中线的思考3
4.1认识三角形中线3
∴ BC-AC=3
又∵BC=8
∴ AC=5cm
3.在ΔABC中,CD是AB边上的中线,已知BC-AC=5cm, ΔDBC的周长为25cm,求ΔADC的周长. A 解: ∵Δ DBC的周长为25cm ∴ C△BCD =BC + BD + CD = 25 D ∵CD是AB边上中线 ∴AD = BD ∵ BC - AC = 5cm ∴ AC = BC - 5 则:C△ACD =AC + AD + CD =BC-5 + BD + CD =BC+BD+CD – 5 =25-5 =20(cm) 即ΔADC的周长为20cm. B C
知识1:三角形中线定义: 在三角形中,连接一个顶点与它对边 中点的线段,叫做这个三角形的中线。 几何语言: ∵ AE是BC边上的中线
B E
A
C
1 BE CE BC 2
BC 2BE 2CE
知识2:三角形中线:等分面积性A
1 h SΔABE= BE· h C 2 E B 1 SΔACE= CE· h 2 ∵ AE是BC边上的中线 1 SΔABE=SΔACE ∴ S SΔABC ΔABE=SΔACE= 2 注:三角形被一条中线分得的
则C△BCD=
技巧:擦掉相等的线段, 周长差等于两条不等边的差
谈谈收获?
.在三角形中,连接一个顶点与它对 边中点的线段,叫做这个三角形的 中线.
B
E
A BE=CE
C
中线把三角形等分成 面积相等的两部分
三角形的三条中线交于一点,交点在内部,叫三角形重心)
检测:
1、如图,D、E、F分别是边BC、AC、AB上的中点
现在你手上有一张画着一个三角形的薄 纸,你能想几种办法画出它的一条中线? 请在你准备的三个三角形中画出三条中 线,观察它们是否相交,有何特征?你 能描述出来吗?
直角三角形30度60度90度三边与中线的关系
直角三角形30度60度90度三边与中线的关系直角三角形30度60度90度三边与中线的关系1. 引言直角三角形是初中数学中常见的一种三角形,其中包含一个90度的直角。
在直角三角形中,若另外两个角分别为30度和60度,这种直角三角形又被称为"30-60-90三角形"。
在本文中,我们将探讨30度60度90度三边与中线的关系,深入解析三角形内部的规律和特点。
2. 理论解析让我们来回顾一下30-60-90三角形的性质。
在这种三角形中,边的长度有一定的比例关系:最短边的长度是最长边的一半,而中等长度的边则是最短边乘以√3。
这一关系可以用数学公式表示为:a:b:c=1:√3:2,其中a、b、c分别代表最短边、中等长度的边和最长边的长度。
接下来,我们将探讨30-60-90三角形中三边的中线。
在直角三角形中,中线是指从一个顶点到对边中点的线段。
假设我们有一个30-60-90三角形ABC,其中AB为最短边,BC为中等长度的边,而AC为最长边。
连接直角顶点A和对边BC的中点D,我们得到了三角形ABC的中线AD。
我们将通过数学推导和几何分析来探讨中线AD与三边的关系。
3. 中线与三边的关系我们来研究中线AD与最短边AB的关系。
根据直角三角形的性质,AD是直角三角形ABC的斜边AC的一半,即AD=AC/2。
由于AC=c 为最长边,而AB=a为最短边,我们可以得出结论:中线AD的长度等于最短边的一半,即AD=AB/2。
这个结论非常重要,也是30-60-90三角形中一条重要的性质。
接下来,我们来研究中线AD与中等长度的边BC的关系。
根据直角三角形的性质,BD为BC的一半,即BD=BC/2。
利用三角形的相似性质,我们可以得出结论:中线AD与中等长度的边BC的关系为AD=BD=BC/2。
这个结论揭示了30-60-90三角形中中线与中等长度边的关系,为我们深入理解三角形的特点提供了重要的依据。
我们再来研究中线AD与最长边AC的关系。
专题 中线四大模型在三角形中的应用(专项训练)(解析版)
专题02 中线四大模型在三角形中的应用(专项训练)1.如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为.【答案】1<AD<5【解答】解:延长AD到E,使DE=AD,连接BE,在△ACD与△EBD中,,∴△BDE≌△CDA(SAS),∴BE=AC,∵AB=6,AC=4,∴2<AE<10,∴1<AD<5.故答案为:1<AD<5.2.如图,在△ABC中,点D在AB边上,AD=BD,∠BDC=45°,点E在BC边上,AE 交CD于点F,CE=EF,若S△F AC=4,则线段AD的长为.【答案】2【解答】解:延长CD到点G,使DG=CD,连接AG,过点H作AH⊥CG,垂足为H,∵AD=BD,∠BDC=∠ADG,∴△BDC≌△ADG(SAS),∴∠G=∠BCD,∵EF=EC,∴∠BCD=∠EFC,∴∠G=∠EFC,∵∠EFC=∠AFG,∴∠G=∠AFG,∴AG=AF,∵AH⊥FG,∴HG=HF,∴S△AHG=S△AHF,∵S△ADG=S△BCD,S△BCD=S△ADC,∴S△ADG=S△ADC,∴S△AGH+S△ADH=S△ADF+S△AFC,∴S△AFH+S△ADH=S△ADF+S△AFC,∴S△ADH+S△ADF+S△ADH=S△ADF+S△AFC,∴2S△ADH=S△AFC,∵S△F AC=4,∴S△ADH=2,∵∠BDC=45°,∴∠BDC=∠ADH=45°,∴AH=DH,∴AH•DH=2,∴AH=2或AH=﹣2(舍去),∴AD=AH=2,故答案为:2.3.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD =∠CBE,则AE=.【答案】3【解答】解:过点B作BF∥AC,交AD的延长线于点F,∴∠CBF=∠C,∠DAC=∠F,∵∠ABC=90°,AB=BC=4,∴AC=AB=4,∵D是BC中点,∴BD=CD BC=2,∴△ADC≌△FDB(AAS),∴AC=BF=4,∵∠CAD=∠CBE,∴∠CBE=∠F,∴△BCE∽△FBD,∴=,∴=,∴CE=,∴AE=AC﹣CE=3,故答案为:3.4.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB =8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【解答】(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.5.某校数学课外兴趣小组活动时,老师提出如下问题:【探究】如图1,△ABC中,若AB=8,AC=6,点D是BC的中点,试探究BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB证明:∵延长AD到点E,使DE=AD在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)∴△ADC≌△EDB()(2)探究得出AD的取值范围是;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证:∠BFD=∠CAD.【解答】(1)证明:∵延长AD到点E,使DE=AD,在△ADC和△EDB中,AD=ED,∠ADC=∠EDB(对顶角相等),CD=BD(中点定义),∴△ADC≌△EDB(SAS),故答案为:对顶角相等;SAS;(2)解:∵△ADC≌△EDB,∴BE=AC=6,∴AB﹣BE<AE<AB+BE,即1<AD<7,故答案为:1<AD<7;(3)证明:延长AD到H,使DH=AD,由(1)得,△ADC≌△HDB,∴BH=AC,∠BHD=∠CAD,∵AC=BF,∴BH=BF,∴∠BFD=∠BHD,∴∠BFD=∠CAD.6.(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【解答】(1)①证明:∵AD是△ABC的中线,∴BD=CD,在△ADB和△ECD中,,∴△ABD≌△ECD(SAS);②解:由①知,△ABD≌△ECD,∴CE=AB,∵AB=5,∴CE=5,∵ED=AD,AD=x,∴AE=2AD=2x,在△ACE中,AC=3,根据三角形的三边关系得,5﹣3<2x<5+3,∴1<x<4,故答案为:1<x<4;(2)证明:如图2,延长FD,截取DH=DF,连接BH,EH,∵DH=DF,DE⊥DF,即∠EDF=∠EDH=90°,DE=DE,∴△DEF≌△DEH(SAS),∴EH=EF,∵AD是中线,∴BD=CD,∵DH=DF,∠BDH=∠CDF,∴△BDH≌△CDF(SAS),∴CF=BH,∵BE+BH>EH,∴BE+CF>EF.7.【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:(1)【方法应用】如图①,在△ABC中,AB=6,AC=4,则BC边上的中线AD长度的取值范围是.(2)【猜想证明】如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE 是∠BAD的平分线,试猜想线段AB、AD、DC之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知AB∥CF,点E是BC的中点,点D在线段AE上,∠EDF=∠BAE,若AB=5,CF=2,直接写出线段DF的长.【解答】解:(1)延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5.(2)结论:AD=AB+DC.理由:如图②中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠F AD,∴∠F AD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC(AAS),∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF,∵AB=5,CF=2,∴DF=AB﹣CF=3.8.