椭圆与双曲线综合练习题(培优专题练习)

合集下载

高二数学椭圆双曲线专项练习含答案

高二数学椭圆双曲线专项练习含答案

高二数学椭圆双曲线专项练习选择题:1、双曲线 x2-ay2= 1 的焦点坐标是()A .( 1 a , 0) , ( -1 a , 0)B. ( 1 a , 0), (-1 a , 0)C.(-a1a1D. (-a1,0),(a 1a, 0),(a, 0)a, 0)a2、设双曲线的焦点在x 轴上 ,两条渐近线为y 1)x ,则该双曲线的离心率为(2A .5B .5/2C.5D.5/43.椭圆x2y21的两个焦点为F1、F2,过 F1作垂直于 x 轴的直线与椭圆订交,一个交点为P,则| PF2|= 4()A. 3 /2B.3C. 4了D. 7/24.过椭圆左焦点 F 且倾斜角为60°的直线交椭圆于A, B 两点,若FA 2 FB ,则椭圆的离心率等于()A 2B2C1D2 3223 x2y2x 2y 25.已知椭圆3m25n2 和双曲线2m23n2= 1 有公共的焦点,那么双曲线的渐近线方程是()A . x=±15 y B. y=±15 x C. x=± 3 y D. y=± 3 x22446.设 F1和 F2为双曲线x2y2= 1 的两个焦点,点P 在双曲线上,且知足∠F1PF2=90°,则△ F1PF2的面积4是() A.1 B .5C. 2D.5 27.已知 F1、 F2是两个定点,点 P 是以 F1和 F2为公共焦点的椭圆和双曲线的一个交点,而且PF1⊥PF2,e1和e 分别是椭圆和双曲线的离心率,则有()2A .e1e22B .e12e224C.e1e2 2 2D.112 e12e228.已知方程x 2+y 2=1 表示焦点在 y 轴上的椭圆,则m 的取值范围是()| m | 2 m1A . m<2B .1<m<2C. m< - 1 或 1<m<2 D . m< - 1 或 1<m<32x 2y 2 x 2 y 29.已知双曲线 a 2-b 2=1和椭圆m 2 + b 2 =1( a>0,m> b>0) 的离心率互为倒数,那么以a 、b 、m 为边长的三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形x 2 y 2 1 上有 n 个不一样的点 :P 1 2 n n1 的10.椭圆3 , P , , P , 椭圆的右焦点为 F. 数列{ |P F|}是公差大于1004等差数列 , 则 n 的最大值是() A . 198 B .199C . 200D .201一、填空题:11.对于曲线 C ∶x 2 y 2 C 不行能表示椭圆;②4 k=1 ,给出下边四个命题:①由线k 1当 1<k < 4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则 k < 1 或 k > 4;④若曲线 C 表示焦点在 x 轴上的椭圆,则 1< k <5此中全部正确命题的序号为_______ ______212.设圆过双曲线x 2 y 2 =1 的一个极点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__916x 2 y 2 1 21 213.双曲线= 1 的两焦点为、,点 P 在双曲线上,若 PF ⊥ PF,则点 P 到 x 轴的距离 ____9 1614.若 A ( 1, 1),又 F 1 是 5x 2+ 9y 2=45 椭圆的左焦点,点P 是椭圆的动点,则 |PA|+|P F 1|的最小值 _______15、已知 B(-5 , 0) , C(5 , 0) 是△ ABC 的两个极点,且 sinB-sinC= 3sinA, 则极点 A 的轨迹方程是5二、解答题:16、设椭圆方程为x 2 y 2 =1,求点 M (0,1)的直线l 交椭圆于点 A 、 B , O 为坐标原点,点P 知足41 OB) ,当 l 绕点 M 旋转时,求动点 P 的轨迹方程 .OP(OA217、已知 F1、 F2为双曲线x 2y21(a>0,b>0)的焦点,过F2作垂直a 2b2于 x 轴的直线交双曲线于点P,且∠ PF1F2= 30°.求双曲线的渐近线方程.图18、已知椭圆x2y21( a b 0) 的长、短轴端点分别为A、B,此后椭圆上一点 M 向 x 轴作垂线,恰巧a2b2经过椭圆的左焦点F1,向量 AB 与 OM 是共线向量.(1)求椭圆的离心率e;( 2)设 Q 是椭圆上随意一点,F1、 F2分别是左、右焦点,求∠F1QF2的取值范围;19、已知中心在原点的双曲线 C 的右焦点为 (2,0),右极点为( 3,0)。

专题17 椭圆与双曲线共焦点问题 微点4 椭圆与双曲线共焦点综合训练

专题17  椭圆与双曲线共焦点问题  微点4  椭圆与双曲线共焦点综合训练
(2022·浙江嘉兴·高二期末)
24.已知椭圆 ,双曲线 与椭圆 共焦点,且与椭圆 在四个象限的交点分别为 ,则四边形 面积的最大值是___________.
(2022·吉林·希望高中高二期末)
25.椭圆 与双曲线 有公共焦点 ,设椭圆 与双曲线 在第一象限内交于点 ,椭圆 与双曲线 的离心率分别为 为坐标原点, ,则 的取值范围是___________.
(2022·陕西·交大附中模拟预测)
22.如图, , 是椭圆 与双曲线 的公共焦点, , 分别是 , 在第二、四象限的公共点,若 ,且 ,则 与 的离心率之积为_____.
(2022·吉林长春·模拟预测)
23.在平面直角坐标系xOy中,已知椭圆C1与双曲线C2共焦点,双曲线C2实轴的两顶点将椭圆C1的长轴三等分,两曲线的交点与两焦点共圆,则双曲线C2的离心率为__________.
18.已知椭圆 和双曲线 有相同的焦点 ,P为椭圆与双曲线的一个公共点,椭圆与双曲线的离心率分别为 ,且 ,则 的取值范围为_________.
(2022·安徽省临泉第一中学高二月考)
19.已知椭圆 与双曲线 有相同的焦点 ,椭圆 的离心率为 ,双曲线 的离心率为 ,点 为椭圆 与双曲线 的第一象限的交点,且 ,则 的取值范围是___________.
26.已知 , 分别是具有公共焦点 , 的椭圆和双曲线的离心率,点 是两曲线的一个公共点, 是 的中点,且 ,则 ______.
A. B. C. D.
(2022·浙江·舟山中学高三月考)
6.设 、 分别为具有公共焦点 与 的椭圆和双曲线的离心率, 为两曲线的一个公共点,且满足 ,则 的值为()
A. B. C. D.
二、多选题
(2022江苏·高二单元测试)

椭圆双曲线练习卷(含答案)(最新整理)

椭圆双曲线练习卷(含答案)(最新整理)
d 2 (x 2)2 y2 x 4x2 4 20 5 x2 4 (x 9 )2 15 , 9 92
由于-6≤ m ≤6, ∴当 x = 9 时,d 取得最小值 15 2
x2
25.椭圆
m2
y2
1m
1与双曲线 x 2
n2
y2
1n
0 有公共焦点 F1, F2 ,P 是两曲线
的一个交点,求 F1PF2 的面积。
解答:由椭圆和双曲线的对称性,不妨设点 P 在第一象限,F1 是左焦点,F2 是右焦点, 由椭圆和双曲线的定义可知
PF1 PF2 2m,
PF1
PF2
2n
解得
PF1 PF2
m n, m n.
PF1 2 PF2 2 2 m2 n2 。
椭圆 x 2 y 2 1m 1与双曲线 x 2 y 2 1n 0 有公共焦点,
|
1 2
为定值.
法二:设 M (x3,
y3 ), N (x4 ,
y4 ) ,则
k1=
y3 x3
, 2x32
4 y32
1,
于是
2x
2 3
+4k
2 1
x
2 3
=1,x
2 3

2
1 4k12
,y
2 3

2
k12 4k12
,同理,x
2 4
b 0) 有相同的焦点 F1, F2
,P 是两条曲线的一个公共点,则 PF1 PF2 的值是 m a 。
二、解答题
19.求经过椭圆 x2+2y2=4 的左焦点且倾斜角为 的直线教椭圆于 A、B 两点,求弦 AB 的
3
长度。
16
长度为:

椭圆与双曲线综合测试题

椭圆与双曲线综合测试题

椭圆与双曲线综合测试题椭圆与双曲线综合测试题一、选择题(本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个符合题目要求。

)1、以x2/412+y2/16=1的焦点为顶点,顶点为焦点的椭圆方程是()。

A、x2/16+y2/4=1B、x2/4+y2/16=1C、x2/9+y2/16=1D、x2/16+y2/9=12、已知双曲线x2/9-y2/4=1上的一点P为该双曲线的两个焦点,设P到F2的距离为3,到F1的距离为2,则三角形F1PF2的面积是()。

A、12B、63C、123D、2433、已知以x2/20+y2/16=1为焦点的椭圆C与直线L:x+3y+4=0有且仅有一个交点,则椭圆C的长轴长是()。

A、32B、26C、27D、424、已知双曲线C的对称中心在原点,对称轴是坐标轴,且一条渐近线方程是3x+4y=0,双曲线C过点P(2,1),则双曲线C的方程是()。

A、9x2/25-4y2/9=1B、4x2/9-9y2/25=1C、9x2/16-4y2/25=1D、4x2/25-9y2/16=15、已知椭圆E:9x2/4+y2/16=1的左右焦点是(-5,0)和(5,0),点P为E上一动点,当∠EPF2为钝角,则点P的横坐标的取值范围是()。

A、(-3,3)B、(-5,3)C、(-5,5)D、(3,5)6、若F1、F2是椭圆的两个焦点,满足MF1/MF2=2,则椭圆的离心率的取值范围是下列的选项()。

A、(2/3,1)B、(1/2,1)C、(1,2/3)D、(1,1/2)7、已知椭圆x2/5+y2/4=1(n>2)和双曲线-3y2/5+x2/9=1有相同的焦点F1、F2,P(7,2)是两条双曲线的一个交点且PF1⊥PF2,则△PF1F2的面积是()。

A、1B、1/2C、2D、3/28、如果已知双曲线的左右焦点分别是F1、F2,在左支上过F1的弦AB的长是5,若半轴a=5,则三角形ABF2的周长是()。

椭圆、双曲线、抛物线综合检测(含答案)

椭圆、双曲线、抛物线综合检测(含答案)

