β-内酰胺类抗生素β-内酰胺酶抑制剂合剂临床应用专家共识
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
β-内酰胺类抗生素、β-内酰胺酶抑制剂合剂临床应用专家共识
β-酰胺类抗生素/β-酰胺酶抑制剂合剂临床应用专家共识β-酰胺类/β-酰胺酶抑制剂合剂临床应用专家共识编写委员会
一、概述
革兰阴性菌是我国细菌感染性疾病最常见的病原菌。近年来,革兰阴性菌对β-酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-酰胺酶。β-酰胺酶抑制剂能够抑制大局部β-酰胺酶,恢复β-酰胺类抗生素的抗菌活性。为规β-酰胺类抗生素/β-酰胺酶抑制剂合剂的临床应用,延缓其耐药性的发生和开展,特制定本共识。
二、主要β-酰胺酶及β-酰胺酶抑制剂
β-酰胺酶是由细菌产生的能水解β-酰胺类抗生素的一大类酶。β-酰胺酶种类繁多,有多种分类方法,最主要的分类方法有根据β-酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法〔Bush分类法〕,将β-酰胺酶分为青霉素酶、广谱酶、超广谱β-酰胺酶、头孢菌素酶和碳青霉烯酶等;根据β-酰胺酶末端的氨基酸序列特征的分子生物学分类法〔Ambler 分类法〕,将β-酰胺酶分为丝氨酸酶和金属酶。目前引用较多的是基于上述2种方法建立的分类方法。见表1。
超广谱β-酰胺酶(ESBLs)是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-酰胺类抗生素的β-酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。这类酶可被β-酰胺酶抑制剂如克拉维酸、舒巴坦及他唑巴坦等抑制。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。到目前为
表1 β-酰胺的分类和3种主要酶抑制剂的作用
功能分类分子
分型
主要底物
可被抑制
代表性酶
克拉维
酸
舒巴坦
β内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识及相关医保政策解读
最常见的革兰阴性菌为肠杆菌科细菌、鲍曼不动杆菌、铜绿假单胞菌和嗜麦芽窄食单胞菌
2020 专家共识对常见G-菌的治疗推荐
细菌
主要治疗选择及考虑
肠杆菌科细菌
敏感性良好,临床疗效较好的有:头孢哌酮/舒巴坦、哌拉西林/他唑巴坦、头孢他啶/阿维巴坦、头孢洛扎/他唑巴坦*、美罗培南/法硼巴坦*、亚胺培南‐西司他丁/雷利巴坦*对于非产金属酶的肠杆菌科细菌,头孢他啶/阿维巴坦敏感率高,可作为治疗的重要选择产ESBLs肠杆菌科细菌所致的轻中度感染:头孢哌酮/舒巴坦、哌拉西林/他唑巴坦
金属酶
B
3a
IMP, VIM, NDM
青霉素类, 头孢菌素类, 碳青霉烯类, 除氨曲南
B
3b
CphA
碳青霉烯类
ESBLs
临床最常见的是以下三类
Ampc
碳青霉烯酶
常见β‐内酰胺酶分类及特点
该共识本次更新采用的是:根据2019年Bush等完善和细化的β‐ 内酰胺酶分类方法,结合β‐内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法) 和β‐内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法)
02
阐明酶抑制剂抑酶谱和抑制强度阐明β‐内酰胺酶抑制剂对不同β‐内酰胺酶有不同抑制活性,其抑酶谱及保护β‐内酰胺类抗生素不被细菌产生的灭活酶水解的强度
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
β内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识及相关医保政策解读
和ACC‐1组等
绿假单胞菌
A类:SME, NMC, IMI, KPC, GES酶等
KPC酶见于肠杆菌科细菌、不动杆菌属细菌和铜绿 假单胞菌等
D类:OXA酶 (包括OXA‐23, OXA‐24/ OXA‐40, 主要见于不动杆菌属细菌 OXA‐48, OXA‐58和OXA‐51酶等)
金属酶
IMP, VIM, NDM等
02
• 阐明酶抑制剂抑酶谱和抑制强度阐明β‐内酰胺酶抑制剂对不同β‐内酰胺酶有不同抑制活
性,其抑酶谱及保护β‐内酰胺类抗生素不被A细p菌r-产生的灭活酶水解的强度
Jun
03
• β‐内酰胺类抗生素和酶抑制剂配比合适,若有新的配比,需说明在有效性或安全性上
具有临床价值的明显优势和(或)新配比合剂有特殊适应证范围等
0.5 h
109~150/44~88 298/34 324/8.0