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是.【解答】方法一:解:连接DB,延长DA到F,使AD=AF.连接FC,∵AD=5,∴AF=5,又∵点E是CD的中点,∴EA为△DFC的中位线,则AE=CF,在Rt△ABD中,AD2+AB2=DB2,∴BD==13,∵AB⊥BC,AB⊥AD,∴AD∥BC,又∵DF=BC,∴四边形DBCF是平行四边形,∴FC=DB=13,∴AE=.故答案为:.方法二:连接BE并延长,延长DA交BE延长线于点F,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠D=∠C,在△DEF和△CEB中,,∴△DEF≌△CEB(ASA),∴DF=BC=10,BE=FE,∵DA=5,∴AF=5,在Rt△ABF中,AF2+AB2=FB2,∴BF==13,∴AE=BF=.故答案为:.9.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长.【解答】解:如图,延长AE交BC于F.∵AB⊥BC,AB⊥AD,∴AD∥BC∴∠D=∠C,∠DAE=∠CFE,又∵点E是CD的中点,∴DE=CE.∵在△AED与△FEC中,,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC.∵AD=5,BC=10.∴BF=5在Rt△ABF中,,∴AE=AF=6.5.10.如图,点D,E,F分别为△ABC三边的中点.若△ABC的周长为10,则△DEF的周长为.【答案】5【解答】解:∵D、E、F分别是AB、AC、BC的中点,∴FD、FE、DE为△ABC中位线,∴DF=AC,FE=AB,DE=BC;∴DF+FE+DE=AC+AB+BC=(AB+AC+CB)=×10=5,故答案为:5.33.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.11.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,M、N分别是AB、AC的中点,延长BC至点D,使CD=BC,连结DM、DN、MN,求DN的长.(1)求DN的长;(2)直接写出△BDM的面积为.【考点】三角形中位线定理;勾股定理.【专题】等腰三角形与直角三角形;运算能力.【解答】解:(1)连接CM,在Rt△ACB中,∠ACB=90°,M是AB的中点,∴CM=AB=5,∵M,N分别是AB、AC的中点,BC=6,∴MN∥BC,MN=BC=3,∵CD=BC,∴CD=BC=3,∴CD=MN,∵MN∥BC,∴四边形NDCM为平行四边形,∴DN=CM=5;(2)由(1)知,CD=3,则BD=CD+BC=3+6=9.在直角△ABC中,∠ACB=90°,AB=10,BC=6,则AC===8.∵N是AC的中点,∴NC=AC=4.∴S△BDM=BD•CN=×9×4=18.故答案为:18.12.【教材呈现】下面是华师版九年级上册数学教材第78页的部分内容.例2:如图,在△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G,求证:.证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.【结论应用】如图②,在△ABC中,D、F分别是边BC、AB的中点,AD、CF相交于点G,GE∥AC交BC于点E,GH∥AB交BC于点H,则△EGH与△ABC的面积的比值为.【解答】解:【教材呈现】连接DE,如图①,∵D、E分别为BC、BA的中点,∴DE为△ABC的中位线,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴,∴,即;【结论应用】∵D、F分别是边BC、AB的中点,∴,BD=CD,∵GE∥AC,∴△DEG∽△DCA,∴,∴,同理可得,,∴.故答案为:13.直角三角形两边的长为6和8,则该直角三角形斜边上的中线长为.【解答】解:①当6和8均为直角边时,斜边=10,则斜边上的中线=5;②当6为直角边,8为斜边时,则斜边上的中线=4.故斜边上的中线长为:4或5.故答案为:4或5.14.已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=AB=8,故答案为:8.15.如果一个直角三角形的两条直角边长分别为5cm、12cm,那么这个直角三角形斜边上的中线等于cm.【解答】解:如图,在△ABC中,∠C=90°,AC=12cm,BC=5cm,CD为斜边AB上的中线,则根据勾股定理知,AB==13cm,CD=AB=cm;故答案是:.。
七年级数学下册《三角形的三条重要线段》教案、教学设计
3.及时反馈原则:要求学生在规定时间内提交作业,教师及时给予评价和指导,帮助学生发现问题、提高自己。
-指出:“在解决几何问题时,我们要学会运用所学的性质,进行严密的逻辑推理。”
3.鼓励学生对所学知识进行自我反思,评价自己的学习效果。
-提问:“你认为自己在今天的课堂上有哪些收获?还有哪些地方需要进一步学习和提高?”
五、作业布置
为了巩固学生对三角形三条重要线段的理解和应用,以及提高他们的问题解决能力,我设计了以下作业:
3.引导学生通过观察、思考、总结,形成解决问题的策略和方法。
-教师鼓励学生在学习过程中积极思考,通过问题驱动的方式,引导学生总结三角形三条重要线段的相关性质。
-学生在教师的引导下,学会运用几何知识进行逻辑推理,形成解题的策略。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的探究欲望。
-通过设置具有挑战性的问题,教师激发学生的学习兴趣,鼓励学生主动探索三角形三条重要线段的秘密。
-学习笔记要体现学生的自主学习和思考过程,有助于他们梳理知识结构。
5.互动交流作业:鼓励学生与家长或同学分享今天学到的三角形知识,讨论解决实际问题的策略。
-通过互动交流,培养学生的沟通能力和团队合作精神。
作业布置时,注意以下原则:
1.分层次原则:针对不同学生的学习水平,提供不同难度的作业,使每个学生都能得到适当的挑战和锻炼。
-通过例题,让学生看到中线如何将三角形分成面积相等的两部分,角平分线如何将角平分,高线如何与底边垂直。
3.解释这些性质在解决几何问题中的应用,并展示解题步骤。
-以具体的几何题目为例,示范如何运用中线、角平分线、高线的性质来解决问题。
三角形的知识点三角形三条中线的交点
三角形的知识点-三角形三条中线的交点三角形三条高线交于一点的证明?三角形三条高线交于一点的证明?证法一:运用同一法证三条高两两相交的交点是同一点。
已知:△ABC的两条高BE、CF相交于点O,第三条高AD交高BD于点Q,交高CF于点P。
求证:P、Q、O三点重合证明:如图,∵BE⊥AC,CF⊥AB∴∠AEB = ∠AFC = 90°又∵∠BAE = ∠CAF ∴△ABE ∽△ACF ∴ABAE=,ACAFFAEB即AB·AF = AC·AE 又∵AD⊥BC∴△AEQ ∽△ADC,△AFP ∽△ADB ∴AFAPAEAD==,ADABADAQDC即AC·AE = AD·AQ,AB·AF = AD·AP∵AB·AF = AC·AE,AC·AE = AD·AQ,AB·AF = AD·AP ∴AD·AQ = AD·AP ∴AQ = AP∵点Q、P都在线段AD上∴点Q、P重合∴AD与BE、AD与CF交于同一点∵两条不平行的直线只有一个交点∴BE与CF也交于此点∴点Q、P、O重合。
证法二:连结一顶点和两高交点的线垂直于第三边,用四点共圆性质。
已知:△ABC的两条高AD、BE相交于点O,第三条高CF交高AB于点F,连结CO交AB于点F。
求证:CF⊥AB。
证明:∵AD⊥BC于E,BE⊥AC于E∴A、B、D、E四点共圆∴∠1=∠ABE 同理∠2=∠1DCA∴∠2=∠ABE∵∠ABE+∠BAC=90°,∴∠2+∠BAC=90°即CF⊥AB。
注:证法一和证法二是证明共点线的常用方法。
证法三:证两条高的交点在第三条高线上,建立直角坐标系运用代数方法证明。
证明:如图6,以直线BC为x轴,高AD为y轴,建立直角坐标系,设A(0 ,a) , B(b , 0) , C(c , 0),由两条直线垂直的条件kBE1kACc1b,kCF akABa则三条高的直线方程分别为:AD:x0cBE:y(x b)abCF:y(x c)aca(1)(2) (3)ba解和得(x b)(x c),(b c)x0b c(b0,c0)∴x0这说明BE和CF得交点在AD上,所以三角形的三条高相交于一点。
2024年三角形的中位线说课稿
2024年三角形的中位线说课稿2024年三角形的中位线说课稿1(约1568字)一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线。
中线:顶点与对边中点的连线.(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系。
条件(题设):连接两边中点得到中位线。
结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论)。
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、课堂引入1.平行四边形的性质。
平行四边形的判定。
它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等。
11.1.2三角形的高、中线与角平分线教学设计2024-2025学年人教版数学八年级上册
讲解与应用:
1. 利用多媒体课件和实物模型,详细讲解三角形的高、中线与角平分线的性质,并提供相关的例题。
2. 设计一些具有挑战性的练习题,让学生独立解答,检验他们对三角形高、中线与角平分线性质的理解和应用能力。
解决问题:
1. 提供一个实际问题,如“在一个已知三角形的底边上,如何找到对应的高?”