椭圆、双曲线、抛物线综合试题学校:___________姓名:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)1.(a>0,b>0)的一条渐近线方程是它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )2.已知焦点在x 轴上的椭圆,则a 的值为 ( ) ABD .123.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x4.椭圆2249144x y +=内的一点(3,2)P ,过点P 的弦恰好以P 为中点,那么这弦所在的直线方程A. 32120x y +-=B. 23120x y +-=C. 491440x y +-=D. 941440x y +-=5k 适合的条件是A .2k <-或25k <<B .22k -<<或5k >C .2k <-或5k > D.25k -<<6.已知P 为抛物线上的动点,点P 在x 轴上的射影为M ,点A的坐标是 ( )(A)8 (B)(C)107 A 、0 B 、1 C 、2 D 、38(0,0>>>b m a )的离心率之积大于1,则以m b a ,,为边长的三角形一定是( )A 等腰三角形B 锐角三角形C 直角三角形D 钝角三角形第II 卷(非选择题)请点击修改第II 卷的文字说明9.已知P上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________;10.如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则(Ⅰ)双曲线的离心率 ;(Ⅱ)菱形的面积与矩形的面积的比值 . 11.过点)2,2(p M -作抛物线)0(22>=p py x 的两条切线,切点分别为A 、B ,若 线段AB 中点的纵坐标为6,则抛物线的方程为 .12.对任意实数k ,直线y kx b =+与椭圆,则b 的取值范围是三、解答题(题型注释)13.(本小题满分12分) 抛物线22y px =的焦点与双曲线. (Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.14.已知1F )0,1(-、2F )0,1(为椭圆的焦点,且直线 (Ⅰ)求椭圆方程;(Ⅱ)过1F 的直线交椭圆于A 、B 两点,求△2ABF 的面积S 的最大值,并求此时直线的方程。

椭圆与双曲线综合练习题1

椭圆与双曲线综合练习题1

双曲线与椭圆综合练习题姓名: 分数(满分100分):一,填空题(每题5分,共40分) (1)设双曲线方程为1222=-y x ,则中心坐标为,焦点坐标为,顶点坐标为,实轴长为____,虚轴长为____,渐近线方程__(错一个扣1分,扣完为止)(2)双曲线221259x y k k+=--的焦距为—————————————( ) ()A 16 ()B 8 ()C 4 ()D(3)双曲线0122=+-y tx 的一条渐进线与直线012=++y x 垂直,则=t .(4)双曲线上2221x y a b2-=任意一点到两渐近线的距离乘积为定值. (5)P 为双曲线1422=-y x 上的动点,M 为OP 中点(O 为原点),则点M 的轨迹方程为.(6)已知双曲线22221x y a b-=的左右焦点分别是12F F 、,直线l 过1F 交双曲线的左支于A B 、两点,AB m =,则2ABF ∆的周长为。

(7)、设曲线C 的方程为11422=-+-t y t x 则下面说法正确的是? A 、若41<<t ,则曲线C 为椭圆;B 、若14<>t t 或者,则曲线C 为双曲线;C 、曲线C 不可能是圆;D 、若曲线C 表示椭圆,且长轴在x 轴上,则5.21<<t二、解答题1、(本题满分12分)已知221:(3)1C x y ++= ,222:(3)9C x y -+= ,动圆M 与12C C 、相外切,求动圆圆心M 的轨迹方程。

18122=-y x2、求下面要求的双曲线标准方程(每题10分)(1)、求以椭圆22464x y +=的焦点为顶点,一条渐近线方程为03=+y x 的双曲线方程。

(2)、与椭圆22464x y +=有共同焦点,且一条渐近线为0x +=的双曲线方程(3)、过点(2,2)-且与双曲线2222x y -=有相同渐近线的双曲线方程(4)、与双曲线120522=-y x 有共同的渐近线,且经过点(15,5-)的双曲线方程(5)、已知椭圆191622=+y x 的两个顶点是双曲线的焦点,双曲线的两个顶点又是椭圆的焦点,求此双曲线的标准方程。

椭圆、双曲线抛物线综合练习题及答案.

椭圆、双曲线抛物线综合练习题及答案.

一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。

( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。

( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。

高二数学椭圆双曲线练习题

高二数学椭圆双曲线练习题

高二数学椭圆双曲线练习题1. 已知椭圆的焦点F₁、F₂分别为(-2,0)和(2,0),离心率为3/4。

求椭圆的方程。

解答:设椭圆的长轴为2a,短轴为2b,则焦距为2ae。

根据离心率的定义可知 3/4 = ae/a,化简得 e = 3/4。

椭圆的方程为:(x + 2)² / a² + y² / b² = 12. 求椭圆 9x² + 25y² - 90x + 450y + 729 = 0 的标准方程,并求出椭圆的离心率和焦距。

解答:将方程展开得:9(x - 5)² + 25(y + 9)² = 144标准方程为:(x - 5)² / 16 + (y + 9)² / 9 = 1由方程可知,a = 4,b = 3。

因此,离心率e = √(1 - b²/a²) = √(1 - 9/16) = √(7/16) = √7/4。

焦距f = √(a² - b²) = √(16 - 9) = √7。

3. 求椭圆 4x² + 25y² + 8x - 150y - 44 = 0 的标准方程,并求出椭圆的离心率和焦距。

解答:将方程展开得:4(x + 1)² + 25(y - 3)² = 400标准方程为:(x + 1)² / 100 + (y - 3)² / 16 = 1由方程可知,a = 10,b = 4。

因此,离心率e = √(1 - b²/a²) = √(1 - 16/100) = √(84/100) = √21/10。

焦距f = √(a² - b²) = √(100 - 16) = √84 = 2√21。

4. 求双曲线 25x² - 9y² + 50x - 18y = 9 的标准方程,并判断其所属类型。

椭圆与双曲线综合练习题

椭圆与双曲线综合练习题

椭圆与双曲线综合练习题
本文档旨在提供一些椭圆与双曲线的综合练题,帮助读者更好地理解和应用相关知识。

题目一
已知椭圆的长轴长度为 6 厘米,短轴长度为 4 厘米,求该椭圆的离心率和焦点坐标。

题目二
一个双曲线的中心位于坐标原点,焦点到原点的距离为 5,焦点所在直线的斜率为 2。

求该双曲线的方程。

题目三
一艘船沿着从双曲线的一个分支切线开始并在另一个分支切线结束的路径上航行。

已知该双曲线的焦点坐标分别为 (-3, 0) 和 (3,
0),离心率为 2。

如果船沿着该路径行进的距离为 10 单位,求船的
行驶时间。

题目四
已知双曲线的焦点坐标分别为 (-2, 0) 和 (2, 0),离心率为 3/2。

求该双曲线的方程并计算其近点到两焦点连线的距离。

题目五
已知椭圆的焦点在 y 轴上,且离心率为 1/3。

如果椭圆经过点(2, 1),求该椭圆的方程。

以上是一些椭圆与双曲线的综合练题,您可以根据相关知识来
计算答案。

希望这些练能够帮助您更好地掌握椭圆与双曲线的应用。

椭圆、双曲线测试题参考答案

椭圆、双曲线测试题参考答案

椭圆、双曲线测试题一. 选择题(每题5分,共60分)1. 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.102. 椭圆11692522=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)3.已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m4.已知椭圆方程为1112022=+y x ,那么它的焦距是 ( A.6 B.3 C.331 D.31 .5 椭圆:4422=+y x 的准线方程为:( ) A. 334±=x B. 433±=x C. 334±=y D. 433±=y 6. 设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或237. 椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 () A 5± B 3± C 5 D 98. 若方程ak 4y a k 3x 22-++=1表示双曲线,其中a 为负常数,则k 的取值范围是( ) (A)(3a ,-4a ) (B)(4a ,-3a ) (C)(-3a ,4a ) (D)(-∞,4a )∪(-3a ,+∞)9. 双曲线2kx 2-ky 2=1的一焦点是F(0,4),则k 等于 ( )(A)-3/32 (B)3/32 (C)-3/16 (D)3/1610. 下列方程中,以x±2y=0为渐近线的双曲线方程是 ( )12)(12)(1164)(1416)(22222222=-=-=-=-y x D y x C y x B y x A 11. 双曲线22134x y -=的两条准线间的距离等于( ) (A )767 (B )737 (C )185 (D )165 12.方程1)42sin(322=+-παy x 表示椭圆,则α的取值范围是( ) .838παπ≤≤- B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 二. 填空题(每题5分,共20分)13. 1,6==c a ,焦点在x 轴上的椭圆的标准方程是14. 方程11222=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是___ 15.过点A (-1,-2)且与椭圆19622=+y x 的两个焦点相同的椭圆标准方程是____16 已知21,F F 是双曲线191622=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________ 三.解答题:( 第17题10分,第18---22题每题12分)17. 写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(0,-4)、(0,4),椭圆上一点P 到两焦点的距离之和等于10;⑵两个焦点坐标分别是(-2,0)和(2,0)且过(25,23-)18. 已知双曲线两个焦点的坐标为)0,5()0,5(21F F ,-,双曲线上一点P 到)0,5()0,5(21F F ,-的距离之差的绝对值等于8,求双曲线标准方程19. 求双曲线1422=-y x 的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程。

椭圆、双曲线解答题综合练习(含答案)

椭圆、双曲线解答题综合练习(含答案)

