Design Loading on Deeply Buried Box Culverts
AutoLISP在黄河下游引黄涵闸闸室设计中的应用
AutoLISP在黄河下游引黄涵闸闸室设计中的应用作者:郑钊薛志强王凤群王伟锋来源:《人民黄河》2021年第12期摘要:為了提高黄河下游引黄涵洞式水闸闸室设计质量与效率,采用基于AutoLISP的AutoCAD二次开发技术编写涵洞式闸室设计程序,实现在输入有限设计参数的情况下,自动绘制涵洞式闸室三维模型并生成工程量、循环计算多工况闸室荷载、生成多工况涵闸渗流稳定计算结果及闸室稳定计算结果。
以黄河下游典型穿堤引黄涵闸赵口闸为例,展示了该设计程序在涵洞式闸室设计应用中的便利性与实用性。
关键词:涵洞式闸室;AutoLISP;渗流稳定计算;闸室稳定计算;黄河下游中图分类号:TV222.1;TV882.1 文献标志码:Adoi:10.3969/j.issn.1000-1379.2021.12.031引用格式:郑钊,薛志强,王凤群,等.AutoLISP在黄河下游引黄涵闸闸室设计中的应用[J].人民黄河,2021,43(12):150-154,159.Abstract: In order to improve the design quality and efficiency of culvert-sluice chamber in the Lower Yellow River, using AutoLISP-based AutoCAD secondary development technology to compile the design program of culvert-sluice chamber, realized when entering the limited design parameters,the program could automatically draw chamber’s 3D model and genera te engineering quantity,and the program could calculate chamber’s load of multi-working condition cyclically,generate the seepage stability calculation results and the chamber stability calculation results of multi-working condition. Taking Zhaokou sluice(a typical culvert-sluice in the lower Yellow River) as an example, it showed the convenience and practicality of the program in the design of culvert-sluice chamber.Key words: culvert-sluice chamber; AutoLISP; seepage flow stability computation; chamber stability computation; Lower Yellow River1 引言随着小浪底水库持续运用,黄河下游河床冲刷下切,黄河下游引黄涵闸引水条件与设计情况相比发生了很大变化,导致部分引黄涵闸引水困难,甚至无法引水,对黄河下游两岸地区的经济社会发展造成不利影响。
NFPA 30-2008 Basic Requirements for Storage Tanks
NFPA 30-2008:Basic Requirementsfor Storage TanksNew York City Metro ChapterSociety of Fire Protection EngineersNew York, NY — February 22, 2011Types of Storage Tanks single wall double wallclosed-top dike fire resistant orprotectedVessels, Section VIII, Vessels, Section VIII,typical pressure-vacuum ventChapter 21 ––GeneralChapter 21◆vent termination devices forClass IB and Class IC liquidsnormally-closed venting deviceslisted flame arresterslisted flame arresters◆no vent termination devicesrequired for Class II orClass III liquidsChapter 21 Chapter 21 ––General ◆protection from internal corrosion additional metal thickness approved protective coatings or linings 1.22This tank failed at theweld between the shelland the tank bottomdue to corrosion.Chapter 21 ––GeneralChapter 21◆tanks in areas subject to floods must havemeans to secure tank from displacement Tanks after Hurricane KatrinaCh. 22Ch. 22 ––Aboveground Tanks◆covers tanks installed above grade,at grade, below grade without backfilldesign for earthquakesdesign for earthquakeson ground or on supports of masonry, concrete or steelCh. 22Ch. 22 ––Aboveground TanksEmergency relief venting:A means to automaticallyrelieve excess pressureinside a tank due toexposure from an externalexposure from an externalfire.Not intended for pressurerelief from internalexplosion or internaloverpressure.Weak roof-to-shell seam design optionsEmergency VentCh. 23Ch. 23 --Underground Tanks1.48NFPA 30A, Table 4.3.2.4Table 4.3.2.4 from NFPA 30A-2008, Code for Motor Fuel Dispensing Facilities and Repair GaragesExhibit II.4.3 fromFlammable and Combustible Liquids Code Handbook,Seventh EditionTable 22.4.1.1(a) Location of Aboveground Storage Tanks Storing Stable Liquids — Internal Pressure Not toExceed a Gauge Pressure of 2.5 psi (17 kPa)Minimum Distance (ft)Type of Tank Protection From Property Line That Isor Can Be Built Upon,Including the Opposite Sideof a Public Way a From Nearest Side of Any Public Way or from Nearest Important Building on the SameProperty aFloating roof Protection for exposures b½ × diameter of tank 1/6 × diameter of tank None Diameter of tank but need notexceed 175 ft1/6 × diameter of tankVertical with weak roof-to-shell seam Approved foam or inertingsystem c on tanks not exceeding150 ft in diameter d½ × diameter of tank 1/6 × diameter of tankProtection for exposures b Diameter of tank 1/3 × diameter of tank None 2 × diameter of tank but neednot exceed 350 ft1/3 × diameter of tankHorizontal and vertical tanks with emergency relief venting to limit pressures to 2.5 psi (gauge pressure of 17 kPa) Approved inerting system b onthe tank or approved foamsystem on vertical tanks½ × value in Table 22.4.1.1(b) ½ × value in Table22.4.1.1(b)Protection for exposures b Value in Table 22.4.1.1(b) Value in Table22.4.1.1(b)None 2 × value in Table 22.4.1.1(b) Value in Table22.4.1.1(b)Protected aboveground tank None ½ × value in Table 22.4.1.1(b) ½ × value in Table22.4.1.1(b)For SI units, 1 ft = 0.3 m.a The minimum distance cannot be less than 5 ft (1.5 m).b See definition 3.3.42, Protection for Exposures.c See NFPA 69, Standard on Explosion Prevention Systems.d For tanks over 150 ft (45 m) in diameter, use “Protection for Exposures” or “None,” as applicable.Table 22.4.1.1(b) Reference Table for Use with Tables 22.4.1.1(a), 22.4.1.3, and 22.4.1.5Minimum Distance (ft)Tank Capacity (gal) From Property Line That Is or Can Be BuiltUpon, Including the Opposite Side of aPublic Way From Nearest Side of Any Public Way or from Nearest Important Building on theSame Property275 or less 5 5 276 to 750 10 5 751 to 12,000 15 5 12,001 to 30,000 20 5 30,001 to 50,000 30 10 50,001 to 100,000 50 15 100,001 to 500,000 80 25 500,001 to 1,000,000 100 35 1,000,001 to 2,000,000 135 45 2,000,001 to 3,000,000 165 55 3,000,001 or more 175 60For SI units, 1 ft = 0.3 m; 1 gal = 3.8 L.Table 22.4.1.5 Location of Aboveground Storage Tanks Storing Unstable LiquidsMinimum Distance (ft)Type of Tank Protection From Property Linethat Is or Can Be BuiltUpon, Including theOpposite Side of aPublic WayFrom Nearest Side of Any Public Way or from Nearest Important Building on the SameProperty aHorizontal and vertical tanks with emergency relief venting to permit pressure not in excess of a gauge pressure of 2.5 psi (17 kPa) Tank protected with any oneof the following: approvedwater spray, approvedinerting,a approved insulationand refrigeration, approvedbarricadeValue in Table22.4.1.1(b) but not lessthan 25 ftNot less than 25 ftProtection for exposures b2½ × value in Table22.4.1.1(b) but not lessthan 50 ftNot less than 50 ftNone 5 × value in Table22.4.1.1(b) but not lessthan 100 ftNot less than 100 ftHorizontal and vertical tanks with emergency relief venting to permit pressure over a gauge pressure of 2.5 psi (17 kPa) Tank protected with any oneof the following: approvedwater spray, approvedinerting,a approved insulationand refrigeration, approvedbarricade2 × value in Table22.4.1.1(b) but not lessthan 50 ftNot less than 50 ftProtection for exposures b 4 × value in Table22.4.1.1(b) but not lessthan 100 ftNot less than 100 ftNone 8 × value in Table22.4.1.1(b) but not lessthan 150 ftNot less than 150 ftFor SI units, 1 ft = 0.3 m.a See NFPA 69, Standard on Explosion Prevention Systems.b See definition 3.3.42, Protection for Exposures.Table 22.4.2.1 Minimum Shell-to-Shell Spacing of Aboveground Storage TanksFixed or Horizontal Tanks Tank Diameter Floating Roof Tanks Class I or II Liquids Class IIIA LiquidsAll tanks not over 150 ft (45 m) in diameter 1/6 × sum of adjacent tankdiameters but not less than3 ft (0.9 m)1/6 × sum of adjacent tankdiameters but not less than3 ft (0.9 m)1/6 × sum of adjacent tankdiameters but not less than3 ft (0.9 m)Tanks larger than 150 ft (45 m)in diameter:If remote impounding is provided in accordance with 22.11.1 1/6 × sum of adjacent tankdiameters¼ × sum of adjacent tankdiameters1/6 × sum of adjacent tankdiametersIf open diking is provided in accordance with 22.11.2 ¼ × sum of adjacent tankdiameters1/3 × sum of adjacent tankdiameters¼ × sum of adjacent tankdiametersSeparation Distances & Diking RequirementsVerify that the small bulk plant shown on the next page complies with the minimum separation distance provisions of NFPA 30, Flammable and Combustible Liquids Code. All four tanks are horizontal and equipped with emergency relief venting to limit pressures to 2.5 psig. Protection for exposed properties ia assumed. Each tank has a capacity of 20,000 gal (25,700 L). The right hand property line coincides with the near side of the public road.A. Determine the minimum distances required from:1.The gasoline tank to the property line adjoining the vacant lot.2.The gasoline tanks to the near side and opposite side of the street.3.The tank storing No. 1 fuel oil to the loading rack.4.The tank storing No. 1 fuel oil to the office building.5.The tank storing No. 2 fuel oil to the property line adjacent to thewarehouse.B. Determine if the facility meets the spill control requirements of NFPA 30.The area of the interior of the dike is 60 ft. by 40 ft. and the height of the dike wall, measured at the interior toe, is 12 in. The steel tank supportsare 12 in. high at the lowest point of the saddles and can be ignored in the calculation of dike capacity.Separation Distances & Diking RequirementsSeparation Distances & Diking Requirements Evaluate site plans for the process plant depicted on the next page and verify compliance with the minimum separation distance provisions of NFPA 30, Flammable and Combustible Liquids Code.Tanks #1 and #2 are vertical fixed roof tanks with weak roof-to-shell seams and are 25 ft. in diameter and 30 ft. high. Tank #1 contains 100,000 gal of toluene, a stable Class I liquid. Tank #2 contains 100,000 gal of xylene, also a stable Class I liquid.Tank #3 is a vertical fixed roof tank with emergency relief venting to permit internal pressure to rise no greater than 2.5 psig. This tank is 20 ft. in diameter and 30 ft. high. It contains 70,000 gal of styrene, which is considered an unstable liquid. The tank is insulated and protected with a water spray system. The process building houses process vessels. The wall of the process building facing the adjacent property is a blank, 2-hour rated fire wall. The right hand property line coincides with the near side of the street.A. Determine the required distance from:1.The process building to the property line.2.Tank #3 to the property line and to the process building.3.The tanks to the near side of the street.4.The tanks to the far side of the street.5.Tank #1 to the process building.6.One tank to another, that is, the shell-to-shell spacing.B. Determine if the facility meets the spill control requirements of NFPA 30.The area of the interior of the dike is 50 ft. by 80 ft. and the height of the dike wall, measured at the interior toe, is 18 in. high.Case Study No. 2Separation Distances & Diking Requirements。
公路英语词汇
磨耗度Abrasiveness绝对基面Absolute datum桥台Abutment制动墩Abutment pier加速车道Acceleration lane偶然荷载Accidental load专用车道Accommodation lane隔音墙Acoustic barrier爆破作用圈Acting circles of blasting加桩Additional stake同向曲线Adjacent curve in one direction外加剂Admixture反坡安全线Adverse grade for safety航空摄影测量Aerial photogrammetry航摄基线Aerophoto base航摄像片判读Aerophoto interpretation老化Ageing集料(骨料)Aggregate气硬性 Air hardening(城市道路)平面设计线形设计Alignment design线形要素Alignment element路面龟裂Alligator cracking容许(回弹)弯沉Allowable rebound deflection比较线Alternative line锚锭板式桥台Anchored bulkhead abutment锚锭板式挡土墙Anchored bulkhead retaining wall 锚杆式挡土墙Anchored retaining wall by tie rods 阴离子乳化沥青Anionic emulsified bitumen年平均日交通量Annual average daily traffic(厂矿道路)挡车堆Anti-creep heap防炫屏(遮光栅)Anti-dizzling screen(厂矿道路)防滑堆Antiskid heap引桥Approach span隔水层Aquitard拱桥Arch bridge拱涵Arch culvert拱圈Arch ring干线公路Arterial highway(厂内)主干道(城市)主干路Arterial road沥青洒布车Asphalt distributor沥青混合料拌和设备Asphalt mixing plant沥青混合料摊铺机Asphalt paver复拌沥青混合料摊铺机Asphalt remixer沥青砂Asphalt sand沥青洒布机Asphalt sprayer地沥青Asphaltic bitumen平面交叉At-grade intersection附加车道Auxiliary lane(土的)平均稠度Average consistency (of soil)平均纵坡Average gradient方位角Azimuth angle衡重式挡土墙Balance weight retaining wall基层Base course基线Baseline基本通行能力Basic traffic capacity梁桥Beam Bridge杠杆弯沉仪Beam level deflectometer支座Bearing象限角Bearing angle支承桩Bearing pile承台Bearing plat for m垫层Bed course水准点Benchmark台口式路基Benched subgrade抗弯强度Bending strength杠杆弯沉仪(贝克曼弯沉仪)Benkelman beam盖梁Bent cap护坡道Berm结合料Binder联结层Binder course沥青Bitumell(沥青混合料)抽提仪Bitumen extractor油石比Bitumen-aggregate ratio沥青混凝土混合料Bituminous concrete mixture沥青混凝土路面Bituminous concrete pavement 沥青碎石混合料Bituminous macadam mixture沥青碎石路面Bituminous macadam pavement 沥青混合料Bituminous mixture沥青路面Bituminous pavement沥青贯入式路面Bituminous penetration pavement (沥青)表面处治Bituminous surface treatment爆破漏斗Blasting crater松动爆破Blasting for loosening rock抛掷爆破Blasting for throwing rock土石方爆破Blasting procedure泛油Bleeding盲沟Blind ditch盲沟Blind drain块为路面Block pavement块石Block stone拱胀Blow up钻探Boring(道路)地质柱状图Boring log钻孔机Boring machine借土Borrow earth取土坑Borrow pit道口限界架Boundary frame on crossing道路限界架Boundary frame on road道路建筑限界Boundary line of road construction系杆拱桥Bowstring arch bridge箱涵Box culvert雨水口支管Branch pipe of inlet(城市)支路(厂内)支道Branch road桥梁Bridge桥面系Bridge decking桥面铺装Bridge deck pavement桥面伸缩装置Bridge floor expansion and contraction installation 架桥机Bridge girder erection equipment坡桥Bridge on slope桥位Bridge site驮道Bridge road断链Broken chainage碎石Broken stone断背曲线Broken back curve埋置式桥台Buried abutment公交(车辆)停靠站Bus bay公交绕行公路By pass索塔Cable bent tower索鞍Cable saddle斜拉桥(斜张桥)Cable stayed bridge缆索吊装设备Cable way erecting equipment加州承载比California bearing ratio (CBR)加州承载比测定仪California bearing ratio tester路拱曲线Camber curve悬臂梁桥Cantilever Beam Bridge悬臂式挡土墙Cantilever retaining wall交叉口通行能力Capacity of intersection路网通行能力Capacity of network毛细水Capillary water车行道(行车道)Carriageway悬臂浇筑法Cast-in-place cantilever method阳离子乳化沥青Cationic emulsified bitumen畜力车道Cattle-pass水泥混凝土Cement concrete水泥混凝土混合料Cement concrete mixture水泥混凝土路面Cement concrete pavement 中心岛Center-island中间车道Centerlane道路中线Centreline of road中线测量Centreline survey中桩Center stake分隔带Central reserve渠化交通Channelization导流岛Channelization Island分道转弯式交叉口Channelized intersection石屑Chip急流槽Chute圆曲线Circular curve环路Circular road环道试验Circular test城市道路City road土工织物Civil engineering