例题5:已知一个三角形的三个角分别为45°、45°和90°,求这个三角形的面积。
解答:这是一个等腰直角三角形,两条腰的长度相等,且等于斜边的长度。设腰的长度为x,则斜边的长度为x√2。根据三角形的面积公式,面积等于腰的长度的平方除以2,所以面积为x² / 2。由于这是一个直角三角形,所以x² = (x√2)²,解得x = 2cm。因此,面积为2cm²。
其次,在进行小组讨论时,我发现有些学生比较内向,不太愿意发言。这导致了小组讨论的不够充分,一些学生的想法没有得到充分的表达和交流。为了改变这种情况,我计划在未来的教学中采取更多的互动式教学方法,鼓励每个学生发表自己的观点,并积极参与讨论。
此外,我还发现学生在解答例题时,对于一些步骤的掌握不够熟练,容易出错。这可能是由于他们对基础知识的理解不够深入。因此,我计划在未来的教学中加强对基础知识的讲解和巩固,让学生在解答例题时能够更加得心应手。
在教学过程中,我还注意到一些学生对于课堂内容的吸收能力较强,而另一些学生则相对较慢。为了满足不同学生的学习需求,我计划在未来的教学中采取差异化教学策略,为不同层次的学生提供不同难度的学习材料和练习题。
最后,我还计划加强对学生的个别辅导,特别是对于那些在学习上遇到困难的学生。我希望通过一对一的辅导,帮助他们克服学习障碍,提高学习效果。
三角形三条中线交于一点证明
三角形三条中线交于一点证明大家好!今天我们要聊聊一个几何小秘密——三角形的三条中线交于一点。
这事儿听起来可能有点抽象,但别担心,我们一起来把它搞清楚!1. 什么是三条中线?首先,我们得明白什么是“三条中线”。
别急,听我慢慢说。
1.1 中线是什么?在三角形里,每一条中线都是从一个顶点出发,连到对边的中点上。
也就是说,中线的作用就是把对边分成两个长度相等的部分。
比如说,你有一个三角形ABC,那么从A点出发的中线就会连到BC边的中点。
这样,这条中线就把BC边分成了两个一样长的小段。
1.2 那三条中线呢?三角形总共有三条中线,分别从三个顶点出发,每条中线都在其对边的中点上落脚。
要注意哦,这三条中线在三角形内部的某个地方交汇,这个地方有个特别的名字——重心。
重心就是这三条中线交于一点的地方。
2. 为什么这三条中线会交于一点?好,接下来我们进入重点了。
为什么这三条中线会在一个点上相遇呢?这背后有个有趣的数学原理,我们一步步来解读。
2.1 代数方法首先,我们可以用代数的方法来证明。
想象一下,在平面坐标系里,我们把三角形的三个顶点分别设置成坐标 (x1, y1)、(x2, y2) 和 (x3, y3)。
然后,我们可以计算出中线的方程,并找到它们的交点。
最后,你会发现,这三条中线的交点就是那三条中线都经过的那个点——重心。
这种方法虽然计算起来有点麻烦,但理论上确实是可行的。
2.2 几何证明但如果你觉得代数方法有点复杂,我们可以换个简单的方法,那就是几何证明。
这种方法通常更直观,让我们用一些基本的几何知识来证明这三条中线必定会交汇于一点。
首先,我们可以利用三角形的相似性。
假设我们在三角形内画两条中线,这样它们就会把三角形分成两个较小的三角形。
我们可以证明这两个小三角形是相似的,从而推出它们的相似比是1:1,这样就可以推断第三条中线也必定会经过这两个小三角形的交点。
这样,我们就能得出三条中线必然在一个点相交的结论了。
2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】
专题31三角形与新定义综合问题【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.(2)顶角为30°的等腰三角形是标准三角形.【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=,b=;如图2,当∠PAB =30°,c=2时,a2+b2=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)3.(2022春•石嘴山校级期末)[问题情境]我们知道:在平面直角坐标系中有不重合的两点A(x1,y1)和点B(x2,y2),若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|.[拓展]现在,若规定:平面直角坐标系中任意不重合的两点M(x1,y1)、N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如:图中,点M(﹣1,1)与点N(1,﹣2).之间的折线距离d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5,[应用]解决下列问题:(1)已知点E(3,2),点F(1.﹣2),求d(E,F)的值;(2)已知点E(3,1),H(﹣1,n),若d(E,H)=6,求n的值;(3)已知点P(3,4),点Q在y轴上,O为坐标系原点,且△OPQ的面积是4.5,求d(P,Q)的值.4.(2022春•镇江期末)定义:在一个三角形中,如果有一个角是另一个角的2倍,我们称这两个角互为“开心角”,这个三角形叫做“开心三角形”.例如:在△ABC中,∠A=70°,∠B=35°,则∠A与∠B互为“开心角”,△ABC为“开心三角形”.【理解】(1)若△ABC为开心三角形,∠A=144°,则这个三角形中最小的内角为°;(2)若△ABC为开心三角形,∠A=70°,则这个三角形中最小的内角为°;(3)已知∠A是开心△ABC中最小的内角,并且是其中的一个开心角,试确定∠A的取值范围,并说明理由;【应用】如图,AD平分△ABC的内角∠BAC,交BC于点E,CD平分△ABC的外角∠BCF,延长BA和DC交于点P,已知∠P=30°,若∠BAE是开心△ABE中的一个开心角,设∠BAE=∠α,求∠α的度数.5.(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.6.(2022春•亭湖区校级月考)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的所有“好点”点D;(2)△ABC中,BC=7,,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连结CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.7.(2021秋•如皋市期末)【了解概念】定义:如果一个三角形一边上的中线等于这个三角形其中一边的一半,则称这个三角形为半线三角形,这条中线叫这条边的半线.【理解运用】(1)如图1,在△ABC中,AB=AC,∠BAC=120°,试判断△ABC是否为半线三角形,并说明理由;【拓展提升】(2)如图2,在△ABC中,AB=AC,D为BC的中点,M为△ABC外一点,连接MB,MC,若△ABC和△MBC均为半线三角形,且AD和MD分别为这两个三角形BC边的半线,求∠AMC的度数;(3)在(2)的条件下,若MD=,AM=1,直接写出BM的长.8.(2021秋•顺义区期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.9.(2021秋•丹阳市期末)梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有,,∴=1.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC三边CB,AB,AC的延长线分别交直线l于X,Y,Z三点,证明:=1.请用上述定理的证明方法或结论解决以下问题:(2)如图(4),等边△ABC的边长为2,点D为BC的中点,点F在AB上,且BF=2AF,CF与AD交于点E,则AE的长为.(3)如图(5),△ABC的面积为2,F为AB中点,延长BC至D,使CD=BC,连接FD 交AC于E,则四边形BCEF的面积为.10.(2021秋•洪江市期末)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=44°,CD是△ABC的完美分割线,且AD=CD,求∠ACB 的度数;(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC 的完美分割线;(3)如图3,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.11.(2021秋•石景山区期末)在Rt△ACB中,∠ACB=90°,CA=CB=6,点P是线段CB 上的一个动点(不与点B,C重合),过点P作直线l⊥CB交AB于点Q.给出如下定义:若在AC边上存在一点M,使得点M关于直线l的对称点N恰好在△ACB的边上,则称点M是△ACB的关于直线l的“反称点”.例如,图1中的点M是△ACB的关于直线l的“反称点”.(1)如图2,若CP=1,点M1,M2,M3,M4在AC边上且AM1=1,AM2=2,AM3=4,AM4=6.在点M1,M2,M3,M4中,是△ACB的关于直线l的“反称点”为;(2)若点M是△ACB的关于直线l的“反称点”,恰好使得△ACN是等腰三角形,求AM 的长;(3)存在直线l及点M,使得点M是△ACB的关于直线l的“反称点”,直接写出线段CP 的取值范围.12.(2021秋•鄞州区期末)【问题提出】如图1,△ABC中,线段DE的端点D,E分别在边AB和AC上,若位于DE上方的两条线段AD和AE之积等于DE下方的两条线段BD和CE之积,即AD×AE=BD×CE,则称DE 是△ABC的“友好分割”线段.(1)如图1,若DE是△ABC的“友好分割”线段,AD=2CE,AB=8,求AC的长;【发现证明】(2)如图2,△ABC中,点F在BC边上,FD∥AC交AB于D,FE∥AB交AC于E,连结DE,求证:DE是△ABC的“友好分割”线段;【综合运用】(3)如图3,DE是△ABC的“友好分割”线段,连结DE并延长交BC的延长线于F,过点A画AG∥DE交△ADE的外接圆于点G,连结GE,设=x,=y.①求y关于x的函数表达式;②连结BG,CG,当y=时,求的值.13.(2021秋•鼓楼区校级期末)定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠1=∠2,则称MH和NH关于直线l满足“光学性质”;定义2:如图2,在△ABC中,△PQR的三个顶点P、Q、R分别在BC,AC、AB上,若RP 和QP关于BC满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB 满足“光学性质”,则称△PQR为△ABC的光线三角形.阅读以上定义,并探究问题:在△ABC中,∠A=30°,AB=AC,△DEF三个顶点D、E、F分别在BC、AC,AB上.(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;(2)如图4,在△ABC中,作CF⊥AB于F,以AB为直径的圆分别交AC,BC于点E,D.①证明:△DEF为△ABC的光线三角形;②证明:△ABC的光线三角形是唯一的.14.(2021秋•丰台区期末)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P 为线段AB的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是;线段AB的“近轴点”是.(2)如图2,点A的坐标为(3,0),点B在y轴正半轴上,∠OAB=30°.若P为线段AB的“远轴点”,请直接写出点P的横坐标t的取值范围.15.(2022秋•长沙期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用:(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC 的等角分割线.动手操作:(3)在△ABC中,若∠A=50°,CD是△ABC的等角分割线,请求出所有可能的∠ACB 的度数.16.(2022春•华州区期末)阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?(填“是”或“不是”)②若某三角形的三边长分别为1、、2,则该三角形(填“是”或“不是”)奇异三角形.(2)探究:在Rt△ABC,两边长分别是a、c,且a2=50,c2=100,则这个三角形是否是奇异三角形?请说明理由.17.(2022•任城区三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)sad90°=.(3)如图②,已知sin A=,其中∠A为锐角,试求sadA的值.18.(2021•柯城区模拟)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“等底高三角形”,这条边叫做等底线,这条边上的高叫做等高线.如图:在△ABC,CD ⊥AB于点D,且AB=CD,则△ABC为等底高三角形,AB叫等底线,CD叫等高线.【概念感知】判断:对的打“√”,错的打“×”.(1)等边三角形不可能是等底高三角形.(2)等底高三角形不可能是钝角三角形.【概念理解】若一个等腰三角形为等底高三角形,则此三角形的三边长之比为.【概念应用】(1)若△ABC为等底高三角形,等底线长为2,求三角形的周长的最小值.(2)若一个等底高三角形的其中一边是另一边的倍,求最小角的正弦值.19.(2021•宁波模拟)在三角形的三边中,若其中两条边的积恰好等于第三边的平方,我们把这样的三角形叫做有趣三角形,这两条边的商叫正度,记为k(0<k≤1).(1)求证:正度为1的有趣三角形必是等边三角形.(2)如图①,四边形ABCD中,AD∥BC,BD平分∠ABC,∠ACD=∠ABC,求证:△ABC 是有趣三角形.(3)如图②,菱形ABCD中,点E,F是对角线BD的三等分点,DE=DC.延长BD到P,使DP=BE.求证:△BCE,△FCP,△BCP是具有相同正度的有趣三角形.20.(2021•临海市一模)在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为;在底边长为2的等腰三角形中,底角的勾股差为;(2)性质探究:如图1,CD是△ABC的中线,AC=b,BC=a,AB=2c,CD=d,记△ACD 中∠ADC的勾股差为m,△BCD中∠BDC的勾股差为n;①求m,n的值(用含a,b,c,d的代数式表示);②试说明m与n互为相反数;(3)性质应用:如图2,在四边形ABCD中,点E与F分别是AB与BC的中点,连接BD,DE,DF,若=,且CD⊥BD,CD=AD,求的值.