椭圆、双曲线解答题综合练习1.中心在坐标系原点O,焦点F1,F2在坐标轴上,离心率e=√2的双曲线C过点P(4,−√10).(1)求C的方程;(2)若点M(3,m)在C上,求ΔMF1F2的面积.2.若椭圆C:x2a2+y2b2=1是以双曲线x23−y2=1的顶点为焦点,以其焦点为顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)若P是椭圆C上的一点,F1、F2是椭圆C的两焦点,且∠F1PF2=90°,求△PF1F2的面积.3.分别求出满合下列条件的圆锥曲线的标准方程:(1)离心率为√74,且短轴长为6的椭圆C1;(2)过点(3,−√2),且与椭圆5x2+9y2=45有相同焦点的双曲线C2;4. 如图,点F 1,F 2分别是椭圆C:x 2a 2+y2b2=1(a >b >0)的左、右焦点.点A 是椭圆C 上一点,且满足AF 1⊥x 轴,∠AF 2F 1=30∘,直线AF 2与椭圆C 相交于另一点B .(1)求椭圆C 的离心率e ;(2)若ΔABF 1的周长为4√3,求椭圆C 的标准方程.5. 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率e =√22,已知以坐标原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过F 1的直线l 与椭圆相交于不同的两点A 、B ,若F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =6,求直线l 的方程.6. 已知椭圆x2a 2+y 2b 2=1(a >b >0)的离心率为√32,且经过点M (2,1),直线y =12x -1与椭圆交于A ,B 两点.(1)求椭圆方程;(2)求线段AB 中点的横坐标.7. 椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8离心率e =√32. (1)求椭圆C 的标准方程;(2)过椭圆C 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程.8. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)上一点与两焦点构成的三角形的周长为4+2√3,离心率为√32. (1)求椭圆C 的方程;(2)设椭圆C 的右顶点和上顶点分别为A 、B ,斜率为12的直线l 与椭圆C 交于P 、Q 两点(点P 在第一象限).若四边形APBQ 面积为√7,求直线l 的方程.9. 若椭圆经过两点(−32,52),(√3,√5),求椭圆的标准方程.10. 在平面直角坐标系xOy 中,若双曲线D 的渐近线方程为y =±√3x,且经过点(2,3),直线l:y =x −2交双曲线于A,B 两点,连结OA,OB .(1)求双曲线方程; (2)求OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 的值.11.已知双曲线C的中心在原点,对称轴为坐标轴,根据下列条件分别求双曲线C的标准方程.(1)渐近线方程为y=±53x,且过点(3,10);(2)与双曲线x2−y2=1的离心率相同,与x25+y2=1共焦点.12.(1)求焦点在x轴,焦距为4,并且经过点(52,−32)的椭圆的标准方程;(2)已知双曲线的渐近线方程为y=±12x,且与椭圆x210+y25=1有公共焦点,求此双曲线的方程.13.设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A、B两点,若椭圆的长轴长为4√2,求△ABF1的面积.14.命题P:方程x2k−2+y2k−1=1表示双曲线,命题q:不等式x2-2x+k2-1>0对一切实数x恒成立.(1)求命题P中双曲线的焦点坐标;(2)若命题“p且q”为真命题,求实数k的取值范围.15. 已知椭圆C 的右焦点为F (1,0),且点P(1,32)在椭圆上.(1)求椭圆C 的标准方程;(2)已知定点M (-4,0),直线y =kx +1与椭圆C 相交与A ,B 两点,若∠AMO =∠BMO (O 为坐标原点),求k 的值.16. 设F 1,F 2分别是椭圆E :x 2a 2+yb22=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A,B 两点,|AF 1|=3|BF 1|(1)若|AB |=4,ΔABF 2的周长为16,求|AF 2|; (2)若cos∠AF 2B =35,求椭圆E 的离心率.17. 已知椭圆C 与双曲线y 24−x 23=1有共同的焦点,椭圆C 的离心率为√74,点P(2,−3)与椭圆C 上的两点A (x 1,y 1),B (x 2,y 2)构成的三角形△PAB 的面积为10,且OP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0.(1)求椭圆C 的标准方程; (2)求证:直线AB 过椭圆的顶点.18. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦距为4,且过点(−3,2√6).(1)求双曲线方程和其渐近线方程;(2)若直线l:y =kx +2与双曲线C 有且只有一个公共点,求实数k 的取值范围.19.已知直线y=kx−1和双曲线C:x2−y2=1交于A,B两点.(Ⅰ)求实数k的取值范围;(Ⅱ)若k=−√62,求ΔAOB的面积.20.已知直线l:y=kx+1与双曲线C:3x2-y2=1.(1)当k=√3时,直线l与双曲线C的一渐近线交于点P,求点P到另一渐近线的距离;(2)若直线l与双曲线C交于A,B两点,若|AB|=4√3,求k的值.21.曲线C上的点M(x,y)到定点F(2,0)的距离和它到直线x=12的距离的比是常数2.(Ⅰ)求曲线C的轨迹的方程;(Ⅱ)直线l与曲线C交于A,B两点,且点P(1,3)为线段AB的中点,求直线l的方程.22.双曲线的方程是x24-y2=1.(1)直线l的倾斜角为π4,被双曲线截得的弦长为83√11,求直线l的方程;(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.答案和解析1.【答案】解:(1)由离心率e =ca =√2,解得a =b ,设方程为x 2-y 2=λ,又双曲线过点(4,−√10), ∴16-10=λ, 解得λ=6, ∴双曲线方程为x 26−y 26=1,(2)由点(3,m )在双曲线上,得96−m 26=1,解得m =±√3,又|F 1F 2|=2c =2√a 2+b 2=4√3,所以△MF 1F 2的面积为S =12×4√3×√3=6.【解析】本题考查双曲线的标准方程,以及双曲线的简单性质的应用.解答的关键是对双曲线标准方程的理解和向量运算的应用,难度适中.(1)由离心率e =ca =√2,解得a =b ,设双曲线方程为x 2-y 2=λ,点代入求出参数λ的值,从而求出双曲线方程,(2)把点M (3,m )代入双曲线,可解得m =±√3,即可得其面积.2.【答案】解:(Ⅰ)根据题意,双曲线的方程为x 23−y 2=1,其顶点为(±√3,0),焦点为(±2,0), 则椭圆Cx 2a 2+y 2b 2=1的焦点为(±√3,0),顶点为(±2,0), 则a =2,c =√3,则b =√a 2−b 2=1, 故椭圆的方程为x 24+y 2=1;(Ⅱ)根据题意,∠F 1PF 2=90°,即△F 1PF 2为直角三角形,则有{|PF 1|+|PF 2|=2a =4|PF 1|2+|PF 2|2=|F 1F 2|2=12⇒|PF 1|⋅|PF 2|=2; 故△PF 1F 2的面积S =12|PF 1|⋅|PF 2|=1.【解析】本题考查椭圆的几何性质,涉及椭圆、双曲线的标准方程,属于中档题.(Ⅰ)根据题意,由双曲线的方程分析焦点、顶点坐标,即可得椭圆C 的焦点、顶点坐标,据此分析可得答案;(Ⅱ)根据题意,分析可得{|PF 1|+|PF 2|=2a =4|PF 1|2+|PF 2|2=|F 1F 2|2=12,变形可得|PF 1|•|PF 2|的值,由三角形面积公式计算可得答案.3.【答案】解:(1)∵短轴长为6,∴b=3,∵离心率为√74,∴ca =√74,又∵a2=b2+c2,∴a=4,∴椭圆C1的标准方程为x216+y29=1或y216+x29=1;(2)∵双曲线与椭圆5x2+9y2=45有相同焦点,∴焦点坐标为(±2,0),又∵双曲线过点,∴2a=3√3−√3=2√3,即a=√3,∴b=1,∴双曲线C2的标准方程为x23−y2=1;【解析】本题考查圆锥曲线的标准方程,属于基础题.(1)由椭圆的性质得到b,由离心率得到a和c的关系,再由a2=b2+c2解得a,b,就求得椭圆方程;(2)求出椭圆的焦点得到c,再把点的坐标代入双曲线方程,结合a2+b2=c2,解得a和b,就求得双曲线方程;4.【答案】解:(1)设AF1=m,∵AF1⊥x轴,∠AF2F1=30°,∴AF2=2m,,由椭圆的定义及几何性质知2a=AF1+AF2=3m,2c=F1F2=√3m,e=2c2a =√3m3m=√33;(2)由△ABF1的周长为4√3得4a=4√3,∴a=√3,由(1)得c=1,b2=a2-c2=3-1=2,∴椭圆的标准方程为x23+y22=1.【解析】本题考查椭圆的方程的求法,椭圆的性质及三角形的周长,注意运用椭圆的定义,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)由已知条件及2a=PF1+PF2,2c=F1F2,直接求解即可;(2)由椭圆的定义及性质知:ΔABF1的周长等于4a=4√3,算出a,再由(1)得到c、b,从而求出椭圆标准方程.5.【答案】解:(Ⅰ)由椭圆的离心率e=ca =√1−b2a2=√22,则a=√2b,由b=√12+12=√2,则a=2,∴椭圆的标准方程为:x24+y22=1;(Ⅱ)由(Ⅰ)可知:椭圆的焦点F1(-√2,0),F2(√2,0),当直线l 斜率不存在时,则x =-√2,则A (-√2,1),B (-√2,-1),则F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =(-2√2,-1)(-2√2,1)=7≠6,不符合题意,舍去,当直线l 的斜率存在,且不为0,设直线l 的方程为:y =k (x +√2),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x +√2)x 24+y 22=1,消去y 得,(2k 2+1)x 2+4√2k 2x +4k 2-4=0, x 1+x 2=-4√2k22k 2+1,x 1x 2=4k 2−42k 2+1,y 1y 2=k 2(x 1+√2)(x 2+√2)=k 2(x 1x 2+√2(x 1+x 2)+2)=-2k 22k 2+1,则F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =(x 1-√2,y 1)(x 2-√2,y 2)=x 1x 2-√2(x 1+x 2)+2+y 1y 2=4k2−4+8k 2−2k 22k 2+1+2=6,则k 2=4,解得:k =±2, ∴直线l 的方程为y =±2(x +√2).【解析】(Ⅰ)根据椭圆的离心率公式及点到直线的距离公式即可求得a 和b 的值,求得椭圆的方程;(Ⅱ)分类讨论,设直线方程,代入椭圆方程,利用韦达定理及向量的坐标运算,即可求得k 的值,即可求得直线l 的方程.本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理及向量的坐标运算,考查转化思想,属于中档题.6.【答案】解:(1)∵椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为√32, 且经过点M (2,1),∴{ a 2−b 2a 2=344a 2+1b 2=1,∴a 2=8,b 2=2, ∴椭圆方程方程为x 28+y 22=1;(2)设A (x 1,y 1),B (x 2,y 2),线段AB 中点坐标为(a ,b ),则x 12+4y 12=8,x 22+4y 22=8,两式相减得 (x 1−x 2)(x 1+x 2)+4(y 1−y 2)(y 1+y 2)=0, 结合直线y =12x -1可得{4×(−12)=ab b =a2−1∴a =1,即线段AB 中点的横坐标为1.【解析】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,考查点差法的运用,属于中档题. (1)由题意,椭圆经过点M (2,1),离心率为√32,建立方程组,求出a ,b ,由此可得椭圆的方程;(2)利用点差法,结合直线的斜率,即可求线段AB 中点的横坐标.7.【答案】解:(1)∵椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8,离心率e =√32, ∴{2a =8c a=√32,∴a =4,c =2√3,b =√16−12=2, ∴椭圆C 的标准方程为x 216+y 24=1 ;(2)设所求直线方程为y -1=k (x -2),代入椭圆方程并整理得:(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根, ∴x 1+x 2=8(2k 2−k )4k 2+1,又M 为AB 的中点, ∴x 1+x 22=4(2k 2−k )4k 2+1=2,解得k =−12,故所求直线方程为x +2y -4=0.【解析】本题考查直线与圆锥曲线的关系,椭圆的标准方程,椭圆的简单性质. (1)由椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8,离心率e =√32,得出{2a =8ca=√32,由此能求出椭圆C 的标准方程;(2)设所求直线方程为y -1=k (x -2),代入椭圆方程并整理得:(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8(2k 2−k )4k 2+1,由M 为AB 的中点,知x 1+x 22=4(2k 2−k )4k 2+1=2,由此能求出直线方程.8.【答案】解:(1)由题设得2a +2c =4+2√3,又e =√32=ca, 解得a =2,c =√3,∴b =1, 故椭圆ℎ(x)的方程为x 24+y 2=1.(2)设直线l 方程为:y =12x +m , 代入椭圆C:x 24+y 2=1并整理得:x 2+2mx +2m 2−2=0,设P(x 1,y 1),Q(x 2,y 2),则{x 1+x 2=−2mx 1x 2=2m 2−2.∵|PQ|=√(x 1−x 2)2+(y 1−y 2)2=√1+k 2|x 2−x 1|=√1+14⋅√(x 2+x 1)2−4x 1x 2=√52⋅√8−4m 2,B 到直线PQ 的距离为d 1=√5,A 到直线PQ 的距离为d 2=√5,又因为P 在第一象限, 所以−1<m <1,所以d 1+d 2=√5√5=√5,所以S APBQ =12(d 1+d 2)⋅PQ =√8−4m 2=√7, 解得m =±12,所以直线方程为y =12x ±12.【解析】本题考查椭圆的标准方程,弦长问题,涉及离心率,点到直线的距离公式,属中档题(1)根据焦点三角形的周长,利用椭圆的定义得到a +c 的值,结合离心率,求出a ,c 的值,进而得b ; (2)设直线l 方程为:y =12x +m ,联立方程组消去y 并整理得:x 2+2mx +2m 2−2=0,借助于韦达定理,利用弦长公式得到|PQ |,利用点到直线的距离公式得到A ,B 到直线PQ 的距离,进一步根据P 在第一象限,得出m 的取值范围,从而得出四边形APBQ 面积关于m 的函数表达式,并根据已知面积求得m 的值,即得所求直线的方程,由于包含了弦长问题,对应方程的判别式自然大于0,可免除检验.9.【答案】解:设椭圆方程为mx 2+ny 2=1(m,n >0,m ≠n ),由{m(−32)2+n(52)2=13m +5n =1, 得m =16,n =110, 所以,椭圆的方程为y 210+x 26=1.【解析】本题主要考查椭圆的标准方程,属于基础题.设椭圆的一般方程mx 2+ny 2=1(m,n >0,m ≠n ),把点代入解答即得.10.【答案】解: (1)设双曲线方程为mx 2−ny 2=1,由双曲线渐近线方程为y =±√3x,且经过点(2,3),可得{mn=34m −9n =1,解得m =1,n =13, 故双曲线方程为x 2−y 23=1(2)联立{y =x −2x 2−y 23=1得2x 2+4x −7=0 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−2,x 1x 2=−72 y 1y 2=(x 1−2)(x 2−2)=x 1x 2−2(x 1+x 2)+4=−72+4+4=92∴OA ⃗⃗⃗⃗⃗ •OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=−72+92=1.