fabric等级公路Classified highway等级道路Classified road泥结碎石路面Clay-bound macadam净空Clearance桥面净空Clearance above bridge floor 桥下净空Clearance of span公路自然区划Climatic zoning for highway 爬坡车道Climbing lane苜蓿叶形立体交叉Cloverleaf interchange煤沥青Coaltar卵石Cobblestone冲刷系数Coefficient of scouring粘性土Cohesive soil冷铺法Cold laid method冷拌法Cold mixing method冷拉钢筋Cold-stretched steel bar柱式墩Columnpier混合式道路系统Combination-type road system 压实Compaction击实试验Compaction test击实仪Compaction test apparatus压实度试验Compactness test联合梁桥Composite Beam Bridge综合管道(综合管廊)Composite pipeline复曲线Compound curve凹形竖曲线Concave vertical curve(水泥混凝土)路面清缝机Concrete joint cleaner(水泥混凝土)路面填缝机Concrete joint sealer水泥混凝土(混合料)拌和设备Concrete mixing plant水泥混凝土(混合料)摊铺机Concrete paver水泥混凝土(混合料)泵Concrete pump(水泥混凝土)路面锯缝机Concrete saw触探试验Cone penetration test冲突点Conflict point锥坡Conical slope稠度界限Consistency limit加固地基Consolidated subsoil固结Consolidation转体架桥法Construction by swing桥梁建筑高度Construction height of bridge施工缝Construction joint施工荷载Construction load施工测量Construction survey连续梁桥Continuous Beam Bridge等高线Contour line缩缝Contraction joint路线控制点Control point合流Converging凸形竖曲线Convex vertical curve木排道Corduroy road扶壁式挡土墙Counterfort retaining wall扶壁式桥台Counterfort abutment乡村道路Country road县公路(县道)乡道County road徐变Creep临界速度Critical speedY形交叉Y intersectionU形桥台U-shaped abutment10-kph速差间距10-kph pace20笔图形记录器20-pen graphic recorder三时相 3 phase30HV 第30最高小时交通量30th Highest Hurly Volume三心复曲线3-Centered Compound Curve Centerline 三路立体交叉3-Leg Interchange三路交叉3-Leg Intersection四时相重叠时相 4 phase with overlaps四路立体交叉4-Leg Interchange四路交叉4-Leg Intersections早上尖峰时段 A.M. Peak Period彭柯曼梁Benkelman Beam绝对速限Absolute speed limit桥台;桥座Abutment邻街建筑物Abutting property加速坡度Acceleration Grade加速车道Acceleration lane加速阻力Acceleration Resistance加速进行超车—强迫紧急返回原车道Accelerative start-forced return 加速进行超车—随意从容返回原车道Accelerative start-voluntary return 可接受间距Acceptable gap加速车道Acceleration Lane出入口Access出入管制;进出管制Access Control出入管制公路Access-Controlled Highway出入车道Access Lane接取网络Access Network出入引道Access ramp连络道Access road连络道路系统Access Road System可及性Accessibility肇事;事故;意外事件Accident事故发生Accident (Crash) Occurrence事故率Accident (Crash) Rate事故严重性Accident (Crash) Severity事故分析;意外分析;肇事分析Accident Analysis事故鉴定Accident Assessment事故伤亡Accident Casualty事故原因Accident Cause肇事特性Accident Characteristics意外事故的后果Accident Consequences易肇祸路段Accident Hazardous Location事故调查Accident Investigation肇事牵连率Accident Involvement Rate事故责任鉴定Accident Liability Assessment意外管理Accident Management肇事预防Accident Prevention易肇事地点Accident Prone Location肇事倾向Accident Proneness肇事率Accident Rate事故重建Accident Reconstruction事故风险Accident Risk事故严重度Accident Severity肇事严重性比率Accident-severity ratio累计车—秒数Accumulate vehicle-second精度Accuracy感音吸收力Acoustic absorptivity ACI主动警告设施Active Warning Device实际车流率Actual flow rate实际行驶时间Actual travel time触动式控制Actuated Signal调适性控制Adaptive Control适应性路线选择Adaptive route choice适应性号志Adaptive signal适应性号志控制Adaptive signal control适应性号志控制策略Adaptive signal control strategy转向车道Added turning lane横坑Adit调整因子Adjustment factor调整流量Adjustment Flow成人导护Adult guard早期警告标线Advance warning marking先进驾驶人信息系统Advanced driver information system ADIS预付款Advanced payment先进大众运输服务;先进公共运输系统Advanced Public Transportation Services APTS先进公共运输系统;高等旅客信息系统Advanced public transportation system先进交通管理服务Advanced Traffic Management Services ATMS先进旅行者信息服务Advanced Traveler Information Services ATIS先进车辆控制及安全服务Advanced Vehicle Control and Safety ServicesAVCSS先进车辆控制系统Advanced vehicle control system早开绿灯设计Advance-green design前进效应Advancing effect支撑先进工法Advancing shoring method逆坡Adverse slope风积土Aeolian Soil航空摄影机Aerial camera航空水平测量Aerial leveling航测图Aerial Map鸟噉图;空中透视Aerial perspective航空标Aerial photogrammetric target航空摄影测量Aerial photogrammetry航空摄影术Aerial Photography航空测量;空中测量Aerial Survey空中缆车Aerial Tramway航空摄影机Aerocamera空中三角测量Aerotriangulation车龄分布Age distribution of vehicle超载Overload Overloading粒料、骨材;聚集的Aggregate粒料连锁Aggregate Interlock粒料撤布机Aggregate Spreader粒料级配底层Aggregate Subbase粒状组织Aggregate Texture空气品质监测站Air quality monitoring station气阀Air Release Valve空气阻力Air resistance风干之沙Air-dried Sand输气水泥Air-Entraining Cement涉及酒精之肇事率Alcohol involved accident rate照准测距法Alidade Stadia Method路线配置;排列;定线;线向;路线Alignment路线设计;定线设计Alignment Design算法则Algorithm碱性反应Alkaline全天候服务All-day Service全直接交叉型交流道All-Directional Interchanges巷;道Alley杂质土Allied Soil整夜停车All-night parking容许承载量Allowable Bearing Capacity容许承载应力Allowable Bearing Stress容许载重Allowable load容许荷重次数Allowable Load Repetition容许沉陷量Allowable settlement容许应力Allowable stress全红时段All-red Interval胶质体冲积粉土Alluvial Silts Colloidal比较设计;变换设计Alternate Design替代方法Alternate Method互亮(换)号志系统Alternate signal system迭亮系统Alternate System替代(换)方案Alternative(s)箭头黄灯Amber Arrow闪光黄灯Amber Flashing黄灯Amber light Yellow interval美国州公路与运输官员协会American Association of State Highway andTransportation Officials AASHTO美国混凝土学会;美国混凝土研究会American Concrete Institute ACI美国联邦公路总署American Federal Highway Administration FHWA 美国交通工程师学会American Institute of Transportation Engineers ITE'美国公路与运输承造人协会American Road and Transportation Builders' Association ARTBA美国试验及材料协会American Society for Testing and Materials ASTM 美国土木工程师协会American Society of Civil Engineers ASCE光量Amount of light放大Amplification放大效应Amplification effect载重放大因子Amplification factor扩大器Amplifier补照;补牌Anew Issue License补牌Anew Issue Plate角撞Angle collision视角Angle of Coverage偏角Angle of Deflection摩擦角Angle of Friction内摩擦角Angle of internal friction交车角度Angle of intersecting静止角;安息角Angle of repose转向角Angle of Turn斜角停车Angle parking角加速度Angular acceleration阴离子乳化沥青Anionic Asphalt Emulsions公告土地现值Announced Land Current Value年平均每日交通量Annual Average Daily Traffic AADT年度预算Annual budget平均每月交通量Annual Daily Traffic ADT公路年费;公路年金Annual Highway Cost计算平均照度Annual Illumination平均停车延时Annual Parking Duration平均车位使用率Annual Parking Space Occupancy年交通量Annual Traffic平均车位小时使用率Annual Turn-over Rate年金法公债Annuity Bond虚比重Apparent Specific Gravity视挠度Apparent-deflection应用程序接口Application Program Interface API邻近路口之路段;引桥;引道Approach邻近路段延滞Approach Delay邻近端Approach end导坑Approach pit引道;引路Approach road引道版Approach slab邻近速率Approach speed近障碍物线Approach to obstructions邻近路段Approach way引道Approach Approach fill Approach lane Approach 适当防制措施Appropriate measures有条件通过审查Approved with conditions近似速率Approximate speed运转空间Apron space导水隧道Aqueduct tunnel Headrace tunnel固定比例法Arbitrary Proportioning仲裁Arbitration弧线Arc/路段/路径指引矩阵Arc/path incidence matrix /骑楼Arcade拱桥Arch bridge指向标线Arch Bridges指针式Arch Culverts拱效应Arching建筑Architectural架构流向图Architectural Flow Diagram AFD归档资料应用Archived Data Application面积计算坐标法Area computation by coordinate method区域控制Area Control潜在碰撞区域Area of potential collision面杖法Area Rule重点交通管制Area traffic control区域交通控制系统Area Traffic Control System地区货运业并装系统Areawide intercarrier consolidation system全区域控制Area wide System Control到达间距Arrival Intervals到达型态Arrival pattern到达率Arrival rate到达时间Arrival time到达型态Arrival Type主要干道Arterial干线公路Arterial Highway干线Arterial route双节公车Articulated Bus沥青(美国用语);沥青胶泥Asphalt Asphalt Cement Asphalt Binder沥青混凝土(欧洲用语)Asphalt沥青添加剂Asphalt additive沥青底层Asphalt Base coarse沥青混凝土Asphalt Concrete AC沥背混凝土铺筑机Asphalt Concrete Finisher沥青混凝土铺面Asphalt concrete pavement沥青含量Asphalt content乳化沥青Asphalt Emulsion油毛毡Asphalt felt美国沥青协会Asphalt Institute AI沥青碎石路Asphalt macadam沥青拌合场Asphalt Mixing Plant沥青混合物Asphalt mixture沥青混凝土配比设计Asphalt mixture design沥青拌合机Asphalt mixture machine沥青混合料Asphalt mixture Bituminous mixture沥青混凝土路面Asphalt pavement沥青铺面Asphalt pavement Bituminous pavement沥青拌合厂Asphalt plant沥青面层Asphalt surface coarse沥青胶浆Asphalt mastic沥青精Asphaltene沥青面路Asphalt Pavement沥青混凝土拌合厂Asphalt Concrete Mixing Plant资产与负债Asset and liability指派网络Assignment Network肇事现场调查At scene investigation平面交叉At-Grade Intersection大气水Atmospheric Water先进的交通管理系统;高等交通管理系统Advanced traffic management system ATMS 可及度Attainability雇员服务停车场Attendant-parking lot注意力Attentiveness盲人音响号志Audible pedestrian signal低周波讯号Audio tone螺旋钻Auger小型车限行区域Auto Restricted Zone高温高压蒸汽养护Autoclave自动化路边安检Automated Roadside Safety Inspection自动化收费系统Automated toll system自动车辆驾驶Automated Vehicle Operation刮刀的自动控制器Automatic Cam Control自动货物辨识Automatic Cargo Identification ACI自动辨识Automatic classification自动公路系统Automatic Highway System AHS事件自动侦测;意外事故自动侦测Automatic incident detection自动事件侦测Automatic Incident Detection AID自动检验Automatic inspection自动水准仪Automatic level自动导航公路系统Automatic navigation highway system自动绕径Automatic routing自动车辆分类Automatic Vehicle Classification AVC自动车辆驾驶控制Automatic vehicle control车辆自动辨识Automatic vehicle identification自动车辆辨识Automatic Vehicle Identification AVI自动车辆识别系统Automatic vehicle identification system自动车辆定位Automatic Vehicle Location AVL自动车辆监视Automatic Vehicle Monitoring AVM自动车辆监测系统Automatic vehicle monitoring system汽车运输Automobile Transportation车辆导引系统Automobile vehicle guiding system汽车排烟管制Automotive emission control自主定速控制系统Autonomous intelligent cruise control便桥Auxiliary bridge辅助车道Auxiliary Lanes辅助标线Auxiliary Marking辅助标志Auxiliary sign年平均每日交通量Average Annual Daily Traffic AADT平均日交通量Average daily volume平均每日交通量Average Daily Traffic ADT每车平均延滞Average delay per vehicle平均延滞时间Average Delay Time平均驶离时段Average discharge interval平均间距Average Headway平均公路速率Average Highway Speed每营业车辆每日平均行驶里程Average Kilometer Per Registered Vehicle Per Day 每实动车辆每日平均行驶里程Average Kms Per Operating Vehicle Per Day平均最小间距Average Minimum Headway平均停车延时Average Parking Duration平均车位使用率Average Parking Space Occupancy每车次客运密度Average Passenger-Kilometers Per Vehicle Run 每客车公里平均收入Average Revenue Per Bus-Kilometer每旅客平均收入Average Revenue Per Passenger每延人公里平均收入Average Revenue per Passenger-Kilometer每公吨货物平均收入Average Revenue Per Ton每延吨公里平均收入Average Revenue Per Ton-Kilometer平均行驶速率Average Running Speed平均服务时间Average Service Time平均定点速率Average Spot Speed平均步长Average step length平均运程Average Transport Distance每旅客平均运程Average Transport Distance Per Passenger 每吨货物平均运程Average Transport Distance Per Ton平均旅行速度Average Travel Speed平均车位小时转换率Average Turn-over Rate平均等候时间Average Waiting Time汽车自动导向系统Automated guided vehicle system AGVS 轴重Axle load Axle weight方位角;地平经度Azimuth倒撞Backing collision反算Back Calculation回填Backfill均衡挖填Balance Cut and Fill平衡断面Balanced Cross Section土方平衡Balanced earthwork球状倾斜指示器Ball-bank indicator障碍缘石Barrier Curb河岸砾石Bank Gravel护岸Bank protection填土Banking, Earth fill, Fill禁止转向Banning of turning movement驳船;平底船Barge拒马Barricade护栏;挡音墙Barrier栅栏式绿石Barrier Curb栅梢制收费站Barrier System Toll Station防音墙Barrier, Noise barrier, Noise barrier wall 底层Base Course基线Base Line坡底Base of slope底面破坏Base-Failure基本容量Basic capacity基本运价Basic Fare基本路线安排法Basic route arrangement基本路线法令Basic speed rule基本含水量Basic Water Content客车行驶里程Bas-kilometer分盘式拌合厂;衡量式拌合厂Batch-Mix Plant信号柱Beacon指针Beacons梁涵洞Beam Culverts承载量因子Bearing Capacity Factor承压破坏;承力破壤Bearing Capacity on Soil承载量Bearing capacity, Carrying capacity支永桩;承载桩;承重椿Bearing pile沼泽区城Bearing Plate承载层Bearing stratum承载面;平面支承Bearing Surface载重试验Bearing test事前及事后研究Before and after studies曲线起点Beginning of Curve BC外环公路Belt Highway水准点Bench Mark BM弯道Bend,Bend channel,Bent,Channel bend,Riverbend挠曲;弯曲Bending弯道式设计Bending design别曲指数Bending Index弯矩Bending moment弯曲应力Bending stress受益费Benefit Assessment益本比Benefit Cost Ratio利益因素法Benefit-Factor Method皂土Bentonite戗堤Berm平台沟Berm Ditch脚踏车Bicycle机慢车Bicycle and motorcycle脚踏车专用车道系统Bicycle lane system押标金Bid Bond投标Bid, Tender脚踏车道Bike lane脚踏车专用道Bikeway二项选择Binary Choice二进制变量Binary Variable黏合料;结合层;黏合层Binder Course结合料;黏合料Binder Material粘结料Binders结合层Binding Course二项到达Binomial Arrival二项分配Binomial Distribution接触曝气法Bio-film treatment system鸟噉图Birds' eye view钻头Bit每秒传输的位数Bit Per Second bps沥青Bitumen沥青接缝填充料Bituminous Joint Fillers沥青材料Bituminous Material沥青封层Bituminous Overlay沥青铺路Bituminous Pavement Road灌入式沥青路面Bituminous Penetration Macadam 沥青压力散布机Bituminous Pressure Distributor 沥青沙浆Bituminous Sand Slurry沥青表面处理Bituminous Surface Treatment 沥青防水层Bituminous Water Proof Coating 沥青处理底层Bituminous Treated Base BTB沥青处理砂砾Bituminous Treated Sand Gravel 黑洞效应Black-Hole Effect挖填之平衡Balance Cut and Fill开炸Blast喷气防护坪Blast Pad炸移法Blasting Method路面冒油Bleeding病虫害防治Blight proof courses血液中酒精浓度Blood alcohol concentration吹制沥青Blown Asphalt砂涌Boiling黏着剂Bonding Agent钻凿Bore钻掘桩Bored pile钻孔Borehole钻探Boring钻孔柱状图钻机Boring log Boring machine钻杆Boring Rod钻孔岩心Boring-core借土;借方Borrow借土区Borrow area借土坑;取土坑Borrow Pit瓶颈路段(地点)管制法Bottle neck control瓶颈段;瓶颈路Bottle Neck Road瓶颈Bottleneck底层Bottom Course下翼绿Bottom Flange卵石Boulder沉箱;箱式沉箱;匣式沉箱Box caisson箱涵;箱形涵洞Box Culvert水沟渠;匣形沟渠Box Drain箱形梁Box girder支撑Bracing/拖架Bracket / Chassis煞车失灵Brake failure, Defective brake 煞车灯Brake light煞车反应时间;制动反应时间Brake Reaction time剎车视距(停车视距)Braking Distance煞车系统Braking system分枝界定法Branch and Bound Algorithm 故障Breakdowns乳化沥青黏结Breaking of Emulsion碎波Breaking Wave脱离式接头Breakaway呼气酒精含量Breath alcohol concentration 砖铺路面;砖铺面Brick Pavement砖铺路Brick Pavement Road砖面路Brick Road桥梁Bridge桥台Bridge Abutment桥粱引道Bridge Approach桥支承Bridge bearing桥面板Bridge deck桥面Bridge deck/floor桥面伸缩缝Bridge expansion joint桥面Bridge floor桥塔Bridge head桥梁检测Bridge inspection桥梁管理系统Bridge Management System 桥墩桥栏杆Bridge pier Bridge railing桥跨Bridge span照杜;辉杜;明亮度Brightness辉度对照比Brightness contrast碎裂Brittle fracture脆性;脆度Brittleness碎石路Gravel Road碎石路面Broken Stone Surface断背曲线Broken-back Curve破背坡度线Broken-Beach Grade Line彭柯曼梁Benkelman Beam挫屈;路面拱起Buckling预算经费Budget经费概算Budgetary estimate缓冲剂;缓冲器Buffer缓冲建筑物Buffer buildings缓冲距离Buffer distance缓冲段Buffer reach缓冲时间Buffer time缓冲带Buffer zone建筑规刖;建筑法规Building Code建蔽率;建筑面积比Building Coverage Ratio建筑线Building Line建筑物附设停车空间Built-in Parking Facilities球状Bulb Type虚松体密度Bulk Density松比重;容积比重;虚比重Bulk Specific Gravity隔墙;天窗;驳岸;隔舱Bulkhead堆土机Bull Dozer推土机Bulldozer刮刀Bulldozer Blade弹头尖端式Bullet-nose弹头式Bullet-nose Form保险杆Bumper光束法Bundle method美国联邦公路局Bureau of Public Road (renamed to FHWA)大客车Bus公车湾Bus Bay公车公司Bus company公车驾驶员Bus driver公车运行Bus driving公车专用道Bus Exclusive Lane公车费率Bus fare公车专用车道Bus Lane公车管理信息系统Bus management information system公车路网Bus network出车率Bus Operating Rate/Bus Dispatching Rate公车营运Bus operation公车营运管理Bus operation management大客车停车场Bus parking area公车捷运Bus Rapid Transit公车运量Bus ridership公车路线Bus route公车路线查询系统Bus route inquiring system公车排班Bus