32.2/10.5 105.4/28.5 236.8/130.2 64.2/19.0 90.4/14.6 65.7/17.8 105/26.4 43.4/55.6
104.3/\/64.0
1/1 0.7~1.2/0.7~1.2
1.1/1.1 1.07/1.12
++
+++
+++
+++
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020版)
β-内酰胺类抗生素β 内酰胺酶抑制剂复方制剂临床应用
专家共识( 2020 年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免
β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法( Bush 分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱
β-内酰胺酶( ESBLs)、头孢菌素酶( AmpC 酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括 A 类、C 类酶和D 类酶)及金属酶( B 类酶)。目前引用较多的是 1995 年 Bush 等基于上述二种方法建立的分类方法,2019 年Bush 等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表 1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
1、ESBLs 主要属 2be\2br\2ber 类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs 主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs 可分为 TEM 型、SHV 型、CTX-M 型、OXA 型和其他型共 5 大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-酰胺类抗生素β酰胺酶抑制剂复方制剂临床应用专
家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-酰胺类抗生素耐药的最重要机制是产生各种β-酰胺酶。β-酰胺酶抑制剂能够抑制部分β-酰胺酶,避免β-酰胺类抗生素被水解而失活。因此,β-酰胺类抗生素/β-酰胺酶抑制剂复方制剂(简称β-酰胺酶抑制剂复方制剂)是临床治疗产β-酰胺酶细菌感染的重要选择。我国临床使用的β-酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-酰胺酶及产酶菌流行情况
β-酰胺酶是由细菌产生的,能水解β-酰胺类抗生素的一大类酶。β-酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-酰胺酶分为青霉素酶、广谱酶、超广谱β-酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-酰胺酶:
表1 常见β-酰胺酶分类及特点,常见酶抑制剂抑酶活性
素及单环酰胺类等β-酰胺类抗生素的β-酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
0-内酰胺类抗生素卩内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对B-内酰胺类抗生素耐药的最重要机制是产生各种0-内酰胺酶。0-内酰胺酶抑制剂能够抑制部分B-内酰胺酶,避免B-内酰胺类抗生素被水解而失活。因此,B-内酰胺类抗生素∕β-内酰胺酶抑制剂复方制剂(简称0-内酰胺酶抑制剂复方制剂)是临床治疗产B -内酰胺酶细菌感染的重要选择。我国临床使用的B-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突岀。
二、主要内酰胺酶及产酶菌流行情况
B-内酰胺酶是由细菌产生的,能水解B-内酰胺类抗生素的一大类酶。B- 内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据B-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(BUSh分类法),其将0-内酰胺酶分为青霉素酶.广谱酶、超广谱B-内酰胺酶(ESBLS)、头抱菌素酶(AnIPC酶)和碳青霉烯酶等;
二、是根据β -内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将B -内酰胺酶分为丝氨酸酶(包括A类、C类酶和D
类酶)及金属酶(B类酶)。目前引用较多的是1993年BUSh等基于上述二种方法建立的分类
方法,2019年BUSh等乂将该分类表进一步完善和细化(表1)o其中临床意义最大的是下列三
