(完整版)a圆周率3.14与各数的乘积
标准电线平方数和直径一览表
标准电线平方数和直径一览表?电线(平方毫米)导体直径(毫米)25℃铜线载流量1.5 1.38 18A2.5 1.78 26A4 2.25 38A6 2.76 44A10 1.33×7 68A16 1.70×7 80A25 2.10×7 109A35 2.50×7 125A50 1.78×19 163A70 2.10×19 202A95 2.50×19 243A注:以上导体直径指BV塑铜线及BLV塑铝线换算方法:????知道电线的平方,计算电线的半径用求圆形面积的公式计算:????电线平方数(平方毫米)=圆周率(3.14)×电线半径(毫米)的平方????知道电线的平方,计算线直径也是这样,如:????2.5方电线的线直径是:2.5÷3.14=0.8,再开方得出0.9毫米,因此2.5方线的线直径是:2×0.9毫米=1.8毫米。
????知道电线的直径,计算电线的平方也用求圆形面积的公式来计算:????电线的平方=圆周率(3.14)×线直径的平方/4????电缆大小也用平方标称,多股线就是每根导线截面积之和。
????电缆截面积的计算公式:????0.7854×电线半径(毫米)的平方×股数????如48股(每股电线半径0.2毫米)1.5平方的线:????0.785×(0.2×0.2)×48=1.5平方??硅橡胶导线编辑锁定本词条缺少信息栏、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!硅橡胶导线是指具有耐高温耐低温性能,具有电绝缘性能的导线,采用耐高温高强型、经特殊工艺加工而成。
目录1. 1定义信息2. 2产品信息3. 3特点/用途4. 4规格结构及技术参数硅橡胶导线定义信息编辑硅橡胶导线,主要特征是耐高温、绝缘、防火阻燃、耐腐蚀、耐老化、耐气候性、高强度、高模量、防静电、外观光滑等特点。
人教版六年级数学上册期末综合素质评价 附答案 (3)
人教版六年级数学上册期末质量检测一、仔细推敲,选一选(将正确答案的字母填入括号里)。
(每小题1 分,共12 分)1.下面的图形中,涂色部分的面积能用75% 表示的是( )。
2.下面的说法正确的是( )。
A.圆周率就是3.14B.715与157的乘积是1,所以它们互为倒数C.圆的直径是半径的2 倍D.12×43×32=1,所以12、43、32互为倒数3.根据图中的信息,下列说法错误的是( )。
A.把摄影小组的人数看作单位“1”B.单位“1”已知,可以用乘法解答C.摄影小组的人数= 航模小组的人数÷4 5D.航模小组的人数是摄影小组的4 54.把一个圆平均分成16 份,然后剪开拼成一个近似的长方形,( )。
A.周长和面积都没变 B.周长没变,面积变了C.周长变了,面积没变 D.不能确定5.龙岩市在福州市的西偏南约45°方向上,那么福州市在龙岩市的( )方向上。
A.东偏南约45° B.西偏南约45°C.西偏北约45° D.东偏北约45°6.如果25×ab=100(b 不等于0),那么a与b的大小关系是( )。
A.a > b B.a < b C.a = b D.无法确定7.如果用4 m 长的绳子把一只羊拴在草地的一根木桩上,那么这只羊可以吃到草的面积是( )m2。
A.2×3.14×4 B.3.14×4×4C.3.14×2×2 D.3.14×(4×2)×(4×2)8.某件商品原价是a 元,先涨价10%,后来又降价10%,现在售价是( )元。
A.0.99a B.a C.1.01a D.1.1a9.果园里有梨树480 棵,苹果树的棵数比梨树多16,求苹果树有多少棵,下面算式正确的是( )。
A.480×16B.480÷16C.480×(1+16) D.480÷(1+16)10.聪聪泡了四杯糖水,各杯中糖与水的质量如下图所示,糖水一样甜的是( )。
小学数学认识圆周率练习题及答案
小学数学认识圆周率练习题及答案圆周率,即π(pi),是数学中一个非常重要的常数。
它表示的是圆的周长与直径之比,通常近似取为 3.14。
在小学数学的学习过程中,认识和运用圆周率是一个必不可少的环节。
为了帮助同学们更好地掌握圆周率的概念和运算方法,下面给出一些小学数学认识圆周率的练习题及答案。
练习题一:计算圆的周长1. 半径为5cm的圆的周长是多少?2. 直径为10m的圆的周长是多少?答案:1. 圆的周长公式为C=2πr,其中r为半径。
带入圆周率3.14,半径5cm,则周长为2 × 3.14 × 5 = 31.4cm。
2. 直径是半径的两倍,所以直径为10m的圆的半径为5m。
带入圆周率3.14,半径5m,则周长为2 × 3.14 × 5 = 31.4m。
练习题二:计算圆的面积1. 半径为8cm的圆的面积是多少?2. 直径为14cm的圆的面积是多少?答案:1. 圆的面积公式为A=πr²,其中r为半径。