【解析】本题考查了双曲线方程,直线与双曲线方程的位置关系.(1)设双曲线方程为mx 2−ny 2=1,由题意可得{mn =34m −9n =1,解得m ,n 即可得双曲线方程.(2)联立{y =x −2x 2−y 23=1得2x 2+4x −7=0,设A(x 1,y 1),B(x 2,y 2),结合韦达定理和数量积的运算可得答案.11.【答案】解:(1)设双曲线的方程为x 29−y 225=λ(λ≠0),将点(3,10)代入可得99−10025=−3=λ,故双曲线的方程为x29−y225=−3,即双曲线C的标准方程为y275−x227=1.(2)由题意知双曲线C的离心率为√2,焦点坐标为(-2,0),(2,0),所以可设双曲线C的标准方程为x2a2−y2b2=1(a>0,b>0),则a2+b2=4,√a2+b2a=√2,解得a2=b2=2,所以双曲线C的标准方程为x22−y22=1.【解析】本题考查双曲线的标准方程.几何意义.12.【答案】解:(1)设椭圆方程为x2a2+y2b2=1(a>b>0),两焦点坐标分别为(2,0),(-2,0),由椭圆定义知2a=√(52+2)2+(−32)2+√(52−2)2+(−32)2=2√10,得a=√10,又因为c=2,所以b2=a2−c2=10−4=6,故所求椭圆标准方程为x210+y26=1.(2)设双曲线方程为x2a2−y2b2=1(a>0,b>0),因为椭圆的焦点为(√5,0),(−√5,0),所以双曲线的半焦距c=√5,由题意知ba =12,所以a2=4b2,又c2=a2+b2,故5b2=5,所以b2=1,a2=4,所以双曲线的方程x24−y2=1.【解析】本题考查椭圆的概念及标准方程、双曲线的性质及及几何意义的知识点,属于基础题.(1)设椭圆方程为x2a2+y2b2=1(a>b>0),两焦点坐标分别为(2,0),(-2,0),由椭圆定义得到a的值,从而得到椭圆的标准方程;(2)设双曲线方程为x2a2−y2b2=1(a>0,b>0),根据椭圆的焦点得到双曲线的半焦距,再根据已知条件得到答案.13.【答案】解:(1)∵椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(a,b),|PF2|=|F1F2|,∴√(a−c)2+b2=2c,可得a2-2ac+c2+a2-c2=4c2,e=ca,∴2e2+e-1=0,又∵e∈(0,1)∴e=12.(2)∵2a=4√2∴a=2√2又∵e=12∴c=√2,∵b2=a2-c2=6∴椭圆的方程为x28+y26=1,∴AB方程为:y=√3x−√6设A(x1,y1),B(x2,y2),联立{y=√3x−√63x2+4y2=24得:5y2+2√6y+8=0,∴y1+y2=−2√65,y1y2=−185,∴S△ABF1=12F1F2⋅|y1−y2|=√2√(y1+y2)2−4y1y2=16√35.△ABF1的面积为:16√35.【解析】(1)利用已知条件,结合椭圆的性质,求解椭圆的离心率即可.(2)利用椭圆的长轴长求出a,得到c,然后求解b,求出椭圆方程,求出AB的方程,联立直线与椭圆的方程,通过韦达定理,转化求解三角形的面积.本题考查直线与椭圆的位置关系的综合应用,椭圆的标准方程的求法,椭圆的简单性质的应用,考查转化思想以及计算能力,是中档题.14.【答案】解:(1)因为k-1>k-2,所以a2=k-1,b2=k-2…(2分)所以c2=1,且焦点在y轴上,…(4分)所以双曲线的焦点坐标为(0,±1).…(6分)(2)命题p:(k-2)(k-1)<0,1<k<2;…(8分)命题q:△=4-4(k2-1)<0,k<-√2或k>√2.…(10分)因为命题“p且q”为真命题,所以{1<k<2k<−√2或k>√2即√2<k<2.…(14分)(注:若第(1)问分类讨论答案对也算对)【解析】(1)直接利用双曲线方程为x2k−2+y2k−1=1,可得a2=k-1,b2=k-2以及焦点在y轴上;再利用a,b,c之间的关系求出c即可求出结论.(2)命题p为真命题,得方程x2k−2+y2k−1=1表示双曲线,说明x2的分母与y2的分母的积为负数.联列不等式组,解之即得实数k的取值范围;再利用根的判别式找出命题q真时,实数k的取值范围,再由p∧q 为真命题,说明“p真q真”成立,可得实数k的取值范围.本题以命题真假的判断为载体,着重考查了双曲线的标准方程和一元二次不等式的解集等知识点,属于基础题.15.【答案】(1)由题意得椭圆两焦点分别为(-1,0),(1,0),又因为M(1,32)在椭圆上,所以2a=|MF1|+|MF2|=√(1+1)2+94+32=4,即a=2,又因为c=1,所以b2=a2-c2=3,所以椭圆的方程是x24+y23=1;(2)若∠AMO=∠BMO,则k MA+k MB=0.设A(x1,kx1+1),B(x2,kx2+1),∴kx1+1 x1+4+kx2+1x2+4=0即2kx1x2+(4k+1)(x1+x2)+8=0.联立{y=kx+1x24+y23=1,消去y得到(3+4k2)x2+8kx-8=0,∴x1+x2=−8k3+4k2,x1x2=−83+4k2,∴−16k 3+4k2+(4k+1)−8k3+4k2+8=0,即-16k-32k2-8k+24+32k2=0,∴k=1.【解析】(1)由题可知焦点坐标分别为(1,0),(-1,0),根据椭圆定义得MF1+MF2=2a,求出a,b;(2)∠AMO=∠BMO,得k MA+k MB=0.设A(x1,kx1+1),B(x2,kx2+1),则kx1+1x1+4+kx2+1x2+4=0,联立{y=kx+1x24+y23=1,消去y得到(3+4k2)x2+8kx-8=0,再利用韦达定理代入求出k即可.本题考查椭圆标准方程,涉及直线与椭圆的位置关系等知识点,属于中档题.16.【答案】解:(1)∵|AB|=4,|AF1|=3|F1B|,∴|AF1|=3,|F1B|=1,∵△ABF2的周长为16,∴4a=16,∴|AF1|+|AF2|=2a=8,∴|AF2|=5;(2)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,∴|AF2|=2a−3k,|BF2|=2a−k,∵cos∠AF2B=35,在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2−2|AF2|•|BF2|cos∠AF2B,∴(4k)2=(2a−3k)2+(2a−k)2−65(2a−3k)(2a−k),化简可得(a+k)(a−3k)=0,而a+k>0,故a=3k,∴|AF2|=|AF1|=3k,|BF2|=5k,∴|BF2|2=|AF2|2+|AB|2,∴AF1⊥AF2,∴△AF1F2是等腰直角三角形,∴c=√22a,∴e=ca =√22.【解析】本题考查了椭圆的概念及标准方程、几何性质和余弦定理,考查计算能力,属中档题.(1)利用|AB|=4,△ABF 2的周长为16,|AF 1|=3|F 1B|,结合椭圆的定义,即可求|AF 2|;(2)设|F 1B|=k (k >0),则|AF 1|=3k ,|AB|=4k ,由cos∠AF 2B =35,利用余弦定理,可得a =3k ,从而△AF 1F 2是等腰直角三角形,即可求椭圆E 的离心率.17.【答案】解:(1)∵双曲线y 24−x23=1的焦点坐标为(0,±√7),∴c =√7, 设椭圆C 的方程为y 2a2+x 2b2=1,(a >b >0),由e =ca =√7a=√74,解得a =4,则b =3,∴椭圆C 的标准方程为x 29+y 216=1.证明:(2)∵OP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,∴OP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ , 又k OP =-32,∴k AB =23, 设AB 的方程为y =23x +m ,由{y =23x +m x 29+y 216=1,得16x 2+9(23x +m )2-144=0,即20x 2+12mx +9m 2-144=0, ∵A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−35m ,x 1x 2=9m 2−14420,|AB |=√(1+49)[(x 1+x 2)2−4x 1x 2]=√139×(925m 2−4×9m2−14420)=25√13(20−m 2),点P 到AB 的距离d =√13=√13,∴△PAB 的面积S △PAB =12×√13×25√13(20−m 2)=10, ∴|13+3m |√20−m 2=50,解得m =4, ∴直线AB 的方程为y =23x +4, ∴直线AB 过椭圆的顶点(0,4).【解析】(1)由椭圆C 与双曲线y 24−x 23=1有共同的焦点,椭圆C 的离心率为√74,列方程求出a =4,b =3,由此能求出椭圆C 的标准方程.(2)由OP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,得OP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,从而k AB =23,设AB 的方程为y =23x +m ,由{y =23x +m x 29+y 216=1,得20x 2+12mx +9m 2-144=0,由此利用韦达定理、弦长公式、点到直线的距离公式、三角形面积公式,推导出直线AB 的方程为y =23x +4,由此能证明直线AB 过椭圆的顶点(0,4).本题考查椭圆的标准方程的求法,考查直线过椭圆的顶点坐标的证明,考查椭圆、直线方程、韦达定理、弦长公式、点到直线的距离公式、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.【答案】解:(1)由题意得{a 2+b 2=49a 2−24b 2=1 ,解得{a 2=1b 2=3, ∴双曲线方程为x 2−y 23=1,其渐近线方程为y =±√3x ;(2)由{y =kx +2x 2−y 23=1 ,得(3-k 2)x 2-4kx -7=0,由题意得{3−k 2≠0Δ=16k 2+28(3−k 2)=0, ∴k 2=7,∴k =±√7 ,当3-k 2=0时,直线l 与双曲线C 的渐近线y =±√3x 平行, 即k =±√3时,直线l 与双曲线C 只有一个公共点, 综上,k =±√7或k =±√3.【解析】本题考查直线与双曲线的位置关系,考查计算能力.(1)由双曲线的焦距及双曲线一点,联立方程组,求出a 和b ,可得双曲线C 的方程与渐近线方程. (2)联立直线与双曲线的方程组,通过消元,利用方程解的个数,求出k 的值即可. 19.【答案】解:(Ⅰ)因为双曲线C 与直线有两个不同的交点, 则方程组{x 2−y 2=1y =kx +1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴ {1−k 2≠0Δ=4k 2+8(1−k 2)>0, 解得−√2<k <√2且k ≠±1,故双曲线C 与直线有两个不同的交点时, k 的取值范围是(-√2,-1)∪(-1,1)∪(1,√2); (Ⅱ)当k =−√62,直线方程为y =−√62x −1,联立{x 2−y 2=1y =−√62x −1,消去y ,可得x²+2√6x +4=0,△>0 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−2√6,x 1x 2=4,所以|AB |=√1+k²×√(x 1+x 2)2−4x 1x 2=2√5,圆心O 到直线y =−√62x −1距离为d =√1+32=√25, 所以ΔAOB 的面积12×√25×2√5=√2.【解析】本题考查直线与双曲线的位置关系,考查点到直线的距离,涉及弦长公式,属于中档题.(Ⅰ)直线方程和双曲线方程联立,消去y ,利用△>0求解即可;(Ⅱ)利用弦长公式求出|AB |,再利用点到直线的距离公式求出AB 边上的高,代入面积公式求解.20.【答案】(1)解:双曲线C :3x 2-y 2=1渐近线方程为y =±√3x .由{y =√3x +1y =−√3x得P (-√36,12)则P 到y =√3x 的距离为d =12−√3×(−√36)√1+3=12;(2)解:联立方程组{y =kx +13x 2−y 2=1,消去y 得(3-k 2)x 2-2kx -2=0, ∵直线与双曲线有两个交点,∴{3−k 2≠0△=4k 2+8(3−k 2)>0,解得k 2<6且k 2≠3, .x 1x 2=−23−k 2,x 1+x 2=2k3−k 2|AB |=√1+k 2|x 1-x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2 =2√−k 4+5k 2+6√(k 2−3)2=4√3 (k 2<6且k 2≠3).k 4-77k 2+102=0, 解得k 2=2,或k 2=5113,∴k =±√2,k =±√66313.【解析】(1)写出双曲线C :3x 2-y 2=1渐近线方程,求得P (-√36,12),即可求P 到y =√3x 的距离.(2)直接联立直线与双曲线方程,化为关于x 的一元二次方程,利用根与系数关系求得两交点A ,B 的横坐标的和与积,由弦长公式求得弦长;本题主要考查了直线与双曲线的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,是中档题.21.【答案】解:(Ⅰ)由题意有,√(x−2)2+(y−0)2|12−x|=2,将上式两边平方,并化简得,3x 2−y 2=3,即x 2−y 23=1,所以曲线C 的轨迹的方程为x 2−y 23=1;(Ⅱ)设A(x 1,y 1),B(x 2,y 2),则有x 12−y 123=1, x 22−y 223=1,两式相减得x 12− x 22=y 12−y 223,即有(x 1+x 2)(x 1−x 2)=(y 1+y 2)(y 1−y 2)3,所以,k =y 1−y2x 1−x 2=3(x 1+x 2)y 1+y 2,又因为点P(1,3)为线段AB 的中点, 所以x 1+x 2=2,y 1+y 2=6故k =1,所以直线l 得方程为y −3=x −1,即x −y +2=0【解析】本题考查轨迹方程,考查直线与双曲线的位置关系,考查弦长的计算,正确求出双曲线的方程是关键,考查推理能力和计算能力,属于中档题.(Ⅰ)利用点M(x,y)到定点F(2,0)的距离和它到直线x =12的距离的比是常数2,建立方程,化简可得结论; (Ⅱ)利用点差法即可求解.22.【答案】解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0,△=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1)、B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=4(m 2+1)3.由弦长公式|AB |=√1+k 2|x 1-x 2|,得√2⋅√(−83m)2−16(m2+1)3=83√11,∴4√2⋅√m2−33=83√11,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5. (2)设直线l ′与双曲线交于A ′(x 3,y 3)、B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2.由x 32−4y 32=4,x 42−4y 42=4, 两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3−y 4x 3−x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0. 把此方程代入双曲线方程,整理得5y 2-10y +114=0, 满足△>0,即所求直线l ′的方程为3x -4y -5=0.【解析】(1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0,利用判别式的符号,设直线l 与双曲线交于A (x 1,y 1)、B (x 2,y 2)两点,利用韦达定理,弦长公式,转化求解即可. (2)设直线l ′与双曲线交于A ′(x 3,y 3)、B ′(x 4,y 4)两点,通过平方差法转化求解即可. 本题考查直线与双曲线的位置关系的应用,考查转化思想以及计算能力.。