类B-内酰胺酶:
表1常见0-内醸胺酶分类及特点,常见酶抑制剂抑酶活性
类、碳青霉
烯类.除甄
曲南
---B3b CPhA碳青霉烯类一
2023年β内酰胺类-β内酰胺酶抑制剂复方制剂儿科临床应用专家共识
2023年β内酰胺类-β内酰胺酶抑制剂复方制剂儿科临床应用专家共识
摘要
β内酰胺类-β内酰胺酶抑制剂复方制剂是治疗儿童感染性疾病的常用药物。虽然已有针对成人的β内酰胺类复方制剂应用的共识,但由于儿童不同于成人的生理特点,亟需一个专门针对儿童的β内酰胺类复方制剂应用的指导文件。该共识从β内酰胺类复方制剂的药物学特点、儿童药代动力学特点、儿童药效学特点、在常见儿童感染性疾病中的作用及药物管理等方面,对该类药物在儿童中的应用给出了全面建议,以规范儿科临床的合理使用。
感染性疾病始终是危害儿童健康的主要杀手,使用抗菌药物与细菌耐药也已成为儿科临床关注的焦点。β内酰胺类是儿科抗感染治疗最常用的药物,而抗菌药物的选择性压力促成青霉素酶、头孢菌素酶、超广谱β内酰胺酶等的产生,也由此导致细菌耐药和促成了β内酰胺类-β内酰胺酶抑制剂复方制剂(以下简称β内酰胺类复方制剂)的应运而生。为了更好地总结β内酰胺类复方制剂在儿科细菌感染的临床使用,中国药学会儿童药物专业委员会、中华医学会儿科学分会临床药理学组、中华医学会儿科学分会儿童药物委员会、中国妇幼保健协会儿童变态反应专业委员会呼吸学组等共同组织国内儿科药学和临床多学科专家撰写《β内酰胺类-β内酰胺酶抑制剂复方制剂临床应用专家共识》(以下简称“共识”),以期从药学角度系统梳
理该类药物并对其在儿科临床应用提供指导性建议,推动儿童抗菌药物的合理应用。
1 β内酰胺类复方制剂的药物学特点
1.1 β内酰胺酶的分类β内酰胺酶是由细菌产生的能水解β内酰胺类抗菌药物的一大类酶[1]。其分类方法有Bush分类法和Ambler分类法,Bush分类法将β内酰胺酶分成青霉素酶、广谱酶、超广谱β内酰胺酶(extended spectrum β-lactamases,ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等5大类;Ambler分类法则分为丝氨酸酶(包括A类、C 类酶、D类酶)及金属酶(B类酶)。临床意义最大的是下列3类内酰胺酶。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-酰胺类抗生素β酰胺酶抑制剂复方制剂临床应用专家
共识(2020年版)
一、概述
革兰阴性菌与少数革兰阳性菌对β-酰胺类抗生素耐药的最重要机制是产生各种β-酰胺酶。β-酰胺酶抑制剂能够抑制部分β-酰胺酶,避免β-酰胺类抗生素被水解而失活。因此,β-酰胺类抗生素/β-酰胺酶抑制剂复方制剂(简称β-酰胺酶抑制剂复方制剂)是临床治疗产β-酰胺酶细菌感染的重要选择。我国临床使用的β-酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-酰胺酶与产酶菌流行情况
β-酰胺酶是由细菌产生的,能水解β-酰胺类抗生素的一大类酶。β-酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-酰胺酶的底物、生化特性与是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-酰胺酶分为青霉素酶、广谱酶、超广谱β-酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)与金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-酰胺酶:
表1 常见β-酰胺酶分类与特点,常见酶抑制剂抑酶活性
1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素与单环酰胺类等β-酰胺类抗生素的β-酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
β-内酰胺类β-内酰胺酶抑制剂合剂临床应用专家共识
(3). β-内酰胺类与β-内酰胺酶抑制剂的药代动力学特征基本吻合, 如消除半衰期相近和分布相似,两者在体内的有效浓度能共同维持足 够的作用时间,以发挥更好的协同杀菌效果。
合制剂的特性,目前我国使用种类多,规格不一, 美国抗菌药物使用率20%,我国60%。半衰期:头孢曲 松在人体6小时,舒巴坦、他唑巴坦、克拉维酸约1H。
β-内酰胺酶抑制剂合剂的组成原则
组方配比原则:
β-内酰胺类抗生素与β-内酰胺酶抑制剂组成复合制剂必须考虑组方 和配比的合理性。基本组成原则如下:
(1). β-内酰胺类本身具有较强的抗菌活性和/或特殊的抗菌谱,在 临床治疗中具有其他药物或治疗方案不可替代的地位。
均可达40%以上.