带入圆周率3.14,半径8cm,则面积为3.14 × 8² = 200.96cm²。
2. 直径是半径的两倍,所以直径为14cm的圆的半径为7cm。
带入圆周率3.14,半径7cm,则面积为3.14 × 7² = 153.86cm²。
练习题三:计算圆的直径1. 一条线段长为12.56m,它是圆的什么?2. 一个圆的周长是18.84cm,它的直径是多少?答案:1. 由于圆的周长C=2πr,其中r为半径,所以线段长12.56m是一个半径为12.56 / (2 ×3.14) = 2m的圆的直径。
2. 圆的周长等于直径πd,由题可得18.84cm = πd,解方程得直径d = 18.84 /3.14 ≈ 6cm。
通过以上练习题的答案,我们可以巩固和加深对圆周率的认识和运用。
同时,希望同学们在解答这些题目时能够使用规范的计算步骤,注意单位的转换和精确计算,以提高解题的准确性。
有关圆周率计算中的简便算法
有关圆的简便计算和简便方法吉林市龙潭区教师进修学校附属小学孙晓杰摘要:小学六年级在有关圆的计算中,圆周率与其它数量相乘属于较复杂的小数乘法,数学教师要教会学生记住最基本的∏值,还要先计算3.14以外的乘积,较复杂的含有∏的多步计算,要运用运算定律简算,就是尽量避免3.14与其它数字相乘机会;充分利用圆的对称性和重叠问题的解法对有关圆的复杂的组合图形进行旋转、平移,使其转化成较规范的简单的图形,从而使计算更加简便。
关键词:记住∏值、运用定律、尽量口算、旋转平移教过小学数学的人,众所周知,关于圆周率∏的计算很麻烦,在一个数乘3.14的时候步骤繁琐,而且很容易出错。
简算不是数学计算的目的,而是数学计算的需要。
本人从事小学数学教学工作,20年的教学生涯,在小学六年级有关圆周率的教学中,总结出一套简便算法,现把自己的做法呈现出来与同行们分享。
一、从第一次学习圆的周长计算那天起,背下来最基本的1∏到10∏∏值,即1∏=3.14 2∏=6.28 3∏=9.42 4∏=12.56 5∏=15.7 6∏=18.84 7∏=21.98 8∏=25.12 9∏=28.26 10∏=31.4二、还有计算周长时一些常用的,如12∏=37.68 15∏=47.1 16∏=50.24 18∏=56.52 24∏=75.36 32∏=100.48 36∏=113.047.5∏=23.55三、计算面积时,经常遇到平方数,不但前五年学过的1到10的平方数准确无误,还要把11到20的平方数倒背如流,它们分别是121、144、169、196、225、256、289、324、361、400,还有几个特殊的平方数,如25的平方625;24的平方576;关于面积常用到的含有圆周率的数有:16∏=50.24 25∏=78.5 36∏=113.04 64∏=200.96 144∏=489.6 225∏=706.5 256∏=803.84 625∏=1962.5 还有49∏=153.86 81∏=254.34只是这两个不常用。
《圆——圆的周长》数学教学PPT课件(4篇)
探究新知
探究三: 找3个大小不同的圆片,分别测量出周长和直径,做一 做,填一填。
观察上表,你能发现圆的周长与直径有什么关系吗? 圆的周长总是直径的3倍多一些。
探究新知
探究三: 找3个大小不同的圆片,分别测量出周长和直径,做一 做,填一填。
观察上表,你能发现圆的周长与直径有什么关系吗? 实际上,圆的周长除以直径的商是一个固定的数,我们把它叫 作圆周率,用字母π表示,计算时通常取3.14。
2 判断题。(打“√”)
1、通过圆心,并且两端都在圆上的线段叫做直
径。 ( √ ) 2、圆的直径等于半径的2倍。(×)
3、圆的所有半径都相等,所有的直径也相等。
(√ )
4、两端在圆上的线段,直径最长。( √ )
5、两个圆的周长相等,这两个圆的直径也一定
相等。 ( √ ) 6、大圆的圆周率大,小圆的圆周率小。( × )
六年级上册
圆的周长
情境导入 人们很早就发现,轮子越大,滚一圈就越远。
你有什么发现?
车轮滚动一圈的长度就是它的周长。
本节目标
1、在观察、操作、测量等活动中,经历探索圆周率以及总结圆周长公式 的过程。 2、认识圆周率,理解并掌握圆的周长公式,能运用周长公式正确进行计 算。 3、体验数学与日常生活的密切联系,了解圆周率的探索历史,激发民族 自豪感。
随堂检测
1、画一个直径为10cm的圆。 (1)想一想,怎样得到它的周长? (2)把圆剪下来,量一量。 (3)多量几次,算出测量结果的平均数。
随堂检测
2、看图思考下面的问题,然后填空。
正方形的周长是圆的直径的(4 )倍,所以一定小于( 4 )。
随堂检测
3、妙想要为半径是3cm的圆形小镜子围一圈丝带,她现在有18cm长的丝 带,估一估,够吗?