【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=60°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【分析】(1)根据定义,要求can30°的值,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,根据∠B=30°,可得:BD=AB,再利用等腰三角形的三线合一性质,求出BC即可解答,根据定义,canB=1,可得底边与腰相等,所以这个等腰三角形是等边三角形,从而得∠B =60°;(2)根据定义,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,canB=,所以设BC=8x,AB=5x,然后利用勾股定理表示出三角形的高,再利用S△ABC =48,列出关于x的方程即可解答.【解答】解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,=48,∵S△ABC∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.√(2)顶角为30°的等腰三角形是标准三角形.×【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为1:1:或::2.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【分析】【概念感知】(1)根据等腰直角三角形的两条直角边互相垂直且相等,即可判断;(2)作出图形,分别对底边上的高和腰上的高进行讨论,即可求解;【概念理解】当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,设BE=x,则AE=2x,求出AB=x,则AB:AC:BC=::2;【概念应用】(1)过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,求出A'B即可;(2)分两种情况讨论:①当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,由等积法求出BE=a,用勾股定理分别求出AD=2a,BD=a,BC=a,则可求sin∠BCE=;②当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,由勾股定理分别求出BD=2a,AD=3a,AC=a,再由等积法求出BE=a,即可求sin∠BCE=.【解答】解:【概念感知】(1)如图1:等腰直角三角形ABC中,AB⊥AC,∵AB=AC,∴等腰直角三角形是标准三角形,故答案为:√;(2)如图2,在等腰三角形ABC中,∠BAC=30°,AB=AC,CD⊥AB,∵∠A=30°,∴CD=AC,∵CA=AB,∴CD=AB,∴△ABC不是标准三角形;如图3,在等腰三角形ABC中,∠BAC=30°,AB=AC,AE⊥BC,此时AE>BC,∴△ABC不是标准三角形;故答案为:×;【概念理解】如图1,当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;如图4,当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,∴BE=EC=BC=AE,设BE=x,则AE=2x,在Rt△ABE中,AB=x,∴AB:AC:BC=::2;故答案为:1:1:或::2;【概念应用】(1)如图5,过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,∵AB=CD=1,∴AA'=2,在Rt△ABA'中,A'B=,∴AC+BC的最小值为;(2)在△ABC中,AB=CD,AB⊥CD,∴AC>CD,BC>CD,∴AC>AB,BC>AB,∴△ABC的最小角为∠ACB,①如图6,当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△ACD中,AD=2a,∴BD=AD﹣AB=a,在Rt△BCD中,BC=a,在Rt△BCE中,sin∠BCE=;②如图7,当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,在Rt△BCD中,BD=2a,∴AD=3a,在Rt△ACD中,AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△BCE中,sin∠BCE=;综上所述:最小角的正弦值为或.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=4,b=4;如图2,当∠PAB =30°,c=2时,a2+b2=20;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【分析】(1)根据等腰直角三角形的性质分别求出PA、PB,根据三角形中位线定理得到MN∥AB,根据相似三角形的性质分别求出PM、PN,根据勾股定理计算即可;(2)连接MN,设PN=x,PM=y,利用勾股定理分别用x、y表示出a、b、c,得到答案;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,证明△ABF为“中垂三角形”,根据(2)中结论计算即可.【解答】解:(1)在Rt△APB中,∠PAB=45°,c=,则PA=PB=c=4,∵M、N分别为CB、CA的中点,∴MN=AB=2,MN∥AB,∴△APB∽△MPN,∴===,∴PM=PN=2,∴BM==2,∴a=2BM=4,同理:b=2AN=4,如图2,连接MN,在Rt△APB中,∠PAB=30°,c=2,∴PB=c=1,∴PA==,∴PN=,PM=,∴BM==,AN==,∴a=,b=,∴a2+b2=20,故答案为:4;4;20;(2)a2+b2=5c2,理由如下:如图3,连接MN,设PN=x,PM=y,则PB=2PN=2x,PA=2PM=2y,∴BM==,AN==,∴a=2,b=2,∴a2+b2=20(x2+y2),∵c2=PA2+PB2=4(x2+y2),∴a2+b2=5c2;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△AHP∽△BHF,∴==1,∴AP=BF,∵AD=3AE,BC=3BF,AD=3,∴AE=BF=,∴PE=FC,∴四边形PFCE为平行四边形,∵BE⊥CE,∴BG⊥FH,∵AE∥BF,AE=BF,∴AG=GF,∴△ABF为“中垂三角形”,∴AB2+AF2=5BF2,即32+AF2=5×()2,解得:AF=4.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【分析】(1)先利用“SAS“证明△BAD≌△ABE,然后根据△ABC是中垂三角形即可证明;(2)先判断出AC=2AD,BC=2BE,再利用勾股定理,即可得出结论;(3)①利用二次函数先求出点B、点A和点C的坐标,然后根据点A和点C的坐标确定E 是AC的中点,最后根据中垂三角形的定义即可证明;②先由点A(4,0),B(0,﹣2a),C(﹣4,2a)的坐标得到k AB=a,k AC=﹣a,k BC =﹣a,然后分情况讨论即可求解;或结合射影定理分情况讨论进行求解即可.【解答】(1)证明:AC=BC,BD,AE分别是AC,BC边上的中线,∴AD=BE,∠BAD=∠ABE,∴△BAD≌△ABE(SAS),∴∠ABD=∠BAE,∴OA=OB.∵△ABC是中垂三角形,且AC=BC,∴∠AOB=90°,∴△AOB是等腰直角三角形.(2)L=6AB2.证明:如图,连接DE.∵AE,BD分别是边BC,AC上的中线,∴AC=2AD,BC=2BE,DE=AB,∴AC2=4AD2,BC2=4BE2,DE2=AB2.在Rt△AOD中,AD2=OA2+OD2,在Rt△BOE中,BE2=OB2+OE2,∴AC2+BC2=4(AD2+BE2)=4(OA2+OD2+OB2+OE2)=4(AB2+DE2)=4(AB2+AB2)=5AB2,∴L=AB2+AC2+BC2=AB2+5AB2=6AB2.(3)①证明:在y=中,当x=0时,y=﹣2a,∴点B(0,﹣2a).y=0时,=0,整理得3x2﹣4x﹣32=0,解得x1=﹣(舍),x2=4,∴点A(4,0).∵BD=CD,y C=﹣y B=2a,将y=2a代人y=,解得x1=(舍),x2=﹣4,∴C(﹣4,2a).由点A(4,0),C(﹣4,2a)可知,E是AC的中点.又∵BD=CD,∴AD,BE都是△ABC的中线.又∵∠AOB=90°,∴AD⊥BE,∴△ABC是中垂三角形.②解法一:由点A(4,0),B(0,﹣2a),C(﹣4,2a)可得k AB=a,k AC=﹣a,k BC =﹣a,∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,k AB•k BC=﹣1,解得a=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,k AB•k CA=﹣1,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.解法二:由点A(4,0),B(0,﹣2a),C(﹣4,2a),∵点D是BC的中点,点E是AC的中点,∴点D(﹣2,0),E(0,a).∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,在△ABD中,由射影定理得OB2=OA•OD,∴4a2=8,解得α=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,在△ABE中,由射影定理得OA2=OB•OE,∴16=2a2,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC【分析】(1)过点A作AD⊥BC于点D,根据∠B=30°,可得出BD=AB,结合等腰三角形的性质可得出BC=AB,继而得出canB;=24,(2)过点A作AE⊥BC于点E,根据canB=,设BC=8x,AB=5x,再由S△ABC可得出x的值,继而求出周长.【解答】解:(1)过点A作AD⊥BC于点D,∵∠B=30°,∴cos∠B==,∴BD=AB,∵△ABC是等腰三角形,∴BC=2BD=AB,故can30°==;(2)过点A作AE⊥BC于点E,∵canB=,则可设BC=8x,AB=5x,∴AE==3x,=24,∵S△ABC∴BC×AE=12x2=24,解得:x=,故AB=AC=5,BC=8,从而可得△ABC的周长为18.一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有②③(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.【分析】(1)利用“倍角三角形”的定义依次判断可求解;(2)①由折叠的性质和等腰三角形的性质可求∠BAE=2∠ADB,由等腰三角形的性质可得∠BDE=∠E,可得结论;②分两种情况讨论,由三角形内角和定理和“倍角三角形”的定义可求解.【解答】(1)解:若顶角是30°的等腰三角形,∴两个底角分别为75°,75°,∴顶角是30°的等腰三角形不是“倍角三角形”,若等腰直角三角形,∴三个角分别为45°,45°,90°,∵90°=2×45°,∴等腰直角三角形是“倍角三角形”,若有一个是30°的直角三角形,∴另两个角分别为60°,90°,∵60°=2×30°,∴有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:∵AB=AC,∴∠ABC=∠ACB,∵将△ABC沿边AB所在的直线翻折180°得到△ABD,∴∠ABC=∠ABD,∠ACB=∠ADB,BC=BD,∴∠BAE=2∠ADB,∵BE=BC,∴BD=BE,∴∠E=∠ADB,∴∠BAE=2∠E,∴△ABE是“倍角三角形”;②解:由①可得∠BAE=2∠BDA=2∠C=60°,如图,若△ABP是等腰三角形,则△BPE是“倍角三角形”,∴△ABP是等边三角形,∴∠APB=60°,∴∠BPE=120°,∵△BPE是“倍角三角形”,∴∠BEP=2∠EBP或∠PBE=2∠BEP,∴∠BEP=20°或40°;若△BPE是等腰三角形,则△ABP是“倍角三角形”,∴∠ABP=∠BAP=30°或∠APB=∠BAE=30°或∠ABP=2∠APB或∠APB=2∠ABP,∴∠APB=90°或30°或40°或80°,∴∠BPE=90°或150°或140°或100°,∵△BPE是等腰三角形,∴∠BEP=45°或15°或20°或40°,综上所述:∠BPE的度数为45°或15°或20°或40°.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)【分析】(1)分BD是邻AB的三分线和BD是邻BC的三分线两种情况解答即可;(2)由∠BPC=140°,得∠PBC+∠PCB=40°,故∠ABC+∠ACB=40°,可得∠ABC+∠ACB=120°,从而∠A=60°;(3)分四种情况分别解答即可.【解答】解:(1)当BD是“邻AB三分线”时,∠ABD=∠ABC=15°,则∠BDC=∠ABD+∠A=15°+80°=95°,当BD′是“邻BC三分线”时,∠ABD′=∠ABC=30°,则∠BD′C=∠ABD′+∠A=30°+80°=110°,综上所述,∠BDC的度数为95°或110°;(2)∵∠BPC=140°,∴∠PBC+∠PCB=40°,∵BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=40°,∴∠ABC+∠ACB=120°,∴∠A=60°;(3)如图:。
七年级下册冀教版数学【练习】微探究小专题7 三角形的角平分线、中线和高的常见模型
6
7
微探究小专题7 三角形的角平分线、中线和高的常见模型 问题探究思考
专题进阶小练
7.如图1,在△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的平分
线交于点D.
