6}={-1,6}, B ={x |mx +1=0},又B ⊆A ,∴B =∅或B ={-1}或B ={6}. 当B =∅时,m =0; 当B ={-1}时,m =1; 当B ={6}时,m =-16.∴实数m组成的集合为⎩⎨⎧⎭⎬⎫-16,0,1. 18.解 (1)如图所示(2)对于所截去的三棱柱B 1-CC 1D 1其体积 V 三棱锥B 1-CC 1D 1=13B 1B ·S △CC 1D 1=13×5×12×3×4=10, V 长方体ABCD -A 1B 1C 1D 1=5×4×3=60 故所求几何体的体积为V 长方体ABCD -A 1B 1C 1D 1-V 三棱锥B 1-CC 1D 1=60-10=50.19. 证明 (1)∵ABCD 是菱形,∴BD ⊥AC .∵SA ⊥底面ABCD ,∴BD ⊥SA . ∵SA ∩AC =A ,∴BD ⊥平面SAC .又∵BD ⊂平面SBD ,∴平面SBD ⊥平面SAC .(2)如图,取SB 中点E ,连接ME ,CE . ∵M 为SA 中点, ∴ME ∥AB 且ME =12AB .又∵ABCD 是菱形,N 为CD 的中点, ∴CN ∥AB 且CN =12CD =12AB .∴CN 綉ME .∴四边形CNME 是平行四边形,∴MN ∥CE . 又MN ⊄平面SBC ,CE ⊂平面SBC , ∴直线MN ∥平面SBC .20. 解 (1)当m +6=0时,f (x )=-14x -5,显然有零点 x =-514.当m +6≠0时,由Δ=4(m -1)2-4(m +6)·(m +1)=-36m -20≥0,得m ≤-59,∴m ≤-59且m ≠-6时,二次函数有零点.综上,m ≤-59.(2)设x 1,x 2是函数的两个零点, 则有x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4, ∴-2(m -1)m +1=-4,解得m =-3,且当m =-3时,m ≠-6,Δ>0符合题意,∴m=-3.(2)解 设BA 1与B 1F 交点为H ,连接C 1H .由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与平面B 1C 1EF 所成的角. 在矩形AA 1B 1B 中,AB =2,AA 1=2,得BH =46. 在Rt △BHC 1中,BC 1=25,BH =46,得 sin ∠BC 1H =BH BC 1=3015.所以BC1与平面B1C1EF所成角的正弦值是30 15.22.解(1)依题意:f(x)=(x-1)2-4,x∈,其图象如图所示.由图可知,函数f(x)的值域为.(2)∵函数g(x)=f(x)+m在上有两个零点.∴方程f(x)=-m在x∈上有两相异的实数根,即函数y=f(x)与y=-m的图象有两个交点.由(1)所作图象可知,-4<-m≤0,∴0≤m<4.∴当0≤m<4时,函数y=f(x)与y=-m的图象有两个交点,故当0≤m<4时,函数g(x)=f(x)+m在上有两个零点。
(超值)河南省周口中英文学校2019届高三上学期期中考试物理试卷(含答案)
周口中英文学校2018-2019学年上期高三期中考试物理试题一、选择题(每小题4分,计48分,第1~8题的四个选项中只有一个选项是正确的,第9~12题的四个选项中有多个选项是正确的,全部选对的得4分,选不全的得2分,有选错的或不答的得0分)1、下列哪组单位都是国际单位制中的基本单位()A.千克、牛顿、秒B.千克、秒、米C.克、千米、秒D.牛顿、克、米2、一个小石块从空中a点自由落下,先后经过b点和c点,不计空气阻力,已知它经过b点时的速度为v,经过c点时的速度为3v,则ab段与bc段位移之比为()A.1∶3 B.1∶5 C.1∶8 D.1∶93、在水平地面上固定一个上表面光滑的斜面体,在它上面放有质量为m的木块,用一根平行于斜面的细线连接一个轻环,并将轻环套在一根两端固定、粗糙的水平直杆上,整个系统处于静止状态,如图所示,则杆对环的摩擦力大小为( )A、mg sinθB、mg cosθC、mg tanθD、mg sinθcosθ4.如图所示,小圆环A系着一个质量为m2的物块并套在另一个竖直放置的大圆环上,有一细线一端拴在小圆环A上,另一端跨过固定在大圆环最高点B的一个小滑轮后吊着一个质量为m1的物块.如果小圆环、滑轮、绳子的大小和质量以及相互之间的摩擦都可以忽略不计,绳子又不可伸长,若平衡时弦AB所对应的圆心角为α=120°,则两物块的质量比m1:m2应为()A.2B. 3C. 2D. 35.如图所示,a为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星,以下关于a 、b 、c 的说法中正确的是( ) A .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a b >a c =a a B .a 、b 、c 做匀速圆周运动的角速度大小关系为ωa =ωc >ωb C .a 、b 、c 做匀速圆周运动的线速度大小关系为v b >v c >v a D .a 、b 、c 做匀速圆周运动的周期关系为T a >T c =T b6. 竖直正方形框内有三条光滑轨道OB 、OC 和OD ,三轨道交于O 点,且与水平方向的夹角分别为 30°、45°和 60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…
级…
班…
…
18. (本小题满分 12 分)
19. (本小题满分 12 分)
-6-
20. (本小题满分 12 分)
21. (本小题满分 12 分)
-7-
22. (本小题满分 12 分)
一.选择题: 题目
高三第三次月考理科数学试题参考答案 1 2 3 4 5 6 7 8 9 10 11 12
-8-
-1-
9.已知曲线
在点 处的切线与曲线
A.
B.
C.
相切,则 ( ) D.
