(第14讲)高中数学复习专题讲座-构建数学模型解数列综合题和应用性问题
高考数学应用性问题怎么解
高考数学应用性问题怎么解数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.例1某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室。
据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?讲解:引入字母,转化为递归数列模型.设第n次去健身房的人数为a n,去娱乐室的人数为b n,则..,于是即..故随着时间的推移,去健身房的人数稳定在100人左右.上述解法中提炼的模型, 使我们联想到了课本典型习题(代数下册P.132第34题)已知数列的项满足其中,证明这个数列的通项公式是有趣的是, 用此模型可以解决许多实际应用题, 特别, 2002年全国高考解答题中的应用题(下文例9)就属此类模型.例2某人上午7时乘摩托艇以匀速V千米/小时(4≤V≤20)从A港出发前往50千米处的B港,然后乘汽车以匀速W千米/小时(30≤W≤100)自B港向300千米处的C市驶去,在同一天的16时至21时到达C市, 设汽车、摩托艇所需的时间分别是x小时、y小时,若所需经费元,那么V、W分别为多少时,所需经费最少?并求出这时所花的经费.讲解:题中已知了字母, 只需要建立不等式和函数模型进行求解.由于又则z最大时P最小.作出可行域,可知过点(10,4)时, z有最大值38,∴P有最小值93,这时V=12.5,W=30.视这是整体思维的具体体现, 当中的换元法是数学解题的常用方法.例3 某铁路指挥部接到预报,24小时后将有一场超历史记录的大暴雨,为确保万无一失,指挥部决定在24小时内筑一道归时堤坝以防山洪淹没正在紧张施工的遂道工程。
高一数学学科:巩固基础与解题技巧培训课件
解三角形
掌握正弦定理、余弦定理 及其应用,能够解决简单 的三角形问题。
函数基础知识
函数的概念与性质
理解函数的基本概念,如定义域 、值域、单调性、奇偶性等,掌 握一次函数、二次函数、指数函
数、对数函数的性质。
函数的图像
能够画出常见函数的图像,并根据 图像分析函数的性质。
导数及其应用
理解导数的概念,掌握求导法则, 理解导数在研究函数中的应用。
图形性质理解
掌握基本图形的性质,如 三角形、四边形、圆等, 理解并能够应用这些性质 解决几何问题。
角度与长度计算
能够利用角度和长度之间 的关系,计算角度和长度 。
空间思维培养
通过几何题目的训练,培 养学生的空间想象能力。
函数题解题技巧
函数性质理解
01
理解函数的定义域、值域、单调性、奇偶性等基本性质,并能
如何应对考试压力和挑战
调整心态
保持冷静、自信的心态,正确对待考试成绩,不因一次的失败而 气馁。
合理安排时间
提前规划复习进度,合理分配时间,避免考试前临时抱佛脚的压 力。
积极应对挑战
遇到难题或复杂问题时,保持积极的心态,尝试不同的解决方法 。
THANKS.
方程的解法和应用。
不等式求解
通过解一元一次不等式 、一元二次不等式等, 掌握不等式的解法和应
用。
集合运算
通过集合的交、并、补 等运算,掌握集合的基
本概念和运算规则。
几何综合练习与解析
01
02
03
04
平面几何
通过掌握点、线、面的基本性 质和定理,解决平面几何问题
。
立体几何
通过掌握空间几何体的基本性 质和定理,解决立体几何问题
高中数学中的数学建模详细解析与实践
高中数学中的数学建模详细解析与实践数学建模在高中数学教学中起着重要的作用,它既能锻炼学生的数学思维能力,又能帮助他们将数学知识应用于实际问题解决中。
本文将详细解析数学建模的基本概念与步骤,并通过实例来展示如何进行数学建模的实践。
一、数学建模的基本概念数学建模是指把实际问题转化为数学问题,并通过数学方法进行求解的过程。
它涉及到问题的分析、建立模型、求解模型和验证模型等步骤。
数学建模既包括定性描述问题的抽象模型,也包括定量描述问题的数学模型。
二、数学建模的步骤1. 问题分析在进行数学建模之前,我们首先需要对问题进行全面的分析。
这包括对问题的背景和条件进行了解,明确问题的目标和要求,确定问题的限制和假设等。
通过问题分析,我们可以更好地理解问题,并为建立数学模型做好准备。
2. 建立模型建立数学模型是数学建模的核心任务之一。
在建立模型时,我们要根据问题的特点选择合适的数学方法和技巧。
常见的数学模型包括函数模型、方程模型、几何模型等。
建立模型时,我们要尽量简化问题,将其转化为易于处理的数学形式。
3. 求解模型求解模型是数学建模的关键步骤之一。
在求解模型时,我们要运用适当的数学工具和方法,进行数学推理和计算。
这包括利用数学公式和定理进行推导,运用数值计算和图形分析方法进行求解。
通过求解模型,我们可以得到问题的数学解,从而得出实际问题的解答。
4. 验证模型验证模型是数学建模的最后一步。
在验证模型时,我们要对模型的有效性进行检验,并与实际数据进行比对。
如果模型能够准确地描述实际问题,并与实际数据相吻合,那么我们可以认为模型是有效的。
否则,我们需要对模型进行修正和优化,以提高模型的精确度和适用性。
三、数学建模的实践为了更好地理解和掌握数学建模的实践方法,我们以一个实例来进行说明。
假设现有一艘船在湖中航行,我们需要确定船的航线。
通过对问题的分析,我们可以明确问题的目标是找到船的最短航线。
在建立模型时,我们可以将湖面看作一个平面直角坐标系,船的起始点为坐标原点,湖中的岛屿和障碍物为坐标系中的点。
高中数学竞赛课程讲座:组合数学
高中数学竞赛课程讲座:组合数学
高中数学竞赛越来越受到人们的关注,数学竞赛上学习的知识内容在不断丰富,更加全面。
组合数学是一门充满挑战性且重要的数学学科,也是数学竞赛中经常出现的学科。
它主要研究的是如何把一系列的元素组合成一个结果,从而获得最优解。
本次讲座将介绍组合数学及其在高中数学竞赛中的运用。
首先,讲师将阐述组合数学的概念,为数学竞赛队员提供一个全面的数学科目知识。
接下来,讲师将介绍组合数学在高中数学竞赛中的应用,如组合统计、排列组合、概率以及布尔代数等,让高中数学竞赛队员深入理解和融会贯通组合数学的概念,并学会运用它们解决实际问题。
此外,本次讲座还将介绍组合数学的一些典型应用,展示它在高中数学竞赛中的正确应用方法。
讲师将举例说明组合数学在高中数学竞赛题目中应用的正确方法,教给大家在解决实际数学竞赛题目时的步骤和正确的思路,同时讲师也将为大家演示一些数学竞赛题目的解题思路。
本次讲座还将围绕组合数学开展一些实践活动,让竞赛队员联系实际,加深对所学知识的理解和运用,从而提高其未来在数学竞赛中的表现。
本次讲座旨在帮助高中数学竞赛队员更加深入地理解组合数学,同时加强数学竞赛题目的解题思路,提升其解题能力,从而取得更好的竞赛成绩。
希望通过本次讲座的学习,能够激发参会者的学习热情,让他们在下一次数学竞赛中一展身手,取得更好的成绩。
综上所述,本次讲座旨在为参会者提供一次关于组合数学概念及其在高中数学竞赛中运用的深入学习机会。
通过本次讲座可以有效地帮助大家加强对组合数学的知识掌握,并有效提高参会者解决实际数学竞赛的能力,最终获得意想不到的好成绩。
高中数学专题讲座
高中数学专题讲座篇一:高中数学专题讲座讲座题目:解析几何讲座主题:解析几何的基本概念、方法和应用讲座时长:30分钟正文:解析几何是高中数学中重要的分支之一,主要研究平面上点与线之间的关系,以及它们在空间中的相互转化。
解析几何的应用非常广泛,包括几何光学、天体物理学、工程学等领域。
讲座开始时,我们将介绍解析几何的基本概念和符号表示。
解析几何中的点通常用字母P表示,线通常用字母l表示,函数通常用字母f表示,变量通常用字母x表示。
我们将使用这些符号来表示解析几何中的各种概念和公式。
接下来,我们将介绍解析几何的基本方法。
这些方法包括几何法、代数法和曲线法等。
几何法是利用几何图形来表示函数,代数法是利用代数公式来表示函数,曲线法是利用曲线来表示函数。
我们将介绍这些方法的基本原理和应用。
最后,我们将介绍解析几何的应用。
解析几何在几何光学、天体物理学、工程学等领域都有广泛的应用。
例如,在光学中,解析几何可以用来研究光的传播规律;在天体物理学中,解析几何可以用来研究行星的轨道和运动规律;在工程学中,解析几何可以用来研究机械运动的分析和控制。
在讲座的结尾,我们将总结一下解析几何的基本概念、方法和应用。
我们还将介绍一些常见的解析几何问题和解决方法,以便听众们能够更好地掌握解析几何的知识和技能。
以上就是本次高中数学专题讲座的全部内容。
希望本次讲座能够帮助听众们更好地掌握解析几何的基本概念、方法和应用,为未来的学习和研究打下坚实的数学基础。
篇二:高中数学专题讲座讲座题目:高中数学专题讲座讲座主题:高中数学基础知识的讲解与拓展正文:大家好,今天我们来谈一谈高中数学基础知识的讲解与拓展。
高中数学是一个非常重要的学科,因为它是许多大学专业的基础课程,同时也是许多职业领域中必不可少的技能。
因此,在学习高中数学时,掌握基础知识是非常重要的。
在讲解基础知识时,我们需要注意以下几个方面:1. 理解概念和定义。
概念和定义是数学的基石,只有理解了它们,才能更好地应用数学知识。
高中数学说题课件ppt
02
掌握数列求和的基本方 法和技巧,如错位相减
法、裂项相消法等。
04
04
高中数学题目解析
代数题目解析
代数方程与不等式
解析一元一次方程、一元二次方 程、分式方程、不等式等,掌握 方程和不等式的解法,理解方程 和不等式的实际应用。
函数与导数
解析一次函数、二次函数、指数 函数、对数函数等,理解函数的 性质和图像,掌握函数的极值、 单调性等知识点。
变换图形的位置,让学生掌握空 间几何的解题方法。
总结词:通过变换图形的形状、 大小或位置,让学生掌握几何的 基本性质和解题方法。