(1)若∠ABC=70°,∠ACB=40°,求∠D的度数;
解:∵∠ACE=∠A+∠ABC,
∴∠ACD+∠DCE=∠A+∠ABD+∠DBC.
3
3
1
1
∠ACB= (180°-∠A).
3
3
2
2
2
∴∠BO2C=180°-(∠O2BC+∠O2CB)=180°- (180°-∠A)=60°+ ∠A=60°+ ×
3
3
3
1
60°=100°,∠BO1C=180°-(∠O1BC+∠O1CB)=180°- (180°-∠A)=120°+
3
1
1
∠A=120°+ ×60°=140°.
是( A )
A.180°-2α
1
B.90°+ α
2
1
C.90°- α
2
D.180°-α
1
2
变式
3
变式
4
变式
微探究小专题7 三角形的角平分线、中线和高的常见模型 问题探究思考
专题进阶小练
专题进阶小练
5.如图,BP是∠ABC的平分线,CP是△ACB的外角∠ACM的平分线,若
∠ABP=20°,∠ACP=50°,则∠A= 60° ,∠P= 30° .
2
3 变式 4 变式
变式
2
1
微探究小专题7 三角形的角平分线、中线和高的常见模型 问题探究思考
解三角形中的“三线”问题
解三角形中的“三线”问题在解三角形的过程中,我们常常会遇到“三线”问题,即中线、角平分线和高线。
这些线段在三角形中具有特殊的意义和作用,了解它们的性质和特点是解决三角形问题的关键。
一、中线中线是指连接三角形的一个顶点和它所对的边的中点的线段。
中线的性质主要有:1、三角形中线的三条中线线段相等,且相互平行。
2、三角形中线的交点称为三角形的重心,重心分每条中线线段为两段,且这两段长度相等。
3、三角形三边中线的长度分别等于对应边长的一半。
在解三角形时,可以利用中线的性质进行证明和计算。
例如,可以利用中线的平行性质证明某个线段平行于三角形的某一边;利用中线的长度性质解决一些等量关系的问题。
二、角平分线角平分线是指将三角形的两个相等的角平分的线段。
角平分线的性质主要有:1、三角形的一个角平分线与这个角的对边相交,连接这个角的顶点和交点的线段称为三角形的角平分线。
2、三角形任意两角平分线的夹角为90度,这个夹角的平分线称为三角形的内切线。
3、角平分线上的点到这个角的两边的距离相等。
4、三角形三条角平分线交于一点,这个交点称为三角形的内心,内心到三角形的三边的距离相等。
在解三角形时,可以利用角平分线的性质进行证明和计算。
例如,可以利用角平分线的性质证明某个线段平行于三角形的某一边;利用角平分线的长度性质解决一些等量关系的问题。
三、高线高线是指从三角形的顶点向底边垂下的线段。
高线的性质主要有:1、三角形的高线所在的直线是三角形的对称轴。
2、三角形的高线与对应边的夹角为90度。
3、三角形任意两高线的夹角为钝角。
4、三角形三条高线交于一点,这个交点称为三角形的垂心,垂心到三角形的三边的距离相等。
在解三角形时,可以利用高线的性质进行证明和计算。
例如,可以利用高线的对称性质证明某个图形是轴对称的;利用高线的长度性质解决一些等量关系的问题。
“三线”问题在解三角形中具有重要的意义和作用。
掌握它们的性质和特点是解决三角形问题的关键之一。
辅助线专题之倍长中线与截长补短法含练习及参考答案
三角形全等之倍长中线(讲义)➢ 课前预习1. 填空(1)三角形全等的判定有:三边分别___________的两个三角形全等,即(____);两边和它们的_____分别相等的两个三角形全等,即(____);两角和它们的_____分别相等的两个三角形全等,即(____);两角和其中一个角的______分别相等的两个三角形全等,即(____);斜边和_______边分别相等的两个直角三角形全等,即(____).(2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA ,SSA 不能证明两个三角形全等,请举出对应的反例.2. 想一想,证一证已知:如图,AB 与CD 相交于点O ,且O 是AB 的中点. (1)当OC =OD 时,求证:△AOC ≌△BOD ; (2)当AC ∥BD 时,求证:△AOC ≌△BOD .➢ 知识过关1. “三角形全等”辅助线:见中线,要__________,________之后______________. 2. 中点的思考方向:①(类)倍长中线延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE ②平行夹中点D CBAMAB CD OBC DA延长FE 交BC 的延长线于点G➢ 典型题型1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .4. 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF .5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CAF EDCBA DCB AF EDCADA的延长线于点F ,交AB 于点G ,BG =CF . 求证:AD 为△ABC 的角平分线.6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG . 求证:EG =CG 且EG ⊥CG .【参考答案】➢ 课前预习1. (1)相等,SSS ;夹角,SAS ;夹边,ASA ;对边,AAS ;直角,HL(2)全等,三,边 2. (1)证明:如图∵O 是AB 的中点 ∴AO =BO在△AOC 和△BOD 中GFE DCAGFE DCAGF EDCBA FE DCB AAO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA ) ➢ 典型题型1. 解:(1)如图,(2)证明:如图,∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图, ∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2 AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中,AB -BE <AE <AB +BE由(3)得 AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+321EDCBA 21BCDA∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线 ∴BD =AD在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线 ∴BE =AB ∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CD CB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点 ∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3 ∴∠1=∠3 ∵∠3=∠2 ∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点 ∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM321MABCD EFG 321MA BCDEF∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC ∴∠3=∠G∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B ∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90° ∴∠2=∠G ∴EG =AE =5 ∴CE =EG -CG=5-2.7 =2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90°∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG ⊥CG ,∠3=∠4=45° ∴∠2=∠3=45° ∴EG =CG三角形全等之倍长中线(实战演练)1. 在△ABC 中,AC =5,中线AD =4,则边AB 的取值范围是_______________. 思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________( ),证全等转移边:______=_______;④全等转移条件后,利用三角形三边关系可以得到AB 的取值范围.2. 如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?【参考答案】1. 3<AB <13①图略②中线AD 倍长中线 延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS AC EB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3三角形全等之倍长中线(作业)G FEAD BC➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .【思路分析】读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .在△DEF 和△CEG 中,ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△CEG (SAS )A B D CE FA B DCE FGGFECDBA FE CD B A∴DF =CG ,∠DFE =∠G ∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.2. 已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F . 求证:AB =EF .3. 已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°. 求证:EF =2AD .D CBAF E DAFED CB AA BDC EFG4. 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF =CG .5. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF ⊥EF .➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题. 