scheduling公车速限Bus speed limits公车停靠站Bus station公车站距Bus stop spacing公车专用街道Bus Street公车系统设计Bus system design公车系统Bus system, Bus transit system, Public bus system 公车终站;公车总站;公车场站Bus Terminal公车运输Bus transportation公共汽车Bus, Public bus大客革Buses粗面石工Bush hammering商业区Business District营业车辆Business Vehicle客车行驶里程Bus-Kilometer公车专用道Busway平头接缝Butt Joint反光钮Button reflector外支墙Buttressed Wall撑式桥台墙Buttressed Abutment外支式挡土墙Buttressed Retaining Wail绕越公路Bypass highway外环道Bypass road绕道路线Bypass route绕越街Bypass Street绕越交通Bypassing Traffic支街Bystreet车厢号志Cab Signal出租车Cab, Taxi空中缆车Cable Car, Cableway斜张桥;斜索桥Cable stayed bridge索桥Cable Suspension Bridge车务员专用车Caboose地籍图Cadastral map地籍测量Cadastral Survey加州乘载力比California Bearing Ratio CBR输水桥Canal Aqueduct渠桥Canal Bridge输水隧道Canal Tunnel注销Cancellation单位:烛光Candle (Candle Power) Cd, Cp悬臂式桥梁Cantilever Bridges悬臂工法Cantilever method悬臂挡土墙Cantilever retaining wall悬臂式挡土墙Cantilever type retaining wall桩帽;雷管(俗)Cap容量限制弦路径车辆行驶问题Capacitated arc routing problem零担货物运输Capacitated freight distribution容量;涵容性Capacity容积分析Capacity analysis容量与服务水准分析Capacity and level of service analysis 容量限制Capacity constraint, Capacity restriction容量估计Capacity estimation容量极限值Capacity limitation容量模式Capacity model公车路线容量Capacity of Bus Line强度折减因子Capacity reduction factor, Strength reduction factor 容量使用率Capacity utilization毛管水升高度;毛细管水升高度Capillary Lift毛细管作用;毛细管现象Capillarity无自由选择的乘客Captive Riders大众运输固有使用者Captive Transit Rider交通事故Car accident, Traffic accident车辆认证制度Car accreditation system车体Car body车辆侦测器Car detector, Vehicular detector跟车模式;自动跟车系统Car following model汽车导向系统Car navigation system汽车持有;汽车持有权Car Ownership汽车共乘Car Pooling, Carpool车辆Car, Vehicle二氧化碳Carbon Dioxide CO2车用电话Carphone小客车租赁业Car-Rental Carrier马车Carriage载波Carrier wave套管人造石Casing Cast stone场铸桩Cast-in-place pile场铸混凝土Cast-in-place (CIP) Concrete伤亡Casualty目录服务接口规范Catalog Service Interface Specification集水井;截流井Catch Basin排水沟;截水沟Catch Drain灌溉水道Catch Feeder阴极防锈法Cathodic method阳离子乳化沥青Cationic Asphalt Emulsions警告灯Caution Light警告标;警告标志Caution Sign注意信号;警告号志Caution Signal孔蚀现象;穴蚀现象Cavitations混凝土路面Concrete Pavement临界速率Critical Speed灌水泥浆;水泥灌喷枪Cement Grout水泥灌浆Cement grouting水泥砂浆Cement mortar水泥浆Cement Paste水泥处理砂砾Cement Treated Sand Gravel框式混凝土挡土墙Cencrete Cribbing普查Census形岔心Center Frog k中央岛Center Island中线;中心线Center Line中心车道;中央车道Center Line Lane中心标线Center Line Marking岛式站台Center Platform (Island Platform)中央跨孔Center Span中心桩Center(line) stake中心线Centerline中心与中心Center-to-Center C2C中心与现场Center-to-Field C2F中心商业区Central Business District CBD中央走廊系统Central corridor system中横公路Central Cross-Island Highway,East-West Cross-Island Highway中央分向岛Central Divider分隔岛;中央岛;分向岛Central Island中央拌合厂Central Mixing Plant中心投影Central projection中央商业区Central Shopping area集中式控制系统Centralized Control System中央行车控制法Centralized Traffic Control CTC离心力Centrifugal force离心杯Centrifuge Cup离心煤油当量法Centrifuge Kerosene Equivalent CKE认证;核准Certification, Accreditation换照Change License变更登记Change of Registration信息可变标志Changeable Message Sign,Variable Message SignCMS速限可变标志Changeable Speed Limit Sign CSLS变换车道Changing Lane槽道Channel槽化交叉Channelized Intersection槽化Channelization槽化岛Channelization island槽化式交叉;槽化路口Channelized Intersection槽化岛Channelizing Island槽化线;检核点Channelizing Line代表性挠度Characteristic Deflection文字排列方式Character arrangement文字尺寸Character size收费系统Charging system专用游览车Charter Bus检核点Check Point逆止阀Check Valve药液灌浆Chemical grouting分流式山形条纹Chevron of divergence并流式山形条纹Chevron of mergence山形条纹Chevron strip总工程司Chief Engineer家长接送区Child pick-up area幼童专用车Children-only Bus中文道路标志Chinese road sign弦;弦杆Chord弦长Chord Length竖槽;陡槽;吊沟Chute周期Circle/圆环Circle/Roundabout环道(测);电话(电)Circuit线路交换公众数据网络Circuit-switched Public Data Network CSPDN 圆拱;弧拱Circular Arch圆曲线;单曲线;圆弧曲线Circular Curve圆弧型破坏Circular failure圆形绿灯Circular green light圆盒水准器Circular rod level圆弧滑动面Circular sliding surface通风;交通Circulation交通图Circulation Map转乘系统Circulation system外环(环状)道路Circumferential street (road)市区公共汽车City Bus都市计画City Planning都市计画委员会City Planning Commission都市计画法City Planning Law都市重建City Rebuilding都市大众运输City Transit抓式挖土机Clamshell分类调查Classification Count道路分类Classification of road土壤分类Classification of Soil净距Clear distance净空高Clear height净跨距Clear Span清除区Clear Zone净距Clearance净高Clearance Height清道损失时间Clearance Lost Time清道时间Clearance time气候情况Climate Conditions爬坡道爬坡车道Climbing Lane溶块Clinker封闭网络Close Network封闭制收费站Close System Toll Station隧道区Close Tunnel闭路电视摄影机Closed Circuit Television Camera CCTV封闭环路Closed Loop网络系统Closed Network闭合导线Closed traverse螺旋曲线;克罗梭曲线;罗线形曲线Clothoid Curve (Clothide)四叶形交流道;苜蓿叶形交流道Clover Leaf Interchange一氧化碳侦测器CO Detector粗粒料;粗骨材Coarse Aggregate规范;数值Code摩擦系数Coefficient of friction,Friction coefficient,Frictionalcoefficient动黏滞系数Coefficient of Kinenatic Viscosity峰度系数Coefficient of kurtosis侧犘擦系数Coefficient of Side Friction路基抗力系数Coefficient of Subgrade围堰Cofferdam照明率Coefficient of Utilitization CU凝聚力;黏力;黏结力Cohesion土壤之凝聚力Cohesion of soil凝聚值Cohesive Value泠拌沥青混凝土Cold-Mix Asphalt Concrete集水沟Collector Ditch连络道路Collector Road联络道路Collector Street集散道Collector-distributor Roads冲撞;碰撞Collision碰撞事故Collision Accident碰撞区Collision area碰撞图;相横示意因Collision diagram碰撞预警系统Collision Warning Systems色灯号志Color Light Signal色彩对比Color contrast光色品质Color quality联结车Combination Truck Tractor-trailer商业中心Commercial Center商业区Commercial District'大型车辆驾照Commerical Driver's License CDL商用车队管理Commercial Fleet Management商业用车Commercial Motor Vehicle CMV商业运转速率Commercial Speed商车交通量Commercial Traffic商用车辆电子凭证管理Commercial Vehicle Electronic CredentialManagement商用车营运系统Commercial Vehicle Operating System商车营运系统Commercial Vehicle Operations CVO商车营运服务Commercial Vehicle Operations Services CVOS商品Commodity杜区中心Community Center社区规画Community Planning通勤者Commuter回数费率Commuter Rate通勤火车Commuter Rail, Commuter Train通勤距离Commuting Distance压实路基Compacted Subgrade夯实;压实Compaction夯实能量Compaction effort兼容性Compatibility征收补偿Compensation损失赔偿Compensation for Damage地价补偿Compensation for the land price补充路线Complementary Route复合适交叉路口Complex intersection合成粱;复合粱Composite Beam交通组成Composition of Traffic复曲线Compound Curve整体性Comprehensive综合性停车计画Comprehensive parking program综合性计画Comprehensive Planning土壤压缩性Compressibility of Soil压缩;压力Compression压应力Compression Stress抗压强度Compressive Strength征收Compulsory Purchase计算机号志Computer signal计算机号志系统Computer signal lamp system计算机辅助派车系统Computer-Aided Dispatching System计算机化号志系统Computerized traffic signal system凹Concave凹岸Concave Bank凹形曲线Concave curve四缝Concave Joint凹凸形Concave-convex集中荷重Concentrated load集流时间Concentration time同心反向螺旋状匝道Concentric opposed plane helical ramp 混凝土Concrete纽泽西(混凝土)护栏Concrete barrier (New Jersey)混凝土交通岛Concrete islands混凝土接缝Concrete joint混凝拌合机Concrete Mixing混凝土路面加铺Concrete Overlays混凝土铺面Concrete pavement交通锥Cone明晰视锥角Cone of acute vision瞥视锥角范围Cone of glance area视锥角Cone of sight冲突冲突分析Conflict Conflict analysis冲突区域Conflict Area冲突性变换车道Conflict lane change冲突管理Conflict management冲突点Conflict point拥挤Congestion拥挤度Congestion degree拥挤延滞Congestion delay拥挤虚拟变量Congestion dummy variable拥挤定价Congestion pricing拥挤时间Congestion Time拥挤费Congestion toll圆锥面Conical Surface连络公路Connecting Road连接道路Connector稠度Consistency压实;固结;压密Consolidation压密率Consolidation Rate工程合约Construction Contract施工接缝Construction Joint施工道路Construction Load施工计画Construction Planning施工标志Construction Sign施工规范Construction Specification。
半潜式支持平台系泊系统的设计方法及应用
第38卷第5期海洋工程Vol.38No.5 2020年9月THE OCEAN ENGINEERING Sep.2020文章编号:1005-9865(2020)05-0001-11半潜式支持平台系泊系统的设计方法及应用单铁兵(中国船舶及海洋工程设计研究院,上海200011)摘要:系泊系统是半潜式支持平台抵抗恶劣海洋环境作用、限制平台偏移、实现海上定位的重要设备,辐射状多点系泊是常用的布置方式。
针对该平台系泊系统开展了设计方法和分析流程研究,阐述了系泊系统配置设计,包括系泊缆的数量、抛岀长度、单根系泊缆的刚度、直径、破断负荷、定位锚的型式、最大抓力等;系泊系统的布置设计,包括系泊缆之间的水平夹角、系泊绞车、导缆器、定位锚的位置等;同时归纳风载荷、流载荷以及波浪慢漂载荷的常用估算方法;总结适用于该类平台系泊系统设计的规范要求。
将上述方法和流程应用于某型半潜式支持平台系泊系统的开发和设计,采用系泊定位分析程序MIMOSA 对该系统的定位能力进行分析,研究了系泊缆形状、夹角等参数随张力的变化特征,同时系泊缆按照船级社的规范要求进行衡准,反复调整和优化系泊系统的配置和布置方式,直至系泊系统满足要求,最终设计岀较合适的系泊系统。
相关方法、流程和结论为实际工程项目提供重要的设计思路。
关键词:系泊系统;半潜式支持平台;安全系数;最大张力中图分类号:P751;U661文献标志码:A D0I:10.16483/j.issn.1005-9865.2020.05.001Design method and application of mooring system forsemi-submersible support platformSHAN Tiebing(Marine Design&Research Institute of China,Shanghai200011,China)Abstract:Mooring system is an important equipment for semi-submersible support platform to resist environmental force,limit platform motion and achieve maritime positioning.Spreading mooring is a common type.The design method and analysis process of the mooring system are studied.Specifically,mooring system configuration design is investigated,including number of mooring line,paid out length,stiffness of single mooring line,diameter,breaking load and type of positioning anchor,holding capacity,yout design of mooring system is also presented,including horizontal angle between mooring lines,winch,mooring guide,anchor location,etc. Moreover,the common estimation methods of wind load,current load and wave slow drift load are summarized.The specification requirements applicable to the mooring system design of this kind of platform are also studied.A mooring system of a semi-submersible support platform is designed based on the above methods and processes.MIMOSA program is used to analyze the positioning capability of the system,characteristics of mooring line shape and angle with tension variation.The mooring lines are checked according to the requirements of classification society,and the configuration and the arrangement of the mooring system are adjusted and optimized repeatedly until the mooring system meets the requirements,and a more appropriate mooring system is finally designed.Relevant methods,processes and conclusions provide important design ideas for practical engineering projects.Keywords:mooring system;semi-submersible support platform;safety factor;maximum tension半潜式支持平台专门为半潜式钻井平台、海上浮式储卸油装置(FPSO)、张力腿平台(TLP)、立柱式平台收稿日期:2019-09-19基金项目:工业和信息化部高技术船舶科研计划“深水半潜式支持平台研发专项”(工信部联装函[2016]546号)作者简介:单铁兵(1982-),男,博士,高级工程师,主要从事海洋结构物总体设计及水动力性能方面的研究二E-mail:snailstb@2海洋工程第38卷(SPAR)以及半潜式生产平台等海上油气勘探、处理平台提供人员居住、娱乐、物资补给和工程辅助等作业支持,不仅可为平台上工作人员提供一个舒适的居住坏境,在紧急情况下还能作为紧急避难场所以保证人员安全。
桥梁英语词汇
下部结构 substructure桥墩 pier 墩身 pier body墩帽 pier cap, pier coping台帽 abutment cap, abutment coping盖梁 bent cap又称“帽梁”。
重力式[桥]墩 gravity pier实体[桥]墩 solid pier空心[桥]墩 hollow pier柱式[桥]墩 column pier, shaft pier单柱式[桥]墩 single-columned pier, single shaft pier 双柱式[桥]墩 two-columned pier, two shaft pier排架桩墩 pile-bent pier丫形[桥]墩 Y-shaped pier柔性墩 flexible pier制动墩 braking pier, abutment pier单向推力墩 single direction thrusted pier 抗撞墩 anti-collision pier锚墩 anchor pier辅助墩 auxiliary pier破冰体 ice apron防震挡块 anti-knock block, restrain block 桥台 abutment台身 abutment body前墙 front wall又称“胸墙”。
翼墙 wing wall又称“耳墙”。
U形桥台 U-abutment八字形桥台 flare wing-walled abutment 一字形桥台 head wall abutmentT形桥台 T-abutment箱形桥台 box type abutment拱形桥台 arched abutment重力式桥台 gravity abutment埋置式桥台 buried abutment扶壁式桥台 counterfort abutment, buttressed abutment 衡重式桥台 weight-balanced abutment锚碇板式桥台 anchored bulkhead abutment支撑式桥台 supported type abutment又称“轻型桥台”。
管业常用词中英对照
Aabove—ground conduit(pipeline) 地上管道accessible duct 通行地沟acrylonitrile butadiene stryene pipe ABS工程塑料管(ABS) active earth pressure 主动土压力adaptor slab 井筒盖板aerial crossing structure 跨越结构air—tight test 气密性试验anchor 固定墩arriving shaft 终端工作坑asbestos—cement pipe (ACP)石棉水泥管BBackfill 回填土bearing pressure distribution diagram 地基反力图形bedding angle 基础(座)中心角bend 弯管bending test 弯曲试验beveled pipe 斜口管Boussinecq pressure bulb布氏压力图形box(rectangular) conduit 矩形管道breadth of conduit 管道宽度breadth of trench 槽宽buried conduit(pepeline) 埋地管道buttand strap joint 抹带接头Ccable duct 电缆沟cap 盖堵casting place collar joint 现浇套环接头casting place joint 现浇接头(缝)cast—in—place(situ) conduit 现浇管道cast iron pipe(CIP) 铸铁管caulking填料;捻缝cement mortar lining 水泥砂浆内衬cement mortar with steel mesh strap joint 抹带接头centrifugal process 离心法chamber井室;检查室chemically pre-stressed concrete pipe 自应力混凝土管circular conduit 园形管道coating涂层coefficient of vertical earth pressure 竖向土压力系数collar type joint 套管(筒)式接头combined drainage conduit(pipeline) 合流管道combined duct 综合管道;共同沟compaction around the pipe with relatively untamped above thetop of pipe 中松侧实法compaction the two sides of pipe 胸腔夯实compansator 补偿器composite crossing 组合跨越composite pipe 复合管concrete cradle 混凝土管基(管座)concrete pipe(CP) 混凝土管conduit 管道conduit section 管道截面continuous casting process 连续浇铸法cooling water pipeline 冷却水管道core vibrated casting process 芯模震捣法core winding process 管芯缠丝法corrosion prevetive of pipes 管道防腐corrugated pipe 波纹管coupling of bousing 卡箍式管接头cover slab 井筒盖板crack width calculation 裂度宽度验算cracking load under three edge bearing test 裂缝荷载crown 顶点culvert 涵洞DD—load D荷载法dead’loadon conduit (pipeline) 管道恒荷载design pressure 设计压力detachable type joint 活接头dewatering 降水distribution of elastic reaction 弹性反力图形double junction 四通downpipe 雨落管downspout 雨落管duckfoot 肘管管托duct 管道ductile castiron pipe(DIP) 可延性铸铁管dynamic water pressure 动水作用力EEarth cover(heightofsoil) over con-duit 覆土高度earth pressure at rest 静止土压力earth pressure on embankment con/duit 上埋式土压力earthpressure on trench conduit 沟埋式土压力earthpressure under soil arch 土拱压力effective length of pipe 管有效长度elastic installation pipeline method 弹性敷管法elastic reaction of soil 土的弹性抗力elbow 弯头electrical conduits 电工套管elliptical conduit 椭园形管道embedded type PCCP(PCCP—E) 埋置式预应力钢筒混凝土管embedded—cylinder pipe(ECP) 埋置式预应力钢筒混凝土管expansion bellows 波纹补偿器expansion bend 弯管补偿器expansion joint 伸缩接头expansion joint 伸缩节expansion loop 弯管补偿器exterior prism 管侧土柱FFiber glass reinforced pipe(FRP) 玻璃纤维管filament winding process 纤维缠绕法finely divided solid transmission pipeline 细颗粒固体输送管道fixed support 固定管托;固定支座fixed trestle 固定支架flange 法兰flanged joint 法兰接头flat subgrade 素土平基flattening test 压偏试验;偏平试验flexible joint 柔性接头flexble pipe 柔性管flexible rubber expansion joint 可曲挠橡胶接头flexible trestle 柔性支架flexural stiffness ratio 刚柔比four—point loading test 四点法荷载试验free—flow conduit(pipeline) 自流管道fusion joint 热溶接头Ggastrans mission pipeline 输气管道gasket ring 密封圈glass fibrere inforced plastics pipe(GRP) 玻璃纤维增强热固性塑料管gravity—flow conduit(pipeline) 重力流管道gray cast iron pipe(CIP) 灰口铸铁管gully