改变图形的投影方式,让学生理 解投影几何的基本性质。
概率与统计题目变式训练
总结词:通过变换数 据或情境,让学生掌 握概率与统计的基本 概念和解题方法。
详细描述
改变数据的来源或分 布,让学生理解概率 分布的特性。
数据的分布特征:方差、标准 差等。
回归分析与预测方法:线性回 归分析、非线性回归分析等。
03
高中数学重点与难点解 析
函数与导数
核心概念与运用
能够运用导数研究函数的单调性、极值 和最值,解决生活中的优化问题。
理解导数的概念、性质和求导法则,掌 握常见函数的导数公式和求导方法。
函数是描述变量之间依赖关系的重要工 具,导数则用于研究函数的局部性质和 变化率。
圆锥曲线的标准方程 与性质:椭圆、双曲 线、抛物线等。
概率与统计解题方法
概率论 随机事件及其概率:独立事件、互斥事件等。 古典概型与几何概型的计算方法。
概率与统计解题方法
• 随机变量的概念与性质:离散型随机变量、连续型随机变 量等。
概率与统计解题方法
《高考数学专题讲座》课件
平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理
2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解
专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。
高考数学专题复习 数列的综合应用教案 文 教案
福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b =r1+r n 1+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列. 若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n ;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项. 题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x -1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三 数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m .题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明. 规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n 2n ≥2.[6分](2)证明 ∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1. (3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n -6|<1125的最小正整数n 是 ( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +1.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +3 (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t 36总成立?若存在,求出t ;若不存在,请说明理由. 答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n=log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列.(2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0.∴a n =n -n 2+1.(2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14=3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3,∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=n 4n +4. ∴4aS n -b n =an n +4-n +2n +3=a -1n 2+3a -6n -8n +3n +4.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立.变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50, 则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n , 有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1(2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n, ③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x,∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1na n +3=12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n2n +1. 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12n +2-n2n +1 =12n +2n +1>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。
2024年初中数学专题讲座课件
2024年初中数学专题讲座课件一、教学内容本讲内容基于初中数学教材第七章《平面几何图形及其性质》中的“三角形的性质”一节。
详细内容包括:三角形的基本概念,三角形的内角和定理,等腰三角形和等边三角形的性质,三角形的重心、外心、内心、垂心的定义及性质。
二、教学目标1. 理解并掌握三角形的基本概念及内角和定理。
2. 能够运用等腰三角形和等边三角形的性质解决问题。
3. 了解三角形的重心、外心、内心、垂心的概念,并能够运用其性质解决相关问题。
三、教学难点与重点教学难点:三角形的重心、外心、内心、垂心的概念及性质。
教学重点:三角形的基本概念,内角和定理,等腰三角形和等边三角形的性质。
四、教具与学具准备1. 教具:三角板、圆规、直尺、量角器。
2. 学具:练习本、铅笔、三角板、圆规。
五、教学过程1. 实践情景引入:通过展示生活中的三角形物体,让学生感受三角形的广泛应用,激发学生的学习兴趣。
教学细节:展示图片,引导学生观察、思考。
2. 例题讲解:例1:已知一个三角形的两个角分别是30°和60°,求第三个角的度数。
例2:已知一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。
教学细节:引导学生分析题目,找出已知条件和未知数,运用所学知识解决问题。
练习题1:已知一个三角形的三个内角分别为45°、45°和90°,判断该三角形的类型。
练习题2:已知一个等边三角形的边长为6cm,求该三角形的面积。
教学细节:学生独立完成练习题,教师巡回指导,解答学生的疑问。
4. 知识拓展:介绍三角形的重心、外心、内心、垂心的性质。
教学细节:通过讲解和演示,让学生了解并掌握三角形的四种特殊点的性质。
六、板书设计1. 三角形的基本概念2. 内角和定理3. 等腰三角形和等边三角形的性质4. 三角形的重心、外心、内心、垂心的定义及性质七、作业设计1. 作业题目:(1)已知一个三角形的两个内角分别为40°和50°,求第三个内角的度数。
高中数学优质展示课
等差数列--整节课例_高中数学广东名师课堂教学展示视频等差数列的前n项和--整节课例_高中数学广东名师课堂教学展示视频函数的思想--整节课例_高中数学广东名师课堂教学展示视频排列——求解有限制条件的排列问题的常用方法--整节课例_高中数学广东名师课堂教学展示视频观通项定类型巧放缩--整节课例_高中数学广东名师课堂教学展示视频基本不等式--整节课例_高中数学广东名师课堂教学展示视频函数与方程--整节课例_高中数学广东名师课堂教学展示视频排列组合之均匀分配问题--整节课例_高中数学广东名师课堂教学展示视频函数的极值与导数--整节课例_高中数学广东名师课堂教学展示视频求三角函数最值的方法--整节课例_高中数学广东名师课堂教学展示视频等比数列--整节课例_高中数学广东名师课堂教学展示视频数形结合--整节课例_高中数学广东名师课堂教学展示视频空间元素的平行关系--整节课例_高中数学广东名师课堂教学展示视频求函数的解析式--整节课例_高中数学广东名师课堂教学展示视频函数思想---不等式--整节课例_高中数学广东名师课堂教学展示视频余弦定理--整节课例_高中数学广东名师课堂教学展示视频平面向量的数量积--整节课例_高中数学广东名师课堂教学展示视频正态分布--整节课例_高中数学广东名师课堂教学展示视频直线的参数方程--整节课例_高中数学广东名师课堂教学展示视频平面向量的数量积--整节课例(1)_高中数学广东名师课堂教学展示视频椭圆和双曲线的构造实验--整节课例_高中数学广东名师课堂教学展示视频随机事件的概率--整节课例_高中数学广东名师课堂教学展示视频直线与圆锥曲线的位置关系--整节课例_高中数学广东名师课堂教学展示视频函数的单调性与导数--整节课例_高中数学广东名师课堂教学展示视频椭圆--整节课例_高中数学广东名师课堂教学展示视频直线与平面垂直的判定--整节课例_高中数学