椭圆及双曲线练习题(含详解)

椭圆及双曲线练习题(含详解)

椭圆练习题一、选择题1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( D ) A .x -2y =0 B .x +2y -4=0 C .2x +3y +4=0 D .x +2y -8=02.(2014²福州高二检测)椭圆+=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( B )A.8B.4C.2D. 3.已知椭圆+y 2=1的焦点为F 1,F 2,点M 在该椭圆上,且²=0,则点M 到x 轴的距离为( C ) A. B. C. D. 4.(2014²衡水高二检测)如果AB 是椭圆+=1的任意一条与x 轴不垂直的弦,O 为椭圆的中心,e 为椭圆的离心率,M 为AB 的中点,则k AB ²k OM 的值为( C )A.e-1B.1-eC.e 2-1D.1-e 25.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( )A.2B.3C.6D.8二、填空题 6.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________,∠F 1PF 2的大小为________.答案:2 120°7.(2011²浙江高考)设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上,若F 1A →=5F 2B →,则点A 的坐标是________.答案:(0,±1)8.(2010·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆的方程________.答案:x 24+y 2=1. 三、解答题9.设F 1,F 2分别是椭圆E:x 2+=1(0<b<1)的左、右焦点,过F 1的直线l 与E 相交于A,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列.(1)求|AB|.(2)若直线l 的斜率为1,求b 的值.双曲线练习题一、选择题1.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( C )A.365B.566C.65D.562.(2013·岳阳质检)等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( D ) A.x 29-y 29=1 B.y 29-x 29=1 C.y 218-x 218=1 D.x 218-y 218=1 3.(2012·高考湖南卷)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( A )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 4.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( D ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 5.(2010²新课标全国卷)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( B )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 6.(2011²课标全国高考)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( B ) A. 2 B. 3 C .2 D .37.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( C )A.12B.22C.62D.328.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,则双曲线x 2a 2-y 2b2=1的渐近线方程为( A ) A .y =±22x B .y =±2x C .y =±2x D .y =±12x 9.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( B ) A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 10.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( C )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形二、填空题 11.已知F 是双曲线的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为__________. 12.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.答案:x 29-y 2=1 13.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__________.答案:4814.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 以直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.答案:2三、解答题15.经过点M (2,2)作直线l 交双曲线x 2-y 24=1于A ,B 两点,且M 为AB 中点. (1)求直线l 的方程;(2)求线段AB 的长.16. 已知曲线C x 2-y 2=1及直线l :y=kx-1.(1)若l 与C 左支交于两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A 、B 两点,O 是坐标原点,且△AOB 的面积为 ,求实数k 的值.。