grating sand frames 雨水篦gully trap 雨水井Hhanger 吊杆haunches under pipe 管下腋角beaped load 堆积荷载heat—supply pipeline 供热管道heating pipeline 采暖管道height of conduit 管道高度horizontal earth pressure 水平土压力horses hoe conduit 马蹄形管道hydrostatic pressure 静水压力hydrostatic proof test 水压检验试验Iimpact factor 动力系数impact test 冲击试验industrial pipe line 工业管道inner sleeve joint 内套环接头inside diameter 内径inspection chamber 检查井interior prism 管上土柱intermediate jacking station 中继间invert 底点JJacking pressure 顶力Joint angular deflection 接头角位移Joint axial deformation 接头轴向位移Joint deflection test 接头角位移试验Joint packing 接头密封料Ioint sealant 接头密封料Joint straight draw test 接头拉伸试验LLag factor 滞后系数Lateral earth pressure 侧向土压力Leading pipe 导管Leak test 严密性试验lined type PCCP(PCCP—L) 内衬式预应力钢筒混凝土管lined—cylinder pipe(LCP) 内衬式预应力钢筒混凝土管liner 内衬live load on conduit(pipeline) 管道活荷载load on conduit(pipeline) 管道荷载loading distribution diagram 荷载分布图形longitudinal calculation 纵向计算MManhole 检查井manhole cover and flames 检查井盖manhole steps 踏步max. temperature difference between construction and operation 闭合温差mean diameter 平均直径mechanical joint 机械接头mixed structure conduit 混合结构管道Nnatural(original) ground surface 原状(始)地面natural soil 原状土new austrian tunnelling method 新奥法nodular cast iron pipe 球墨铸铁管non—pressure conduit(pipeline) 无压管道norminal diameter(DN) 公称直径OOffset 乙字管Olander’s bulbform distribution 奥兰特分布图形oriented(guiding) trestle 导向支架outer sleeve joint 套环接头outlet 出水口outside diameter 外径oval conduit 椭园形管道over excavation 超挖overhead prpeline 架空管道ovoid conduit 卵形管道Ppartial fixed trestle 半固定支架passive earth pressure 被动土压力petroleum transmission pipeline 输油管道pipe accesory 管道附件pipe bridge 管桥pipe casing slip joint 套筒式伸缩器pipe clip 管卡;管箍pipe crossing 管道跨越pipe diameter 管直径pipe duct 管沟pipefitting 管件pipe in pipe 双层管pipe jacking method 顶管法pipe length 管长pipe roofing method 管棚法pipe support 管托;管道支座pipeline 管道pipeline(conduit)structure 管道结构pipeline eaerial(over) crossing 管道跨越pipeline appurtenance 管道附属构筑物pipeline for waste water(sewerage) in building 建筑排水管道pipeline for water supply in building 建筑给水管道pipeline joint 管道接头pipeline pier 管道支礅pipeline trestle 管道支架pipeline undercrossing 管道穿越plastic sandwich pipe 发泡塑料管polybutylene pipe(PB) 聚丁烯塑料管polyethylene pipe(PE) 聚乙烯塑料管polypropylene pipe(PP) 聚丙烯塑料管precast fabricated conduit 预制装配管道pressure class 压力等级pressure conduit(pipeline) 压力管道prestressed concrete cylinder pipe(PCCP) 预应力钢筒混凝土管prestressed concrete pipe(PCP) 预应力混凝土管profile(ribbed) wall plastic pipe 异型(肋型)塑料管protective cased pipe 保护套管push—on type joint 插入式接头Rrare earth cast iron pipe 稀土铸铁管reaction wall 反力墙rebated pipe 企口管reception pit 接收工作坑red mud plastic anti—weather pipe 红泥聚氯乙烯耐候塑料管reducer 异径管;渐缩管reducerslab 缩颈盖板reinforced concrete pipe(RCP) 钢筋混凝土管reinforced plastic mortar pipe(RPMP) 增强塑料砂浆管reinforced thermo setting resin pipe(RTRP) 增强热固性树脂管rigid joint 刚性接头rigid pipe 刚性管rigid trestle 刚性支架riseofarch conduit 拱沟矢高road(street)gully 雨水口roller support 滚动管托;滚动支座roller suspension process 悬辊法Ssand box casting process 砂型浇铸法sealing gasket 密封圈self—anchoring joint 自锚式接头self—prestressed concrete pipe 自应力混凝土管semi—elliptical conduit 半椭园形管道semi—flexible pipe 半柔性管semi—rigid pipe 半刚性管separate foundation 分离式基础service ebility pressure 工作压力sewage conduit(pipeline) 污水管道shaft 井筒shaped by injection molding 注模成型法shaped by screw rod extruder 挤出成型法shapped subgrade 土弧基础shield tunneling method 盾构法single junction 三通sinking pipeline method 沉管法施工site load 施工荷载site pressure test 现场水压试验sleeve connection 杯口连接sleeve expansion joint 松套伸缩接头sleeve joint 套管(筒)式接头slider support 滑动管托;滑动支座slip—on coupling 活箍socket(bell) and spigot joint 承插式接头socket pipe 承口管soi1improvement 地基处理soil treatment 地基处理solvent cement joint 粘接接头splayed end pipe 斜口管spreading angle 分布角spring hanger 弹簧吊杆spring line 侧点stability calculation 稳定验算stainless steel pipe 不锈钢管starting shaft 起始工作坑stee lpipe 钢管stiffness calculation 刚度验算stiffness calss 刚度等级stiffness ring 刚性环stiffness test 刚度试验storm sewer conduit(pipeline) 雨水管道straight butt(plain) end pipe 平口管strength calculation 强度计算structural crossing 结构跨越subaqueous pipeline 水下管道submarine pipeline 海底管道submerged pipeline 水下管道support feet 肘管管托surcharge load 堆积荷载surface laver 涂层surge pressure 波动压力sustained pressure test 持续压力试验Ttable vibrated casting process 振动台震捣法thermal insulation of pipes 管道隔热;管道保温thickness of conduit structure 管道结构厚度thickness of pipe wall 管壁厚threaded joint 螺纹接头three—edge bearing test 三支承法试验three—point loading test 三点法荷载试验thrust blocks 止推墩thrust pit 顶进工作坑thrust wall 止推墙tongue and groove joint 企口式接头tongue and groove pipe 企口管traffic load 车辆荷载transversal calculation 横向计算trench depth 槽深trench installation 开槽施工;沟槽敷设trench less installation 不开槽施工tunneling method installation 隧道法敷设two—edge bearing test 双支承法试验tyre pressure 轮压Uultimate load under three—edge bearing test 破坏荷载unannealed nodular(ductile)cast iron pipe 铸态球墨铸铁管unback filled trench 末回填沟槽under—ground conduit(pipeline) 地下管道undisturbed earth 未扰动土unpassable duct 不通行地沟unplasticised polyvinyl chloride pipe(UPVC管) 硬聚氯乙烯塑料管Vvacuum pressure 真空压力ventilating duct 通风管道vertical compressed casting process 径向挤压法;立式挤压法vertical earth pressure 坚向土压力;垂直土压力vertical vibrated casting process 立式振捣法vitrified clay pipe 陶土管Wwall pipe chase 穿墙套管water distribution pipeline 配水管道water removal 排水water supply conduit(pipeline) 给水管道water tight test 闭(灌)水实验water transmission conduit(pipeline) 输水管道welding joint 焊接接头wheel pressure 轮压working pressure 工作压力works hydrostatic test 水压检验试验。
深厚强透水地层基坑深层水平封底隔渗帷幕设计方法及其应用
第51卷第4期2020年4月中南大学学报(自然科学版)Journal of Central South University(Science and Technology)V ol.51No.4Apr.2020深厚强透水地层基坑深层水平封底隔渗帷幕设计方法及其应用曹成勇1,施成华1,彭立敏1,蒋盛钢2,刘胜利2,刘建文1(1.中南大学土木工程学院,湖南长沙,410075;2.广州地铁设计研究院股份有限公司,广东广州,510010)摘要:从深厚强透水地层基坑水平封底隔渗帷幕的破坏模式入手,分别建立考虑“失稳破坏”和“渗透破坏”的基坑深层水平封底隔渗帷幕计算方法,进而对某工程实例进行计算分析,确定基坑深层水平封底隔渗帷幕的设计参数。
最后,通过开展抽水试验,进一步分析基坑深层水平封底隔渗帷幕的性能。
研究结果表明:基坑水平封底帷幕整体隔渗性能较好,基坑内部水位降深能够满足施工要求,且基坑外水位降深基本无变化;在抽水后期水位稳定阶段,基坑深层水平封底隔渗帷幕渗水量低于设计的最大可容许渗水量。
关键词:深基坑;强透水层;水平封底帷幕;设计方法中图分类号:TU924文献标志码:A文章编号:1672-7207(2020)04-1012-10Design method and application of horizontal bottom sealingcurtains for deep foundation pits excavated in deep aquifers withhigh permeabilityCAO Chengyong1,SHI Chenghua1,PENG Limin1,JIANG Shenggang2,LIU Shengli2,LIU Jianwen1(1.School of Civil Engineering,Central South University,Changsha410075,China;2.Guangzhou Metro Design&Research Institute Co.Ltd.,Guangzhou510010,China)Abstract:Based on different failure mechanisms of horizontal bottom sealing curtains for deep excavations that are undertaken in deep aquifers with high permeability,computational methods for horizontal bottom sealing curtains were established considering"instability failure"and"seepage failure"mechanisms,respectively.Then, the design parameters of bottom sealing curtains for an excavation case were determined using the established methods.Finally,the performance of deep horizontal bottom-sealing curtains was analyzed through pumping tests.The results show that the water-tightness performance of horizontal bottom-sealing curtains constructed at site is good.The water level inside the excavation can meet the construction requirements,and the water level outside the excavation has no change basically during pumping tests.When the water level stabilizes at the final period of the DOI:10.11817/j.issn.1672-7207.2020.04.016收稿日期:2019−06−09;修回日期:2019−09−05基金项目(Foundation item):国家自然科学基金资助项目(51778636)(Project(51778636)supported by the National Natural Science Foundation of China)通信作者:施成华,博士,教授,从事隧道与地下工程研究;E-mail:**************第4期曹成勇,等:深厚强透水地层基坑深层水平封底隔渗帷幕设计方法及其应用pumping test,the leakage of bottom-sealing curtains is lower than the maximum designed allowable seepage.Key words:foundation pits;highly-permeable aquifers;bottom sealing curtains;design method为了实现城市可持续发展,城市地下空间工程(如地铁、地下商场、地下停车场等)的开发利用已成为国内各大中城市建设的重要方向。
地铁下沉广场结构方案综合设计
作者简介:董赛帅(1988—),男,工程师图1 原方案车站总平面图4 号出入口消防水池1 号风亭2 号出入口2 号风亭及1 号出入口崇川路海霞路优化后的设计方案主局部抗浮严重不够,结容易产生裂缝及渗漏;由于露天敞口段底板跨度较大,因此负弯矩较方可验算通过,但此种悬臂段侧墙由于悬臂长度较大,侧向水土压力附属结构距离北侧南通大学产研院大楼地下室边线净距仅5.6 m ,且中间需要预留1个直径为600 mm 的污水干管通道,结构可调整空间有限;(5)敞口面积较大,侧墙大面积悬臂,整体抗变形能力弱。
2.3 结构方案优化设计思路针对2.2章节所列的重难点,从该工程周边空间狭小、埋深较深、悬臂较大、敞口面积较大等特点出发,对结构方案设计进行优化,具体优化措施包括以下几个方面。
(1)敞口段底板增设工程桩[4-5],采用直径为图2 调整后附属方案总平面图4 号出入口2 号风亭及1 号出入口1 号风亭及2 号出入口远期与地块连接通道预留接口位置南通产研院综合大楼南通大学附属配套工程南通大学附属中学南通大学崇川路海霞路图3 下沉广场效果图2 号出入口下沉广场崇川路海霞路南通产研院综合孵化器大楼、大学科技园同时加大了敞口段保留污水管预留改善附属结构整体抗浮及敞口段局部抗浮同时也改善了底板与可以有效解结构受力及耐久性验算不。
图5 计算模型图6 使用阶段施加荷载简图人防荷载人防荷载人防荷载地面超载覆土压力侧土压力水压力侧土压力水压力列车荷载列车荷载水浮力装修及轨顶道+ 人群(设备)荷载装修 + 人群(设备)荷载水浮力图4 优化方案横断面(单位:m )市政管线(4.210)顶板结构柱敞口段底板趾压板侧墙市政管线(4.210)工程桩图7 底板Y方向弯矩包络图(单位:kN · m / m)图8 底板X方向弯矩包络图(单位:kN · m / m)图9 侧墙弯矩包络图(单位:kN · m / m)。
送电电气专业单词
dead (in live working) deenergized(in live working) nonresidential area non-uniform ice loading conductor bundle sub-conductor spacing wind load wind speed nonuniformity coefficient wind direction rose chart wind direction frequency wind pressure wind span shape factor of wind load drag factor ancillary service load current deflection under load negative pole fitting fixing device composite insulator interfaces of a composite insulator housing and sheds of a composite insutor ice accretion ice thickness dry arcing distance interference(influence) interference source limit of interference dry-type cross-linked tower sign locating of towers structure list plan and profile drawing tower center peg pile inductive coupling induced current induced voltage rigid fixing rigid insulator toughened glass toughened glass insulator steel core steel reinforced aluminum alloy conductor(aacsr) steel reinforced aluminum conductor(acsr) difference in levels high voltage high-reliability power line power-frequency power-frequency voltage wet power-frequency withstand voltage working load wire
基于Designbuilder对上海某博物馆夜间通风的模拟分析
第39卷,总第227期2021年5月,第3期《节能技术》ENERGY CONSERVATION TECHNOLOGY Vol.39,Sum.No.227May.2021,No.5基于Designbuilder 对上海某博物馆夜间通风的模拟分析葛海亮1,马进伟2,3,王晏平2,4,高 峰5,余红海5,王思璐2,刘之欣2,杜涛2(1.深圳市建筑设计研究总院合肥分院,安徽 合肥 230000;2.安徽建筑大学环境与能源工程学院,安徽 合肥 230000;3.合肥工业大学土木与水利工程学院,安徽 合肥 230000;4.安徽建筑大学建筑室内热湿环境实验室,安徽 合肥 230601;5.安徽省建筑设计研究总院股份有限公司,安徽 合肥 230000)摘 要:对于保温性能好、蓄热强且采用全空气系统的建筑,可利用夜间通风技术引入室外低温空气,消耗少量电能转移建筑内部蓄存热量,实现节能。
通过Designbuilder 模拟七八月份22点至次日6点时段,上海某博物馆夜间通风与不通风两种模式下的空调能耗,并结合风机能耗分析节能效果。
结果表明:该博物馆夜间通风所节省空调能耗占原空调能耗12%,风机运行能耗17329.24kW /h ,即:夜间通风预冷节省净能耗4%以上,节省电费19943元。
方案可行,节能显著。
关键词:Designbuilder ;博物馆;通风预冷;节能;能耗模拟;换气次数中图分类号:TK018 文献标识码:A 文章编号:1002-6339(2021)03-0242-05收稿日期 2020-05-18 修订稿日期 2020-06-20基金项目:“十三五”国家重点研发计划项目(2017YFC0702600);国家自然科学基金项目(51606002);安徽省教育厅科学研究项目(KJ2016JD08);大学生创新创业项目(C16218)。
作者简介:葛海亮(1995~),男,本科,助理工程师,研究方向:从事民用建筑暖通空调设计与节能技术研究。
基于箱板钢结构建筑的建筑模块化产品设计
Construction & Decoration建筑与装饰2022年6月下 37基于箱板钢结构建筑的建筑模块化产品设计唐博 刘津津中国建筑设计研究院有限公司 北京 100032摘 要 基于新型的装配式技术箱板钢结构装配式,在设计前期即采用模块化的设计方式进行方案设计,融入产品设计的思维,将建筑看成是一个工业产品,结合办公建筑的使用功能与后期模块化建造的便利性,将建筑拆分为不同的功能模块,再根据各个模块的尺度、结构的不同进行分类,形成几类适用性的箱板钢结构式的建筑产品模块,满足工厂加工现场安装的装配式的建造要求,并结合BIM技术进行建筑的深化设计,将模块化数据从方案传导到后期的深化设计,探索出一条可行的基于箱板式钢结构建筑与BIM技术相结合的模块化的设计方式。
关键词 箱板钢结构式建筑;模块化设计;BIM;产品设计Building Modular Product Design Based on Box Plate Steel Structure BuildingTang Bo, Liu Jin-jinChina Architectural Design and Research Group Co., Ltd., Beijing 100032, ChinaAbstract Based on the new prefabricated technology of box plate steel structure, in the early stage of the design, a modular design method is used to design the scheme. Through the integration of the thinking of product design, the building is considered as an industrial product, combined with the use function of office building and the convenience of modular construction in the later stage, the building is divided into different functional modules, and then classified according to the scale and structure of each module, so as to form several types of applicable box-plate steel structure of building product modules, and meet the prefabricated construction requirements of the on-site installation in factory, BIM technology is used to carry out the detailed design of the building, transfer the modular data from the scheme to the later detailed design, and explore a feasible modularization design method based on the combination of box-plate steel structure buildings and BIM technology.Key words box-plate steel structure building; modular design; BIM; product design引言箱板钢结构装配式建筑是一种不同于其他现有装配式建筑的新型的装配式体系,借鉴了船舶的建造思路,其竖向结构构件以及水平结构构件都采用带肋的钢板,结构系统为整体受力的箱室结构体系,具有优越的抗震性能,因为没有传统的梁与柱等结构构件,能在一定程度上节省空间与高度。
包银高铁黄河特大桥(102+3×178+102)m矮塔斜拉桥设计及创新