广东名师课堂教学展示视频正态分布习题课人教版复习课高三数学优秀课展示实录视频抛物线的标准方程苏教版选修庄素娟高三数学优秀课展示实录视频正态分布习题课人教版高三数学优秀课展示实录视频正态分布人教版高三数学优秀课展示实录视频园锥曲线的统一定义苏教版选修教材高三数学优秀课展示实录视频圆锥曲线的共性探究人教版高三数学优秀课展示实录视频直线与平面垂直的判定人教版高三数学优秀课展示实录视频复数的几何意义苏教版高三数学优秀课展示实录视频函数的图像北师大版舒焰高三数学优秀课展示实录视频正态分布高三数学优秀课展示实录视频椭圆的简单几何性质人教版高三数学优秀课展示实录视频几种常见函数的导数人教版高三数学优秀课展示实录视频直线与双曲线的位置关系人教版高三数学优秀课展示实录视频抛物线性质人教版高三数学优秀课展示实录视频椭圆及其标准方程二(复习)人教版高三数学优秀课展示实录视频导数及其应用苏教版高三数学优秀课展示实录视频椭圆及其标准方程人教版高三数学优秀课展示实录视频等差数列复习课苏教版高三数学优秀课展示实录视频函数的奇偶性人教版高三数学优秀课展示实录视频里程碑上的数北师大版_高一数学优质课实录展示视频等比数列北师大版高三数学优秀课展示实录视频等差等比数列的运用人教版高三数学优秀课展示实录视频中位数和众数郭爱玲_高一数学优质课实录展示视频空间线面的位置关系数学必修2_高一数学优质课实录展示视频平面与平面平行的判定人教版高一数学优秀课展示实录视频向量的运算人教版高一数学优秀课展示实录视频探索三角形相似的条件北师大版_高一数学优质课实录展示视频(1)探索多边形的内角和北师大版_高一数学优质课实录展示视频谁的包裹多北师大版_高一数学优质课实录展示视频余弦定理高中数学必修5_高一数学优质课实录展示视频求最大公约数人教版高一数学优秀课展示实录视频求函数的解析式人教版高一数学优秀课展示实录视频二元一次方程组(第一课时) 北师大版_高一数学优质课实录展示视频函数的奇偶性数学(上册)_高一数学优质课实录展示视频梯形北师大版_高一数学优质课实录展示视频直线与平面垂直的判定人教版高一数学优秀课展示实录视频变化的“鱼” 北师大版_高一数学优质课实录展示视频古典概型人教版高一数学优秀课展示实录视频面面平行性质定理苏教版《必修2》高一数学优秀课展示实录视频素质_高一数学优质课实录展示视频生活中的平移北师大版_高一数学优质课实录展示视频图案欣赏与设计人教版高一数学优秀课展示实录视频选择结构人教版高一数学优秀课展示实录视频线性回归方程人教版_高一数学优质课实录展示视频加减法解二元一次方程组北师大版_高一数学优质课实录展示视频利用表格分析不等式组应用题北师大版_高一数学优质课实录展示视频指数函数及其性质(1)人教版 a版_高一数学优质课实录展示视频向量数乘运算及期几何意义人教版高一数学优秀课展示实录视频一元二次不等式数学基础模块_高一数学优质课实录展示视频整式的运算复习二北师大版_高一数学优质课实录展示视频形状相同的图形北师大版_高一数学优质课实录展示视频函数的单调性和导数人教版_高一数学优质课实录展示视频任意角的三角涵数高教版_高一数学优质课实录展示视频谁的包裹多北师大版(1)_高一数学优质课实录展示视频数列求和的常用方法人教版职高基础模块(下)_高一数学优质课实录展示视频中位数和众数北师大版_高一数学优质课实录展示视频平面向量的数量积苏教版高一数学优秀课展示实录视频函数的单调性人教a版_高一数学优质课实录展示视频直线与平面平行的判定人教版高一数学优秀课展示实录视频探索勾股定理北师大版_高一数学优质课实录展示视频归纳法人教版高一数学优秀课展示实录视频点斜式方程_高一数学优质课实录展示视频中心投影与平等投影空间几何体的三视图人教版_高一数学优质课实录展示视频等比数列前n项和新人教版_高一数学优质课实录展示视频函数的单调性全国中职数学_高一数学优质课实录展示视频直线与平面垂直的判定人教版_高一数学优质课实录展示视频指数函数苏教版_高一数学优质课实录展示视频探索三角形相似的条件北师大版_高一数学优质课实录展示视频0074张广平_线面平行的判定0072李启龙_直线与平面平行的性质0074唐雪莲_由立体图形到视图(1)0072高二数学公开课多面体欧拉定理0074唐雪莲_由立体图形到视图0071陈颈彬_系统抽样0074椭圆与双曲线的构造实验(信息技术与学科整合)0072函数的建模与应用吴万辉_不等式的证明(两课时)2丁益祥_等差数列(两课时)20074吴立波_画立体图形吴万辉_不等式的证明(两课时)1游戏公平吗丁益祥_等差数列(两课时)1设计遮阳蓬椭圆与它的标准方程圆的参数方程简单的图案设计三角函数的图像与性质抛物线的简单几何性质对数导数等可能性事件的概率等差数列01等差数列02函数图像的四类变换分类讨论思想(高中)计数基本原理(职教数学)抽样调查举例函数的再值互斥事件有一个发生的概率立体图形与平面图形函数的应用平移高三数学复习课数学:圆形统计图数列复习等差数列(高三)函数的复习(高三)圆的标准方程(高二)椭圆的定义及其标准方程(高二)生活中的数学一元二次不等式图解虚根函数的单调性集合抛物线及其标准方程二次函数yax2bxc的图象1二次函数yax2bxc的图象2球的体积课堂实录四二次函数yax2的图象2二次函数yax2的图象1球的体积课堂实录三球的体积课堂实录五球的体积课堂实录二球的概念和性质课堂实录三球的概念和性质教学设计球的体积课堂实录一函数yasin(ωχφ)的图象4球的概念和性质课堂实录二函数yasin(ωχφ)的图象1球的概念和性质课堂实录一函数yasin(ωχφ)的图象3函数yasin(ωχφ)的图象2高三数学优质课展示《等差等比数列的运用》人教版_陆老师高三数学优质课视频《试卷分析》研究课_李世强高一数学优质课视频《任意角》人教版_王老师高一高中数学优质示范课视频《函数的单调性》1高一高中数学优质示范课视频《函数的单调性》2高一高中数学优质示范课视频《平面向量数量积的坐标表示》高一高中数学优质示范课视频《平面向量》高一高中数学优质示范课视频《平移_习题课》高一高中数学优质示范课视频《一类恒成立、存在性函数问题的化归》课堂实录高一高中数学优质示范课视频《一元二次方程根的分布(一)》_陈永胜高一数学优质课视频《正余弦函数周期性》高中数学优质课视频《方程的根与函数的零点》44中学王璐璐高中数学优质课视频《三角函数的诱导公式》工大附中李静高中数学优质课视频《三角函数的诱导公式》中实学校赵立娟高中数学优质课视频《三角函数的诱导公式》13中学贾功亮高中数学优质课视频《三角函数的诱导公式》37中学张巍高二高中数学优质课视频《椭圆的标准方程》丁老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》陈老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》翟老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》赵老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》方老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》邱老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频选修2《平均变化率》董老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质课展《导数在研究函数中的应用》高二高中数学优质示范课《双曲线的第二定义》_文静妍高二高中数学优质课视频选修2《平均变化率》杜老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质课视频选修2《平均变化率》朱老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质示范课《总体分布的估计》(1)高一高中数学优质课视频展示《函数的单调性》高老师_江苏省高中青年教师优质课观摩高三高中数学优质示范课视频《数列复习》_熊贵旭高一高中数学优质课视频展示《函数的单调性》解老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》凌老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》秦老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数的单调性》杨老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》沈老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数综合运用》高一高中数学优质课视频展示《空间几何体的表面积》浦老师1、函数奇偶性问题探究朱胜强3、如何研究圆锥曲线离心率的问题孔繁海2、运用同角函数之间的关系求值周德3、数列中通项与和式的关系探究易雪梅4、如何研究直线与圆锥曲线中与分线段成比例有关的问题?:孔繁海《简单的线性规划问题》优质示范课2_雷波《两个变量之间的线性相关》优质示范课1_曹慧斌《两个变量之间的线性相关》优质示范课3_曹慧斌1、如何利用导数研究“恒成立”的问题刘明2、如何用导数解决与切线有关的问题?