圆的周长怎么求公式
圆的周长怎么求公式圆的周长怎么求公式是什么圆周率π是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
那么,圆的周长怎么求?公式是什么呢?下面就让我们一起来了解一下吧!圆的周长怎么求公式是什么圆的周长算法圆的周长=3.14x圆的直径=2x3.14x圆的半径,即:C=πd=2πr。
其中,C代表周长,π代表圆周率,d代表直径,r代表半径。
圆的简介:圆是一种几何图形。
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
圆的面积和体积计算公式1、计算圆的面积公式是:半径×半径×3.14。
2、计算圆的体积公式是:半径×半径×3.14×高。
圆周率π介绍后来的数学家们就想办法算出这个π的具体值,数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
割圆术的大致方法在中学的数学教材上就有。
然而必须看到,它很大程度上只是计算圆周率的方法,而圆周长是C=π__d似乎已经是事实了,这一方法仅仅是定出π的值来。
仔细想想就知道这样做有问题,因为他们并没有从逻辑上证明圆的周长确实正比于直径,更进一步说他们甚至对周长的概念也仅是直观上的、非理性的。
高中数学公式必背抛物线公式y = ax^2+bx+c 就是y等于ax的平方加上ba 0时开口向上a 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2pyx^2=-2py面积公式圆的体积公式 4/3(pi)(r^3)圆的面积公式 (pi)(r^2)圆的周长公式 2(pi)r正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c'__h正棱锥侧面积 S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l弧长公式 l=a__r a是圆心角的弧度数r0 扇形面积公式 s=1/2__l__r锥体体积公式 V=1/3__S__H 圆锥体体积公式V=1/3__pi__r2h斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长柱体体积公式 V=s__h 圆柱体V=pi__r2h椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
实用标准电线平方数和直径一览表
标准电线平方数和直径一览表注:以上导体直径指BV 塑铜线及 BLV 塑铝线换算方法:知道电线的平方,计算电线的半径用求圆形面积的公式计算:电线平方数(平方毫米)=圆周率(3。
14)×电线半径(毫米)的平方知道电线的平方,计算线直径也是这样,如: 2.5方电线的线直径是:2.5÷ 3。
14 = 0。
8,再开方得出0.9毫米,因此2。
5方线的线直径是:2×0。
9毫米=1.8毫米。
知道电线的直径,计算电线的平方也用求圆形面积的公式来计算:电线的平方=圆周率(3.14)×线直径的平方/4 电缆大小也用平方标称,多股线就是每根导线截面积之和。
电缆截面积的计算公式: 0.7854 ×电线半径(毫米)的平方×股数如48股(每股电线半径0。
2毫米)1。
5平方的线: 0.785 ×(0.2 × 0。
2)× 48 = 1.5平方硅橡胶导线编辑锁定本词条缺少信息栏、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!硅橡胶导线是指具有耐高温耐低温性能,具有电绝缘性能的导线,采用耐高温高强型、经特殊工艺加工而成。
目录1.1定义信息2.2产品信息3.3特点/用途4.4规格结构及技术参数硅橡胶导线定义信息编辑硅橡胶导线,主要特征是耐高温、绝缘、防火阻燃、耐腐蚀、耐老化、耐气候性、高强度、高模量、防静电、外观光滑等特点。
硅橡胶导线产品信息编辑产品名称:硅橡胶导线硅橡胶导线.产品型号:60245 IEC 03(YG)执行标准:GB5013。
3-2008产品特性:1、额定电压:300/500V2、工作温度:-60~+200℃3、导体:绞合裸铜线或镀锡铜线4、绝缘:硅橡胶5、编织:玻璃纤维+硅树脂6、颜色:红/黄/兰/白/黑/黄绿/棕等硅橡胶导线特点/用途编辑具有优良的高温耐低温性能,具有优良的电绝缘性能,优良的化学稳定性能,耐高电压,耐老化,使用寿命长。
数学圆周率
圆周率π圆周率是一个常数(约等于3.1415926),是代表圆周长和直径的比例。
它是一个无理数,即是一个无限不循环小数。
但在日常生活中,通常都用3. 14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
π(pai)是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
既然他是大数学家,所以人们也有样学样地用π来表示圆周率了。
但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
π=Pai(π=Pi)古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。
历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。
第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。