10. 已知函数
( 为自然对数的底数) ,则 的图像大致为(
)
11.等比数列 { an } 中, a1= 2,a10= 4,函数 f ( x)= x(x- a1)( x- a2)…( x- a10),则 f (0)
的值为( )
m ln x , g( x)= x2 - ( m+ 1) x.
( 2)当 m≥1时,求函数 h( x) f ( x) g( x) 的极值.
-3-
21.( 本小题满分 12 分)已知数列 的前 项和为 , ,
.
( 1)求数列 的前 项和为 ;
( 2)令
,求数列 的前 项和 .
22. ( 本小题满分 12 分 ) 设函数
,则
的最小值为 _______.
-2-
15.已知 cos ( ) = ,则 sin (
) =____.
16. 在△ ABC中,若( sin A+ sin B) :( sin A+ sin C) :( sin B+sin C)= 4 : 5 :6,且该
三角形的面积为 15 3 ,则△ ABC的最大边长等于 __________.
A. 函数 的最小正周期是
B. 图象 关于直线
对称
C. 图象 可由函数
的图象向左平移 个单位长度得到
D. 函数 在区间
上是增函数
8.平面上有四个互异点 A. B. C. D,已知 ( D→B+ D→C- 2D→A) ·(A→B-A→C) = 0,则△ ABC的形状是 ( ) A.直角三角形 B .等腰三角形 C .等腰直角三角形 D .无法确定
24
( 1)求 sin x 的值;( 2) 求 sin(2 x ) 的值 . 3
19. (本小题满分 12 分)已知函数
.
( 1)求函数 的最小正周期和单调递减区间;
( 2)在
中,角
的对边分别为
,若
,
,
,求 的值 .
20. (本小题满分 12 分)设函数 f (x)= 1 x2 2
( 1)求函数 f (x)的单调区间;
周口中英文学校 2018-2019 学年上期高三第三次月考
( 理科数学试卷 )
一 、选择题:本大题共 12 小题,每小题 5 分,满分 60 分;每小题给出的四个选项中只有一
项是符合题目要求的.
1. 已知集合 A={( || |<2)}, B={ - 2,0,1,2}, 则
()
A. {0,1}
B
. { - 1,0,1}
A. 26
B
. 29
C
. 212
12.已知函数 是定义在 上的可导函数,且对于
D
. 215
,均有
,则有( )
A.
B.
C. D. 二.填空题 : 本大题共 4 小题,每小题5分,满分 20分.
13.已知 a, b 为单位向量,其夹角为 60 ,则 (2a b) b = ______________.
14.已知实数 , 满足约束条件
C. 75
D.63
5.设
,
,
,则 , , 的大小关系是(
)
A.
B.
C.
D.
6. 在 ABC 中,若 2a b c , sin 2 A sin B sin C ,则 ABC 的形状是(
)
A.等边三角形
B .等腰三角形 C .等腰直角三角形 D .无法确定
7. 设函数
的图象为 ,则下列结论正确的是( )
∴( x+a+3)( x﹣2a)< 0,
∵ a<﹣ 1,∴ 2a<﹣ 3﹣ a,
故 N={ x|2 a< x<﹣ 3﹣ a} ,
∵ p 是 q 的充分不必要条件,
∴
,
①②中等号不同时成立,
即 a≤﹣ 5.
18. 19. 解:( 1)
,
周期为
.
因为
,
所以
,
所以所求函数的单调递减区间为
.
( 2)因为
,又
C. { - 2,0,1,2} D
. { - 1,0,1,2}
2. 已知角 的终边在第一象限,且
,则
()
A.
B.
C.
D.
3. 设 a,b 均为单位向量,则“
”是“ a⊥b”的 ( )
C. 充分必要条件4. 一个等比数列前 n 项的和为 48,前 2n 项的和为 60,则前 3n 项的和为 ( )
三.解答题 : (本大题共 6 小题 , 满分 70 分 , 解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分 12 分)已知集合
;
设 p: x∈M, q: ∈N,若 是 的充分不必要条件,求实数 的取值范围.
18.(本小题满分 12 分)已知 cos( x )
2
3
,x ( , ).
4 10
… …
号 座
… …
二、填空题 : (每小题 5 分,共 20 分)
13、
14
、
… …
… 15、
16
、
号
场 考
… 三 : 解答题 : (本题 70 分 , 解答应写出文字说明,证明过程或演算步骤) …
线 17.(本小题满分 12 分)
…
… 号… 学…
… … …
…
…
…
名 姓
… … …
…
…
…
…
封
…
…
…
…
-5-
,所以
,
所以
又因为 由①②可得
,①
,由正弦定理可得,
,②
.
-9-
20.
21. 解:( 1)由
,得
,
又
,所以数列 是首项为 3,公差为 1 的等差数列,
所以
,即
.
( 2)当
时,
又 也符合上式,所以
,
(
)
所以
,
所以
,①
,② ① - ②,得
故
.
- 10 -
22. 解:( 1)当 ,
,定义域为
答案 二.填空题:
ADCDBA BB AA AD
13. 0. 14 -3 15
.
16.14
三.解答题:
17 解:∵ log 2( 2x﹣ 2)< 1,
∴ 0< 2x﹣ 2< 2,解得: 1<x< 2,
故 M={ x|1 < x< 2} , ∵ x2+( 3﹣a) x﹣ 2a( 3+a)< 0, a<﹣ 1,
( 1)若 ,求 的单调递增区间;
( 2)当 时,存在
,使
对数的底数)
成立,求实数 的最小值,(其中 e 是自然
-4-
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
周口中英文学校 2018-2019 学年上期高三第三次月 (理科数学答题卷)
一…、 选择题(本题每小题 5 分,共 60 分) …