刘明《两个变量之间的线性相关》优质示范课2_曹慧斌《两个变量之间的线性相关》优质示范课4_曹慧斌《数学归纳法》2_曾群凤优质示范课《直线的倾斜角与斜率》1吴剑松优质示范课5、如何利用从特殊到一般的思想解决数列问题杨东福6、如何从函数的角度思考数列问题杨东福优质示范课a0548高三数学讲座直线与园的位置关系a0644高三数学讲座《直线与园的位置关系》a0549高三数学讲座例说数学解题思考方法《数学归纳法》1_曾群凤优质示范课a1252第四届“南回杯”优课评比录像三《函数与方程》a1253第四届“南回杯”优课评比录像四《坐标法在解三角形中的运用》g0425高一数学优质示范课《for循环语句》_郭小喜g0425高一数学优质示范课《分段函数的探索与应用》_程伟华g0425高一数学优质示范课《三角函数的图象与性质》_陈向东g0426高一数学优质示范课《函数模型的选择与求解》_陈丹妮g0427高二数学优质示范课《空间角-线面角》_曾菲g0427高二数学优质示范课《两条平行直线和重合的条件》_路彦星g0428高二数学优质示范课《椭圆及其标准方程》_曾菲g0429高二数学优质示范课立体几何《二面角》_邹建平g0430高二数学优质示范课《算法与程序设计》_林启明g0430高二数学优质示范课《算法与程序设计》_刘琦g0431高三数学优质示范课_高三数学第二轮复习《数形结合与最值》_袁海勇g0432高三数学优质示范课《正态分布》g0433高三数学优质示范课《高中数学专题复习—分类讨论思想》_王宗祥g0433高三数学优质示范课《高中数学专题复习—分类讨论思想》专家点评《函数概念及其表示》一轮复习优质示范课g44586高一数学微课示范必修5《数学的概念及其通项》讲授类教学片段_人教版g47046高三数学优质课展示《数列中的分类讨论思想》_李老师g44622高三数学优质课展示《等差数列复习课》苏教版_熊老师g73650高一数学优质课展示《线性回归方程》人教版_冯老师h5066高二数学优质课展示《双曲线及其标准方程》_曹东辉h5063高二数学优质课展示《平面与平面垂直的性质》黄海波h5057高二数学优质课展示《从抛物线定义引出的不变性问题》h5062高二数学优质课展示《抛物线性质》_h5070高二数学优质课展示《正态分布习题课》_袁志斌h5072高三数学优质课展示《导数的应用》_俞立柱h5071高二数学优质课展示《直线与平面垂直的判定》_尹向勇h5069高二数学优质课展示《正态分布习题课》_袁扬h5074高三数学优质课展示《第二轮高考数学复习:第五讲数列极限数学归纳法》h5068高二数学优质课展示《正态分布》_袁志斌h5073高二数学优质课展示《归纳推理》_管敏慧h5076高三数学优质课展示《复数的几何意义》_陈正坤h5075高二数学优质课展示选修2《椭圆及其标准方程》_-李勇成h5082高一数学优质课展示《等差数列》_吴莫林h5083高一数学优质课展示《等差数列与等比数列的类比》实录说课h5080高三数学优质课展示《圆锥曲线的共性探究》复习课_史强h5081高一必修2数学优质课展示《直线与平面垂直》_郭长慧(一等奖)h5086高一数学优质课展示《方程的根与函数的零点》_刘成雨h5088高一数学优质课展示《归纳法》_袁志斌h5087高一数学优质课展示《古典概型》_刘强h5085高一数学优质课展示《反函数》_松江二中h5089高一数学优质课展示《函数图像变换》_汪燕h5090高一数学优质课展示《平面向量的数量》_积陆春h5092高一数学优质课展示《求函数的解析式》_金海淑h5095高一数学优质课展示《数学归纳法》_刘娟h5094高一数学优质课展示《三角函数图像性质》_王家陵h5093高一数学优质课展示《求最大公约数》_罗江云h5097高一数学优质课展示《同角三角函数的基本关系》_崔传志h5098高一数学优质课展示《图案欣赏与设计》_冯辉h5096高一数学优质课展示《数学建模论文研读》h5099高一数学优质课展示《向量的运算》_赖春雨h5100高一数学优质课展示《向量的运用》_李勇h5102高一数学优质课展示《向量数乘运算及期几何意义》_陈开金h6739高二数学优质课展《导数在研究函数中的应用》h5105高中数学优质课展示《一个最值问题的解法研究》h6740高二数学优质课展示《二面角》侯老师h6742高二数学优质课展示《两平面垂直》h5103高一数学优质课展示《选择结构》_黎永生h6744高二数学优质课展示《椭圆的标准方程》丁老师_江苏省高中青年教师优质课观摩h6743高二数学优质课展示《椭圆的标准方程》陈老师_江苏省高中青年教师优质课观摩h6745高二数学优质课展示《椭圆的标准方程》方老师_江苏省高中青年教师优质课观摩h6746高二数学优质课展示《椭圆的标准方程》蒋老师_江苏省高中青年教师优质课观摩h6747高二数学优质课展示《椭圆的标准方程》磊老师_江苏省高中青年教师优质课观摩h6748高二数学优质课展示《椭圆的标准方程》潘老师_江苏省高中青年教师优质课观摩h6749高二数学优质课展示《椭圆的标准方程》濮阳老师_江苏省高中青年教师优质课观摩h6750高二数学优质课展示《椭圆的标准方程》邱老师_江苏省高中青年教师优质课观摩h6751高二数学优质课展示《椭圆的标准方程》徐老师_江苏省高中青年教师优质课观摩h6752高二数学优质课展示《椭圆的标准方程》杨老师_江苏省高中青年教师优质课观摩h6753高二数学优质课展示《椭圆的标准方程》营老师_江苏省高中青年教师优质课观摩h6754高二数学优质课展示《椭圆的标准方程》翟老师_江苏省高中青年教师优质课观摩h6755高二数学优质课展示《椭圆的标准方程》赵老师_江苏省高中青年教师优质课观摩h6757高一数学优质课展示必修5《一元二次不等式》h6756高二数学优质课展示《椭圆上的点对两焦点张角的探究》h6758高二数学优质课展示选修2《平均变化率》曹老师_江苏省高中青年数学教师优秀课观摩与评比活动h6759高二数学优质课展示选修2《平均变化率》董老师_江苏省高中青年数学教师优秀课观摩与评比活动h6760高二数学优质课展示选修2《平均变化率》杜老师_江苏省高中青年数学教师优秀课观摩与评比活动h6763高二数学优质课展示选修2《平均变化率》侯老师_江苏省高中青年数学教师优秀课观摩与评比活动h6761高二数学优质课展示选修2《平均变化率》葛老师_江苏省高中青年数学教师优秀课观摩与评比活动h6764高二数学优质课展示选修2《平均变化率》朱老师_江苏省高中青年数学教师优秀课观摩与评比活动h6766高三数学优质课展示《空间的距离复习课》h6765高三数学优质课展示《等值线的判读与运用》h6768高一数学优质课展必修2《平面图形的翻折》h6767高三数学优质课展示《探索性问题和开放性问题》h6771高一数学优质课展示《函数的单调性》淮老师_江苏省高中青年教师优质课观摩h6773高一数学优质课展示《函数的单调性》秦老师_江苏省高中青年教师优质课观摩h6772高一数学优质课展示《函数的单调性》陆老师_江苏省高中青年教师优质课观摩h6769高一数学优质课展示《分期付款》杨老师_江苏省高中青年数学教师优秀课观摩与评比活动h6774高一数学优质课展示《函数的单调性》沈老师_江苏省高中青年教师优质课观摩h6775高一数学优质课展示《函数的单调性》水老师_江苏省高中青年教师优质课观摩h6777高一数学优质课展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩h5073高三数学优质课展示《第二轮高考数学复习:第四讲复数变换专题》h6778高一数学优质课展示《函数的单调性》解老师_江苏省高中青年教师优质课观摩活动h6781高一数学优质课展示《函数的单调性》吴老师_江苏省高中青年教师优质课观摩活动h6780高一数学优质课展示《函数的单调性》陆老师_江苏省高中青年教师优质课观摩活动h6782高一数学优质课展示《函数的单调性》杨老师_江苏省高中青年教师优质课观摩活动h6776高一数学优质课展示《函数的单调性》伍老师_江苏省高中青年教师优质课观摩h6784高一数学优质课展示《函数的奇偶性》h6783高一数学优质课展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩活动h6779高一数学优质课展示《函数的单调性》凌老师_江苏省高中青年教师优质课观摩活动h6788高一数学优质课展示《空间几何体的表面积》浦老师h6790高一数学优质课展示《映射的概念》钱老师h6789高一数学优质课展示《生活中的变量关系》h6791高一数学优质课展示必修3《算法的含义》唐老师h5075高三数学优质课展示《第二轮高考数学复习:第一讲函数不等式专题(上)》h7780高中数学特级教师精品示范课《复数的乘法和除法》h7781高中数学特级教师精品示范课《复数的概念》h6785高一数学优质课展示《函数综合运用》h7773高一数学优质课展示必修2《空间线面的位置关系》_陈老师h7782高中数学特级教师精品示范课《复数的加法和减法》h7783高中数学特级教师精品示范课《复数复习》h7784高中数学特级教师精品示范课《极坐标系》h7787高中数学特级教师精品示范课《圆锥曲线复习(二)》h6786高一数学优质课展示《角的概念的推广》h7788高中数学特级教师精品示范课《圆锥曲线复习(一)》h7772高一数学优质课展示《直线与平面垂直的判定》人教版_蔡老师h7792高二数学特级教师精品示范课《排列组合应用问题》h7785高中数学特级教师精品示范课《极坐标系和直角坐标的互化》h7793高二数学特级教师精品示范课《组合与组合数公式(二)》h7790高二数学特级教师精品示范课《排列组合应用问题(续)》h7786高中数学特级教师精品示范课《圆锥曲线的轨迹问题》h7799高三数学特级教师精品示范课《函数综合复习》h30081高三数学优质课展示《恒成立问题(一)》人教版_俞老师h7791高二数学特级教师精品示范课《排列组合应用问题(一)》h75147高一数学优质课展示《函数的单调性》人教a版_黎老师h75149高二数学优质课展示《等差数列求和》_黄老师h77343高一数学优质课展示《任意角的三角涵数》高教版_郑老师h75148高一数学优质课展示《指数函数及其性质(1)》人教a版_刘老师。
高中数学的解题技巧(三篇)
高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