方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =ACG FE BAFEDBCA21ECDB A CDBA方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC ∴∠E =∠2在△BDE 和△CDA 中2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .【参考答案】➢ 巩固练习 1. 2DC21ECDB A2. 证明略(提示:延长FD 到点G ,使得DG =DF ,连接AG ,证明△ADG ≌△EDF ,转角证明AB =EF )3. 证明略(提示:延长AD 到点G ,使得GD =AD ,连接CG ,证明△ABD ≌△GCD ,△EAF ≌△GCA )4. 证明略(提示:延长FE 到点H ,使得EH =FE ,连接CH ,证明△BFE ≌△CHE ,转角证明BF =CG )5. 证明略(提示:延长AF 交BC 的延长线于点G ,证明△ADF ≌△GCF ,转角证明AF ⊥EF ) ➢ 思考小结 1. 倍长中线 SASAAS角2. 证明略三角形全等之截长补短(讲义)➢ 课前预习1. 尺规作图(不写作法,保留作图痕迹):(1)已知线段a ,b (),作一条线段,使它等于a +b .(2)已知线段a ,b (),作一条线段,使它等于a -b .2. 想一想,证一证已知:如图,射线B M 平分∠A B C ,点P 为射线B M 上一点, PD ⊥BC 于点D ,BD =AB +CD ,过点P 作PE ⊥BA 于点E . 求证:△P AE ≌△PCD .➢ 知识过关a b >ba ab >ba MP E B CD A截长补短:题目中出现__________________________时,考虑截长补短;截长补短的作用是_______________________________________________________________________________________.➢ 典型题型1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 如图,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 边上一点,且DE 平分∠ADC ,CE 平分∠BCD . 求证:CD =AD +BC .3. 已知:如图,在正方形ABCD 中,AD =AB ,∠B =∠D =∠BAD =90°,E ,F 分别为CD ,BC 边上的点,且∠EAF =45°,连接EF . 求证:EF =BF +DE .21D A 21D CB A 21D A E DCA4.已知:如图,在△ABC中,∠ABC=60°,△ABC的角平分线AD,CE交于点O.求证:AC=AE+CD.5.已知:如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:CE12BD.【参考答案】➢课前预习1.略2.证明:如图∵BM平分∠ABC,PD⊥BC,PE⊥BA∴PE=PD,∠PEB=∠PDB=∠PDC=90°OEDCBAEDCAFEDCBAFE D CB AFA BD12在Rt △PBE 和Rt △PBD 中,PE PDPB PB=⎧⎨=⎩ ∴Rt △PBE ≌Rt △PBD (HL ) ∴BE =BD ∵BE =AB +AE BD =AB +CD ∴AE =CD在△P AE 和△PCD 中AE CD PEA PDC PE PD =⎧⎪∠=∠⎨⎪=⎩∴△P AE ≌△PCD (SAS ) ➢ 知识过关线段间的和差倍分;把几条线段间的数量关系转为两条线段的等量关系. ➢ 典型题型 1. 补短法:证明:如图,延长AB 到E ,使BE =BD ,连接DE . ∴∠E =∠3∵∠ABC 是△BDE 的一个外角 ∴∠ABC =∠E +∠3 ∴∠ABC =2∠E ∵∠ABC =2∠C ∴∠E =∠C在△ADE 和△ADC 中12E C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC (AAS ) ∴AE =AC ∴AC =AB +BE=AB +BD 截长法:证明:如图,在AC 上截取AF =AB ,连接DF . 在△ABD 和△AFD 中12AB AF AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△AFD (SAS ) ∴∠B =∠AFD ,BD =FD ∵∠B =2∠C ∴∠AFD =2∠C∵∠AFD 是△DFC 的一个外角 ∴∠AFD =∠C +∠FDC ∴∠FDC =∠C ∴DF =FC ∴BD =FC∴AC =AF +FC=AB +BD2. 证明:如图,在DC 上截取DF =DA ,连接EF .∵DE 平分∠ADC ,CE 平分∠BCD ∴∠1=∠2,∠3=∠4 在△ADE 和△FDE 中12AD FD DE DE =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△FDE (SAS ) ∴∠A =∠DFE ∵∠A =∠B =90°∴∠DFE =∠CFE =∠B =90° 在△CFE 和△CBE 中34CFE B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEF ≌△CBE (AAS ) ∴CF =CB∴CD =DF +FC =AD +BC3. 证明:如图,延长FB 到G ,使BG =DE ,连接AG .∵∠ABC =∠D =90°E∴∠ABG =∠D =90° 在△ABG 和△ADE 中AB AD ABG D BG DE =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADE (SAS ) ∴∠3=∠2,AG =AE∵∠BAD =∠1+∠2+∠EAF =90° ∠EAF =45° ∴∠1+∠2=45° ∴∠1+∠3=45°即:∠GAF =∠EAF =45° 在△EAF 和△GAF 中AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ) ∴EF =GF∴EF =BG +BF =BF +DE4. 证明:如图,在AC 上截取AF =AE ,连接OF .∵AD ,CE 分别是△ABC 的角平分线 ∴∠1=∠2,∠3=∠4 在△AEO 和△AFO 中12AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴△AEO ≌△AFO (SAS ) ∴∠5=∠6在△ABC 中,∠B =60° ∴∠1+∠2+∠3+∠4=120︒ ∴∠2+∠3=60︒∵∠5是△AOC 的一个外角 ∴∠5=∠2+∠3=60︒ ∴∠8=∠5=60︒ ∠6=∠5=60° ∠7=180°-∠5-∠6=60° ∴∠7=∠8在△CFO 和△CDO 中3478CO CO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CFO ≌△CDO (ASA ) ∴CD =CF ∴AC =AF +CF =AE +CD5. 证明:如图,延长CE 交BA 的延长线于F .∵CE ⊥BD∴∠BEC =∠BEF =90° ∵BD 平分∠ABC ∴∠1=∠2 ∴∠F =∠BCE ∴BC =BF∴EF =EC=12CF∵∠BAC =90°,∠BEC =90° ∴∠1+∠4=90°,∠3+∠5=90° ∵∠4=∠5 ∴∠1=∠3 ∵∠BAC =90°∴∠BAD =∠CAF =90° 在△BAD 和△CAF 中13AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△CAF (ASA ) ∴BD =CF∵CE =12CF∴CE =12BD三角形全等之截长补短(实战演练)6. 已知:如图,在△ABC 中,∠BAC =90°,∠C =45°,BD 平分∠ABC 交AC 于54321××FABD E点D .求证:BC =AB +AD .方法一:截长方法二:补短【参考答案】1. 截长补短;过程书写: 方法一:截长证明:如图,在BC 上截取BE =AB ,连接DE . ∵BD 平分∠ABC ∴∠ABD =∠EBD在△ABD 和△EBD 中,AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△EBD (SAS ) ∴AD =ED∠BAD =∠BED ∵∠BAD =90° ∴∠BED =90°∵∠BED 是△DEC 的一个外角 ∴∠BED =∠EDC+∠C ∵∠C =45° ∴∠EDC=90°-45° =45° ∴∠EDC=∠C ∴EC=ED= AD ∴BC =BE +EC =AB +ADDCADAB方法二:补短证明:如图,延长BA 到点E ,使AE =AD ,连接DE . ∵AE =AD∴∠E=∠ADE∵∠BAD 是△EAD 的一个外角 ∴∠BAD =∠E+∠ADE =2∠E ∵∠BAD =90°∴∠E=12∠BAD=45°∵∠C =45° ∴∠E=∠C∵BD 平分∠ABC ∴∠ABD =∠CBD在△BED 和△BCD 中,C E C ABD BD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BED ≌△BCD (AAS ) ∴BE =BC ∵BE =A B +A E =AB +AD ∴BC =AB +AD三角形全等之截长补短(作业)➢ 例题示范例1:如图,在四边形ABCD 中,AD ∥BC ,BD ⊥CD 且BD =CD ,∠DBC =45°.过点C 作CE ⊥AB 于E ,交对角线BD 于F ,连接AF . 求证:CF =AB +AF .【思路分析】题目中出现了线段的和差倍分(所求为一条线段是另外两条线段之和),所以考虑截长补短.① 考虑截长的方法,如图所示:FED C BA在线段CF 上截取CH =AB ,连接DH ,只需证明AF =HF 即可.结合题目条件,先证明△A B D ≌△H C D ,再证明△A D F ≌ △HDF ,从而得到AF =HF ,证明成立. ② 考虑补短的方法,如图所示:延长BA 交CD 的延长线于点H ,只需证明BH =CF ,AH =AF 即可.可结合题目条件,先证明△CDF ≌△BDH ,再证明△ADF ≌△ADH ,从而得到BH =CF ,AH =AF ,证明成立. 【过程书写】 (截长的方法)在线段CF 上截取CH =AB ,连接DH .∵BD ⊥CD ,BE ⊥CE ∴∠BEF =∠FDC =90° ∴∠EBF +∠EFB =90° ∠FCD +∠DFC =90° ∵∠EFB =∠DFC ∴∠EBF =∠FCD 在△ABD 和△HCD 中,A BCDEFHFEDCBA HA BCDEFHAB HC ABD HCD BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△HCD (SAS ) ∴AD =HD ,∠ADB =∠HDC ∵AD ∥BC∴∠ADB =∠DBC =45° ∴∠HDC =45°∴∠HDF =∠BDC -∠HDC =45° ∴∠ADB =∠HDF 在△ADF 和△HDF 中,AD HD ADF HDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△HDF (SAS ) ∴AF =HF∴CF =CH +HF =AB +AF➢ 巩固练习1. 