收稿日期:20200513;修回日期:20200608基金项目:中国铁路设计集团有限公司科技研究开发计划课题(7218126)作者简介:冯文章(1988 ),男,工程师,2015年毕业于北京交通大学桥梁与隧道工程专业,工学硕士,主要从事桥梁设计研究工作,E-mail:feng-wenzhang@㊂第65卷㊀第5期2021年5月铁道标准设计RAILWAY㊀STANDARD㊀DESIGNVol.65㊀No.5May.2021文章编号:10042954(2021)05009205包银高铁黄河特大桥(102+3ˑ178+102)m矮塔斜拉桥设计及创新冯文章(中国铁路设计集团有限公司,天津㊀300308)摘㊀要:包银高铁黄河特大桥在内蒙古磴口县境内跨越黄河主河道,主桥结构形式为(102+3ˑ178+102)m 矮塔斜拉桥,塔墩分离㊁塔梁固结体系㊂主梁采用单箱双室变截面预应力混凝土箱梁;桥塔采用双柱式矩形截面;每个索塔设8对斜拉索,斜拉索索体采用环氧涂层高强钢绞线,横向双索面布置;桥墩采用钢筋混凝土实心矩形截面,桩基础㊂通过有限元软件对结构的静力特性㊁抗震性能㊁车-桥耦合进行了分析㊂主要结论及创新点如下:(1)桥梁的强度刚度指标满足规范要求,抗震方案合理,乘车舒适性满足要求;(2)主梁和桥墩之间设置减隔震支座和粘滞阻尼器协同抗震,桥墩在多遇㊁罕遇地震下均满足安全需要;(3)大位移伸缩装置与轨道伸缩调节器合并设置,解决了温度跨度大和纵向大位移问题;(4)主墩研发了承载力1.3ˑ105kN 的大吨位减隔震支座,相关成果可为类似工程提供参考借鉴㊂关键词:铁路桥;矮塔斜拉桥;有砟轨道;桥梁设计;桥梁抗震;减隔震支座;阻尼器;高速铁路中图分类号:U448.13;U448.27㊀㊀文献标识码:A㊀㊀DOI:10.13238/j.issn.1004-2954.202005130007Design and Innovation of (102+3ˑ178+102)m Extradosed Cable-stayedExtra Large Bridge of Yellow River Bridge onBaotou -Yinchuan High-speed RailwayFENG Wenzhang(China Railway Design Corporation,Tianjin 300308,China)Abstract :The main bridge of Baotou-Yinchuan Railway Bridge is designed as (102+3ˑ178+102)mextradosed cable-stayed extra large bridge across the Yellow River in Dengkou,Inner Mongolia with towerpier separation and tower beam consolidation system.The prestressed concrete box beam adopts singlebox double cell variable cross section.The bridge tower is designed as double column reinforced concretepylon.Epoxy coated high strength steel strand is used to connect the main girder and the pylon,and each pylon has 8pairs of stay cables.Horizontal double cable plane layout is employed.The pier is designed as reinforced concrete solid rectangular section with pile foundation.The static characteristics,seismicresponse and vehicle-bridge coupled vibration of the main bridge are analyzed with FEA software.Themain conclusions and innovations are as follows:(1)The strength and stiffness indexes of the bridgemeet the requirements of the code,the anti-seismic plan is reasonable and the ride comfort satisfies therequirements;(2)Seismic isolation support and viscous damper are installed between the main beam and the pier for coordinated earthquake resistance,and the pier meets the safety needs under frequent and rare earthquakes;(3)The large displacement telescopic device is combined with the rail telescopicregulator to solve the problem of large temperature span and large longitudinal displacement;(4)Themain pier adopts 1.3ˑ105kN large-tonnageseismicisolationbearing,andrelevantachievements can provide references for similarprojects.Key words:railway bridge;extradosed cable-stayed bridge;ballast track;bridge design;bridge seismic;vibration isolation support;damper;high-speed railway引言20世纪80年代,法国工程师Jacgues Mathivat最早提出了矮塔斜拉桥的概念㊂这种桥型在法国诞生之后,没有得到广泛应用,却在日本得到重视㊂日本于20世纪90年代建成了世界上第一座矮塔斜拉桥 小田原港桥[1],随后相继建成了屋代南和屋代北两座铁路桥[2-3]㊁冲原桥㊁蟹泽桥[4]㊁三内丸山桥[5]㊁木泽川桥[6]等㊂我国于2000年建成第一座公铁两用矮塔斜拉桥 芜湖长江大桥[7]㊂随后,矮塔斜拉桥在我国发展迅猛,相继建成漳州战备桥㊁同安银湖大桥等多座矮塔斜拉桥[8-11]㊂2011年,我国建成第一座铁路预应力混凝土矮塔斜拉桥 京沪高铁津沪联络线特大桥[12-13]㊂由于矮塔斜拉桥刚度大,经济性优,施工便捷,在铁路领域得到广泛应用[14-16]㊂商合杭铁路(94.2+220+94.2)m矮塔斜拉桥㊁福平铁路(144+ 288+144)m乌龙江特大桥[17]是其中典型代表㊂铁路矮塔斜拉桥跨度逐渐增大,但联长较短,对长联大跨矮塔斜拉桥缺少足够的研究㊂本文结合包银高铁磴口黄河特大桥(102+3ˑ178+102)m矮塔斜拉桥,对高速铁路长联大跨矮塔斜拉桥的受力性能进行分析,为同类桥型在高速铁路上的运用提供借鉴㊂1㊀工程概况包头至银川铁路工程在磴口县南粮台村附近跨越黄河㊂桥位处左岸有库区围堤,为灌区和农田;右岸为鄂尔多斯低山台地㊂桥位处河道顺直,河宽2.7km,现状主槽宽约600m,主流靠右岸,河道比降为0.14ɢ,该段河势平缓开阔,为典型的库区冲积平原型河道㊂桥址区范围地址以细砂,粉砂,细圆砾土为主㊂磴口黄河特大桥采用ZK活载,双线线间距4.6m,有砟轨道,设计时度250km/h,主桥位于直线,3.5ɢ纵坡上㊂桥址区地震基本烈度8度,地震动峰值加速度0.2g,场地类别Ⅲ类,特征周期分区为二区,地震动反应谱特征周期为0.55s㊂2㊀主桥孔跨布置和桥式方案桥位处黄河规划通航等级为Ⅴ级航道,需满足通航要求㊂桥位处左滩扩宽,主槽进一步缩窄,河势无较大变化,主流靠近右岸㊂桥位位于三盛公库区闸前段,桥位处河道顺直,主槽窄深㊂从历年河势变化分析,右岸稳定,左岸边滩往河心发展,主槽略有萎缩㊂斜拉索加劲方式可有效提高主梁结构刚度,同时考虑通航要求㊁结构受力㊁方便施工㊁经济环保等各方面因素[18],决定采用(102+3ˑ178+102)m矮塔斜拉桥方案㊂主桥结构体系采用塔梁固结,塔墩分离形式㊂主桥全长738m,孔跨布置如图1所示㊂图1㊀包银磴口黄河特大桥主桥桥跨布置(单位:cm)㊀3㊀主桥构造3.1㊀主梁主梁断面如图2所示㊂主梁采用单箱双室㊁直腹板㊁变截面形式,梁高5.5~9.5m,边支点等高段长27.5m,中支点等高段长9m,跨中等高段长29m,变高段长700m,按二次抛物线变化㊂箱梁顶宽13.3m,底宽10.8m,中支点附近箱梁顶宽局部加宽至17.2m,底宽加宽至14.0m㊂顶板厚度除梁端为110cm㊁中支点附近为100cm外,其余均为42cm㊂底板厚度50~163.8cm,底板底部按二次抛物线变化,中支点局部加厚至2m㊂边㊁中腹板厚度均按照50cm~ 70cm~90cm折线变化,中支点腹板局部加厚到110cm㊂全联在端支点㊁中支点㊁跨中处共设置9道横隔板,边支点隔板厚2.45m,中支点隔板厚4.0m,跨中隔板厚0.4m,所有横隔板均设过人孔㊂斜拉索锚固点位置设0.8m宽的半横梁,以提高主梁截面的横向刚度和整体性㊂3.2㊀索塔增加桥塔高度可有效提升主梁刚度[19],本桥梁顶面以上索塔高30m㊂为提高景观效果,塔柱外轮廓作圆形倒角处理㊂塔柱横向宽度均为2.0m,顺桥向宽39第5期冯文章 包银高铁黄河特大桥(102+3ˑ178+102)m矮塔斜拉桥设计及创新3.5m㊂塔柱下端无索区高19.1m㊂桥塔结构如图3所示㊂图2㊀主梁横断面(单位:cm)图3㊀索塔结构(单位:cm)3.3㊀索鞍为便于斜拉索通过,塔柱上部设置索鞍㊂索鞍由多根分丝钢管焊接而成,每根斜拉索穿过一个分丝管㊂索鞍两侧斜拉索通过单侧双向抗滑锚固装置实现抗滑的目的,抗滑移装置和钢铰线无相对滑移和断丝现象㊂3.4㊀斜拉索斜拉索横向为双索面布置,立面为半扇形布置㊂每个索塔设8对斜拉索,塔上索距1.1m,梁上索距约8m㊂斜拉索通过索鞍构造在索塔内通过,两侧对称锚固于梁体㊂索体采用环氧涂层高强钢绞线,抗拉强度标准值为1860MPa㊂3.5㊀桥墩桥主墩采用钢筋混凝土结构,实心矩形变截面,外轮廓做圆形倒角和凹槽处理,2号主墩为固定墩㊂边墩采用普通双线圆端形实体桥墩㊂3.6㊀基础主墩基础采用桩径2.0m的钻孔灌注桩㊂边墩基础采用桩径1.5m的钻孔灌注桩㊂3.7㊀附属设施由于桥体联长较长,温度跨度大,需设置温度调节器㊂桥体位于高烈度震区,需采用减隔震支座,考虑到采用减隔震支座会造成梁端位移增大,按照抗震设计控制梁缝并设置梁端大位移伸缩装置㊂桥体大位移伸缩装置与轨道伸缩调节器合并设置㊂4㊀结构计算4.1㊀结构静力计算采用MIDAS CIVIL(2019)建立空间有限元模型,主梁㊁主塔㊁桥墩采用梁单元模拟,斜拉索采用桁架单元模拟,模型如图4所示㊂图4㊀有限元模型梁塔连接采用主从约束模拟,梁墩的支座连接采用弹性连接模拟㊂桥墩与地基的连接采用节点弹性支撑模拟㊂计算荷载包括恒载㊁活载㊁附加荷载㊁特殊荷载,对结构施工过程和成桥状态进行检算㊂对静活载挠度及梁端转角(考虑温度影响)进行计算分析,其中中跨挠跨比为1/1171,次中跨挠跨比为1/1309,边跨挠跨比为1/2914㊂梁端转角下挠度1.11ɢrad,反弯-1.32ɢrad㊂结果表明,在列车静活载和温度作用共同作用下,主梁竖向变形能够满足刚度要求㊂主梁应力值见表1,可以看出,各种荷载组合作用下,主梁各截面的应力㊁强度安全系数㊁抗裂安全系数满足TB10092 2017‘铁路桥涵混凝土结构设计规范“要求㊂斜拉索采用抗拉强度标准值为1860MPa的环氧涂层高强钢绞线㊂主力组合作用下斜拉索最大拉力4818kN,主力+附加力组合作用下斜拉索最大拉力5059kN;最小强度安全系数2.8;拉索疲劳应力幅90MPa㊂表1㊀主梁截面验算结果项目上缘正应力/MPa下缘正应力/MPamax min max min剪应力/MPa主应力/MPamax min强度安全系数抗裂安全系数上缘下缘主力15.6 2.317.6 1.2 4.0119.65-2.77 2.33 1.39 1.36主力+附加力19.20.817.80.6 4.0919.92-2.85 2.17 1.26 1.30 4.2㊀地震响应分析本桥联长较长,主墩较矮,桥址处地震基本烈度为49铁道标准设计第65卷8度,地震动峰值加速度为0.2g,属于技术复杂㊁修复困难的高速铁路特殊桥梁结构㊂抗震设防目标见表2㊂表2㊀主桥抗震设防目标地震类别主梁/主塔桥墩拉索支座基础运营阶段正常工作正常工作正常工作正常工作正常工作多遇地震弹性工作不发生损坏弹性工作不发生损坏弹性工作不发生损坏正常工作不发生损坏弹性工作设计地震弹性工作附属结构可发生轻微损坏,快速维修后可恢复工作弹性工作不发生损坏弹性工作不发生损坏支座纵横向限位装置剪断,球面摩擦副在水平向自由移动弹性工作罕遇地震基本处于弹性工作状态,可发生轻微损坏局部破坏,经维修后可恢复工作处于弹塑性工作状态,受力较大截面钢筋接近或达到屈服强度,混凝土局部开裂,经维修后可恢复工作弹性工作不发生损坏球面摩擦副在水平向自由移动,阻尼器㊁防落梁装置发挥作用钢筋接近或达到屈服强度㊀㊀通过抗震方案设计比选,确定采用阻尼器+减隔震支座的方案,阻尼器与减隔震布置如图5所示,阻尼器参数如表3所示㊂图5㊀阻尼器布置示意㊀表3㊀阻尼器参数额定阻尼力/kN 额定行程/mm 阻尼系数/kN(m /s)速度指数数量/个5000ʃ3005000α=0.3214000ʃ42014000α=0.31610000ʃ30010000α=0.38本桥设计采用1倍多遇地震(考虑桥梁重要性系数1.5)时普通支座的水平反力作为减隔震支座的水平极限承载力,即当桥梁承受地震超过多遇地震水准时,支座的限位装置解除约束,减隔震支座发挥相应作用㊂桥体采用减隔震支座最大承载力1.3ˑ105kN㊂考虑到罕遇地震工况下桥塔㊁梁㊁减隔震系统协同运动,按多遇地震工况(考虑1.5倍放大系数)下计算桥塔截面配筋㊂采用以上设计参数,对结构进行多遇地震㊁设计地震及罕遇地震工况下的抗震计算分析,分析结果如表4~表8所示㊂表4㊀多遇地震墩底内力项目联间墩1主墩1制动墩2主墩3主墩4联间墩2联间墩1主墩1制动墩2主墩3主墩4联间墩2荷载多遇地震纵向多遇地震横向纵横向剪力/kN 纵横向弯矩/(kN㊃m)2.64ˑ103 2.55ˑ1045.14ˑ1036.22ˑ1043.04ˑ1045.56ˑ1055.17ˑ1036.28ˑ1045.16ˑ103 6.41ˑ1042.99ˑ103 4.87ˑ1044.10ˑ103 6.91ˑ1041.31ˑ1043.62ˑ1051.59ˑ1044.59ˑ1051.55ˑ1044.58ˑ1051.34ˑ104 3.99ˑ1055.92ˑ1031.24ˑ105表5㊀设计地震墩底内力(减隔震支座+阻尼器)项目联间墩1主墩1制动墩2主墩3主墩4联间墩2联间墩1主墩1制动墩2主墩3主墩4联间墩2荷载设计地震纵向设计地震横向纵横向剪力/kN 纵横向弯矩/(kN㊃m)7.52ˑ103 1.19ˑ1053.05ˑ104 5.47ˑ1053.03ˑ104 5.57ˑ1052.98ˑ104 5.24ˑ1053.56ˑ104 5.98ˑ1058.11ˑ103 1.56ˑ1051.22ˑ104 2.62ˑ1052.68ˑ1047.80ˑ1053.24ˑ1049.13ˑ1052.72ˑ1047.67ˑ1052.52ˑ1047.44ˑ1051.05ˑ1042.51ˑ105表6㊀罕遇地震墩底内力(支座硬抗)项目联间墩1主墩1制动墩2主墩3主墩4联间墩2联间墩1主墩1制动墩2主墩3主墩4联间墩2荷载罕遇地震纵向罕遇地震横向纵横向剪力/kN 纵横向弯矩/(kN㊃m)1.34ˑ1041.63ˑ1052.95ˑ1043.48ˑ1051.49ˑ105 2.72ˑ1062.86ˑ104 3.26ˑ1052.59ˑ104 3.12ˑ1051.64ˑ104 2.60ˑ1052.51ˑ1044.97ˑ1056.54ˑ104 2.08ˑ1069.86ˑ104 2.57ˑ1068.89ˑ104 2.37ˑ1067.25ˑ104 2.09ˑ1063.45ˑ1047.28ˑ105表7㊀罕遇地震墩底内力(减隔震支座+阻尼器)项目联间墩1主墩1制动墩2主墩3主墩4联间墩2联间墩1主墩1制动墩2主墩3主墩4联间墩2荷载罕遇地震纵向罕遇地震横向纵横向剪力/kN 纵横向弯矩/(kN㊃m)1.13ˑ104 1.78ˑ1055.06ˑ1049.25ˑ1055.24ˑ1049.90ˑ1054.85ˑ1048.72ˑ1055.33ˑ1049.86ˑ1051.56ˑ1042.82ˑ1052.23ˑ104 5.53ˑ1054.07ˑ104 1.17ˑ1064.75ˑ104 1.33ˑ1064.16ˑ104 1.15ˑ1063.73ˑ104 1.16ˑ1062.42ˑ1045.59ˑ10559第5期冯文章 包银高铁黄河特大桥(102+3ˑ178+102)m 矮塔斜拉桥设计及创新表8㊀墩底抗震最大承载弯矩kN㊃m类别主墩纵向主墩横向弹性弯矩(多遇地震㊁设计地震)7.60ˑ105 1.62ˑ106屈服弯矩(罕遇地震)9.96ˑ105 1.98ˑ106由计算结果可知,多遇和设计地震工况下桥墩墩底弯矩均在墩底弹性弯矩以内,罕遇地震工况下桥墩墩底弯矩均在墩底屈服弯矩以内,说明桥墩在多遇㊁罕遇地震下均满足安全需要㊂4.3车-桥耦合分析为对列车过桥时的舒适性㊁安全性进行研究,本桥进行了车-桥耦合动力分析[20]㊂主桥前10阶自振特性如表9所示㊂表9㊀主桥前10阶自振特性阶数自振频率/Hz振型主要特点10.255塔梁纵飘20.470塔梁竖弯30.611塔梁横弯40.621塔梁横弯50.649塔梁横弯60.701塔梁竖弯70.832塔梁横弯80.868塔梁横弯90.990塔梁竖弯10 1.045塔梁横弯根据车-桥耦合动力分析的结果,当CRH3高速列车以200~300km/h的速度通过桥梁时,桥梁的动力响应均在容许范围之内,列车横向㊁竖向振动加速度满足均限值要求;当CRH3高速列车以200~250km/h (设计速度段)的速度通过桥梁时,列车乘坐舒适性指标可达到规定的 优秀 标准以上,以275~300km/h (检算速度段)的速度通过桥梁时,列车的乘坐舒适性也能够达到规定的 良好 标准以上㊂5㊀结论包银高铁磴口黄河特大桥为目前我国联长最长的高速铁路矮塔斜拉桥,结构采用塔梁固结\墩梁分离体系㊂对结构的静力㊁地震响应和车-桥耦合进行分析,结果表明,各项指标满足设计要求㊂主要创新点如下㊂(1)地震基本烈度为8度,地震动峰值加速度为0.2g,联长738m,为给桥墩和基础设计提供优化空间,在主梁和桥墩之间设置减隔震支座和粘滞阻尼器协同抗震㊂计算结果表明,协同抗震体系下,桥墩在多遇㊁罕遇地震下均满足安全需要㊂(2)大位移伸缩装置与轨道伸缩调节器合并设置,解决了桥体温度跨度大和减隔震支座引起的纵向大位移问题㊂(3)本桥主墩采用承载力130000kN的大吨位减隔震支座,支座进行了专门研发㊂包银磴口黄河特大桥计划于2020年开工建设, 2023年建成通车㊂参考文献:[1]㊀黎祖华.小田原港桥的施工[J].国外桥梁,1995(2):81-86.[2]㊀彭月燊.双线铁路PC斜拉桥屋代南㊁北桥的技术特点[J].国外桥梁,1996(1):1-6.[3]㊀严国敏.试谈 部分斜拉桥 日本屋代南桥㊁屋代北桥㊁小田原港桥[J].国外桥梁,1996(1):47-50.[4]㊀刘岚,严国敏.3跨连续部分斜拉PC箱梁桥 蟹泽大桥[J].国外桥梁,1996(2):18-20.[5]㊀Shinichi Tamai,Kenji Shimizu.The long spanned bridge for deflec-tion-restricted high speed rail-SANNAI-MARUYAMA Bridge[C].World Congress on Railway Research,2011.[6]㊀中須誠,伊藤正人,谷中慎,等.木曾川橋㊁揖斐川橋複合構造接合部の設計と施工[J].プレストレストコンクリ-ト,2000,42(1):37-45.[7]㊀陈进昌,方京,孟庆标.芜湖长江大桥设计特色[J].桥梁建设,2001(2):26-30.[8]㊀欧阳永金,刘世忠,石占良.同安银湖大桥斜拉索体系[J].世界桥梁,2003(1):24-26.[9]㊀刘世忠,欧阳永金.独塔单索面部分斜拉桥力学性能及建设实践[M].北京:中国铁道出版社,2006.[10]焦亚萌,李辉.铁路多跨长联矮塔斜拉桥合龙顺序研究[J].铁道勘察,2016,42(4):81-83.[11]汤少青,蔡文生,陈亨锦.漳州战备大桥总体设计[J].桥梁建设,2002(1):1-4.[12]张雷.三塔四跨铁路矮塔斜拉桥设计[C]//铁道部工程设计鉴定中心.2010年高速铁路特殊结构桥梁设计技术研讨会论文集.2010:134-139.[13]张雷.京沪高速铁路津沪联络线矮塔斜拉桥设计[J].桥梁建设,2012(1):69-74.[14]刘昊苏,雷俊卿.矮塔斜拉桥上部结构构件刚度敏感性研究[J].北京交通大学学报,2014,38(4):122-127.[15]王琦,杨欣然.高速铁路无砟轨道矮塔斜拉桥变形控制研究[J].铁道标准设计,2018,62(10):74-78.[16]任万敏,任杰,袁明,等.成昆铁路矮塔斜拉桥设计关键技术[J].桥梁建设,2019,49(1):95-100.[17]姚汉文.福平铁路乌龙江特大桥主桥桥式方案设计研究[J].铁道工程学报,2013(10):55-59.[18]房帅平.广佛江珠城际铁路西江特大桥主桥方案研究[J].铁道标准设计,2017,61(7):71-75.[19]任万敏,任杰,袁明,等.成昆铁路矮塔斜拉桥设计关键技术[J].桥梁建设,2019,49(1):95-100.[20]杨静静,孙加林,柯在田.反向曲线客货共线铁路桥梁车桥耦合分析[J].中国铁道科学,2019,40(2):46-53.69铁道标准设计第65卷。
Jim_Mitchell CURRENT PROBLEMS AND NEW DIRECTIONS IN GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING
Macquorn Rankine
EVOLUTION
Prior to 1940 - Karl Terzaghi
After World War II: Political and societal demands for: New structures and facilities Protection and enhancement of environment New resources Mitigation of natural disaster risks
Waste containment Site remediation Seismic risk mitigation Land reclamation Infrastructure Geophysical applications Geographic information systems
APPLICATIONS OF NON-INVASIVE METHODS
Characterization of subsurface for: - waste disposal, containment, remediation - infrastructure construction Locating: - voids - resources - underground utilities - buried land mines and unexploded ordnance Monitoring: - ground movements - infrastructure decay
CURRENT PROBLEMS AND NEW DIRECTIONS IN GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING James K. Mitchell Launch of the Nottingham Centre for Geomechanics University of Nottingham
Box-Behnken-Design
方法: Plackett-Burman designs(PB设计)
第一部分:析因分析
Plackett-Burman设计是二水平的部分试验设
计,通过对每个因子取两水平来进行分析(析
因分析),通过比较各个因子两水平之间的差
异来确定因子的显著性(显著性分析)。
通过考察目标响应与独立变量间的关系,对响
不发生,概率(p)即为显著水平,通常 (p)取99.95。
即p< 0.05即判为显著性。
第一部分 析因分析
Step 4:显著性分析(t检验)
表4表明:对超声波提取苹果多酚影响显著的因子有
温度(p=0.0334、乙醇体积分数(p=0.0241)和提取次
数(p=0.0237)。
第一部分 析因分析
Box-Behnken Design
我们面临的问题:
新产品、新工艺、新材料、新品种及其他科
研成果产生流程(需要大量的实验)
多次反复试验
试验数据分析
提高产量
提高产品性能
降低成本能耗
规律研究
实验设计方法的诞生
试验设计方法是一项通用技术,是当代科技和工程技术人员必
须掌握的技术方法。
他是把数学上优化理论、技术应用于试验设计中,科学的安排
行析因设计对减少实验次数是很有必要的。
当因素数为3时,是十分经济的;因素数大于5时,一
般不再使用。
第二部分 实验设计
应用举例:BBD法优化槐米总黄酮的提取工艺
根据Box-Behnken Design原理选取乙醇浓度、提取时
间、液料比对槐米总黄酮影响显著的3个因素,采取3
因素3水平响应面分析法。
方差分析),决定
系数2 =0.9995,
全方位技术作品安置盒设计概念英文版
全方位技术作品安置盒设计概念英文版Comprehensive Design Concept for a Technology Product Placement BoxIn today's fast-paced technological world, the need for effective and efficient storage solutions for various tech gadgets is ever-growing. A well-designed product placement box can not only organize and protect these devices but also enhance the overall user experience.The design concept for a comprehensive technology product placement box should focus on functionality, durability, and aesthetics. The box should be able to accommodate a variety of tech gadgets, from smartphones and tablets to laptops and cameras. It should have compartments and slots to securely hold each device in place and prevent damage during transportation.Durability is another key aspect to consider in the design of the placement box. The materials used should be strong and sturdy to withstand the rigors of daily use. Additionally, the box should be able toprovide adequate protection against dust, water, and other environmental factors that could potentially harm the tech gadgets inside.Aesthetics play a crucial role in the overall appeal of the product placement box. The design should be sleek, modern, and visually appealing to attract consumers. Customizable options such as color choices and branding opportunities can further enhance the box's aesthetic appeal.In conclusion, a comprehensive design concept for a technology product placement box should prioritize functionality, durability, and aesthetics. By focusing on these key elements, designers can create a storage solution that not only meets the needs of tech-savvy consumers but also adds value to their overall tech experience.。
深海潜标系统电池舱的设计与分析
专题描导深海潜标系统电池舱的设计与分析#□闫枫1口付平1□熊学军21.青岛科技大学机电工程学院山东青岛2660612•自然资源部第一海洋研究所山东青岛266061摘要:针对深海潜标系统观测仪器,设计了一种後高比满足黄金分割比的电池舱。
按照压力容器设计准则,对这一深海潜标系统电池舱进行了选材、强度计算和稳定性校核,应用W orkbench 有限元软 件对电池舱的强度和穗定性进行了模拟分析,确认电池舱满足水下承压20 M P a 的要求。
应用这一电池 舱,可以使深海潜标系统观测仪器具备长时间工作的能力。
关键词:深海潜标电池舱设计中图分类号:TH 766文献标志码:A文章编号:1000-4998(2021)01 -0011 -05Abstract :Aiming at the observation instrument of the deep sea submersible marking system , a batterycompartment with a diameter -1〇-height ratio meeting the golden section was designed . According to the design criteria for pressure vessel , the material selection , strength calculation and stability check of this battery compartment of the deep sea submersible marking system were carried out . The workbench finite element software was used to simulate and analyze the strength and stability of the battery compartment to confirm that the battery compartment could meet the underwater pressure requirement of 20 MPa . Application of this battery compartment can make the observation instrument of the deep sea submersible marking system capable of working for a long time .Key w ords : Deep Sea Submersible Mark Battery Compartment Design电池舱筒体采用黄金分割比进行设计[2]。
40纳米栅刻蚀关键尺寸loading的优化与研究
40纳米栅刻蚀关键尺寸loading的优化与研究40纳米栅刻蚀是一种关键的纳米加工技术,在集成电路制造过程中起着重要的作用。
本文将着重讨论40纳米栅刻蚀关键尺寸loading的优化与研究。
栅刻蚀是一种通过化学反应和物理过程来剥离或移除材料的制造技术。
它广泛应用于制造集成电路的各个阶段,如图案转移、形成电阻层和刻蚀工艺等。
在40纳米厂制程中,栅刻蚀是非常关键的步骤之一,对于实现更高的集成度和更好的性能至关重要。
关键尺寸loading是指在栅刻蚀过程中保持所需纳米级几何形状和尺寸的能力。
纳米级的尺寸对于芯片性能和电气特性具有重要影响,因此优化关键尺寸loading对于提高芯片质量和可靠性至关重要。
首先,对于关键尺寸loading的优化,制造商可以采取以下几种策略。
第一种是通过改进光刻技术来控制图案转移过程中的关键尺寸loading。
光刻是在芯片制造过程中非常重要的步骤,通过选择更优化的光刻机、改进曝光技术和提高光源的稳定性等方式,可以提高关键尺寸的控制性能。
第二种策略是通过改进蚀刻工艺来控制栅刻蚀过程中的关键尺寸loading。
改进蚀刻工艺包括优化刻蚀气体、调整蚀刻速率和优化蚀刻掩模等方法,可以提高关键尺寸的重复性和一致性。
第三种策略是使用先进的技术和设备,如电子束刻蚀、光子刻蚀和离子束刻蚀等,可以实现更好的关键尺寸loading控制。
其次,关键尺寸loading的研究也是非常重要的。
通过深入研究关键尺寸loading的机理和影响因素,可以揭示其内在规律和调控方法。
例如,通过研究曝光剂的化学特性、光刻机的光学系统和蚀刻器的物理过程等,可以理解关键尺寸loading的产生机制,并进一步制定相应的控制策略。
此外,还可以利用仿真模拟和数值计算的方法,预测和优化关键尺寸loading的效果。
通过模拟和优化工艺参数,可以显著提高关键尺寸loading的控制性能,并有效降低芯片制造过程中的不确定性。
最后,值得注意的是,关键尺寸loading的优化与研究需要紧密结合设备制造商、材料供应商和工艺工程师的合作。
安全专业英语词汇
安全专业英语1.国外安全成语Safety is a commodity. 安全就是商品!Safety at first 安全第一!To be safe can not depend on wise behind. 安全不能指望事后诸葛!Tolerating danger is to cut one’s own throat. 容忍危险等于作法自毙!Second thoughts are best for safety。
为了安全须三思而后行!A stumble may prevent a fall。