数学中的模型建立与解决问题
数学中的模型建立与解决问题数学作为一门学科,既有理论的抽象性,又有实际的应用性。
在实际生活和科学研究中,数学模型的建立和问题的解决起着至关重要的作用。
本文将从数学模型的概念、建立模型的方法以及如何解决问题等方面进行论述。
一、数学模型的概念数学模型是对实际问题或系统的抽象描述,通过一系列数学符号、函数、关系和参数来表示。
它是对现实世界中各种现象或系统的一种理论表达方式,能够帮助我们理解和预测实际问题的行为和发展趋势。
数学模型可以分为确定性模型和随机模型。
确定性模型是对问题进行精确描述和求解,各个变量之间的关系是确定的;随机模型则考虑到不确定性因素,通过概率和统计方法来描述和求解一些复杂问题。
二、建立数学模型的方法建立数学模型主要包括确定问题的研究对象、建立数学模型的基本假设和建立数学模型的方程或不等式等几个步骤。
首先,确定问题的研究对象是建立数学模型的第一步。
无论研究的是物理现象、生物系统还是社会经济问题,都需要明确具体的研究对象。
其次,建立数学模型需要基于一些基本假设进行。
假设是对问题进行简化和抽象的方法,通过假设可以忽略一些次要因素,使问题的描述和求解更加简单和准确。
最后,建立数学模型需要将问题转化为数学方程或不等式进行描述。
通过分析问题的性质和规律,选择合适的数学符号和函数来表示问题的各种变量和关系。
三、解决问题的方法解决问题的方法主要包括解析解法和数值解法两种。
解析解法是通过数学方法求得问题的精确解,通常基于模型的数学方程进行求解。
这种方法的优点是结果准确,但对于复杂问题来说,解析解往往难以求得。
数值解法是通过计算机模拟和数值计算的方法求得问题的近似解。
这种方法基于数学模型的数值计算,通过迭代和逼近的过程不断改进解的精度,适用于复杂的非线性问题。
四、数学模型在实际问题中的应用数学模型在实际问题中的应用非常广泛,涉及到自然科学、工程技术、社会经济等各个领域。
在自然科学领域,数学模型可以用于描述物理系统的运动、量子力学的行为等,帮助科学家探索自然界的规律。
高三数学数列省名师优质课赛课获奖课件市赛课一等奖课件
3
9
9
9
所以{an}不是等比数列.
考题剖析
(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(
=又23b(1-=1)-n(·λ(+1a8n)-,3所n+以21)=-
2 3
bn
2 3
an-2n+14)
当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:
当λ≠-18时,b1=(λ+18) ≠0,由上可知bn≠0,
考题剖析
例3、(2023海南宁夏卷)已知数列{an}是一种 等差数列,且a2 1 ,a5 5 。 (1)求{an}旳通项; (2)求{an}前n项和Sn旳最大值。
解:(1)设旳公差为d,由已知条件 解出a1=3,d =-2,.
aa11
d 1 4d
5
,
所以,an a1 (n 1)d 2n 5 。
a = n+1
2 3
an
n
4, bn
(1)n (an
3n
21),
其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你旳结论;
(Ⅰ)证明:假设存在一种实数λ ,使{an}是等比数列,则
有a22=a1a3,即 矛盾.
( 2 3)2 ( 4 4) 4 2 4 9 4 2 4 9 0,
解:(I)由 可得 ,两式相减得 an1 2Sn 1
an 2Sn1 1n 2
an1 an 2an , an1 3an n 2
又 a2 2S1 1 3 ∴ a2 3a1 ,故{an}是首项为1,
高三数学复习中任务群的设置
高三数学复习中任务群的设置无论是单位还是个人,无论办什么事情,事先都应有个打算和安排。
有了工作计划,工作就有了明确的目标和具体的步骤,就可以协调大家的行动,增强工作的主动性,下面给大家分享一些关于高三数学的复习计划范文,希望对大家有所帮助。
1.全面复习,立足课本。
第一阶段系统备考就是整个数学备考的基础,就是学生提升成绩的确保。
在教师的指导下,学生自己对基础知识、基本技能展开剖析,达至系统化、结构化。
必须立足课本基础知识和基本方法,起点无法太高。
必须揪纲务本、打牢三基、全面备考、单元闯关。
以单元居多,强化对“基本知识、基本技能、基本方法”能力培育的全面落实,努力做到广度上不取死角,全面系统地掌控高中数学科学知识的概念、定理、公式、法则,予以认知,并构成记忆和技能。
2.理清脉络,抓住重点。
在第一阶段,必须著重对所学科学知识、方法的概括、整理、总结,努力做到串点成线,剖析成辫,共同组成网络,把握住教材的科学知识体系和脉络。
对重点科学知识内容,更必须常抓不懈、常抓常崭新,秉持多角度,多层次备考重点科学知识内容。
既必须“各个击破”,又必须“融会贯通”;既必须熟练掌握,又必须有效率应用领域;既必须特别注意和别的科学知识联系,又必须有意识的予以应用领域,并在解题过程中,不断加强、深化、切割。
3.加强备课组的协作,发挥集体智慧。
高三的备考工作极为艰巨,须要大家群策群力,取长补短,团结一致协作。
备课组成员必须心往一处想要,劲往一处并使,针对备考中存有的注重问题,强化集体复习,共同研究找寻对策,强化互相交流,互相学习。
搞好每单元的教学进度的统一,精心安排不好每课时的导学案的撰写,精心底上每一节课,努力提高课堂效率。
既必须集体复习又必须协调相同班的差异,因材施教。
同时,组内应强化相互听讲,共同探讨、思考、化解教学中辨认出的问题。
4.做到每节课都要体现出能力目标。
(1)计算能力高就是现在学生存有的广泛问题,平时的训练和检测中老师都能够辨认出存有相当一部分学生解题的思路恰当,但因为排序不优良而得不出来恰当的答案,导致安打轻微,而有些学生对此还不以为然,这种见解就是十分有毒的。
《高考数学专题讲座》课件
提供大量习题和训练材料,帮助 学生巩固基础知识和提高解题速 度。
问题解决
引导学生进行实际问题的解决, 培养数学思维和创新能力。
数学在科学、工程和金融中的实际应用
1
科学研究
数学在科学研究中起到关键的作用,帮助解决实际问题。
2
工程设计
工程师需要数学来优化设计,确保工程的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决策和风险管理。
数学教育中的常见误解及应对策略
数学难度
解释数学难度的原因,鼓励学生从容面对挑战。
数学应用
展示数学在日常生活中的实际应用,并消除对数学的误解。
数学智力
解释数学智力的不同表现形式,并鼓励每个人发挥自己的潜力。
不同类型的数学问题及解题方法
代数问题
介绍解决代数问题的关键方法,如方程求解和代数 运算。
几何问题
数据分析
学习统计学知识,掌握数据分析 方法和技巧。
数据可视化
掌握数据可视化工具和技术,将 数据转化为直观的图形呈现。
现代社会中数学素养的重要性
科学研究
数学在科学研究中起到关键的作用,帮
工程设计
2
助解决实际问题。
工程师需要数学来优化设计,确保工程
的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决 策和风险管理。
《高考数学专题讲座》 PPT课件
介绍高中数学课程和考试格式,让学生了解高考数学的重要性和挑战。
代数和几何的关键概念和技能
代数知识
包括方程、不等式、函数和图形等数学运算。
几何概念
涵盖点、线、面和空间的属性、关系以及常见几何图形。
高中数学教案:数列模型的应用
数列模型的应用课程目标知识提要数列模型的应用在日常生活中,经常遇到存款利息,购房贷款等实际计算问题,都需要用有关数列的知识来解决.精选例题数列模型的应用1. 某城市2014年底人口为万,人均住房面积为平方米,如果该城市的人口平均增长率为,为使2024年底该城市人均住房面积增加到至少平方米,则平均每年新增住房面积至少万平方米(保留到整数,其中%).【答案】【分析】设该城市平均每年新增住房面积为万平方米,由题意,,化简得,,故平均每年新增住房面积至少万平方米.2. 某厂去年产值为,计划在年内每年比上一年产值增长,从今年起年内,该厂的总产值为.【答案】3. 流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有人,以后每天的新感染者平均比前一天的新感染者增加人,那么到11月7日该市新感染者共有人.【答案】【分析】设从11月1日起,第天的新感染者有人,则,则每天的新感染者构成以,的等差数列,所以到11月7日该市新感染者共有人.4. 一牧羊人赶着一群羊通过个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还一只,过完这些关口后,牧羊人只剩只羊,牧羊人原来有只羊.【答案】【分析】过最后一个关口有两只羊,则过第个关口也是只羊,依次类推,原来有只羊.其他方法:设原来有羊只,过第个关口有只羊,则,,所以,所以,依题意,,得.5. 某种卷筒卫生纸绕在盘上,空盘时盘心直径,满盘时直径,已知卫生纸的厚度为,则满盘时卫生纸的长度大约是(精确到,取).【答案】【分析】依题意可知卫生纸的厚度是以首项为,公差为,末项为的等差数列,总共项数为,所以满盘时卫生纸的总长度为.6. 从盛满升酒精的容器里倒出升,然后再用水加满,再倒出升,再用水加满;这样倒了次,则容器中有纯酒精升.【答案】7. 某工厂去年产值为,计划在今后年内每年比上年产值增加,则从今年起到第年,这个厂的总产值为.【答案】【分析】每年的总产值构成以为首项,公比为的等比数列,∴.8. 有根相同的圆钢,将其中一些堆放成横截面为正三角形的垛,要求剩余的根数尽可能的少,这时剩余的圆钢有根.【答案】【分析】由,得.解得时,剩余的圆钢根数最少,为根.9. 