3 头孢哌酮钠/舒巴坦钠
头孢哌酮/舒巴坦的PK/PD特点是时间依赖性药物并且半衰期较短。头孢 哌酮钠/舒巴坦钠3g,q8h给药对铜绿假单胞菌T〉MIC%可达82%以上。头 孢哌酮/舒巴坦3.0g q8h静脉滴注治疗多重耐药鲍曼不动杆菌HAP,头孢 哌酮对泛耐药鲍曼不动杆菌MIC小于48,且T〉MIC%大于100%时,可以 获得较好的临床和微生物学疗效,鲍曼不动杆菌全被清除,可作为临床应 用的推荐方案。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用
专家共识(2020年版)
一、概述
革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况
β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:
一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;
二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:
表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性
孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV 型、CTX-M型、OXA型和其他型共5大类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂临床应用专家共识
一、概述
革兰阴性菌是我国细菌感染性疾病最常见的病原体。近年来,革兰阴性菌对β-内酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制大部分β-内酰胺酶,恢复β-内酰胺类抗生素的抗菌活性。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂在临床抗感染中的地位不断提升,已成为临床治疗多种耐药细菌感染的重要选择。目前我国临床使用的β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的种类和规格繁多,临床医师对该类合剂的特点了解不够,临床不合理使用问题较突出。为规范β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的临床应用,延缓其耐药性的发生和发展,特制定本共识。
二、主要β-内酰胺酶及β-内酰胺酶抑制剂
β-内酰胺酶是由细菌产生的能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶、头孢菌素酶和碳青霉烯酶等;根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶和金属酶。目前引用较多的是基于上述2种方法建立的分类方法。见表1。
表1:β-内酰胺酶的分类和3种主要酶抑制剂的作用
功能分类分
子
分
型
主要底物
可被抑制
代表性酶
克
拉
维
酸
舒
巴
坦
他
唑
巴
坦
1 C 头孢菌素类- - - AmpC,ACT-1,CMY-2,FOX-1,MIR-1 2a A 青霉素类+ + + 青霉素酶
2b A 青霉素类,窄谱头孢菌素类+ + + TEM-1,TEM-2,SHV-1
2be A 青霉素类,超广谱头孢菌素类,单环酰胺类+ + + TEM-3,SHV-2,CTX-M-15,PER-1,VER-1 2br A 青霉素类- - - TEM-30,SHV-10,TRC-1
2ber A 超广谱头孢菌素类,单环酰胺类- - - TEM-50
2c A 青霉素类,羧苄西林+ + + PSE-1,CARB-3
2d D 青霉素类,氯唑西林±±±OXA-1, OXA-10
2df D 碳青霉烯类±±±OXA-23, OXA-48
2e A 超广谱头孢菌素类+ + + CepA
2f A 碳青霉烯类±±±KPC-2,IMI-1,NMC-A,SME-1