椭圆、双曲线、抛物线综合测试题

椭圆、双曲线、抛物线综合测试题

椭圆、双曲线、抛物线综合测试题一 选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1设双曲线2212y x m -=的一个焦点为(0,2)-,则双曲线的离心率为( ).A B 2 C D 2椭圆221167x y +=的左、右焦点分别为12,F F ,一直线经过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为( )A 32B 16C 8D 43 两个正数a 、b 的等差中项是52,,则椭圆22221x y a b +=的离心率为( )A2 B3 C 3D 4设1F 、2F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且31||PF =42||PF , 则12PF F ∆的面积为( )A B C 24 D 485 P 是双曲线22916x y -=1的右支上一点,M 、N 分别是圆22(5)1x y ++=和22(5)x y -+=4上的点,则||||PM PN -的最大值为( )A 6B 7C 8D 96已知抛物线24x y =上的动点P 在x 轴上的射影为点M ,点(3,2)A ,则||||PA PM +的最小值为( )A1 B2 C 1 D 27 一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为( )A 圆B 椭圆C 双曲线D 抛物线8若双曲线22221(0,0)x y a b a b-=>>的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )ABCD 29抛物线2y x =上到直线20x y -=距离最近的点的坐标( ) A 35,24⎛⎫⎪⎝⎭ B (1,1) C 39,24⎛⎫⎪⎝⎭D (2,4) 10已知c 是椭圆22221x y a b +=(0)a b >>的半焦距,则b ca+的取值范围( )A (1,)+∞ B)+∞ CD11方程2mx ny +=0与22mx ny +=1(0,0,)m n m n >>≠表示的曲线在同一坐标系中图象可能是( )12若AB 是抛物线22(0)y px p =>的动弦,且||(2)AB a a p =>,则AB 的中点M 到y轴的最近距离是( ) A12a B 12p C 1122a p + D 12a -12p 二 填空题(本大题共4个小题,每小题5分,共20分.把答案填写在题中横线上)BCDA13 设1F 、2F 分别是双曲线的左、右焦点,P 是双曲线上一点,且12F PF ∠=60o ,12PF F S ∆=2,则双曲线方程的标准方程为 .14 已知椭圆221x y m n +=与双曲线221x y p q -=(,,,,)m n p q R m n +∈>,有共同的焦点1F 、2F ,点P 是双曲线与椭圆的一个交点,则12||||PF PF •= .15 已知抛物线22(0)x py p =>上一点A (0,4)到其焦点的距离为174,则p = .16已知双曲线2222x y a -=1(a >的两条渐近线的夹角为3π,则双曲线的离心率为 .三 解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)求适合下列条件的双曲线的标准方程:⑴ 焦点在x 轴上,虚轴长为12,离心率为54; ⑵ 顶点间的距离为6,渐近线方程为32y x =±.18.(12分)在平面直角坐标系中,已知两点(3,0)A -及(3,0)B .动点Q 到点A 的距离为10,线段BQ 的垂直平分线交AQ 于点P . ⑴求||||PA PB +的值; ⑵写出点P 的轨迹方程.19.(12分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,过右焦点2F 且与x 轴垂直的直线l 与椭圆相交,其中一个交点为M . ⑴求椭圆的方程;⑵设椭圆的一个顶点为(0,)B b -,直线2BF 交椭圆于另一点N ,求1F BN ∆的面积.20.(12分)已知抛物线方程24x y =,过点(,4)P t -作抛物线的两条切线PA 、PB ,切点为A 、B .⑴求证:直线AB 过定点(0,4);⑵求OAB ∆(O 为坐标原点)面积的最小值.21 .(12分)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且1||PF =3|2|PF .⑴求双曲线离心率e 的取值范围,并写出e 取得最大值时,双曲线的渐近线方程;⑵若点P的坐标为,且12PF PF •u u u r u u u u r =0,求双曲线方程.22.(12分)已知O 为坐标原点,点F 、T 、M 、1P 满足OF u u u r =(1,0),(1,)OT t =-u u u r,FM MT =u u u u r u u u r ,1PM u u u u r ⊥FT u u u r ,1PT u u u r ∥OF u u ur .⑴求当t 变化时,点1P 的轨迹方程;⑵若2P 是轨迹上不同于1P 的另一点,且存在非零实数λ使得12FP FP λ=u u u r u u u r,求证:1211||||FP FP +u u ur u u u r =1. 参考答案1A 提示:根据题意得222c a b =+=2m +=4,∴m =2,∴c e a ===.故选A .2B 提示:2ABF ∆的周长=12||||AF AF ++12||||BF BF +=4a =16.故选B . 3C 提示:根据题意得56a b ab +=⎧⎨=⎩,解得a =3,b =2,∴cce a =4C 提示:∵P 是双曲线上的一点,且31||PF =42||PF ,1||PF -2||PF =2,解得1||PF =8,2||PF =6,又12||F F =2c =10,∴12PF F ∆是直角三角形,12PF F S ∆=1862⨯⨯=24.故选C .5 D 提示:由于两圆心恰为双曲线的焦点,||PM ≤1||PF +1,||PN ≥2||PF 2-,∴||||PM PN -≤1||PF +1—(2||PF 2-) =1||PF —2||PF +3=2a +3=9.6A 提示:设d 为点P 到准线1y =-的距离,F 为抛物线的焦点,由抛物线的定义及数形结合得,||||PA PM +=d -1+||PA =||PA +||PF -1≥||AF -1-.故选A .7C 提示:设圆221x y +=的圆心为(0,0)O ,半径为1,圆228120x y x +++=的圆心为1(4,0)O -,O '为动圆的圆心,r 为动圆的半径,则1||||O O O O ''-=(2)(1)r r +-+=1,所以根据双曲线的定义可知.故选C .8C 提示:设其中一个焦点为(,0)F c ,一条渐近线方程为by x a=,根据题意得||b c 2a ,化简得2b a =,∴ e =c a2题图选C .9 B 提示:设2(,)P x x 为抛物线2y x =上任意一点,则点P 到直线的距离为2d =2,∴当1x =时,距离最小,即点P (1,1).故选B .10 D 提示:由于22222b c b c bc a a +++⎛⎫= ⎪⎝⎭≤22222b c b c a +++=2,则b c a +, 又b c a +>,则b ca+>1.故选D . 11 C 提示:椭圆与抛物线开口向左.12 D 提示:设11(,)A x y ,22(,)B x y ,结合抛物线的定义和相关性质,则AB 的中点M 到y 轴的距离为122x x +=||||222p pAF BF -+-=||||2AF BF p +-,显然当AB 过焦点时,其值最小,即为12a -12p .故选D .二 填空题13221412x y -= 提示:设双曲线方程为22221x y a b -=,∵2ce a ==,∴2c a =.∵12PF F S ∆=,∴1||PF ×2||PF =48.()22c =21||PF +22||PF -21||PF 2||PF 12cos F PF ∠,解得216c =,∴2a =4,2b =12.14 m p - 提示:根据题意得1212||||||||PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得1||PF,2||PF =12||||PF PF •=m p -.1512 提示:利用抛物线的定义可知4()2p --=174,p =12.163提示:根据题意得3a =,a =c =c e a==3.三 解答题17解:⑴因为焦点在x 轴上,设双曲线的标准方程为22221(0,0)x y a b a b-=>>,∴22221254a b c b c a ⎧⎪+=⎪=⎨⎪⎪=⎩,解得 8a =,6b =,10c =,∴双曲线的标准方程为2216436x y -=. ⑵设以32y x =±为渐近线的双曲线的标准方程为2249x y λ-=, ① 当0λ>时,,解得94λ=,此时所求的双曲线的标准方程为2218194x y -=; ② 当0λ<时,=6,解得1λ=-,此时所求的双曲线的标准方程为22194y x -=. 18解:⑴ 因为线段BQ 的垂直平分线交AQ 于点P ,∴||PB =||PQ , ∴||||PA PB +=||PA +||PQ =||AQ =10;⑵由⑴知||||PA PB +=10(常数),又||||PA PB +=10>6=||AB ,∴点P 的轨迹是中心在原点,以,A B 为焦点,长轴在x 轴上的椭圆,其中210,26a c ==,所以椭圆的轨迹方程为2212516x y +=. 19解:⑴∵l ⊥x轴,∴2F ,根据题意得22222112a ba b ⎧+=⎪⎨⎪-=⎩,解得2242a b ⎧=⎨=⎩, ∴所求椭圆的方程为:22142x y +=.⑵由⑴可知(0,B ,∴直线2BF的方程为y x =22142y x x y ⎧=-⎪⎨+=⎪⎩,解得点N的纵坐标为3,∴1F BN S ∆=12F F N S ∆+12F BF S ∆=123⨯⨯=83. 20解:⑴设切点11(,)A x y ,22(,)B x y ,又12y x '=, 则切线PA 的方程为:1111()2y y x x x -=-,即1112y x x y =-;切线PB 的方程为:2221()2y y x x x -=-,即2212y x x y =-,又因为点(,4)P t -是切线PA 、PB 的交点,∴ 11142x t y -=-, 22142x t y -=-,∴过A 、B 两点的直线方程为142tx y -=-,即1402tx y -+=,∴直线AB 过定点(0,4).⑵ 由214024tx y x y ⎧-+=⎪⎨⎪=⎩,解得2216x tx --=0,∴122x x t +=,1216x x =-.∴OAB S ∆=1214||2x x ⨯⨯-16. 当且仅当0t =时,OAB ∆(O 为坐标原点)面积的最小值21解:⑴∵1||PF -2||PF =2a ,1||PF =3|2|PF ,∴1||PF =3a ,2||PF =a , 由题意得1||PF +2||PF ≥12||F F ,∴4a ≥2c ,∴ca≤2,又因为1e >,∴双曲线离心率e 的取值范围为(1,2].故双曲线离心率的最大值为2.⑵∵12PF PF •u u u r u u u u r =0,∴21||PF +22||PF =24c ,即22104a c =,即2232b a =, 又因为点P 在双曲线上,∴22160902525a b -=1,∴2216060a a -=1, 解得 24a =,26b =,∴所求双曲线方程为;2222x y a b-=1.22解⑴设1P (,)x y ,则由FM MT =u u u u r u u u r 得点M 是线段FT 中点,∴(0,)2tM ,则1PM u u u u r =(,)2tx y --,又因为FT u u u r =(2,)t -,1PT u u u r =(1,)x t y ---,∵ 1PM u u u u r ⊥FT u u u r , ∴ 2()02tx t y +-=, ① ∵ 1PT u u u r ∥OF u u ur ,∴ (1)0()1x t y --•--•=0,即 t y = ②由 ①和②消去参数得 24y x =.⑵证明:易知(1,0)F 是抛物线24y x =的焦点,由12FP FP λ=u u u r u u u r,得F 、1P 、2P 三点共线,即1P 2P 为过焦点F 的弦.①当1P 2P 垂直于x 轴时,结论显然成立;② 当1P 2P 不垂直于x 轴时,设111(,)P x y ,222(,)P x y ,直线1P 2P 的方程为(1)y k x =-,∴24y kx k y x=-⎧⎨=⎩,整理得22222(2)0k x k x k -++=,∴12x x +=2224k k +,12x x =1, ∴1211||||FP FP +u u u r u u u r =121111x x +++=1212122()1x x x x x x +++++=1.。