他用割圆术一直算到圆内接正192边形,得出π≈根号10 (约为3.16)。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.141592 7,还得到两个近似分数值,密率355/113和约率22/7。
他的辉煌成就比欧洲至少早了1000年。
其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
人教版六年级数学上册第五单元第3课时《圆的周长公式的推导及应用》课后练习题(附答案)
人教版六年级数学上册
第五单元第3课时《圆的周长公式的推导及应用》
课后练习题(附答案)
1.填空。
(1)在大大小小的圆中,它们的周长总是各自圆直径的()倍
多一些,我们把这个固定的数叫作(),用字母()表示,
它是一个()小数,在()和()之间,在计算时,一般只取它的近似值()。
(2)一个圆的直径扩大到原来的2倍,它的半径扩大到原来()倍,它的周长扩大到原来的()倍。
2.选择。
(1)π()3.14。
A.小于
B.等于
C.大于
(2)一个圆的半径扩大到原来的3倍,它的周长扩大到原来的()。
A.3倍
B.6倍
C.9倍
(3)车轮滚动一周,所行的路程是车轮的()。
A.半径
B.直径
C.周长
(4)一个半圆的半径是1m,它的周长是()。
A.12.56m
B.5.14m
C.6.28m
3.求下面各图形的周长。
4cm
←→
参考答案
1.(1)3 圆周率π无限不循环 3.14 3.15 3.14 (2)2 2
2.(1)C (2)A (3)C (4)B
3.3.14×12=37.68(cm) 3.14×4+4×2=20.56(cm)。
圆的认识与圆周率 - 答案
圆的认识与圆周率答案典题探究例1.所有的直径都相等,所有的半径都相等.×.(判断对错)考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据“在同圆或等圆中,圆的半径都相等,直径也都相等”进行判断即可.解答:解:所有的直径都相等,所有的半径都相等,说法错误,前提是:在同圆或等圆中;故答案为:×.点评:此题考查了圆的特征,应明确:在同圆或等圆中,圆的半径都相等,直径也都相等.例2.圆的周长是它半径的3.14倍×.(判断对错)考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据”圆的周长=2πr”可知:圆的周长÷r=2π;可知:圆的周长是它半径的2π倍;由此判断即可.解答:解:圆的周长是它半径的2π倍;故答案为:×点评:解答此题应根据圆的半径、圆周率和圆的周长三者之间的关系.例3.直径就是两端都在圆上的线段.×.(判断对错,并改正)考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据直径的定义可知,通过圆心并且两端都在圆上的线段叫做直径.解答:解:直径就是两端都在圆上的线段,说法错误.故答案为:×.点评:熟练掌握直径的含义是解答此题的关键.例4.在一个圆中,圆的直径是半径的2倍,那么半径的条数就是直径条数的2倍.错误.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:由直径和半径的含义:直径是通过圆心并且两端都在圆上的线段;半径是连接圆心和圆上任意一点的线段;可知:在一个圆里,有无数条直径,有无数条半径;据此判断即可.解答:解:从定义上看:在一个圆里,有无数条直径,有无数条半径;所以,半径的条数就是直径条数的2倍,说法错误;故答案为:错误.点评:此题考查在一个圆中直径和半径的数量,都有无数条.例5.把一个圆平均分成16份,再拼成一个平行四边形(如图),这个平行四边形的周长是41.4厘米,这个圆的面积是78.5平方厘米.考点:圆的认识与圆周率;圆、圆环的面积;等积变形(位移、割补).分析:根据题和图形可以得知:拼成的平行四边形左右两边是圆的半径,上下两边各是圆的周长的一半.知道这个平行四边形的周长,据此可以求出圆的半径,从而求出圆的面积.解答:解:设圆的半径是r厘米,由题意得:2πr+2r=41.4,2×3.14r+2r=41.4,8.28r=41.4,r=5;s=πr2S=3.14×52=78.5(平方厘米);答:这个圆的面积是78.5平方厘米.故答案为:78.5.点评:此题考查等积的变形与圆的面积.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•江阴市)世界上第一个把圆周率的值精确到六位小数的人是()A.张衡B.华罗庚C.祖冲之D.刘徽考点:圆的认识与圆周率.分析:祖冲之是世界上第一次把圆周率精确到小数点后第六位数字的人,比外国早了近一千年,他推算出圆周率的数值在3.1415926到3.1415927之间,也就是精确到小数点后第六位.解答:解:祖冲之(公元429﹣500年).他研究圆周率,得出其值就在3.1415926与3.1415927之间,准确到小数点后六位,成为世界上第一个把圆周率的值精确到六位小数的人.故选:C.点评:此题考查关于圆周率的历史,让学生记住祖冲之这位了不起的数学大师,增强民族自豪感.2.(•广西)一个圆内,最长的线段是()A.半径B.直径C.周长考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:通过圆心并且两端都在圆上的线段叫做直径.通过直径的定义可知,在一个圆中,圆内最长的线段是直径;据此解答.解答:解:通过直径的定义可知:在一个圆中,圆内最长的线段是直径.故选:B.点评:在圆中,只有经过圆心并且两端在圆上的线段才是最长的.3.(•宝应县)圆的周长总是直径的()倍.A.3B.3.14 C.π考点:圆的认识与圆周率.分析:根据圆周率的含义:圆的周长和直径的比值,叫做圆周率;即圆的周长是直径的π倍;进而解答即可.