如图,在△ABC 中,∠BAC =60°,∠ABC =80°,AD 是∠BAC 的平分线.求证:AC =AB +BD .2. 如图,AC 平分∠BAD ,CE ⊥AB 于E ,∠B +∠D =180°.求证:AE =AD +BE .AB CD AB CD CD BAEC D E3.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,连接EC.求证:BC=AB+CE.4.已知:如图,四边形ABCD是正方形,∠F AD=∠F AE.求证:BE+DF=AE.➢思考小结1.证明线段或角相等时,可以考虑把线段或角放到两个三角形中证明全等.如果题目中没有可能全等的三角形,往往考虑通过添加辅助线,构造全等三角形来证明.常见构造辅助线的方法:①___________:当已知条件中有中线(中点)时,往往考虑延长中线构造全等三角形.②_________:当题目中出现线段的和差倍分时,往往考虑把多条线段间的数量关系转化为两条线段的等量关系来处理.2.利用“截长补短”我们就可以证明直角三角形中非常重要的一个定理:30°角所对的直角边是斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°.求证:BC12AB.BEADCBEADCFEDCBA30°A【参考答案】➢巩固练习1.证明略提示:方法一:在AC上截取AE=AB,连接DE,证明△ABD≌△AED,再证明CE=DE;方法二:延长AB到E,使BE=BD,连接DE,证明△ADE≌△ADC.2.证明略提示:在AE上截取AF=AD,证明△CDA≌△CF A,再证明BE=FE.3.证明略提示:在BC上截取BF=BA,连接DF,证明△ABD≌△FBD,再证明△DFC≌△DEC.4.证明略提示:延长CB至点G,使BG=DF,连接AG,证明△ABG≌△ADF,再证明AE=GE即可.➢思考小结1.倍长中线,截长补短2.证明略提示:延长BC到D,使BD=BA,得到△ABC为等边三角形,AD=AB,根据三线合一,可得BC=12BD,所以BC=12AB.。
三角形的中位线优质课教学设计一等奖及点评
《三角形的中位线》教学设计课题:18.1.2 平行四边形的判定第3课时三角形的中位线一、教学内容解析《三角形的中位线》是人教版八年级(下)平行四边形的判定第3课时的教学内容,教材安排一个学时完成。
本节课的教学内容包括三角形的中位线定义,三角形中位线的定理两部分。
三角形中位线是三角形中又一条重要的线段,要注意与三角形的中线的区别。
三角形的中位线定理是三角形中一个重要性质定理。
它揭示了线与线之间的位置关系,线段与线段间的数量关系,这为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路。
在初中阶段的几何教学中起到了承上启下的重要作用。
二、教学目标设置依据课程标准要求:探索并证明三角形的中位线定理。
结合对教学内容的分析,融合三维目标,本节课的教学目标如下:1、理解三角形中位线的定义,能辨析三角形中位线与中线的异同,掌握三角形的中位线定理及其应用,能够应用三角形的中位线定理进行有关的计算和证明,逐步提高学生分析问题和解决问题的能力。
2、经历三角形中位线定理探索的过程中的由特殊到一般的推广过程,通过观察、测量、推广过程获得猜想,并进一步验证猜想,发展学生的合情推理能力和逻辑演绎能力。
3、利用剪纸拼接活动,直观感悟、类比出证明三角形中位线定理的辅助线的作法,体会归纳、转化等数学思想方法。
4、在探索和证明的过程中,提高自主探究、合作交流的能力,培养学生的探索意识和求知欲。
三、学生学情分析三角形的中位线是在学生学完了平行线、全等三角形以及平行四边形判定之后,作为三角形和平行四边形知识的综合应用及其深化所引出的一个重要性质定理。
平行线、全等三角形以及平行四边形的判定等相关知识是学生经历猜想、验证等环节的基础,是体会“转化”数学思想的关键。
本节课中,三角形中位线的定义、简单的应用三角形中位线定理进行计算证明等,对于大部分学生而言,均能掌握。
但在本课的学习中,学生在获得三角形中位线与第三边关系的猜想后,证明三角形中位线定理存在一定的困难。
三角形的高、中线、角平分线的教案
三角形的高、中线、角平分线的教案一、教学目标:1. 让学生理解三角形的高、中线、角平分线的概念。
2. 让学生掌握三角形的高、中线、角平分线的性质。
3. 培养学生运用三角形的高、中线、角平分线解决实际问题的能力。
二、教学内容:1. 三角形的高:从三角形的某个顶点向对边作垂线,顶点到垂足之间的线段叫做三角形的高。
2. 三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的中线。
3. 三角形的角平分线:从一个顶点出发,把这个顶点的角平分的线段叫做三角形的角平分线。
三、教学重点与难点:1. 教学重点:三角形的高、中线、角平分线的概念及性质。
2. 教学难点:三角形的高、中线、角平分线的画法及运用。
四、教学方法:1. 采用直观演示法,让学生直观地了解三角形的高、中线、角平分线的概念。
2. 采用讲授法,讲解三角形的高、中线、角平分线的性质。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学过程:1. 导入:通过复习三角形的相关知识,引出本节课的主题——三角形的高、中线、角平分线。
2. 讲解:讲解三角形的高、中线、角平分线的概念及性质。
3. 演示:通过实物演示或电子白板,展示三角形的高、中线、角平分线的画法。
4. 练习:布置一些有关三角形的高、中线、角平分线的练习题,让学生独立完成。
5. 总结:对本节课的内容进行总结,强调三角形的高、中线、角平分线的重要性质。
6. 作业:布置一些有关三角形的高、中线、角平分线的家庭作业,巩固所学知识。
六、教学评价:1. 通过课堂提问,检查学生对三角形的高、中线、角平分线概念的理解程度。
2. 通过练习题,评估学生对三角形的高、中线、角平分线性质的掌握情况。
3. 结合学生的课堂表现和作业完成情况,综合评价学生对三角形的高、中线、角平分线的学习效果。
七、教学拓展:1. 引导学生思考:在实际应用中,三角形的高、中线、角平分线有哪些作用?2. 介绍三角形的高、中线、角平分线在几何证明题中的应用。
北师大版数学八年级下册《3. 三角形的中位线》教案
北师大版数学八年级下册《3. 三角形的中位线》教案一. 教材分析北师大版数学八年级下册《3. 三角形的中位线》这一节的内容,主要介绍了三角形的中位线的性质和作用。
通过学习,学生能够理解三角形中位线的定义,掌握中位线的性质,能够运用中位线解决一些几何问题。
二. 学情分析学生在学习这一节内容之前,已经学习了三角形的性质、分类,对三角形有一定的了解。
同时,学生也掌握了平行线的性质,能够熟练地画出平行线。
但是,学生对于三角形中位线的概念和性质可能比较陌生,需要通过实例和练习来理解和掌握。
三. 教学目标1.理解三角形中位线的定义和性质。
2.能够画出三角形的中位线,并能运用中位线解决一些几何问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.三角形中位线的定义和性质。
2.运用中位线解决几何问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探索三角形中位线的性质;通过案例分析,让学生理解中位线的作用;通过小组合作,培养学生的团队合作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.三角板。
3.练习题。
七. 教学过程导入(5分钟)引导学生回顾三角形的性质和分类,提问:三角形有什么特殊的线段?学生可能会提到中线、高线等。
教师指出,今天我们要学习三角形的中位线,它是一种特殊的中线。
呈现(10分钟)教师通过PPT展示三角形的中位线的定义和性质。
首先,给出三角形的定义和中位线的定义,然后通过动画演示三角形的中位线是如何画出的。
接着,展示三角形中位线的性质,如平行于第三边、等于第三边的一半等。
同时,教师可以通过举例来帮助学生理解。
操练(10分钟)学生分组,每组一张三角板,尝试画出三角形的中位线,并验证中位线的性质。
教师巡回指导,解答学生的问题。
巩固(10分钟)教师给出一些练习题,让学生独立完成。
题目可以包括画图、证明、应用等类型。
教师在学生完成练习后,选取部分题目进行讲解和分析。
浙教版数学八年级下册4.5《三角形的中位线》教学设计
浙教版数学八年级下册4.5《三角形的中位线》教学设计一. 教材分析浙教版数学八年级下册4.5《三角形的中位线》是初中的一个重要知识点。
本节课主要让学生掌握三角形的中位线的性质,包括中位线等于底边的一半,平行于底边,以及中位线所分的两个三角形面积相等。
通过学习,学生能更好地理解三角形的内部结构,为后续学习解三角形和不等式打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、全等三角形的判定和性质、三角形的内角和等知识。
但他们对三角形的中位线可能还比较陌生,因此,需要通过实例和操作来让学生理解和掌握中位线的性质。
同时,学生可能对中位线与高、中线、角平分线的关系产生疑问,这也需要在教学过程中进行解答。
三. 教学目标1.知识与技能:让学生掌握三角形的中位线的性质,包括中位线等于底边的一半,平行于底边,以及中位线所分的两个三角形面积相等。
2.过程与方法:通过实例和操作,让学生理解并掌握三角形的中位线性质,提高他们的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们独立思考和合作交流的能力。
四. 教学重难点1.重点:三角形的中位线的性质。
2.难点:中位线与高、中线、角平分线的关系。
五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解和掌握中位线的性质。
2.利用多媒体和实物模型,帮助学生直观地理解中位线的性质。
3.小组讨论,培养学生的合作交流能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和教学图片。
3.练习题和作业。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形的高、中线、角平分线的性质,引导学生思考:三角形的中位线与这些线有何关系?2.呈现(15分钟)展示三角形的中位线模型和图片,让学生观察并描述中位线的性质。
同时,引导学生发现中位线与高、中线、角平分线的关系。
3.操练(10分钟)让学生分组讨论,每组找出一个三角形,画出其所有中位线,并验证中位线的性质。
中线如何影响商业决策?