夏季某高山上的温度从山脚起,每升高米降低,已知山顶处的温度是,山脚温度是,则该山的山顶相对于山脚处的高度是.【答案】米10. 已知某厂的月平均增长率为,则该厂年平均增长率为.【答案】【分析】年平均增长率第二年总产量第一年总产量第一年总产量11. 某家用电器的单价为元,现用分期付款的方式购买一件该家用电器,购买后个月第次还款,以后每月还款次,每次还款数额相同,个月还清,月利率为.若按复利计算,那么每月还款大约为多少远?(参考数据:)【解】设每月还款元,到款还清时,各月本利之和组成数列.则,,,,,.因为按复利计算所购电器的款额及利息之和为,所以,解得,即每月还款大约为元.12. 已知某地今年年初拥有居民住房的总面积为(单位:),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的建设新住房,同时也拆除面积为(单位:)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式:【解】第年末的住房面积第年末的住房面积(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了,则每年拆除的旧住房面积是多少?(计算时取)【解】第年末的住房面积第年末的住房面积第年末的住房面积依题意可知,解得,所以每年拆除的旧房面积为.13. 一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在每年生日这一天到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子岁上学时(岁的生日不再存入)将所有存款(含利息)全部取出,请你为这对夫妇算一算,能取回的钱的总数是多少?【解】不妨从每年存入的元到岁时产生的本息入手考虑,出生时的元到岁时变成了,岁生日的元到岁时变成了,岁生日的元到岁时变成了,;岁生日的元到岁时变成了.由数列可知,岁时取出的钱的总数为:.14. 某厂生产微机,原计划第一季度每月增产台数相同,在生产过程中,实际一月份产量与原计划相同,二月份比原计划多生产台,三月份比原计划多生产台,这样三个月成等比数列,而第三个月的产量比原计划第一季度总产量的一半少台.问该厂第一季度实际生产微机多少台?【解】设原计划第一季度三个月的产量分别为,,,则由题意得:解得,(舍去),所以.所以,第一季度实际产量为(台).15. 某生产流水线,由于改进了设备,预计第一年产量的增长率为,以后每年的增长率是前一年的一半,设原产量为.(1)写出改进设备后的第一年,第二年,第三年的产量,并写出第年与第年()的产量之间的关系式;【解】设第年的产量为,则,,即,,.由于,,(,).(2)由于设备不断老化,估计每年将损失产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少.【解】由题意,若以后每年的产量减少,则,也即.即,,也就是时,.故从第年起,每年的产量比上一年减少.16. 某企业在第年初购买一台价值为万元的设备,的价值在使用过程中逐年减少.从第年到第年,每年初的价值比上年初减少万元;从第年开始,每年初的价值为上年初的.(1)求第年初的价值的表达式;【解】当时,数列是首项为,公差为的等差数列.当时,数列是以为首项,公比为的等比数列,又,所以因此,第年初,的价值的表达式为(2)设,若大于万元,则继续使用,否则须在第年初对更新.证明:须在第年初对更新.【解】设表示数列的前项和,由等差及等比数列的求和公式得:当时,当时,因为是递减数列,所以是递减数列,又所以须在第年初对更新.17. 某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金万元,将其投入生产,到当年年底资金增长了.预计以后每年资金年增长率与第一年的相同,公司要求企业从第一年开始,每年年底上缴资金万元,并将剩余资金全部投入下一年生产.设第年年底企业上缴资金后的剩余资金为万元.(1)用表示与,并写出与的关系式.【解】由题意得,,.(2)如果企业的生产规模仅与投入的资金有关,为保证企业生产规模持续扩大,求的取值范围.【解】一方面,企业生产规模扩大,需,,即对任意正整数恒成立.将代入上式,得.另一方面,由(1)得整理得由题意可知,当时,随的增大而增大.所以的取值范围是.(3)当万元时,公司经过多少年可使得剩余资金不少于万元?【解】由题意得所以.解得.故当万元时,公司经过年可使得剩余资金不少于万元.18. 小华准备买一台售价为元的电脑,采用分期付款的方式,并在一年内将款全部付清.商场提出的付款方式为:购买后个月第一次付款,再过个月第二次付款,,购买后个月第六次付款,每次付款金额相同,约定月利率为,每月利息按复利计算.求小华每期付款的金额是多少?【解】假定小华每期付款元,第个月末付款后的本利欠款数为元,则由题意年底还清,所以.解得元答:小华每次付款的金额为元.19. 某村投资万元建起了一处生态采摘园,预计在经营过程中,第一年支出万元,以后每年支出都比上一年增加万元,从第一年起的销售收入都是万元.设表示前年的利润总和(利润总和总销售收入总经营支出投资).(1)该生态园从第几年开始盈利?【解】每年的支出组成首项为,公差为的等差数列,可得前年的总支出为,所以前年的利润总和为.由,即,解得,由于为整数,故该生态园从第年开始盈利.(2)该生态园前几年的平均利润最大,最大利润是多少?【解】该生态园前年的年平均利润.当且仅当,即时等号成立,因此,该生态园前年的年平均利润最大,最大年平均利润是万元.20. 从社会效益和经济利益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入万元,以后每年投入将比上年减少.本年度当地旅游收入估计为万元,预计今后的旅游业收入每年比上一年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出,的表达式;【解】第年的投入为万元,第年的投入为万元,,第年的投入为,所以,年内的总投入为:第年旅游业收入为万元,第年旅游业收入为,,第年的旅游业收入为万元,所以年内的旅游业总收入为(2)至少经过几年,旅游业的总收入才能超过投入?【解】设至少经过年旅游业的总收入才能超过总投入,由此得,即,令,代入上式得:,解此不等式,得,或(舍去),即.解得,所以至少经过年,旅游业的总收入才能超过总投入.课后练习1. 某种细胞分裂时,由个分裂成个,个分裂成个依此类推,则个这样的细胞分裂次后,得到细胞的个数是.2. 据年月日九届人大五次会议《政府工作报告》:" 年国内生产总值达到亿元,比上年增长,"如果"十·五"期间(年年)每年的国内生产总值都按此年增长率增长,那么到"十·五"末我国国内年生产总值约为亿元.3. 用清水漂洗衣服,每次能洗去污垢的,若要使存留污垢不超过原有的,则至少需要漂洗次.4. 甲、乙两物体分别从相距的两处同时相向运动,甲第分钟走,以后每分钟比前分钟多走,乙每分钟走,如果甲、乙到达对方起点后立即折返,那么从开始运动后分钟甲、乙两物体第二次相遇.5. 植树节某班名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为米.6. 商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价,最高销售限价以及实数确定实际销售价格,这里被称为乐观系数.经验表明,最佳乐观系数恰好使得是和的等比中项,据此可得,最佳乐观系数的值等于.7. 某市出租车的计价标准为元/ ,起步价为元,即最初的(不含)计费元.如果某人乘坐该市的出租车去往处的目的地,且一路畅通,等候时间为,需要支付车费.8. 某人2000年1月1日到银行存入一年期存款元,若按年利率为,并按复利计算,到2011年1月1日可取回款元.9. 小王每月除去所有日常开支,大约结余元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行元,存期年(存次),到期取出本金和利息.假设一年期零存整取的月利率为,每期存款按单利计息.那么,小王存款到期利息为元.10. 某工厂去年产量为,计划今后五年每年比前一年产量增长,则今后年的总产量为.11. 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金万元,将其投入生产,到当年年底资金增长了,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金万元,并将剩余资金全部投入下一年生产.设第年年底企业上缴资金后的剩余资金为万元.(1)用表示,,并写出与的关系式;(2)若公司希望经过年使企业的剩余资金为万元,试确定企业每年上缴资金的值(用表示).12. 从月日开始,联合国救援组织向遭遇海啸的难民运送食品,第一天运吨,以后每天增加吨,日运送食品达到最大量后,逐日递减吨,使全月运送总量为吨,问在哪一天达到运送食品的最大量?最大量是多少?13. 某企业2008年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预测在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数),(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求、的表达式;(2)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?14. 某单位用分期付款的方式为职工购买套住房,共需万元,购买当天先付万元,以后每月这一天都交付万元,并加付欠款利息,月利率为,若交付万元后的第一个月开始算分期付款的第一个月,问分期付款的第个月应付多少钱?