解答:解:根据圆周率的含义,可得:圆的周长总是直径的π倍;故选:C.点评:此题应根据圆周率的含义进行分析、解答.4.(•高县)世界上最早精确计算圆周率的人是我国数学家(),远在1500多年前,他就算出圆周率在3.1415926和3.1415927之间,他因此被称作“圆周率之父”,西方人在1000多年以后才获得这样精确的值.A.刘徽B.杨辉C.祖冲之考点:圆的认识与圆周率.专题:压轴题.分析:根据教材中的课外阅读以及对圆周率知识的了解,进行解答即可.解答:解:世界上最早精确计算圆周率的人是我国数学家祖冲之,远在1500多年前,他就算出圆周率在3.1415926和3.1415927之间,他因此被称作“圆周率之父”,西方人在1000多年以后才获得这样精确的值;故选:C.点评:此题考查的是对数学中有突出贡献的人物的了解,应注意平时积累.5.(•新洲区)世界上第一个把圆周率的值计算精确到六位小数的人是()A.华罗庚B.张衡C.祖冲之D.陶行知考点:圆的认识与圆周率.分析:根据课本上“你知道吗”介绍的关于圆周率的相关内容选出即可.解答:解:祖冲之(公元429﹣500年).他研究圆周率,得出其值就在3.1415926与3.1415927之间,准确到小数点后7位,成为世界上第一个把圆周率的值精确到7位小数的人.故选:C.点评:此题考查关于圆周率的历史,培养学生民族自豪感.6.(•南明区)π()3.14.A.大于B.小于C.等于考点:圆的认识与圆周率.分析:圆周率是指圆的周长与它直径的比值,圆周率用字母”π“表示,π是一个无限不循环小数,即3.1415926到3.1415927之间,π≈3.14;进而得出结论.解答:答:圆周率是指圆的周长与它直径的比值,圆周率用字母”π“表示,祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.1415926到3.1415927之间;故选:A.点评:本题考查圆周率的具体数值,考查祖冲之对数学的贡献,是一个研究数学史的题目,可以了解题目中涉及到的知识点.7.(•文成县)圆周率()A.大于3.14 B.等于3.14 C.小于3.14考点:圆的认识与圆周率.专题:压轴题;平面图形的认识与计算.分析:根据圆周率的含义:圆的周长和它直径的比值叫圆周率,它是一个无限不循环小数,用π表示,π=3.1415926…;进而得出结论.解答:解:由分析知:圆周率π>3.14;故选:A.点评:此题主要考查对圆周率的理解,应明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.8.(•津南区)一个圆的周长与直径的比值为()A.无限不循环小数B.无限循环小数C.有限小数D.整数考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据圆周率的含义:圆的周长和它直径的比值叫圆周率,它是一个无限不循环小数,用π表示,π=3.1414926…;进而得出结论.解答:解:一个圆的周长与它的直径的比值为无限不循环小数;故选:A.点评:此题考查圆周率的含义,应明确理解,注意圆周率、直径和周长之间关系的灵活运用.9.(•临澧县)在一个长9厘米,宽8厘米的长方形内画一个最大的圆,这个圆的直径是()厘米.A.4B.8C.9考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:在一个长方形中画一个最大的圆,圆的直径等于长方形短边的长,因为长方形的短边为8厘米,所以圆的直径为8厘米,由此选择即可.解答:解:一个长方形的长是9厘米,宽是8厘米,在长方形内画一个最大的圆,圆的直径长是8厘米;点评:解答此题应明确:在长方形中画一个最大的圆,圆的直径等于长方形短边的长.10.(•泸县模拟)圆周率π()3.14.A.大于B.等于C.小于考点:圆的认识与圆周率.分析:圆周率π是个固定的值,它是无限不循环小数,3.14是我们取的近似值.解答:解:因为π=3.1415926…,所以π大于3.14;故选:A.点评:此题考查圆周率.11.(•建湖县)在一个长6厘米、宽4厘米的长方形内画一个最大的圆,圆的半径应是()厘米.A.6B.4C.2考点:圆的认识与圆周率.专题:压轴题;平面图形的认识与计算.分析:在一个长方形中画一个最大的圆,圆的直径等于长方形短边的长,因为长方形的短边为4厘米,所以圆的直径为4厘米,进而求出半径.解答:解:在一个长6厘米、宽4厘米的长方形内画一个最大的圆,圆的半径应是:4÷2=2(厘米);故选:C.点评:解答此题应明确:在长方形中画一个最大的圆,圆的直径等于长方形短边的长.12.(•赣县模拟)圆周率π是一个()A.有限小数B.循环小数C.无限不循环小数考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母“π”表示,它是一个无限不循环小数;进而解答即可.解答:解:根据圆周率的含义可知:圆周率π是一个无限不循环小数;故选:C.点评:此题考查了圆周率的含义.13.(•成都)最早精确计算出圆周率的是我国古代数学家()A.刘薇B.祖冲之C.秦九昭考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:约在1500年前,我国古代数学家祖冲之计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人,比国外数学家至少要早解答:解:约在1500年前,对π值计算最精确的是我国古代数学家祖冲之.故选:B.点评:此题考查古代数学家对圆周率的认识.14.(•合水县)决定圆面积大小的是()A.圆心B.半径C.