椭圆和双曲线综合

椭圆和双曲线综合

椭圆和双曲线综合练习卷1.其中)的离心率分别为 ,则( ) A . B . C . D .与1大小不确定【答案】B.2. 的左焦点为,过点作双曲线的一条渐近线的垂线,垂足为,点在双曲线上,且,则双曲线的离心率为() AB CD【答案】C 设上,直线,由,得,因为在双曲线上,所以,化简得C . 3. 已知,若圆与双曲线是( )ABCD 【答案】A 由圆及双曲线的对称性可知,当时,圆与双曲线A . 4. 为双曲线的渐近线位于第一象限上的一点,若点到该双曲线左焦点的距离为,则点到其右焦点的距离为( )0>>n m 12e ,e 121e ,e >121e ,e <121e ,e =12e ,e B F F C H P 3FP FH =H FH 3FP FH =P 22413c a =0,>b a 222b y x =+a b ≥222b y x =+P P PA .B C D . 【答案】A由题意,知,,渐近线方程为,解得,所以点到其A .5. 设点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值为()【答案】B因为,即,B .6.的离心率为( ) ABC .2D 【答案】AA. 7. 的两顶点为,虚轴两端点为,两焦点为,若以为直径的圆内切于菱形,则双曲线的离心率为( ) ABCD【答案】C 直线方程为,即,由题意,∵C . 211a =2c =1a =P 21F F 、M ︒=∠9021MF F 2C 1e ︒=∠9021MF F 22212a a c +=12,A A 12,B B 12,F F 12,A A 1122F B F B 12B F 0bx cy bc +-=42310e e -+=1e >8.右焦点分别为,过点的直线与双曲线的右支相交于两点,且点的横坐标为2,则的周长为( )ABCD【答案】D 易知,所以周长为 9. 若点F 1、F 2分别为椭圆C :的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G的轨迹方程为( ) A .B .C .D .【答案】C10. l 交双曲线于A 、B 两点,若|AB |=4,则满足条件的直线l 有( )A .4条B .3条 C .2条 D .无数条 【答案】B ∵双曲线的两个顶点之间的距离是2,小于4, ∴过抛物线的焦点一定有两条直线使得交点之间的距离等于4,,∴,∴直线AB 的长度是4, 综上可知有三条直线满足|AB|=4,故选B .11. 在区间和内分别取一个数,记为和,则方程 )A B C D 12,F F 2F C ,P Q P 1PF Q ∆2(2,0)F PQ x ⊥1ΔPF Q 2y =±[]1,5[]2,6a b【答案】B它对应的平面区域如图中阴影部分所示,则方程故选B.12.右焦点分别为,,双曲线的离心率为,若双曲线上一点,则的值为( )A .B .C .D .【答案】B 得,由双曲线定义得,因为,可解得,由知,根, B. 13. 已知点,是椭圆上的动点,且,则的取值范围是( )1F 2F e P 221F P F F ⋅323-2-1,2a c ==2PF PF -=12PF PF =4,2PF PF ==4F F =122cos F P F F PF PF PF F ⋅=∠(1,0)M ,A B 0MA MB ∙=MA BA ∙AB .C D【答案】C 设,则,由题意有,所以所以,当时,有最大值,当时,有最小值 C. 14. 的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是()A BCD【答案】B 15. 已知分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线离心率的取值范围是( ) A . B .C .D .答案:C16. 的右支上一点,分别向圆和圆作切线,切点分别为,则 )A .10B .13C .16D .19 【答案】B最小值为.[1,9]1122(,),(,)A x y B x y 11221212(1,),(1,),(,)MA x y MB x y BA x x y y =-=-=--1212(1)(1)0MA MB x x y y ∙=--+=21121121112112(1)()()(1)(1)MA BA x x x y y y x x x x y y y ∙=--+-=---+-2x =-MA BA ∙9MA BA ∙12,A A P C 2PA []2,1--1PA P ()221:44C x y ++=()222:41C x y -+=,M N 1517. 过点作直线与双曲线交于A ,B 两点,使点P 为AB 中点,则这样的直线( ) A .存在一条,且方程为 B .存在无数条 C .存在两条,方程为 D .不存在答案:D18. 已知双曲线()0012222>>=-b a by a x ,的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________. 【答案】[2,+∞)19. 已知双曲线:的左、右焦点分别是,,正三角形的一边与双曲线左支交于点,且,则双曲线的离心率为 .【解析】设,则,所以20. 的左、右焦点分别为,是圆与位于轴上方的两个交点,且,则双曲线的离心率为______________.(1,1)P 2212y x -=210x y --=()210x y ±+=C a b1F 2F 12AF F 1AF B 114AF BF =C 11||4||=4mAF BF =2222222||||||2||||cos6013BF AF AB AF AB m =+-=()()12,0,,0F c F c -,A B ()2224x c y c ++=C x 12//F A F B C【解析】由双曲线定义得,因为,所以,再利用余弦定理得21. 的左右焦点分别为,为双曲线右支上一点,点的坐标为,则的最小值为__________.【答案】【解析】由双曲线定义可知,故,可知当三点共线时,最小,且最小值为.22. 上有一点,它关于原点的对称点为,点为双曲线的右焦点,且满足,设,则该双曲线离心率的取值范围为.【解析】设是左焦点,则,,因为,,又,则.又,∴,2222,22AF a c BF c a=+=-12//F A F B2112cos cos F F A F F B∠=-∠12F 、F P Q (23)-,1||||PQ PF +72||||21+=PF PF 1||||PQ PF +2||||21++=PF PQ 2,,F P Q 1||||PQ PF +7252||2=+=+QF A B F AF BF ⊥ABF α∠=e 1F 2x y a -=AF BF ⊥2222(2)4x y c c +==22()(2)x y a -=222()xy c a =-2ABF OAF S S ∆∆=222sin 2c a c α-=23. 以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,,则动点P 的轨迹为椭圆;③方程的两根可分别作为椭圆和双曲线的离心率;④和定点其中真命题的序号为 _______ 【答案】②③【解析】①中需要对③中方程的两个根分别是. 24. 的左顶点为,上顶点为,右焦点为.设线段的中点为,若,则该椭圆离心率的取值范围为25. 过点A .B 两点,若点恰好为弦的中点,则所在直线的方程为 . 【答案】【解析】设由①-因为点是弦的中点,∴,∴=,又因为直线过点(1,1),所以直线的方程为,即.26. 设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,||||PA PB k +=02522=+-x x )0,5(A k 2A B F AB M 022≥+∙BF MF MA (1,1)M M AB AB 013-94=+y x ),(),,(2221y x B x x A M AB2,22121=+=+y y x x k M AB 013-94=+y xB 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程. 解:(1)设焦距为2c ,则F 1(-c,0)F 2(c,0)∵k l =tan60°= 3 ∴l 的方程为y =3(x -c ) 即:3x -y -3c =0 ∵f 1到直线l 的距离为2 3 ∴|-3c -3c |(3)2+(-1)2=23c 2=3c =2 3∴c =2 ∴椭圆C 的焦距为4(2)设A (x 1,y 1)B (x 2,y )由题可知y 1<0,y 2>0 直线l 的方程为y =3(x -2)⎩⎪⎨⎪⎧y =3(x -2)x 2a 2+y 2b 2=1得(3a 2+b 2)y 2+43b 2y -3b 2(a 2-4)=0 由韦达定理可得⎩⎪⎨⎪⎧y 1+y 2=43b 23a +b2 ①y 1,y 2=-3b 2(a 2-4)3a 2+b2②∵AF →=2F 2B →∴-y 1=2y 2,代入①②得⎩⎪⎨⎪⎧-y 2=-43b 23a 2+b 2③-2y 22=-3b 2(a 2-4)3a 2+b2④③2④得12=48b 4(3a 2+b 2)2·3a 2+b 23b 2(a 2-4)=16b 2(3a 2+b 2)(a -4) ⑤ 又a 2=b 2+4 ⑥由⑤⑥解得a 2=9 b 2=5 ∴椭圆C 的方程为x 29+y 25=127. 已知双曲线的中心在坐标原点,焦点在轴上,虚轴长为. (1)求双曲线的标准方程;(2)若直线与曲线相交于两点(均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出定点的坐标.【答案】(12试题解析:(1C x 2C :l y kx m =+C ,A B ,A B AB CD l,解得,(2)设,得,有以为直径的圆过双曲线的左顶点,,即,解得当时,的方程为,直线过定点,,经检验符合已知条件,所以直线过定点,28. 已知椭圆x 22+y2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 设M 为AB 的中点,则M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2,222a b c +=2,1a b ==()()1122,,,A x y B x y ()()222148410k x mkx m ---+=AB C ()2,0D -1AD BD k k ∴=-2222y x =-+22316200m mk k ∴-+=2m k =2m k =l ()2y k x =+()2,0-l l代入直线方程y =mx +12 解得b =-m 2+22m 2.② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.29. 已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,334=FM(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP ,求直线OP (O 为原点)的斜率的取值范围.【答案】(I) ; (II) 22132x y += ;(III) 22,,⎛⎛-∞ ⎝. 【解析】(I) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有22222c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得k =(II)由(I)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为c ⎛⎫ ⎪⎝⎭,由FM ==,解得1c =,所以椭圆方程为22132x y +=(III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得t =>解得312x -<<-或10x -<<, 设直线OP 的斜率为m ,得y m x =,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =,得m ∈ ②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝综上,直线OP的斜率的取值范围是22,,⎛⎛-∞ ⎝ 30. 已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (1)求椭圆E 的离心率;(2)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.【答案】(I ;(II )221123x y +=. 【解析】试题分析:(I )先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(II )先由(I )知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k ,再利用AB =可得2b 的值,进而可得椭圆E 的方程.试题解析:(I )过点(),0c ,()0,b 的直线方程为0bx cy bc +-=,学优高考网则原点O 到直线的距离bc d a==,由12d c =,得2a b ==,解得离心率c a =. (II)解法一:由(I )知,椭圆E 的方程为22244x y b +=. (1)依题意,圆心()2,1M -是线段AB 的中点,且|AB |=.易知,AB 不与x 轴垂直,设其直线方程为(2)1y k x =++,代入(1)得2222(14)8(21)4(21)40k x k k x k b +++++-=设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k ++-+=-=-++由124x x +=-,得28(21)4,14k k k +-=-+解得12k =. 从而21282x x b =-.于是12|AB |||x x =-==由|AB |==,解得23b =.故椭圆E 的方程为221123x y +=.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

椭圆与双曲线练习

椭圆与双曲线练习
18.已知 为椭圆 的左、右焦点, 是椭圆上一点.
(1)求 的最大值;
(2)若 且 的面积为 ,求 的值.
19.已知椭圆 的离心率 ,过点 和 的直线与原点的距离为 .
(1)求椭圆的标准方程;
(2)已知定点 ,若直线 与椭圆交于 两点,问:是否存在 的值,使以 为直径的圆过 点?请说明理由.
DABBC,ACCBD
A. 4 B . 2 C. 8 D .
7.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )
A.2B.6 C.4D.12
8.过双曲线 的右焦点F2有一条弦PQ,|PQ|=7,F1是左焦点,
那么△F1PQ的周长为( )
(A)28(B) (C) (D)
11. 12. , 13.x+2y-8=0, 14、9 15、
16.(1). 或
(2)设长轴为 ,焦距为 ,则在 中,由 得: ,所以 的周长为 , 故得: .
17.已知椭圆C的焦点F1(- ,0)和F2( ,0),长轴长6,设直线 交椭圆C于A、B两点,求线段AB的中点坐标。(8分)
解:由已知条件得椭圆的焦点在x轴上,其中c= ,a=3,从而b=1,所以其标准方程是:
三、解答题:
16.根据条件,分别求出椭圆的标准方程:
(1)中心在原点,对称轴为坐标轴,离心率 ,短轴 ;
(2)中心在原点,对称轴为坐标轴,焦点在 轴上,短轴的一个顶点 与两个焦点 组成的三角形BF1F2的周长为 ,且 .
17.已知椭圆C的焦点F1(- ,0)和F2( ,0),长轴长6,设直线 交椭圆C于A、B两点,求线段AB的中点坐标。
椭圆与双曲线练习题
一、选择题:

专题53 椭圆、双曲线、抛物线综合练习(新高考地区专用)(解析版)

专题53 椭圆、双曲线、抛物线综合练习(新高考地区专用)(解析版)

专题53 椭圆、双曲线、抛物线综合练习一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若双曲线122=-my x 的一个焦点为)03(,-,则=m ( )。

A 、22B 、8C 、9D 、12 【答案】B【解析】由双曲线性质:12=a ,m b =2,∴912=+=m c ,8=m ,故选B 。

2.已知双曲线C :12222=-by a x (0>a ,0>b )的焦距为10,点)12(,P 在C 的渐近线上,则C 的方程为( )。

A 、152022=-y xB 、120522=-y x C 、1208022=-y x D 、1802022=-y x【答案】A【解析】渐近线方程x a by =,21=a b ,b a 2=,又∵522=+=b a c ,即202=a ,52=b ,故选A 。

3.如图,从双曲线15322=-y x 的左焦点F 引圆322=+y x 的切线FP 交双曲线右支于点P ,T 为切点,M为线段FP 的中点,O 为坐标原点,则=-||||MT MO ( )。

A 、35-B 、3C 、5D 、35+ 【答案】A【解析】3532215|)||(|21|||)||(|||21||||-=⨯⨯-=--=--=-PE PF FT FT MF PE MT MO , 故选A 。