小踬可防大跌!2.常见的安全英语名词现代安全管理(MSM morden safety management) ·工艺安全管理(PSM process safety management)·国际安全评级系统(ISRS international safety risk system)·HSE状况(HSE Case)·紧急预案(ERP emergency responsible progress)·危险源辨识(HAZID hazardous identify)·危害与可操作性分析(HAZOP)·工艺危险性分析(PHA process hazardous analysis) ·如果-怎么办分析(What-if)·故障类型及影响分析(FMEA)·事件树分析(Event Tree Analysis)·故障树分析(Fault Tree Analysis) ·定性风险评价(Qualitative Risk Assessment)·量化风险评价(QRA)·火灾安全性分析(Fire Safety Analysis)·安全审核(Safety Audit)·项目风险管理(Project Risk Management)·企业风险管理(Enterprise Risk Management)3.安全词汇英语翻译MBMining Bureau 矿业局Safe allowable floor load 楼板安全允许荷载Safe atmosphere 安全气氛Safe capacity 安全承载能力Safe circuit 安全电路Safe concentration 安全浓度Safe dust concentration 安全含尘浓度Safe container 安全集装箱Safe criterion 安全准则Safe current carrying capacity 安全载流量Safe current 安全电流Safe curtain 防火幕Safe dispersing area 安全疏散面积Safe escape appliance 安全逃生器具Safe escape/evacuation 安全疏散Safe floor 安全层Safe guard 安全措施Safe illumination 安全照明Safe in operation 安全操作Safe limit 安全界限Safe load 安全载荷Safe operating pressure 安全操作能力Safe practice 安全措施Safe refuge 避难所Safe reliability 安全可靠性Safe temperature 安全温度Safe guard construction 安全结构Safeguard measure 保证措施Safeguard practice 保护性措施Safeguard structure 防护结构Safeguarding structure 防护构筑物Safelight box 安全灯箱Safety explosive 安全炸药Safety accessory 安全附件Safety accommodation 安全住所Safety alarm device 安全警报装置Safety alert symbol 安全惊叹号Safety apparatus 安全设备Safety approval plate 安全合格牌照Safety assembly 安全装置Safety belt 安全带harnessSafety cap lamp 安全帽灯Safety check 止回阀/安全检查Safety clothing 安全服Safety communications equipment 安全通讯设备Safety control circuit 安全控制电路Safety control mark 安全控制标记Safety cut-off 安全开关Safety department 矿山安全部门Safety device 保安装置Safety director 安全员Safety supervisor 安全监督Safety disc 安全片Safety door latch 安全门锁Safety earthing 保护接地Safety grounding 安全接地Safety element 安全原件Safety engineering 安全工程学Safety equipment cabinet 安全设备箱Safety evacuation travel distance 安全疏散距离Safety exhaust 安全排气阀Safety face shield 安全面罩Safety factor 安全系数Safety flask 安全瓶颈Safety fuel 安全燃料Safety fuse cutout = electric fuse 保险丝Safety fuse 安全导火线Safety fusible plug 易熔安全塞Safety gap 安全隙Safety garment 救生衣Safety gear 安全机构Safety glass 安全玻璃Safety goggles 防护眼镜Safety guard 安全防护板Safety harness 安全带Safety hat 安全帽Safety hatch 安全出口Safety head lamp 安全头灯Safety head 安全盖Safety hook 安全钩Safety in Mine Research and Testing Branch 矿山安全研究试验所Safety in Mine Research Board 矿山安全研究委员会Safety in Mines Research Establishment 矿山安全研究院Safety ink 安全油墨Safety inspection 安全检查Safety inspector 安全检查员Safety installation 安全设备Safety instruction安全说明Safety instrumentation安全测试装置Safety interlayer安全夹层Safety interlock安全联锁装置Safety interlocking安全联锁Safety island安全岛Safety ladder安全梯Safety lamp gauze 安全灯网罩Safety lamp 安全灯Safety legislation 安全法律Safety light安全指示灯Safety lighting fitting 安全照明装置Safety lighting 安全照明Safety limit switch 保险总开关Safety load factor 安全荷载系数Safety load安全荷载Safety lock危险品储藏小室Safety margin 安全限度Safety marking 安全标志Safety match安全火柴Safety measure安全措施Safety method安全办法Safety observation station安全观察站Safety of life at sea海上生命安全电气词汇英汉对照表架空Overhead电力线Electric line of force / power line合格证明书Qualification certificate预应力混凝土电杆Prestressed concrete pole 避雷线Shield wire / overhead ground wire 金具Hardware tool针式绝缘子Needle insulator瓷横担Porcelain cross arm悬式绝缘子Suspension insulator回填Backfill夯实Tamping拉线Stretch / drag the wire / pull wire紧线Stringing / string wire接地Grounding底盘Tray / bed / mainframe卡盘Clamping disk / holding chuck垂直Vertical水平Horizontal偏差Deviation / error深度Depth基础Basis螺栓Bolt避免Avoid倾斜Inclination拉线盘Cable quadrant通讯线Communication link跨越Crossover送电侧Sending end观察Observe冲击合闸Impulse switch on抱箍Anchor ear弯曲Bend / bending紧密Tightly / closely接触Contact / touch压接Crimp connection线夹(wiring)clip / clamp clip fastener / fastener裂缝Crack / split操作Operation镀锌铁线Galvanized (iron) wire受电侧Receiving end转角杆Turning point pole终端杆Terminal point pole导线Wire钢芯铝绞线Steel reinforced alumin(i)um wire耐张线夹Strain clamp接续管Connecting pipe导电脂(膏)Conductive pipe电阻Resistance电压V oltage电流current电功率Power / rate of work切割Cut / knifing电源Power supply敷设Laying / installing隐蔽工程Concealed / hidden project Check the circuit's phase引流线Drainage wire隔离开关Disconnecting switch负荷开关Load-break switch高压熔断器High-voltage fuse支柱绝缘子Pillar insulator接触电阻Contact resistance拉断力Tension fracture允许偏差Deviation allowance兆欧表Megohmmeter张力Tension防震锤Anti-hunting hammer弹簧销子Spring catch阻尼线Damping wire 扭矩Torque相序Phase sequence带负荷运行Load carrying电气间隙Electric clearance原始记录Original record导线对地距离Circuit’s distance to ground接地电阻Earth resistance绝缘电阻Insulation resistance耐压试验High—voltage holding test测定线路参数Determination of circuit parameter线路走向Circuit’s routing坐标Coordinate耐张段Strain section镀锌制品Galvanized product线路编号Line's number线路名称Line’s name线路走向图Circuit’s routing diagram避雷器Lightning arrester / lightning protecter真空断路器Vacuum breaker变压器Transformer线电压Line voltage电压等级V oltage grade测量Measurent竣工图Completion drawing设计变更通知单Design altering notice标准Standard 复测Repetition measurement工程试验报告Engineering testing report电容器Capacitance element合闸Switch on分闸Switch off照明配电箱Lighting distribution box电线Wire电缆Cable配电盘Distribution board空气断路器Air breaker油位Oil lever自动重合闸Autoclose circuit breaker动触头Moving contact继电器Relay按钮Press-button接触器Contractor电磁机构Electromagnetic mechanism操动机构Control mechanism压力开关Pressure switch温度开关Temperature switch氧化锌Zinc oxide电缆桥架Cable bridge support设备线夹Equipment clamp温度继电器Temperature relay报警器Alarm温度计Thermometer储油柜(油枕)Tank 空载电压Floating voltage / no-load voltage蓄电池Battery消弧线圈Arc-extinguishing coil励磁电压Exciting voltage二次接线Second link自动重合闸保护Autoclose circuit breaker protection 过电流保护Over-current protection标志牌Mark board距离保护Distance protection泄漏电流Leakage current直流电阻Direct—current resistance 电动机Electric motor转速Rotational speed延时Time relay频率Frequency工频放电电压Power frequency discharge voltage电导电流Conductivity current电压降V oltage drop功率因数补偿Power-factor compensation无功功率Reactive power 有功功率Active power视在功率Apparent power持续电流Sustained current持续时间Endurance time 过电压保护Over-voltage protection电解液Electrolytic solution初充电Initial charge正极Positive electrode负极Cathode钢管Steel pipe圆钢Round bar搭接长度Lap of splice避雷针Lightning rod阻燃型Flame retardant光纤电缆Fiber cable交叉净距Cross clear distance弯曲半径Curvature radius 固定点Anchor point扁钢Flat steel支架Support frame防腐处理Anticorrosive process安全净距Safety clear distance接线端子Terminal post便携式Portable type引下线Down lead闪络Flashover联锁Interlock爆炸危险区域Explosive dangerous zone应急照明Emergency lighting穿越Through安全电压Safevoltage手持式电动工具Hand power tool限位开关Limit switch局部照明Local illumination / spot light 接地母线Earth bus保护零线Protection zero line截面积Area of section载流量Current capacity线间距离Line-line distance相间距离Phase—phase distance埋地Ground / buried漏电开关Leakage switch工艺常用英语词汇探伤仪flaw detector探伤flaw detection/crack detection不合格not up to the (required) standard/below the mark合格qualified/up to standard合格证certificate of inspection/certificate of quality 一级片class Ⅰtype film二级片class Ⅱtype film三级片class Ⅲtypefilm试压流体test fluid试验证书test certificate试压工作队testing spread硬度试验test of hardness testing试压准备test preparation试验压力test pressure试压泵test pump试焊口test weld强度试压strength test严密性试压proof test通径试验drift test吹扫purging压力表manometer/pressure gauge压力表式温度计pressure—spring thermometer压力开关pressure switch压力阀pressure valve精度系数quality coefficient精度等级accuracy class/precision class精度检查accuracy checking/alignment test精度控制accuracy control精度要求required precision稳压试验standup pressure test 对管工stabber施工工作队spread盲板blank临时盲板temporary blank临时措施temporary水压试验test of water pressure返工remade返修rework截面section管沟pipe trench管沟截面尺寸section dimension of pipe trench管沟开挖质量quality of pipe trench开挖机械excavation machinery开挖深度cutting depth/excavating depth回填backfill回填夯实backfill consolidation夯实tamping打夯机tamper恢复原状(地貌)reconversion of landforms放线setting—out测量工具measuring tool清理cleaning up施工带清理cleaning of construction area修理临时施工道路build access road运输工具(车)carrier vehicle布管stringing运管卡车carrier truck/carrier lorry起下管子pipe trip吊管架pipe hanger/jacket吊管机sideboom tractor吊车crane单机试运转single machine test run防腐常用词汇阳极接地anodic earthing阳极腐蚀(侵蚀)anodic attack /anodic corrosion 烘烤型醇酸树脂漆baking alkyd酚醛环氧树脂bakelite epoxy resin烘干漆烤漆baking finish烘干漆烤漆baking lacquer烘烤型底漆baking primer清烘烤漆baking varnish平衡电位balance potential球磨光试验ball burnishing test球磨机ball mill钢球(布氏)硬ball hardness球阀ball valve层状腐蚀banded corrosion抛光膏bar compound分批装料batch loading间歇法;分批操作法batch method返工do poorly done work over again预制prefabricate喷砂sandblast打磨burnish砂纸sand paper铁红Bengalen裂口crack mouth缩孔龟裂crawling银纹craze缝隙腐蚀crevice attack交联剂cross—linking agent橘皮crocodile skin细纱布crocus cloth探伤仪defectoscope稀释剂dilution agent熔融环氧树脂涂层FBE瓷漆enamel paint环氧瓷漆epoxy enamel环氧酯涂料epoxy ester pait环氧异氰酸酯涂料epoxy isocyanate paint 检漏仪leaky detector漏点leakage point流平剂levelling solution流平level out磁性测厚仪magnetic thickness tester机械除锈mechanical derusting机械喷砂mechanical blasting机械搅拌器mechanical stirrer机械除锈的mechanical rust removable漏涂miss不潮的moisture-free防潮moisture proofness漆桶paint bath涂料施工paint application涂料施工法paint application method涂料应用规范paint application specification 涂料起泡paint blistering 涂料杯paint cup漆膜漏点检测仪paint film holiday detector漆膜破坏paint film destruction涂料配方paint formular涂料损耗paint loss涂料面层paint topcoat涂料使用寿命paint service life修补、补伤patch厚漆paste paint无针孔pinhole—free聚氨酯涂料polyurethane paint粉末喷涂法powder coating technique予处理pre-condition予涂敷层pre—construction primer(pre—coat) 预清理pre-cleaning牺牲阳极sacrificial anode喷砂的表面sand blasted surface喷砂机sander ,sanding machine喷砂(处理)sanding喷砂处理的sanded氧化皮层scale layer表面处理surface treatment表面加工surfacing表面粗糙度surface roughness焊接常用词汇焊接welding咬边undercut焊工welder焊瘤overlap手工焊manual welding烧穿burn through焊接电流welding current白点fish eye/flake电弧电压arc voltage塌陷excessive penetration焊接速度welding speed未焊透incomplete penetration焊炬/割把torch未熔合incomplete fusion3焊条rod/electrode未焊满incompletely filled groove焊芯core wire飞溅物spatter极性polarity焊机welder/welding machine母材parent material阴极cathode填充金属filled met阳极anode焊接部件welding assembly焊缝weld坡口groove焊道weld bead/weld pass钝边root face坡口面bevel余高reinforcement根部间隙root opening/root space焊接缺陷welding defects熔合区fusion zone气孔gas pocket氧化皮scale夹渣slag inclusion熔渣slag裂纹crack角焊缝fillet weld施工班组常用词句电缆沟cable pit/trench开挖电缆沟ditch /dig the cable trench/pit搬动某物到某地move sth. to somewhere拿某物给某人take/fetch sth. to sb。
航空发动机包装箱减振系统设计与分析
航空发动机包装箱减振系统设计与分析发布时间:2022-09-07T05:14:21.594Z 来源:《科学与技术》2022年第9期作者:黄新禹宋志佳曹学智刘旭峰[导读] 首先简要阐述了航空发动机包装箱使用钢丝绳减振器的必要性.介绍了包装箱减振装置的结构,对钢丝绳减振器进行选型黄新禹,宋志佳,曹学智,刘旭峰中国航发沈阳发动机研究所,辽宁沈阳 110015黄新禹(1990年),女,辽宁省铁岭市,中国航发沈阳发动机研究所,工程师,航空发动机地面保障设备设计摘要:首先简要阐述了航空发动机包装箱使用钢丝绳减振器的必要性.介绍了包装箱减振装置的结构,对钢丝绳减振器进行选型,以振动传递率和变形量为评价指标,对减振器进行了可行性分析,进而设计了减振器的布局方案,最后对减振系统进行了模态分析,结果表明支撑架结构具有足够的刚性储备,说明减振系统设计合理,能够保障发动机安全运输。
关键词:减振装置结构;减振器选型;布局方案;模态分析Design and Analysis of Vibration Damping System for Aero-engine Packaging BoxHuang xin-yu, Song zhi-jia, Cao xue-zhi(AECC Shenyang Engine Research Institute, Shenyang 110015, China)Abstract: Firstly this paper briefly expounded the necessity of using wire rope shock absorber in aero-engine packaging box. The structure of shock absorber in packaging box was introduced, then the type of wire rope shock absorber was selected. With vibration transmission rate and deformation as evaluation indexes, the feasibility of shock absorber was analyzed, and then the distribution scheme of shock absorber was designed. Finally modal analysis of shock absorber system was computed. The results show that the design of the support frame has sufficient rigidity reserve,which shows that the design of the damping system is reasonable and can ensure the safe transportation of the engine.Key words: damping device structure; shock absorber selection; distribution scheme; modal analysis1 引言航空发动机被称为现代工业“皇冠上的明珠”,它可以衡量一个国家的科技、工业和国防实力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design Loading on Deeply Buried Box CulvertsKyungsik Kim1and Chai H.Yoo,F.ASCE2Abstract:The current American Association of State Highway and Transportation Officials(AASHTO)standard specifications for highway bridges and AASHTO LRFD bridge design specifications stipulate the computation of the design load on the box culvert primarily based on research by Marston and Spangler.Although this procedure may be applied conservatively for most ordinary culverts, an opportunity exists to evaluate a more realistic soil-structure interaction behavior based on modernfinite element analyses of deeply buried concrete box culverts.The Duncan soil model,represented by hyperbolic stress–strain curves,has been used for properties of backfill and in situ soil.The backfill heights are varied from15.2to61.0m͑50–200ft͒for the embankment condition and15.2–45.7m ͑50–150ft͒for the trench condition.An optimum combination of parameters has been identified for use in the imperfect trench instal-lation method.The data from several hundred hypothetical models with various parameters under three typical installation methods,i.e., embankment,trench,and imperfect trench installation are characterized and quantified using regression analysis.DOI:10.1061/(ASCE)1090-0241(2005)131:1(20)CE Database subject headings:Backfills;Culverts;Embankments;Finite element method;Installation;Soil-structure interaction; Buried pipes.IntroductionCast-in-place or precast reinforced concrete box culverts are widely used throughout the world to provide safe and relatively economical structures for the conveyance of water,vehicles,utili-ties,or pedestrians.Although single cell or multicell box culverts are rather simple structures,the loadings applied to these struc-tures during their construction and subsequent service life can be complex.A culvert as an underground structure causes a redistri-bution of stresses of surround soil layers and the nature of this redistribution influences the load that reaches the structure.The load that reaches the structure is governed by the characteristics of the soil,and the geometry and stiffness of the structure itself. Marston pioneered research on the behavior of underground con-duits analytically and experimentally in the early years of the20th century.One of the