圆周率考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据圆的面积公式:s=πR2,在这个公式里π是常数,s与半径的平方成正比,即半径大,面积就大,由此解决问题.解答:解:因为s=π R2,π≈3.14,所以圆的半径决定圆面积的大小.故选:B.点评:要牢记圆的面积公式,知道π是一个常数.明确圆心决定圆的位置,半径决定圆的大小.15.(•云阳县一模)圆内最长的线段有()条.A.1B.4C.无数考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:通过圆心并且两端都在圆上的线段叫做直径.通过直径的定义可知,在一个圆中,圆内最长的线段是直径,在圆内有无数条直径;据此解答.解答:解:通过直径的定义可知:圆内最长的线段有无数条.故选:C.点评:在圆中,只有经过圆心并且两端在圆上的线段才是最长的.二.填空题(共13小题)16.圆周率的值是π,它表示圆的周长与它直径的比.考点:圆的认识与圆周率.专题:综合填空题.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,圆周率用字母π表示,π≈3.14;据此解答即可.解答:解:由圆周率的含义可知:圆周率的值是π,它表示圆的周长与它直径的比;故答案为:π,圆的周长,它直径.点评:此题考查了圆周率的含义,注意基础知识的灵活运用.17.圆的位置由圆心决定;圆的半径决定圆的大小.考点:圆的认识与圆周率.分析:根据画圆的方法,把圆规有针的一个脚固定住即圆心,另一个脚分开一定的距离即半径转动一圈就可得到一个圆;圆的半径大则画出的圆就大,圆的半径小画出的圆就小,由此可得出答案.解答:解:圆的位置由圆心决定;圆的半径决定圆的大小;故答案为:圆心,大小.点评:此题主要考查的是圆的位置和大小的决定因素.18.通过一个圆的圆心的线段,一定是这个圆的直径.×.考点:圆的认识与圆周率.分析:通过一个圆的圆心的线段有无数条,只有两端都在圆上的线段才是直径.解答:解:通过圆心并且两端都在圆上的线段叫做直径.故答案为:×.点评:此题考查直径的定义,需同时具备两个条件:通过圆心且两端都在圆上.19.圆心决定扇形的位置,半径和圆心角决定扇形的大小.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:扇形是圆的一部分,所以和圆相同,圆心决定扇形的位置;半径是影响扇形大小的因素之一;半径相同的情况下,如果圆心角越大,扇形越大,圆心角越小,扇形越小,由此求解.解答:解:圆心决定扇形的位置,半径和圆心角决定扇形的大小.故答案为:圆心,半径,圆心角.点评:解决本题要注意,圆心角也是影响扇形大小的因素.20.圆是封闭的曲线图形.√(判断对错)考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:圆是到定点等于定长的一个封闭图形,它同时也是有一条曲线围成的图形,据此判断即可.解答:解:根据圆的特征可知:圆是封闭的曲线图形,这种说法是正确的.故答案为:√.点评:本题考查了圆的特征,属于基础知识,要注意对概念的理解和运用.21.如图,大圆与小圆的半径和是45cm,小圆半径是15cm.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:由图可知,大圆的半径等于小圆的直径,即大圆的半径是小圆半径的2倍,设小圆的半径是r,大圆半径是2r,r+2r=45厘米,即可求出小圆半径是多少.解答:解:设小圆的半径是r,大圆半径是2r,r+2r=453r=45r=15答:小圆半径是15cm;故答案为:15.点评:解答此题的关键是根据题意,找出大圆与小圆的半径的关系,然后列出方程解答即可.22.圆的周长与它的直径的比值叫做圆周率,用字母π表示,用字母C表示圆的周长,那么圆的周长计算公式是C=πd或C=2πr.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:圆的周长=圆周率×直径或圆的周长=圆周率×半径×2,用字母C表示周长,用d表示直径,用r表示半径,π表示圆周率,据此即可解答问题.解答:解:圆的周长与它的直径的比值叫做圆周率,圆用字母π表示,用字母C表示圆的周长,圆的周长是直径的π倍,直径是半径的2倍,周长计算公式用字母表示C=πd或C=2πr.故答案为:圆周率,π,C,C=πd,C=2πr.点评:此题主要考查圆周率的含义及圆的周长公式的识记.23.画一个周长是31.4厘米的圆,圆规两脚之间的距离是5厘米.考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:用圆规画圆时两脚之间的距离就是所画圆的半径,可根据圆的周长公式C=2πr计算出圆的半径即可,列式解答即可得到答案.解答:解:31.4÷3.14÷2,=10÷2,=5(厘米);答:圆规两脚之间的距离是5厘米.故答案为:5厘米.点评:此题主要考查圆的周长的计算方法的灵活应用,关键是明白:圆规两脚之间的距离就是所画圆的半径.24.通过圆心并且两端都在圆上的线段叫做直径.考点:圆的认识与圆周率.分析:圆的直径的定义为:通过圆心并且两端都在圆上的线段叫做直径.解答:解:通过圆心并且两端都在圆上的线段叫做直径.故答案为:圆心、两端、圆上.点评:解答此题要注意圆的直径是线段而不是直线.25.圆的半径等于直径的.×(判断对错)考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据直径和半径的含义:通过圆心,并且两端都在圆上的线段叫做直径;连接圆心和圆上任意一点的线段叫做半径;由此可知:在同一个圆内,直径的长度都是半径长度的2倍,半径的长度是直径的一半;据此判断.