中线如何影响商业决策?一、中线对商业决策的重要性中线是商业决策过程中不可或缺的重要环节。
在商业领域,中线指的是将短期目标与长期战略相结合,找到一个平衡点,既要保持灵活性和敏捷性,又要考虑长期发展和持续创新。
中线决策的合理性直接影响企业的竞争力和长期发展。
因此,了解中线如何影响商业决策具有重要的理论和实践意义。
二、中线对商业决策的战略引领作用中线在商业决策中扮演着战略引领的角色。
中线战略的制定需要对市场、竞争环境、内外部资源进行全面的分析和评估,以确保企业将战略目标与环境变化相匹配,并能够持续创新和适应市场变化。
通过中线战略的引领,企业能够更好地把握市场机遇,提前做好应对各种风险和挑战的准备,实现可持续发展。
三、中线对商业决策的风险管理作用中线对商业决策还具有重要的风险管理作用。
在商业决策中,中线可以帮助企业从长远的角度来审视风险,并采取相应的措施进行管理。
中线决策可以更好地平衡短期利益和长期风险,避免为了追求短期利益而忽视了长期发展的风险。
通过中线决策,企业可以有效降低风险,保护自身的核心竞争力和品牌形象。
四、中线对商业决策的资源配置作用中线在商业决策中还扮演着重要的资源配置角色。
中线决策需要考虑到企业的各类资源,包括资金、人力、物资等,并进行合理的配置和利用。
中线决策可以帮助企业有效地利用有限的资源,最大限度地实现资源的价值,并提高企业的综合竞争力。
通过中线决策,企业可以在发展过程中实现资源的优化配置,提高效率和效益。
五、中线对商业决策的组织协调作用中线在商业决策中还具有重要的组织协调作用。
中线决策需要考虑到企业内外部各方面的因素,并进行整合和协调。
中线决策可以帮助企业统一各方利益需求,集中各方资源,形成合力,提高协同效能。
通过中线决策,企业可以优化决策过程,提高决策的一致性和执行力,实现整体发展的有效推进。
综上所述,中线在商业决策中起着至关重要的作用。
它引领着商业的战略发展,管理着商业的风险,调配着商业的资源,协调着商业的各方力量。
直角三角形斜边中线定理 (3)
直角三角形斜边中线定理直角三角形是一种特殊的三角形,其中一个角度为90度。
直角三角形的边可分为三种:斜边、邻边和对边。
直角三角形具有许多特性和性质,其中之一就是直角三角形斜边中线定理。
定理描述直角三角形斜边中线定理指出:直角三角形斜边上的中线等于斜边的一半。
换句话说,如果在一个直角三角形中,连接斜边的中点与直角顶点的直线段,那么这个直线段的长度等于斜边的一半。
下面是该定理的数学表达式:设直角三角形的斜边长度为c,斜边上的中线长度为m,则有:m = c / 2定理证明我们可以通过几何和代数的方法来证明直角三角形斜边中线定理。
几何证明设直角三角形的斜边为AC,斜边上的中线为BM,并连接顶点A和中点B。
首先,我们可以通过斜边上的中线构造一个三角形ABM。
根据直角三角形的性质,A和C分别为直角三角形ABM的直角顶点和斜边上的另一个顶点。
由于三角形ABM是直角三角形,我们可以利用勾股定理来求解等式AB和BM的关系。
根据勾股定理,直角三角形ABM的斜边AB的平方等于直角边AM的平方加上直角边BM的平方:AB² = AM² + BM²因为直角三角形ABM是等腰三角形(与斜边等长),所以直角边AM的长度等于斜边AC的一半(即AM=c/2),我们将其带入等式中化简:AB² = (c/2)² + BM²继续化简:AB² = c²/4 + BM²由于AB = AC(直角边)和AC = c(斜边),我们可以将AB替换为c,即:c² = c²/4 + BM²继续化简并整理:3c²/4 = BM²通过移项操作,得到:BM² = 3c²/4我们可以取开根号来求解BM的长度:BM = √(3c²/4) = (√3c) / 2接下来,我们将BM的长度与斜边的一半进行比较:BM = (√3c) / 2 c / 2我们可以发现,BM的长度等于斜边的一半(c/2),这证明了直角三角形斜边中线定理。
三角形重心 中线的三等分点
三角形重心中线的三等分点
摘要:
1.介绍三角形重心的定义和性质
2.解释三角形中线的概念和性质
3.描述三角形重心与中线的关系:重心是中线的三等分点
4.证明这一关系的数学原理
5.举例说明并总结
正文:
三角形是一个非常重要的几何图形,它有许多特殊的点和线,其中就包括重心和中线。
首先,我们来了解一下三角形重心的定义和性质。
三角形的重心是三条中线的交点,它是一个非常重要的几何中心。
重心具有一些独特的性质,例如,它到三角形每个顶点的距离等于它到对边中点的距离的2 倍。
同时,重心也是三角形面积计算的一个重要参考点。
接下来,我们来解释一下三角形中线的概念和性质。
三角形的中线是连接一个顶点和对边中点的线段。
在中线中,有一个非常重要的性质,那就是中线的长度等于其对应边长的一半。
现在,我们来描述一下三角形重心与中线的关系。
事实上,三角形的重心是中线的三等分点。
也就是说,重心将每一条中线都分成了两段长度相等的线段。
为了证明这一关系的数学原理,我们可以通过一些几何推理来进行说明。
首先,我们可以通过平行四边形的性质,证明出重心到中线两端点的距离相等。
然后,我们再利用中线长度的性质,就可以得出重心是中线的三等分点的
结论。
通过以上的分析和证明,我们可以得出结论:三角形的重心是中线的三等分点。
这个结论对于我们理解和应用三角形的性质具有非常重要的意义。
平行四边形判定3-中位线
A
理解三角形的中位线 定义的两层含义:
D B
E
C
① 如果D、E分别为AB、AC的中点, 那么DE为△ABC的 中位线; ② 如果DE为△ABC的中位线,那么 D、E分别为AB、AC的 中点 。
获取新知 猜一猜:
△ ABC的中位线DE与BC的 关系怎样?(从位置和数量 关系猜想) D A
E
1 DE∥BC, DE BC 2
提示:证明△ABF≌ △ECF,
得BF=CF,再证OF是 △ABC的中位线. B
A
G F E O
D
C
例3:已知 ABCD中,AC、BD相交于点 O,E、F、G、H分别是AB、OB、CD、OD的 中点。求 证:∠HEF= ∠FGH。
A H E F B C O G
D
【例4】 已知,如图所示,AD为△ABC的中线,E为AC上一点,连接BE 交AD于F,且AE=FE. 求证:BF=AC. 证明:延长AD到N,使DN=AD,连接BN,CN, ∵BD=CD,AD=ND,∴四边形ABNC是平行四边形. ∴BN=AC,BN∥AC. ∴∠FAE=∠BND.
你还想到了什么?
B
F
D
C
2.如图,△ABC为等边三角形,D、F 分别是BC、AB上的点,且CD=BF,以 AD为边作等边三角形ADE。 (1)求证:△CBE≌△ACD; (2)点D在线段BC上何处时,四边形 CDEF是平行四边形,且∠DEF= 30°,证明你的结论。
A
E B
F C
D
( 1 )顺次连结对角线相 等的四边形各边中点所得 的四边形是什么?
B
C
所以 ,四边形BCFD是平行四边形
∴DE ∥ BC 且 DE=1/2BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中线的思考3——分析价值链,寻找高成长============
首先,我们要弄清楚,股市并不是赌博场,而是上市公司在寻找股动融资,各种资金来股市的目的,都是想寻找高成长——有持续超强盈利能力的公司,而获得自己比银行存款更高利息的利润。
当然,你也可以通过这个市场,去收购一个公司。
利用股价短期的波动,去寻找差价,是短线客的爱好,技术好的人是可以获得一定利润的。
但作为中线资金(3——5个月),就不能不研究你要寻找的好公司,因为好的公司才会给你带来高额的利润。
美国哈佛商学院商学大师迈克尔。
波特教授说,“不盈利,企业没有必要存在。
如果你公司的目标是盈利之外的任何东西,比如这个目标只是将公司做大,或者是成为技术领导者,那都会使公司陷入麻烦之中”。
那么,什么样的公司才算是好公司,才是主力资金青昧的公司呢?波特教授提出了企业如何获得超强持续盈利能力的理论——价值链理论。
按照产品价值链分析,我们可以看到,价值链上分工所取得的利润并不是一样的,处于垄断的、技术含量高的高端产品,就获得高利润,处在价值链低端的只能取得低盈利。
比如IP行业,微软和英特尔(做芯片)两个公司,其利润就占了整个IP行业50%以上的利润。
所以其他公司,只能做最低端产品,获得很低的利润,包括我们的联想公司。
只能跟它打工。
其他的公司并不是不想吃这块肥肉,只是自己的技术实力不够或者成本太高,无法与他们竞争。
英特尔公司的老板莫尔先生给公司下了一条规矩,必须每十八个月推出一代新产品。
叫著名的“莫尔定律”,当其他公司要模仿他的产品刚上市时,英特尔马上又推出新一代产品,使你的产品无人买,不知道扫到哪个角落里去了。
因此,在一个行业里,寻找高端产品和高利润率的公司,是我们资本投资灵活性所必须寻找的方向。
有不少朋友说,我一个小散户怎么知道哪些产品和哪些公司是能够产生高利润呢?我们说,只要记得几个简单的指标就可以了。
第一,毛利率。
“毛利率=(销售收入-销售成本)/销售收入”,它表示每一元销售收入扣除销售成本后,有多少钱可以用于各项期间费用和形成盈利,是企业净利润的最初基础。
没有足够的销售毛利率便不能形成盈利,可以说毛利率是行业及上市公司的景气指标。
毛利率反映了企业产品初始获利能力,如果公司的毛利率显著高于同行业水平,说明公司产品附加值高、产品定价高,或与同行公司比较存在成本优势,有核心竞争力。
统计显示,毛利率长期处于高水平的公司大都有经营壁垒,主要体现在如下四个方面:
一是具备自然垄断资源的公司,如机场、港口、公路、矿产类上市公司;
二是品牌消费品,如名酒、中药、房地产等提供差异化产品的上市公司;
三是在全球处于成本领先的制造业上市公司;
四是在全球技术处于领先的上市公司。
这些公司的毛利率增长稳定,且长期处于高水平,能为投资者带来长期较高回报。
第二,现金流。
每股现金流的高低,表示企业在经营过程中的生产、销售、回款是否顺利的真实反映。
也反映了市场对你的产品的欢迎程度和你与经销商的关系。
反映的是公司战略执行力。
一般来说,要高于A股平均指标0。
58元。
比如600432,他的毛利率是34。
27,同行业均值是16。
09,可以看出多出同行业一倍还要多。
再看现金流,他是每股0。
66元,高于A股均值0。
58元。
他的净资产收益率是24。
66,A股的均值是8。
66。
所以说,这只股票的基本面是非常好的一个公司。
现在看,主力要做他,就不奇怪了。
我相信,这是第二个宝钛。
第三,不选择多元化的公司。
我们可以在股市上看到一种现象,产品单一的公司,往往被主力炒上天,而什么都做的公司往往股价不高。
比如做空调的,格力、美的公司的股价比海尔、长虹要高。
为什么?我想,当一个公司把产品的战线拉得很长,他基本上没有精力把每个产品都做得有竞争力,只有发展与自己的产品有关联的产品,可以充分利用公司的其他资源,并有效的降低了自己的产品成本,才会在产品的价值链上创造更多的价值。
否则,你的成本比专业化公司要大得多。
二是单一的公司有行业周期,在行业周期不好的时候,主力提前逃跑,把股价再打低;当行业周期明显回升时,主力可以用比较低的成本获得筹码,从而达到炒高的目的。
而多元化的公司本身从体制上就尽量避免行业周期对本公司的影响,获得比较稳定的发展。
如果一个公司去年一毛,今年一毛,明年还一毛的话,那哪个主力会去炒它呢?值得提醒的是,有的公司的毛利率并不是很高,但它有规模效应,有很好的战略执行力,就值得投资。
比如我在去年11月15
日前后买的000527,买的价格是4。
65,比它的净资产还要低。
它的毛利率虽然只有17。
33,但他的现金流达到2。
51,是A股均值的四、五倍,他的生产规模达到一千万台。
所以,它的产品在市场上是很有竞争力的。
属于价值低估。
现在涨到5。
73元。
虽然已经盈利不少,但离他的价值和主力要达到的目标,还差很远。
所以我到现在仍然捂着。