outstanding contributions of the Marston theory of loads on buried conduits is its demonstration,by the principles of mechanics,that the load on a structure is affected by installation conditions in addition to the height offill over the structure(Marston and Anderson1913;Marston1930).Succeed-ing Marston’s study,Spangler(1950a,b)has shown that the pri-mary factors influencing the load are associated with the installa-tion conditions that control the magnitude and direction of settling of the soil prism over the structure relative to settling of the exterior soil prisms immediately adjacent to this central soil prism.These relative settling generate friction forces or shearing stresses that are added to or subtracted from the dead weight of the central prism and affecting the resultant load on the structure, as shown in Fig.1.When the relative settlement of the soil prism directly above the structure is less than that of the adjacent soil prisms,as usually found in embankment installations[Fig.1(a)], the layers of soil in the central prism are subjected to an arch shape deformation and the earth pressure on the structure is in-creased,which is referred to as negative arching(Selig1972; Vaslestad et al.1993).Likewise,when the relative settlement of the soil prism directly above the structure is greater than that of the adjacent soil prisms,as depicted in the trench installations in Fig.1(b),the layers of soil in the central prism are subjected to a reverse arch shape deformation and consequently the earth pres-sure on the structure is reduced by the amount of the shearing forces exerted on the central soil prism,which is referred to as positive arching.Up until the twelfth edition of the American Association of State and Highway Transportation Officials(AASHTO)standard specifications for highway bridges(AASHTO1977),the stipu-lated vertical loading was essentially70%of the weight of the earth prism above the top slab.The current AASHTO LRFD bridge design specifications(AASHTO1998)and AASHTO stan-dard specifications for highway bridges(AASHTO2002)require-ments for the design loadings on cast-in-place or precast concrete box culverts are based on the Marston–Spangler theory of the soil–structure interaction.These criteria were adopted by AASHTO in the13th edition of the standard specifications in (AASHTO1983).At the same time,the0.7vertical soil pressure reduction factor,was eliminated.The current AASHTO(2002) soil–structure interaction factors are given byF e1=1+0.20HB c͑1͒for embankment installations1PhD Candidate,Dept.of Civil Engineering,Auburn Univ.,Auburn,AL36849-5337.2Professor,Dept.of Civil Engineering,Auburn Univ.,Auburn,AL36849-5337(corresponding author).E-mail:chyoo@Note.Discussion open until June1,2005.Separate discussions mustbe submitted for individual papers.To extend the closing date by onemonth,a written request must befiled with the ASCE Managing Editor.The manuscript for this paper was submitted for review and possiblepublication on November12,2003;approved on May10,2004.Thispaper is part of the Journal of Geotechnical and GeoenvironmentalEngineering,V ol.131,No.1,January1,2005.©ASCE,ISSN1090-0241/2005/1-20–27/$25.00.20/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING©ASCE/JANUARY2005F e 2=C d B d2HB c͑2͒for trench installations where F e 1,F e 2=soil–structure interaction factor;H =backfill height;B c =width of the structure;C d =load coefficient for trench installation;and B d =horizontal width of trench.BackgroundIf the result of a soil–structure interaction analysis is to be real-istic and meaningful,it is important that the stress–strain charac-teristics of the soil be represented in a reasonable way.There are two general categories of stiffness and/or compressibility models for soils:(1)models based on constant confining pressure triaxial tests,and (2)models based on uniaxial strain confined compres-sion tests.Soil models in the first category usually incorporate a failure condition,whereas those in the second category do not,because the failure condition is not defined in the uniaxial tests.Examples of the first category are the Hardin model (Hardin 1971),the Duncan model (Duncan and Chang 1970),and the bilinear model (McVay and Selig 1981),while the overburden-dependent model (Katona et al.1976)falls into the second cat-egory.Since the Duncan model is capable of obtaining its com-pressibility parameters from the uniaxial compression test,it is the most general of the models in the first category.Duncan and Chang (1970)expanded the basic hyperbolic stress–strain rela-tionship for soil suggested by Kondner (1963)to derive the tan-gent modulus of elasticity and Poisson’s ratio as follows:E t =ͫ1−R f ͑1−sin ͒͑1−3͒2c cos +23sin ͬ2Kp aͩ3p aͪn͑3͒t =G −F logͩ3p aͪͭ1−Kp aͩ3p aͪnͫd ͑1−3͒͑1−sin ͒2c cos +23sin ͬͮ2͑4͒where R f =failure ratio;1,3=maximum and minimum principal stresses;K =modulus number;n =modulus exponent;c =cohesion intercept;=friction angle;G,F,d =Poisson’s ratio parameters;and p a =atmospheric pressure.An attempt to reduce the load on the structure led to the de-velopment of the imperfect trench method (sometimes called the induced trench method )of construction,where larger relative ver-tical displacements of the soil prism above the structure are in-duced by replacing some part of the fill with lightweight material.Baled straw,leaves,compressive soil,or expanded polystyrene blocks are examples of the types of lightweight material that can be used.It was intuitively expected that the result of this light-weight backfill was to introduce a reverse arch shape deforma-tion,causing a radical alteration of the culvert pressure distribu-tion due to the fill subsequently placed above the soft zone.Brown (1967)quantified the pressure reduction effect of the hay layers based on the finite element method of plane elasticity.Vaslestad et al.(1993)revisited this imperfect trench installation method to examine the long-term behavior of the load reduction characteristics on rigid culverts beneath high fills.Linear and nonlinear stress analyses in geotechnical engineer-ing for static and dynamic loading were introduced in the late 1960s and early 1970s.Kulhawy et al.(1969)developed LSBUILD ,a finite element program for stresses and movements in embankments during construction.In ISBILD ,an updated ver-sion of LSBUILD ,Ozawa and Duncan (1973)incorporated a non-linear incremental finite element procedure employing a hyper-bolic stress–strain relationship.Techniques for determining values of the hyperbolic parameter were later presented and updated (Wong and Duncan 1974;Duncan et al.1980).Allen and Meade (1984)used the program ISBILD to predict loads on and settle-ments of concrete culverts that had been actually installed in Ken-tucky.Their results indicated that the finite element method pre-dicted the pressure on box culverts more accurately than other analytical methods available at the time.Katona et al.(1976)developed CANDE ,which is a special-purpose finite element pro-gram primarily intended for the design and analysis of buried culverts.The CANDE program has been widely used for soil–structure analysis and evaluation of buried box culvert designs by a number of researchers,including Chang et al.(1980),Katona and Vittes (1982),and Tadros et al.(1989).CANDE has been upgraded several times,with the latest version being CANDE-89(Musser 1989).Most recently,Kim and Yoo (2002a,b )investi-gated load distributions on deeply buried concrete box culverts using the programs ISBILD and CANDE-89.Finite Element ModelIn the present study,ABAQUS (1998)and ISBILD were used pri-marily for the analysis and CANDE-89for verification and com-parison.The ISBILD code incorporates a nonlinear incremental finite element method employing the hyperbolic stress–strain re-lationship and incremental analysis procedures based on plane strain elements.As required ABAQUS inputs for the material properties of soils,the tangent modulus of elasticity and Poisson’s ratio,are evaluated for each construction layer using Eqs.(3)and (4).In order to quantify the maximum and minimum principal stresses that are needed in Eqs.(3)and (4),the following equa-tions are derived based on the assumption that soil layers are subjected to normal stresses without any induced shear stress:1͑i ͒=␥i ͑h i /2͒+͚j =i +1n␥j h j͑5͒Fig.1.Pressure transfer within soil-structure system:(a )embank-ment installation and (b )trench installationJOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /JANUARY 2005/213͑i ͒=R 1͑i ͒͑6͒where h i ,␥i =depth and density of the i th soil layer (numberingfrom the bottom to the top of the backfill,or original ground )and R ,the coefficient of lateral pressure,is taken to be 0.5in this study.Taking advantage of the symmetry,only one half of the struc-ture and the surrounding soil were modeled.Exactly the same geometric mesh,boundary conditions,and numbers of construc-tion layers were considered in both ABAQUS and ISBILD runs.It is expected that the width of the surrounding soil taken in the finite element model will affect the analysis results of soil-structure models.Soil–structure interaction factors or the effective densities (equivalent hydrostatic pressure )of the overburden soil increase as the ratio of the width of the soil layer ͑W s ͒to the width of the box culvert ͑B C ͒increases.Kim and Yoo (2002b )reported that the value of the soil–structure interaction factor in-crease gradually until W s /B c reaches approximately 12–14,after which no significant increase was observed.Therefore,W s /B c was taken to be 14in all subsequent analyses of soil–structure models.The width of the surrounding soil was taken to be six times the culvert width in the trench installations and the depth of the foundation below the bottom slab was taken to be four times the culvert height,as models based on a greater amount of in situ soil either vertically or horizontally did not affect the results.Typical soil–structure models with incremental sequences consid-ered for the embankment and trench installations are illustrated in Fig.2.Heights of backfill varied from 15.2m ͑50ft ͒to 61.0m ͑200ft ͒for the embankment installations,and from 15.2m ͑50ft ͒to 45.7m ͑150ft ͒for the trench installations.The constant exterior dimensions of the culvert were 2.4m ͑8ft ͒by 2.4m ͑8ft ͒,with 305mm ͑12in.͒thick walls and slabs.In cases where the height of the backfill exceeds 47.5m ͑150ft ͒,the thickness of walls and slabs may have to be increased to resist the induced shearing force near the wall face.It was found from a series of numerical analyses that the thickness of the culvert did not sig-nificantly alter the total load at the top of the culvert,having an effect only in the order of 1%.The modulus of elasticity of con-crete box culverts was computed to be 25,181MPa ͑3,605ksi ͒,assuming the 28day strength of concrete f c Јis 27.58MPa ͑4,000psi ͒and Poisson’s ratio is 0.20.Hyperbolic parameters for the Duncan soil model were taken from Allen and Meade (1984).Effects of Soil–Structure Interface ModelingAn interface phenomenon that is frequently discussed is slip be-tween the soil and sidewalls of a culvert.Research has shown that there are basically two modeling techniques for the soil–structure interface examination,one of which is a shear element interface and the other a spring element (Katona et al.1976).Fig.3illus-trates the basic concept of these two modeling techniques.Table 1summarizes soil-structure interaction factors evaluated based on models with and without the effect of soil–structure interface.The hypothetical models examined in Table 1were assumed buried at a depth of 30.5m ͑100ft ͒.The dimensions of the box culvert are the same as those used for the comparative study presented here and other details such as the spring constant can be found in Kim and Yoo (2002b ).As can be seen from Table 1,the effect of a potential slip of the soil along the exterior culvert wall is insig-nificant.Therefore,the effect of interface action was not consid-ered in subsequent analyses.Comparison of Finite Element ModelingIn order to assess the validity of the soil modeling technique adopted in this study,an example used by Katona and Vittes (1982)was reanalyzed.The example is a single cell box culvert with interior dimensions of 1.22m ϫ1.22m and 254mm thick walls (4ft ϫ4ft and 10in.thick )tested in Kentucky in 1975.Pressure gage readings were taken at the backfill height of 6.6m ͑21.6ft ͒and 23.5m ͑77ft ͒.Fig.4shows the soil pressure around the box culvert predicted analytically by CANDE and ABAQUS .As can be seen from Fig.4,the analytically predicted values from ABAQUS are fairly close to those from CANDE .The analytically predicted soil pressure values are also fairly close to those deter-mined experimentally.The soil pressure directly above the side-Table parison of Soil–Structure Interaction Factors (SSIFs )SSIFDifferences a (%)Without interface 1.264—Spring model 1.2760.9Shear modelE S /E I bϭ101.277 1.0E S /E I bϭ201.288 1.9E S /E I bϭ501.310 3.6E S /E I bϭ1001.333 5.5E S /E I bϭ5001.3859.6aDifferences were computed based on the case without soil–structure interface.bE S /E I =ratio of the modulus of elasticity of soil to the fictitious shearelement.Fig.2.Incremental sequences:(a )embankment installation and (b )trenchinstallationFig.3.Interface modeling of culvert wall and soil elements:(a )shear element model and (b )spring element model22/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /JANUARY 2005wall is substantially higher than the soil pressure at the center of the top slab,where the largest relative vertical deflection is ex-pected to occur.Embankment InstallationsThe pressure values on the topflange of the box culverts were averaged and conservatively converted to the effective densities or soil-structure interaction factors F e1and F e2,given by Eqs.