全部按期付清后,买这套住房实际花了多少钱?15. 如图,用火柴棒搭正方形,搭个正方形需根火柴,搭个正方形需根火柴.(1)搭个正方形需要多少根火柴?搭个正方形呢?(2)已知一盒火柴约有根,能否按图示方式搭出正方形并恰好用完全部?16. 某市年初拥有汽车万辆,每年年终将有当年汽车总量的报废,在第二年年初又将有一部分新车上牌,但为了保持该市空气质量,需要该市的汽车拥有量不超过万辆,故该市采取限制新上牌车辆数的措施进行控制,所以该市每年只有万辆新上牌车.(1)求第年年初新车上牌后该市车辆总数(年为第一年);(2)当时,试问该项措施能否有效?若有效,说明理由;若无效,请指出哪一年初开始无效.(参考数据:)17. 某公司按现有能力,每月收入为万元,公司分析部门测算,若不进行改革,经济危机后因竞争加剧收入将逐月减少.分析测算得经济危机第一个月收入将减少万元,以后逐月多减少万元,如果进行改革,即投入技术改造万元,且经济危机后每月再投入万元进行员工培训,则测算得自经济危机后第一个月起累计收入与时间(以月为单位)的关系为,且经济危机第一个月时收入为万元,第二个月时累计收入为万元,问经济危机后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.18. 某市年共有万辆燃油型公交车.有关部门计划于年投入辆电力型公交车,随后电力型公交车每年的投入比上一年增加,试问:(1)该市在年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的?19. 一个木制梯的上、下两底边分别为、,把梯形的两腰各等分,用平行木条连结对应分点,构成梯形架的各级,试计算梯形架中间各级的宽度.20. 某投资商到一开发区投资万元建起一座蔬菜加工厂,第一年共支出万元,以后每年支出增加万元,从第一年起每年蔬菜销售收入万元.设表示前年的纯利润总和.(前年的总收入前年的总支出投资额).(1)该厂从第几年开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以万元出售该厂;②纯利润总和达到最大时,以万元出售该厂,问哪种方案更合算?数列模型的应用-出门考姓名成绩1. 有一种计算机病毒可以通过电子邮件进行传播,如果第一轮被感染的计算机数是台,并且以后每一台已经被感染的计算机都感染下一轮未被感染的台计算机,则至少经过轮后,被感染的计算机总数超过台.2. 为了响应政府推进“菜篮子”工程建设的号召,某经销商投资万元建了一个蔬菜生产基地.第一年支出各种费用万元,以后每年支出的费用比上一年多万元.每年销售蔬菜的收入为万元.设表示前年的纯利润前年的总收入前年的总费用支出-投资额,则(用表示);从第年开始盈利.3. 由于电子技术的飞速发展,计算机的成本不断降低,若每隔年计算机的价格降低,问现在价格为元的计算机经过年后,价格应降为.4. 某市环保局为增加城市的绿地面积,提出两个投资方案:方案为一次性投资万元;方案为第一年投资万元,以后每年都比前一年增加万元.将“经年之后,方案的投入不少于方案投资”用不等式表示为.5. 某开发商用万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为平方米.已知该写字楼第一层的建筑费用为每平方米元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加元.若该写字楼共层,总开发费用为万元,则函数的解析式为.6. 某科研单位欲拿出一定的经费奖励科研人员,第名得全部资金的一半多一万元,第名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第名恰好资金分完,则此科研单位共拿出万元资金进行奖励.7. 某化工厂生产一种溶液,按市场要求,杂质含量不能超过.若初时含杂质,且每过滤一次可使杂质含量减少.则要使产品达到市场要求,至少应过滤次.(取)8. 某科研单位,欲拿出一定的经费奖励科研人员,第一名得全部资金的一半多一万元,第二名得剩下的一半多一万元,按名次类推都得到剩下的一半多一万元,到第七名恰好将奖金分完,则需拿出奖金万元.9. 某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早,晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)10. 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以,,,,,等标记来表示纸张的幅面规格.复印纸幅面规格只采用系列和系列,其中系列的幅面规格为:①,,,,所有规格的纸张的幅宽(以表示)和长度(以表示)的比例关系都为②将纸张沿长度方向对开成两等分,便成为规格,纸张沿长度方向对开成两等分,便成为规格,,如此对开至规格.现有纸各一张.若纸的宽度为,则纸的面积为;这张纸的面积之和等于.11. 如图,三个正方形的边长,,组成等差数列,且,这三个正方形的面积之和是.(1)求,,的长;(2)以,,的长为等差数列的前三项,则以第项为边长的正方形的面积是多少?12. 从盛满升()纯酒精的容器里倒出升,然后填满水,再倒出升混合溶液后又用水填满,如此继续下去,问第次操作后溶液的浓度是多少?若,至少应倒几次后才能使酒精浓度低于?13. 用分期付款的方式购买一批总价为万元的住房,购买当天首付万元,以后每月的这一天都交万元,并加付此前欠款的利息,设月利率为,若从首付万元之后的第一个月开始算分期付款的第个月,问分期付款的第个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?14. 某地区年底沙漠面积为.地质工作者为了解这个地区沙漠面积的变化情况,从年开始进行了连续年的观测,并在每年底将观测结果记录如下表:观测年份该地区沙漠面积比原有面积增加数请根据上表所给信息进行预测.(1)如果不采取任何措施,到年底,这个地区的沙漠面积将大约变成多少平方千米?(2)如果从年初开始,采取植树造林等措施,每年改造,但沙漠面积仍按原有速度增加,问到哪一年年底,这个地区的沙漠面积将小于?15. 某企业进行技术改造,有两种方案,甲方案:一次性贷款万元,第一年便可获利万元,以后每年比前一年增加的利润;乙方案:每年贷款万元,第一年可获利万元,以后每年比前一年增加千元;两种方案的使用期都是年,到期一次性归还本息.若银行两种形式的贷款都按年息的复利计算,试比较两种方案中,哪种获利更多?(取)16. 某林场有荒山亩,从2010年开始,每年春季在荒山上植树造林,第一年植树亩,计划以后每年比上一年多植树亩(假定全部成活).(1)求需几年可将此荒山全部绿化;(2)已知新植树苗每亩木材量为,树林每年的自然增长率为,设荒山全部绿化后年底的木材量为,求的最简表达式.17. 假设某市年新建住房万平方米,其中有万平方米是中低价房.预计在今后的若干年后,该市每年新建住房面积平均比上年增长.另外,每年新建住房中,中低价房的面积均比上一年增加万平方米.那么,到哪一年底(1)该市历年所建中低价房的累计面积(以年为累计的第一年)将首次不少于万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于?18. 某房地产开发商投资万元建一座写字楼,第一年装修费为万元,以后每年增加万元,把写字楼出租,每年收入租金万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时,以万元出售该楼;②纯利润总和最大时,以万元出售该楼.问哪种方案盈利更多?19. 假定一对刚出生的小兔一个月后能长成大兔,再过一个月便能生下一对小兔,并且此后每一个月生一对小兔,如果不发生死亡,问一对刚出生的小兔一年可繁殖成多少对?20. 某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,以表示到第年末所累计的储备金总额.(1)写出与的递推关系式;(2)求证:,其中是一个等比数列,是一个等差数列.。
数学解题技巧
数学解题技巧一、“构造法+函数法”的结合而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
二、转换法这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。
比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。
解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。
同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R 三点共线。
三、反证法任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。
数学解题技巧也是如此。
首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。