4.已知椭圆12222=+by a x (0>>b a )的两焦点分别为1F 、2F 。

若椭圆上有一点P ,使21PF PF ⊥,则a b的取值范围是( )。

A 、]210(, B 、]220(, C 、]2221[, D 、)122[,【答案】B【解析】设m PF =||1,n PF =||2,则a n m 2=+,2224c n m =+,∴2224442b c a mn =-=, 又2)2(22n m mn +≤,即22)22(24a b ≤,∴222a b ≤,从而220≤<a b ,故选B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆与双曲线综合练习题1.已知椭圆+=1(a >b >0)的离心率是,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为( ) A . B . - C . D . -2. 若点P 为共焦点的椭圆1C 和双曲线2C 的一个交点,1F 、2F 分别是它们的左右焦点.设椭圆离心率为1e ,双曲线离心率为2e ,若021=⋅PF PF ,则=+222111e e ( )A.4B. 3C. 2D. 14.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A . (0,] B . (0,] C . [,1) D . [,1)5.已知为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是( ) A.B.C.D.6.椭圆C :+=1(a >b >0)的右焦点为F ,椭圆C 与x 轴正半轴交于A 点,与y 轴正半轴交于B (0,2),且·=4+4,则椭圆C 的方程为( )A .+=1 B .+=1 C .+=1 D .+=17.过椭圆C :+y 2=1的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于点M ,若=λ1,=λ2,则λ1+λ2等于( )A . 10 B . 5 C . -5 D . -108. 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x ±4y =0B .3x +5y =0C .5x ±4y =0D .4x ±3y =09.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +(a >0),则点P 的轨迹是( ) A . 椭圆 B . 线段 C . 不存在 D . 椭圆或线段10.已知F 1,F 2是椭圆+=1(a >b >0)的左,右焦点,点P 是椭圆上的点,I 是△F 1PF 2内切圆的圆心,直线PI 交x 轴于点M ,则|PI |∶|IM |的值为( ) A . B . C . D . 11.已知双曲线-=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是( ) A . (1,2] B . (1,2) C . [2,+∞) D . (2,+∞)12.设O为坐标原点,F1,F2是双曲线的焦点,若在双曲线上存在点P,满足∠F1P F2=60°,∣OP∣=a,则该双曲线的渐近线方程为()A.x±y=0 B.x±y=0 C.x±y=0 D.y±y=013.如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2是矩形,则C2的离心率是()A. B. C. D.14.椭圆M:的左,右焦点分别为,P为椭圆M上任一点,且的最大值的取值范围是,其中,则椭圆M的离心率e的取值范围是________15.椭圆P:+=1(a>b>0)的左,右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆P的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.16.如图所示,A,B是椭圆的两个顶点,C是AB的中点,F为椭圆的右焦点,OC的延长线交椭圆于点M,且|OF|=,若MF⊥OA,则椭圆的方程为________________.17.已知为双曲线的左焦点,为上的点.若的长等于虚轴长的2倍,点在线段上,则的周长为__________.18.已知F1,F2分别是双曲线x2-=1的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°.延长AF2交双曲线右支于点B,则△F1AB的面积等于________.19.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.20.已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BN|为定值.21. 设12,F F 分别是椭圆2214x y +=的左、右焦点.⑴若M 是该椭圆上的一点,且012120F MF ∠=,求12F MF ∆的面积;⑵若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;⑶设过定点()0,2M 的直线l 与椭圆交于不同的两点,A B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.22. 椭圆E 的中心是原点O ,焦点在x 轴上,其离心率e =,过点C (-1,0)的直线l 与椭圆E 相交于A ,B 两点,且=2.(1)用直线l 的斜率k (k ≠0)表示△OAB 的面积; (2)当△OAB 的面积最大时,求椭圆E 的方程.23.设椭圆C:22221x ya b+= (a>b>0)的离心率为22,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为2.(1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.24.已知双曲线C1:x2-=1.(1)求与双曲线C1有相同的焦点,且过点P(4,)的双曲线C2的标准方程.(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A,B两点.当·=3时,求实数m的值.答案解析1.【答案】D【解析】设点M(x,y),A(x1,y1),B(-x1,-y1),则y2=b2-,=b2-,所以k1·k2=·==-=-1=e2-1=-,即k1·k2的值为-.2.【答案】B【解析】=×8b=12,∴b=3,又∵c=4,∴a2=b2+c2=25,∴椭圆的标准方程为+=1.3.【答案】D【解析】由椭圆方程知a=2,b=,c=1,由椭圆定义知,|PF1|+|PF2|=4,在△PF1F2中,由余弦定理知|PF1|2+|PF2|2-2|PF1|·|PF2|·cos ∠F1PF2=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=|F1F2|2,∴16-3|PF1||PF2|=4,∴|PF1||PF2|=4,∴·=||||·cos 60°=2.故选D.4.【答案】A【解析】根据椭圆的对称性及椭圆的定义,可得A,B两点到椭圆左,右焦点的距离为4a=2(|AF|+|BF|)=8,所以a=2.又d=≥,所以1≤b<2,所以e===.因为1≤b<2,所以0<e≤,故选A.5.【答案】D【解析】设点P在x轴上方,坐标为(c,),△F1PF2为等腰直角三角形,所以|PF2|=|F1F2|,即=2c,等式两边同除以a,化简得1-e2=2e,解得e=-1.6.【答案】C【解析】由已知得F(c,0),A(a,0),B(0,2),∴·=(c,-2)·(a,-2)=ac+4=4+4,则解得a2=8,b2=4,∴椭圆C的方程为+=1.故选C.7.【答案】D【解析】特殊地,当直线l斜率为0时,为x轴,则A、B、M坐标分别为(,0)、(-,0)、(0,0).=(,0),=(2-,0),=(-,0),=(2+,0).∴λ1=-(2+5),λ2=2-5,∴λ1+λ2=-10,故选D.8.【答案】D【解析】设P(x,y),则Q(-x,y),又设A(a,0),B(0,b),则a>0,b>0,于是=(x,y-b),=(a-x,-y),由=2,可得a=x,b=3y,所以x>0,y>0.又=(-a,b)=(-x,3y),由·=1,可得x2+3y2=1(x>0,y>0).9.【答案】D【解析】∵a+≥2=6,当且仅当a=,即a=3时取等号,∴当a=3时,|PF1|+|PF2|=6=|F1F2|,点P的轨迹是线段F1F2;当a>0,且a≠3时,|PF1|+|PF2|>6=|F1F2|,点P的轨迹是椭圆.10.【答案】B【解析】∵I是△F1PF2内切圆的圆心,直线PI交x轴于点M,∴=,∴=,∴=,∴|PF2|∶|MF2|=,∵|PF2|∶|MF2|=|PI|∶|IM|,∴|PI|∶|IM|=,故选B.11.【答案】C【解析】根据双曲线的性质,过右焦点F且倾斜角为60°的直线与双曲线只有一个交点,说明其渐近线的斜率的绝对值大于或等于tan 60°=,即≥,则=≥,故有e2≥4,e≥2.故选C.12.【答案】D【解析】本题将解析几何与三角知识相结合,主要考查了双曲线的定义、标准方程、几何图形、几何性质、渐近线方程,以及斜三角形的解法.13.【答案】D【解析】由椭圆C1与双曲线C2有公共焦点可知,因|AF1|+|AF2|=4,|AF1|2+|AF2|2==12,所以|AF1|·|AF2|=2,又||AF1|-|AF2||=2a,所以(|AF1|-|AF2|)2=4a2,所以a2=2,a=,所以.14.【答案】【解析】转化成椭圆的标准方程为+=1,焦点在y轴上,则>,故sinα>cosα,<α<.15.【答案】-1【解析】由直线方程为y=(x+c)知,∠MF1F2=60°,又∠MF1F2=2∠MF2F1,所以∠MF2F1=30°,MF1⊥MF2,所以|MF1|=c,|MF2|=c,所以|MF1|+|MF2|=c+c=2a,即e==-1.16.【答案】+=1【解析】设所求的椭圆方程为+=1(a>b>0),则A(a,0),B(0,b),C(,),F(,0).依题意,得=,FM的直线方程是x=,所以M(,).由于O,C,M三点共线,所以=,即a2-2=2,所以a2=4,b2=2.所以所求方程是+=1.17.【答案】44【解析】由双曲线知,则点为双曲线的右焦点,由已知得,由双曲线的定义得,的周长为18.【答案】4【解析】由题知a=1,根据双曲线定义|AF1|-|AF2|=2a所以|AF1|=4,|BF1|-|BF2|=2,∴|BF1|=2+|BF2|由下图知|AB|=|AF2|+|BF2|=2+|BF2|∴|BA|=|BF1|,△ABF1为等腰三角形,又因∠F1AF2=45°,所以∠ABF1=90°,则△ABF1为等腰直角三角形,所以|AB|=|BF1|=2.所以S△F1AB=×2×2=4.19.20.【答案】(1)解由题意,得解得所以椭圆C的方程为+y2=1.(2)证明由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得yM=-,从而|BM|=|1-yM|=|1+|.直线PB的方程为y=x+1.令y=0,得xN=-,从而|AN|=|2-xN|=|2+|.所以|AN|·|BM|=|2+|·|1+|===4.当x0=0时,y0=-1,|BM|=2,|AN|=2.所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.【解析】21.【答案】设l:y=k(x+c),则C(0,kc),B(-,).∵B在椭圆上,∴+=1.即+=1⇒e2+=4.∴k2=≤⇒2e4-17e2+8≤0⇒≤e2<1⇒≤e<1.∴椭圆离心率e的取值范围为[,1).【解析】22.【答案】以MN所在的直线为x轴,线段MN的垂直平分线为y轴,建立如图所示的平面直角坐标系,设所求椭圆的方程为+=1(a>b>0).设点M,N,P的坐标分别为(-c,0),(c,0)(c>0)和(x0,y0).∵tanα=tan(π-∠MNP)=-tan ∠MNP=2,∴由题意知,解得即点P(,).在△MNP中,|MN|=2c,边MN上的高为c,∴S△MNP=·2c·c=1,∴c=.又|PM|==,|PN|==,∴a=(|PM|+|PN|)=,∴b2=a2-c2=3.故所求椭圆方程为+=1.【解析】23.【答案】(1)设椭圆E的方程为+=1(a>b>0),直线l的方程为y=k(x+1),∵e==,a2=b2+c2,∴a2=3b2,故椭圆方程为x2+3y2=3b2.设A(x1,y1),B(x2,y2),由于=2,故(-1-x1,-y1)=2(x2+1,y2),即由消去y,整理得(3k2+1)x2+6k2x+3k2-3b2=0.由直线l与椭圆E相交于A(x1,y1),B(x2,y2)两点,得而S △OAB =|y 1-y 2|=|-2y 2-y 2|=|y 2|=|k (x 2+1)|=|k ||x 2+1|,⑥ 由①④,得x 2+1=, 代入⑥,得SOAB =(k ≠0).(2)∵S △OAB ==≤=,当且仅当k =±时,S △OAB 取得最大值. 此时x 1+x 2=-1,又∵x 1+1=-2(x 2+1), ∴x 1=1,x 2=-2.将x 1,x 2及k 2=得3b 2=5, ∴椭圆E 的方程为x 2+3y 2=5. 【解析】24.【答案】见解析【解析】(1)双曲线C 1的焦点坐标为(,0),(-,0),设双曲线C 2的标准方程为-=1(a >0,b >0),则解得∴双曲线C 2的标准方程为-y 2=1.(2)双曲线C 1的渐近线方程为y =2x ,y =-2x .设A (x 1,2x 1),B (x 2,-2x 2).由消去y 化简得3x 2-2mx -m 2=0,由Δ=(-2m )2-4×3×(-m 2)=16m 2>0,得m ≠0.∵x 1x 2=-,·=x 1x 2+(2x 1)(-2x 2)=-3x 1x 2,∴m 2=3,即m =±.29.(1)3(2)12PF PF ⋅的最大值为1,最小值为-2(3)232-<<-k 或223<<k 试题分析:(1)易知2=a ,1=b ,3=c ,所以)0 3(F 1,-,)0 3(F 2,,所以1223F F =,又M 是该椭圆上的一点,所以1224MF MF a +==, 因为12120F MF ∠=,所以在12F MF ∆中利用余弦定理可知:222122121212cos F F MF MF MF MF F MF =+-∠,即221212(23)4,4MF MF MF MF =-∴=, 所以12F MF ∆的面积为12⨯12332MF MF ⨯=. ……5分。

相关文档
最新文档