(1) and(2).The effective density or the soil-structure interaction fac-tor is higher for an unyielding foundation than for a yielding foundation.Examination of the soil settlement adjacent to the culvert reveals that soil layers on an unyielding foundation[Fig. 5(b)]settle more at the level of the topflange than those on a yielding foundation[Fig.5(a)].As explained earlier and shown in Fig.1,the magnitude of relative settlements of soil prisms adja-cent to the central soil prism affects the effective soil density.Fig.6shows the effective density versus backfill height for culverts on yielding foundations.Effective densities increase as the backfill heights increase.The relative settlement of soil layers on a yielding foundation,illustrated in Fig.5,increases slightly more than linearly.Effective densities from ABAQUS are slightly higher than those from ISBILD.The predicted values from both ABAQUS and ISBILD lie between the values given for the com-pacted and the uncompacted side-fill by AASHTO(2002).Termi-nologies for compaction requirements in AASHTO such as“un-compacted”or“compacted,”used without quantitative references,are difficult to interpret in modern construction con-tracts.The compactness offill along the sides of the box section does not appear to significantly affect the effective density for deeply buried box culverts.It is clear that the effective density is most sensitive to the foundation characteristics.However,concrete box culverts are most likely to be installed on yielding foundations unless a solid rock layer is encountered immediately under the concrete box culverts.The AASHTO stipulates that a special analysis is re-quired for a culvert on an unyielding foundation.Fig.7shows the effective density versus backfill height for box culverts installed on unyielding foundations.The value of the effective density from ABAQUS showed somewhat higher values than those ob-tained from ISBILD.The following equations are proposed for the effective densities for yielding and unyielding foundations,re-spectively:D E=1.047H0.055;yielding foundation͑7͒D E=1.200H0.059;unyielding foundation͑8͒where DE and H stand for effective density andfilling height, respectively.While there are only small differences in the effec-tive densities determined from ABAQUS and ISBILD runs for yielding foundations,as shown in Fig.6,there are fairly large differences in the effective densities determined from ABAQUS and ISBILD for unyielding foundations,as shown in Fig.7.Eqs.Fig.5.Deformed shapes of soil layers adjacent to box culvert:(a) yielding foundation and(b)unyieldingfoundation Fig.6.Effective density for embankment installations on yieldingfoundations parison of soil pressure around box culvertTrench InstallationsThe pressure values on the top flange of the box culverts were averaged and conservatively converted to effective densities.The effect of sloping trench walls and vertical sidewalls was investi-gated.The effective density asymptotically approaches that for embankment installation as the ratio of the horizontal width of the trench to the box width ͑B d /B c ͒increases,as expected.The ef-fective density for vertical sidewalls is plotted as a function of the ratio of backfill height to horizontal width ͑H /B d ͒on yielding and unyielding foundations in Figs.8and 9,respectively.As in the case of embankment installation,the effective densities deter-mined from ABAQUS are slightly higher than those computed from ISBILD .Most values of the soil–structure interaction factor from AASHTO (2002)are 1.4,the upper limit value.It is clear from Fig.8that the effective density given by the current AASHTO is conservative compared to the analytically predicted values from this study.The curves shown are fitted from a regres-sion analysis on the data from ABAQUS and ISBILD as functions of H /B d .It is noted that different effective densities can be found for the same value of H /B d as the magnitude of the backfill height H may have a nonlinear effect on the effective density,as men-tioned earlier.It should also be noted that there are no effective densities plotted in Fig.9,as there are no procedures presented in the current AASHTO other than stipulating a special analysis re-quirement.Predictor equations for effective densities formulated from ABAQUS runs are proposed as follows:D E =exp ͓0.012͑H /B d ͒2−0.288͑H /B d ͒+0.375͔;yielding foundation͑9͒D E =exp ͓0.011͑H /B d ͒2−0.273͑H /B d ͒+0.465͔;unyielding foundation͑10͒In most theoretical treatments,the trench walls are generally taken to be vertical.However,for deep trenches,it is not practical to maintain the trench walls to be vertical.Sloping trench side-walls are expected to have a significant effect on the soil pressure on culverts.For cases where the trench is constructed with slop-ing walls,it is usual that the width of the trench B d is taken as the horizontal distance between the sloping walls at the top of the box.In order to investigate the effect of the sloping sidewalls on the effective density,a number of hypothetical concrete culverts installed in a trench with sloping sidewalls were analyzed.Fig.10shows the effective densities for trench installations with sloping sidewalls.It is believed that such quantified information on the effect of the sloping sidewall has not previously been available.The ranges of the parameters used to generate Fig.10were:ratio of the trench width to the concrete box culvert width B d /B c =2,3,4;and fill height H =15.2m ͑50ft ͒,30.5m ͑100ft ͒,45.7m ͑150ft ͒.represents the angle between the vertical line and the sloping sidewall of the trench.Effective densities increase to ap-proximately 90%of those for embankment installations when approaches 45°.Although Fig.8shows large differences between the values of the effective density computed from AASHTO pro-visions and finite element analyses where the trench walls are assumed to be vertical,the actual differences are likely to be smaller when the sloping trench walls are taken into account.Imperfect Trench InstallationsThe loads on concrete box culverts in embankment installations are greater than the weight of the soil directly above the structure,as stated previously.An attempt to reduce the load on the struc-ture led to the development of the imperfect trench method of construction,as shown in Fig.11.As the embankment is con-structed,the soft zone compresses more than the surrounding fill and thus induces a reverse arch deformation above the culvert.Concrete box culverts buried with a lightweight material zone were analyzed for several different geometric configurations and backfill material properties.The modulus of elasticity of the light-Fig.7.Effective density for embankment installations on unyieldingfoundationsFig.8.Effective density versus H /B d for trench installations on yieldingfoundationsFig.9.Effective density versus H /B d for trench installations on unyielding foundations4.79kPa ͑10ksf ͒and the weight was taken to be 1.57kN/m 3͑10lb/ft 3͒.A typical average value of modulus of elasticity of soil E is about 10–20kPa at ground level and 200kPa at a depth of 30m.The width of the lightweight backfill or the loose mate-rial zone w was varied from 1to 2.5times the width of the culvertB c .The exterior dimensions of the box culvert were 2.44m ͑8ft ͒high and 2.44m ͑8ft ͒wide,and the thickness of the slab and wall were both 305mm ͑12in.͒.Table 2shows the load reduction rate of the imperfect trench method in terms of percentage for a concrete box culvert buried at a depth of 30.5m ͑100ft ͒with a lightweight material zone above 0.6m ͑2ft ͒from the top of the culvert.The height of the lightweight material zone was set at 2.44m ͑8ft ͒.Table 2clearly demonstrates that the width of the lightweight backfill zone need not be greater than 1.5times the width of the culvert,as no significant load reduction is realized beyond that.This number agrees well with the recommendation by Vaslestad et al.(1993).The effects of the height of the lightweight material zone h and the distance between the culvert and the lightweight material zone h Јwere also examined.h and h Јwere varied from 0.75m ͑2.5ft ͒to 4.5m ͑15ft ͒,and from 0to 2.44m ͑8ft ͒,respectively.The load reduction rates as functions of the ratio of the height of the soft zone to that of the culvert h /H c are plotted with different values of w /B c in Fig.12and with different moduli in Fig.13.It can be seen from Figs.12and 13that the ratio h /H c need not be greater than 1.5;after which no significant load reduction is real-ized.The variations of load reduction rates are shown in Fig.14as a function of the ratio of the distance between the culvert and the lightweight material zone to the height of the culvert h Ј/H c .Note that the maximum load reduction rate is realized if the light-weight backfill or the soft zone is placed immediately above the box culvert.However,it may be necessary to place a nominal layer of backfill over the box in order to facilitate the construction of the lightweight material zone.Typical effective density distri-butions on the box culverts are shown in Fig.15for different values of w /B c ,E ,and h Ј/H c .It is evident from Figs.12–15that the imperfect trench method can significantly reduce the effective densities or the soil–structure interaction factors.The notion of inducing artificial reverse arch shape deformations in the backfill above buried conduits,thereby reducing the vertical soil pressure,Fig.12.Effects of w /B c and h /H c in imperfect trench installationsFig.10.Effect of sloping sidewall in trench installationsFig.11.Concept and notation in imperfect trench installationsTable 2.Load Reduction Rates (%)Due to Imperfect Trench Installation Modulus of lightweight materialWidth of back fill layer,w /B c 1.0 1.5 2.0 2.547.9kPa ͑100ksf ͒32.841.139.136.723.9kPa ͑50ksf ͒43.658.657.054.34.79kPa ͑10ksf ͒56.983.785.384.8JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /JANUARY 2005/25has been known and tried intermittently (Brown 1967).It is be-lieved,however,that numerical values of the parameters for the optimum size of the lightweight material zone and its desired location have not been available elsewhere before this study.However,the imperfect trench method is an emerging technology that so far lacks a great deal of construction experience.Vaslestad et al.(1993)recommend a judicious selection of the lightweight backfill material and its careful installation,as many unsatisfac-tory experiences have been reported.Summary and Concluding RemarksLinear and nonlinear finite element analyses have been conducted to investigate the effective density or soil–structure interaction factor for deeply buried concrete box culverts.The effective den-sities are sensitively affected by many parameters,including in-stallation methods and foundation characteristics.Although con-servative classical methods will continue to be applied to the design and construction of buried conduits,an opportunity exists to utilize the modern numerical techniques made possible by ad-vances in finite element methods.The findings from this study presented in the form of proposed regression equations and charts should find their applicability.Highlights of the study are as fol-lows:1.Soil–structure interaction factors for deeply buried box cul-verts are more sensitively affected by the foundation charac-teristics.Predictor equations for soil–structure interaction factors were derived based on numerical data for culverts on both yielding and unyielding foundations constructed by em-bankment,trench,and imperfect trench installation methods.2.The effect of possible slips of the sidefill materials along the exterior culvert wall on the vertical soil pressure on the box culvert was found to be negligibly small.3.The current AASHTO provisions and most other references stipulate the effective densities for the trench installations under the assumption that the trench walls are excavated ver-tically.However,it was found that the effect of sloping trench walls on the soil–structure interface factors is very high.Fig.10presents variations of the soil–structure interac-tion factors as functions of major parameters,including the fill height,the degree of slope,and other trench geometry.4.Effective densities or the soil–structure interaction factors may be significantly reduced by properly implementing the imperfect trench method.Load reduction rates afforded by inducing artificial reverse arch shape deformations can be as high as 85%,depending on the dimensions of the lightweight material zone and the modulus of elasticity of the lightweight material.The height and the width of the lightweight mate-rial zone need not be greater than 1.5times those of the box culvert,beyond which no significant load reduction is real-ized.The greatest effect on load reduction is also obtained if the lightweight material zone can be placed immediately above the box culvert,although it may be necessary to place a nominal backfill layer immediately above the box to facili-tate the construction of the lightweight material zone.It is believed that the optimum values defining the lightweight material zone and its location have not been available else-where before this study.AcknowledgmentFunding for this research project was provided by the Highway Research Center,Auburn University.This financial support is gratefullyacknowledged.Fig.13.Effects of Young’s modulus and h /H c in imperfect trenchinstallationsFig.15.Effective density affected by imperfect trenchinstallationsFig.14.Effects of w /B c and h Ј/H c in imperfect trench installations26/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /JANUARY 2005。