3 B β-内酰胺类(不包括氨曲南)- - - IMP-1,VIM-1,NDM-1,L1,CcrA
(注:“+”示有抑制作用,“±”示抑制作用不明确,“-”示无抑制作用)
超广谱β-内酰胺酶(ESBLs)是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水
解能力弱。这类酶可被β-内酰胺酶抑制剂如克拉维酸、舒巴坦及他唑巴坦等抑制。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为
常见。到目前为止,全世界共发现了200余种ESBLs。根据编码基因的同源性,
ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
头孢菌素酶(AmpC酶)通常是由染色体介导,对第一、二、三代头孢菌素水解能力强,但其对碳青酶烯类抗生素和第四代头孢菌素的水解能力弱,克拉维
酸钾不能抑制其活性,他唑巴坦和舒巴坦有部分抑酶作用,氯唑西林抑制头孢菌
素酶作用强。该酶主要存在于肠杆菌属、柠檬酸杆菌属、普鲁菲登菌属、粘质沙
雷菌属和摩根菌属等细菌。染色体介导的头孢菌素酶可以被β-内酰胺类抗生素诱
导和选择。近年来,质粒介导的头孢菌素酶陆续被报道,主要出现于肺炎克雷伯
菌、大肠埃希菌及沙门菌属细菌中,常呈持续高水平表达,可通过质粒广泛传播。
根据其与染色体介导的头孢菌素酶的同源性,可分为CMY-2组、CMY-1组、
MIR-1/ACT-1组、DHA-1组和ACC-1组等。
碳青霉烯酶是指能水解碳青霉烯类抗生素的一大类β-内酰胺酶,分别属于Ambler分子分类中的A类、B类和D类酶。A类、D类为丝氨酸酶,B类为金
属酶,以锌离子为活性中心。
A类碳青霉烯酶可以由染色体介导,也可由质粒介导,前者包括SME、NMC 和IMI酶等,后者包括KPC和GES酶等。KPC酶是近年来肠杆菌科细菌尤其是肺炎克雷伯菌对包括碳青霉烯类抗生素在内的几乎所有β-内酰胺类抗生素耐药的最主要机制,我国最常见的是KPC-2,其对头孢吡肟和头孢他啶的水解能力较弱。A类碳青霉烯酶可部分被克拉维酸所抑制,但不被乙二胺四乙酸(EDTA)所抑制。
D类碳青霉烯酶(OXA酶)对苯唑西林水解活性强,主要见于不动杆菌属细菌。包括OXA-23、OXA-24/OXA-40、OXA-48、OXA-58和OXA-51酶等。目前临床应用的酶抑制剂对其没有很好的抑制作用,且不同OXA酶对碳青霉烯类抗生素水解活性不同,β-内酰胺酶抑制剂的抑酶活性也不同。
B类碳青霉烯酶(金属酶)能灭活青霉素类、头孢菌素类、碳青霉烯类抗生素,但对氨曲南水解活性弱,不能被β-内酰胺酶抑制剂所抑制,可被EDTA或巯基类化合物抑制。常见于铜绿假单胞菌、不动杆菌属细菌和肠杆菌科细菌,包括IMP、VIM、GIM、SPM、SIM、NDM酶等。
β-内酰胺酶抑制剂能抑制细菌产生的大部分β-内酰胺酶,常与β-内酰胺类抗生素联合使用,能使抗生素中的β-内酰胺环免遭水解,保护β-内酰胺类抗生素的抗菌作用。临床上常用的β-内酰胺酶抑制剂主要有:克拉维酸、舒巴坦、他唑巴坦,三者均含有β-内酰胺环结构,为不可逆竞争性抑制剂。β-内酰胺酶抑制剂的出现很大程度上解决了β-内酰胺类抗生素的耐药问题(表1)。
三、主要β-内酰胺酶的流行情况
CHINET耐药监测网和国家卫计委细菌耐药监测网的数据显示,近8年来我国ESBLs在大肠埃希菌的发生率在50%~60%,大肠埃希菌所产ESBLs基因型90%以上为CTX-M型,各地区产ESBLs大肠埃希菌CTX-M型分布有一定差异。产ESBLs大肠埃希菌对碳青霉烯类抗生素、头孢哌酮/舒巴坦和哌拉西林/他唑巴坦的耐药率均低于15%。肺炎克雷伯菌产生的ESBLs基因型情况与大肠埃希菌相似,以CTX-M型为主。据国家卫计委细菌耐药监测网分析,2013年我国各地区肺炎克雷伯菌的ESBLs检出率介于15.9%~46.7%,而CHINET监测16家三甲医院2013年肺炎克雷伯菌ESBLs检出率为31.8%。产ESBLs肺炎克雷伯菌对亚胺培南、头孢哌酮/舒巴坦和哌拉西林/他唑巴坦的耐药率分别为6.0%、17.8%和