例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目 高中数学复习专题讲座构建数学模型解数列综合题和应用性问题 高考要求纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度 重难点归纳1 解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分等差(比)数列、递推数列模型,再综合其他相关知识来解决问题2 纵观近几年高考应用题看,解决一个应用题,重点过三关 (1)事理关 (2)文理关 需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系 (3)事理关 相应的数学模型,完成用实际问题向数学问题的转化典型题例示范讲解例1并以此发展旅游产业,根据规划,本年度投入本年度当地旅游业收入估计为400万元,(1)设n 年内(b n 万元,写出a n ,b n 的表达式;(2)运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考b n 实际上是两个数列的前n 项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差技巧与方法 正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧解 (1)第1年投入为800万元,第2年投入为800×(1-51)万元,… 第n 年投入为800×(1-51)n-1万元,所以,n 年内的总投入为a n =800+800×(1-51)+…+800×(1-51)n-1=∑=nk 1800×(1-51)k -1=4000×[1-(54)n ]第1年旅游业收入为400万元, 第2年旅游业收入为400×(1+41),…,第n 年旅游业收入400×(1+41)n-1万元所以,n 年内的旅游业总收入为 b n =400+400×(1+41)+…+400×(1+41)k-1=∑=nk 1400×(45)k -1=1600×[(45)n -1]>0,即1600×[(45)n-1m 的取值范围,知识依托本题把函数、不等式恒成立等问题组合在一起,构思巧妙错解分析本题学生很容易求f (n )的和,但由于无法求和,故对不等式难以处理 技巧与方法 解决本题的关键是把f (n )(n ∈N *)看作是n 的函数,此时不等式的恒成立就转化为函数f (n )的最小值大于[log m (m -1)]2-2011[log (m -1)m ]2解 ∵S n =1+3121++…+n1(n ∈N *))421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又∴f (n +1)>f (n )∴f (n )是关于n 的增函数 ∴f (n ) min =f (2)=209321221=+++∴要使一切大于1的自然数n ,不等式 f (n )>[log m (m -1)]2-2011[log (m -1)m ]2恒成立只要209>[log m (m -1)]2-2011[log (m -1)m ]2成立即可由⎩⎨⎧≠->-≠>11,011,0m m m m此时设[log m (m -1)]于是⎪⎩⎪⎨⎧>->02011209t t 由此得0<[log m (m 解得m >251+且m 例3 已知二次函数y (1)=0(1)求y =f (x )的表达式;(2)若任意实数x 都满足等式f (x )·g (x )+a n x +b n =x n +1[g (x )]为多项式,n ∈N *),试用t 表示a n 和b n ;(3)设圆C n 的方程为(x -a n )2+(y -b n )2=r n 2,圆C n 与C n +1外切(n =1,2,3,…);{r n }是各项都是正数的等比数列,记S n 为前n 个圆的面积之和,求r n 、S n解 (1)设f (x )=a (x -22+t )2-42t,由f (1)=0得a =1∴f (x )=x 2-(t +2)x +t +1(2)将f (x )=(x -1)[x -(t +1)]代入已知得 (x -1)[x -(t +1)]g (x )+a n x +b n =x n +1, 上式对任意的x ∈R 都成立,取x =1和x =t +1分别代入上式得⎪⎩⎪⎨⎧+=++=++1)1()1(1n n n n n t b a t b a 且t ≠0,解得a n =t1[(t +1)n +1-1],b n =tt 1+[1-(t +1]n )(3)由于圆的方程为(x -a n )2+(y -b n )2=r n 2,又由(2)知a n +b n =1,故圆C n 的圆心O n 在直线x +y =1上,又圆C n 与圆C n +1相切,故有r n +r n +1=2|a n +1-a n |=2(t +1)n +1 设{r n }的公比为q ,则12111)1)n n n n n n r r q t r r q t ++++⎧+=+⎪⎨+=+⎪⎩ ① ②②÷①得q =nn r r 1+=t +1,代入①得r n =2)1(21+++t t n∴S n =π(r 12+r 22+…+r n 2)=342221)2()1(21)1(++π=--πt t t q qr n[(t +1)2n-1学生巩固练习1 已知二次函数y =a (x 轴上截得的线段长依次为d 1, )A 1B 2 2 在直角坐标系中,1,x 1,x 2,42的面积是_________3 从盛满a b 升,再用水加满;这样倒了n4 据2000年3月52001年国内生产总值达到95933~2005年)每年的国内_________亿元 满足条件 a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围;nn S ∞→S n =b 1+b 2+…+b n ;(3)设r =219 2-1,q =21,求数列{nn b b 212loglog +}的最大项和最小项的值6 某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下 首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金(1)设a k(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示a k(不必证明);(2)证明a k>a k+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为P n(b),对常数b,当n变化时,求lim∞→nP n(b) 7据有关资料,1995年我国工业废弃垃圾达到74×108吨,占地5624平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问(1)2001年回收废旧物资多少吨?(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至2001年可节约多少平方公里土地?8已知点的序列A n(x n,0),n∈N,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…,A n是线段A n-2A n-1的中点,…(1)写出x n与x n-1、x n-2之间关系式(n≥3);1∴dn∴2x2=3∴P1(2,2),P2(3,4)∴21),2,2(OPOP==(3,4)∴,5||,22,14862121===+=OPOPOPOP12121212cos sin1010||||O P O PP O P P O PO P O P∴===∴=12121211||||sin512210O P PS O P O P P O P∆∴==⨯⨯=答案 13解析第一次容器中有纯酒精a-b即a(1-ab)升,第二次有纯酒精a(1-ab)-baaba)1(-,即a(1-ab)2升,故第n次有纯酒精a(1-ab)n升答案a(1-ab)n4解析从2001年到2005年每年的国内生产总值构成以95933的等比数列,∴a5=95933(1+73%)4≈120000(亿元)答案1200005,因q>0,故0<q b1-11, (01)11lim0, (1)nnqqrSq→∞-⎧<<⎪=+⎨⎪≥⎩所以1(3)(2),(1)nnb r q-=+由有.2.2011log)1)(1(loglog)1(log])1[(log])1[(logloglog2222122212-+=-+++=++=-+nqnrqnrqrqrbbnnnnnn n b b C 212loglog +=记,从上式可知,当n -20 2>0,即n ≥21(n ∈N *)时,C n 随n 的增大而减小,故1<C n ≤C 21=1+8.0112.20211+=-=2 25①当n -20 2<0,即n ≤20(n ∈N *)时,C n 也随n 的增大而减小,故1>C n ≥C 20=1+2.0112.20201-=-=-4 ②综合①②两式知,对任意的自然数n 有C 20≤C n ≤C 21, 故{C n }的最大项C 21=2 25,最小项C 20=-46 解 (1)第1位职工的奖金a 1=nb ,第2位职工的奖金a 2=n 1(1-n 1)b , 112列{2.01%)201(-+∴从1996年到2000年共节约开采矿石20×99 3≈1986(万吨)(3)由于从1996年到2001年共减少工业废弃垃圾4×99.3=397.2(万吨), ∴从1996年到2001年共节约84104.7102.3974.562⨯⨯⨯≈3 平方公里8 解 (1)当n ≥3时,x n =221--+n n x x ;aa x x x x x x x a a x x x x x x x a a x x a 41)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-=由此推测a n =(-21)n -1a (n ∈N )证法一 因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n nn n n n n n n a x x x x x x x x x a (n ≥2)所以a n =(-21)n -1a证法二 用数学归纳法证明(ⅰ)当n =1时,a 1=x 2-x 1=a =(-21)0a ,公式成立;a更多试卷下载请访问:/。