解答:解:在同一个圆内,直径的长度都是半径长度的2倍,半径的长度是直径的一半,但前提是同圆或等圆.所以原题的说法错误.故答案为:×.点评:此题主要考查在同一个圆中半径与直径的关系.26.(•建华区)圆心决定圆的位置,半径决定圆的大小.正确.(判断对错)考点:圆的认识与圆周率.分析:根据圆的定义,平面上一动点以一定点为中心,一定长为距离运动一周称为圆周,简称圆,由此来做题.解答:解:根据圆的定义,平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆,这个定点就是圆心,定长就是半径,所以圆心决定圆的位置,半径决定圆的大小,这句话是正确的.故答案为:正确.点评:此题考查了对圆的定义的理解.27.(•临澧县)两端都在圆上的线段中,直径最长.√.(判断对错)考点:圆的认识与圆周率.分析:根据题意,可以作图进行观察,从而得出答案.解答:解:由题意可作图如下:通过观察可知,两端都在圆上的线段中,直径最长.故答案为:√.点评:此题考查了对圆的直径的认识.28.(•长寿区)两个大小不同的圆,大圆周长与直径的比值和小圆周长与直径的比值相等.正确.考点:圆的认识与圆周率.分析:根据圆周率的意义,任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.由此解答即可.解答:解:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.一般用“π”表示.即(一定),所以大圆周长与直径的比值和小圆周长与直径的比值相等.故答案为:正确.点评:此题主要根据圆周率的意义解决问题.B档(提升精练)一.选择题(共15小题)1.我国伟大的数学家祖冲之,早在约一千五百多年前经过精密计算,就发现圆周率是一个()A.有限小数B.无限不循环小数C.无限循环小数考点:圆的认识与圆周率.专题:小数的认识.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,圆周率用“π”表示,π是一个无限不循环小数;据此解答即可.解答:解:我国伟大的数学家祖冲之,早在约一千五百多年前经过精密计算,就发现圆周率是一个无限不循环小数;故选:B.点评:此题考查的是圆周率的知识,应多注意基础知识的理解和掌握.2.圆周率π是一个()A.近似数B.两位数C.自然数D.无限不循环小数考点:圆的认识与圆周率.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母“π”表示,它是一个无限不循环小数;进而解答即可.解答:解:根据圆周率的含义可知:圆周率π是一个无限不循环小数;故选:D.点评:此题考查了圆周率的含义.3.圆的周长与它的直径的比值是()A.3.14 B.3.142 C.π考点:圆的认识与圆周率.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,圆周率用“π”表示,进而选择即可.解答:解:圆的周长与它的直径的比值是:π;故选:C.点评:解答此题应根据圆周率的含义进行解答;注意圆的周长与它的直径的比值是π;而不是3.14.4.半径为5分米的圆与半径为5厘米的圆相比()A.半径为5分米的圆周率大于半径为5厘米的圆周率B.半径为5分米的圆周率小于半径为5厘米的圆周率C.半径为5分米的圆周率与半径为5厘米的圆周率相等考点:圆的认识与圆周率.分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,圆周率是一个定值,用字母“π”表示,π是一个无限不循环小数,取近似值3.14;由此判断即可.解答:解:根据圆周率的含义可知:半径为5分米的圆与半径为5厘米的圆相比,半径为5分米的圆周率与半径为5厘米的圆周率相等;故选:C.点评:此题考查了圆周率的含义,应明确圆周率是一个定值.5.一个圆的周长与它的直径的比值是()A.1B.2C.ЛD.r考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据圆周率的含义:圆的周长和它直径的比值叫圆周率,它是一个无限不循环小数,用π表示,π=3.1414926…;进而得出结论.解答:解:一个圆的周长与它的直径的比值是π;故选:C.点评:此题考查圆周率的含义,应明确理解,注意圆周率、直径和周长之间关系的灵活运用.6.(•锡山区)用圆规画一个周长是9.42厘米的圆,圆规两脚间的距离是()厘米.A.3厘米B.1.5厘米C.9.42厘米D.4.71厘米考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:首先要明白:圆规两脚之间的距离就是所画圆的半径,圆的周长已知,利用圆的周长公式即可求解.解答:解:9.42÷(2×3.14),=9.42÷6.28,=1.5(厘米);答:圆规两脚之间的距离1.5厘米.故选:B.点评:此题主要考查圆的周长的计算方法的灵活应用,关键是明白:圆规两脚之间的距离就是所画圆的半径.7.(•宝应县)圆的周长除以直径的结果是()A.πB.3.14 C.3D.无法确定考点:圆的认识与圆周率.分析:根据圆的周长的计算方法“C=πd”可得:C÷d=π;进而得出结论.解答:解:C÷d=π;故选:A.点评:此题也可以根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用“π”表示,进行解答.8.(•巴中)在一张长8厘米、宽6厘米的长方形纸上画一个尽可能大的圆,圆规两脚间的距离应确定为()厘米.A.8B.6C.4D.3考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据题意,长方形内最大的圆就是以长方形宽为直径的圆;圆规两间的距离即这个圆的半径,由题中数据即可解得.解答:解:长方形中最大的圆就是以宽为直径的圆,r=6÷2=3(厘米),答:圆规两间的距离是3厘米.故选:D.点评:抓住圆规画圆的方法,根据长方形中最大圆的特点即可解决此类问题.9.(•巴中)在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长是()A.圆的半径B.圆的直径C.圆的周长D.圆周长的一半考点:圆的认识与圆周率;圆、圆环的面积.专题:压轴题.分析:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长正好是圆周长的一半,宽是圆的半径.解答:解:在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似的长方形,这个长方形的长是圆周长的一半.故选:D.点评:此题考查圆的面积的推导公式,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长是圆周长的一半,宽是圆的半径.10.(•新余模拟)小明用一张长32厘米,宽20厘米的长方形纸,最多能剪()个半径是2厘米的圆形纸片.A.50 B.40 C.160考点:圆的认识与圆周率;长方形的特征及性质.专题:平面图形的认识与计算.分析:这张长32厘米,宽20厘米的长方形纸,长能剪32÷(2×2)=8(张)半径是2厘米的圆形纸片,宽能剪20÷(2×2)=5(张),这张纸最多能剪成8×5=40(张)这样的圆形纸片.解答:解:32÷(2×2)=8(张)20÷(2×2)=5(张)8×5=40(张);答:最多能剪成半径是2厘米的圆形纸版40个;故选:B.点评:注意,不能用长方形纸版的面积除以每张圆形纸版的面积,因为圆不能密铺.11.(•兴化市模拟)在同一个圆内,圆的周长是半径的()倍.A.πB.2πC.3.14 D.r考点:圆的认识与圆周率.专题:平面图形的认识与计算.分析:根据”圆的周长=2πr”可知:圆的周长÷r=2π;可知:圆的周长是它半径的2π倍;由此判断即可.解答:解:在同一个圆内,圆的周长是半径的2π倍;故选:B.点评:解答此题应根据圆的半径、圆周率和圆的周长三者之间的关系.12.(•芜湖县)经过1小时,钟面上分针转过的角度与时针转过的角度相差()A.330°B.300°C.150°D.120°考点:圆的认识与圆周率.专题:压轴题.分析:经过1小时,钟面上分针转过了一周,即360度,时针转过一个大格,即30度,钟面上分针转过的角度与时针转过的角度之差就很容易算出来了.解答:解:360°﹣30°=330°;答:钟面上分针转过的角度与时针转过的角度相差330°.故选:A.点评:此题主要考查的是钟面上的知识,即在钟面上,分针或时针转动一圈是360度,转动一个小格是6度,转动一个大格是30度.13.(•华亭县模拟)圆周率是圆的()的比,所以()成正比例.A.直径和周长B.周长和半径C.周长和直径考点:圆的认识与圆周率;辨识成正比例的量与成反比例的量.专题:平面图形的认识与计算.分析:任意一个圆的周长与它的直径的比的比值是一个固定的数,人们称它为圆周率,用字母π表示;判断相关联的两种量成不成比例,成什么比例,关键是看这两种量是否是一个量变化,另一个量也随着变化,如果对应的比值一定,就成正比例,如果对应的乘积一定,就成反比例.解答:解:根据圆周率的定义可得,圆周率表示圆的周长与它的直径的比值;因为圆的周长:直径=圆周率(一定),所以圆的周长与直径成正比例;。
初中数学考试试题及答案
初中数学考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于其本身,这个数是:A. 0B. 1C. -1D. 0或1答案:D3. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 25B. 50C. 100D. 200答案:B4. 计算下列算式的结果:\( \frac{3}{4} + \frac{2}{5} \)A. \( \frac{11}{20} \)B. \( \frac{23}{20} \)C. \( \frac{19}{20} \)D. \( \frac{17}{20} \)答案:A5. 下列哪个选项是方程 \( 2x - 3 = 9 \) 的解?A. \( x = 3 \)B. \( x = 6 \)C. \( x = -3 \)D. \( x = 12 \)答案:B6. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 0或1答案:A7. 一个数的绝对值是它自己,这个数是:A. 0B. 正数C. 负数D. 非负数答案:D8. 计算下列算式的结果:\( 5 - (-3) \)A. 2B. 8C. 3D. -39. 一个数的立方等于其本身,这个数是:A. 0B. 1C. -1D. 0, 1或-1答案:D10. 一个圆的半径是5厘米,那么它的周长是多少厘米?(圆周率取3.14)A. 31.4B. 50.24C. 78.5D. 100.48答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 一个数的立方根是2,那么这个数是______。
答案:813. 一个数的倒数是 \( \frac{1}{2} \),那么这个数是______。
答案:214. 一个数的绝对值是5,那么这个数可以是______或______。