2014年北师大附中《不等式选讲》期末复习3
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(Ⅰ)求 a , b 的值;(Ⅱ)求函数 f ( x) a x 3 b 5 x 的最大值,以及取得最大值时 x 的值
13、 (Ⅰ) 函数 f x x 3 , g x m 2 x 11 , 若 2 f x g x 4 恒成立, 求实数 m 的取值范围。
)
3、已知 p:|2x-5|≤1,q:(x+2)(x-3)≤0,则 p 是 q 的 A、充分不必要条件 B.必要不充分条件 C、充要条件 D、既不充分也不必要条件 4、不等式 3≤|5-2x|<9 的解集为( ) A.(-2,1] B.[-1,1] C.[4,7) D.(-2,1]∪[4,7) 5、如果关于 x 的不等式|x-a|+|x+4|≥1 的解集是全体实数,则实数 a 的取值范围是( A.(-∞,3]∪[5,+∞) B.[-5,-3] C.[3,5] D.(-∞,-5]∪[-3,+∞) 6、对一切实数 x,不等式 x2+a|x|+1≥0 恒成立,则实数 a 的取值范围是 A.[-2,+∞) B.(-∞,-2) C.[-2,2] D.[0,+∞) 1 1 7、若实数 x、y 满足 2+ 2=1,则 x2+2y2 有( ) x y A.最大值 3+2 2 B.最小值 3+2 2 C.最大值 6 D.最小值 6
2、已知 0 a, b 1 ,用反证法证明 a(1 b), b(1 a) 不能都大于 A、 a(1 b), b(1 a) 都大于
1 , 4
1 4
C、 a(1 b), b(1 a) 都大于或等于
1 时,反设正确的是( 4 1 B、 a(1 b), b(1 a) 都小于 4 1 D、 a(1 b), b(1 a) 都小于或等于 4
2 2 2 2 2 2
求证: ax by cz 1.
2ห้องสมุดไป่ตู้
2 2 2 (Ⅱ)已知实数 x、y、z 满足 2x 3 y 6 z a (a 0), 且 x y z 的最大值是 1,求 a 的值.
14、已知函数 f ( x) m x 1 x 2 , m R ,且 f ( x 1) 0 的解集为 0,1 . (1)求 m 的值; (2)若 a, b, c, x, y, z R ,且 x y z a b c m,
2014 年北师大附中《不等式选讲》期末复习 3
班级: 姓名:
2 2
号数:
日期:
1、欲证 2 3 6 7 ,只需证(
C、
A、
2 7
2
3 6 3 6 7
2
2
D、
B、
)
2 6
2
2 3 6
7
2
3 7
2
2
)
8、下列不等式: 2 18 2 10 , 4.5 15.5 2 10 , 3 2 17 2 2 10 ,……, 根据以上不等式的规律,请你写出一个类似的不等式: 9、若存在实数 x 使|x-a|+|x-1|≤3 成立,则实数 a 的取值范围是______ 10、若不等式|kx-4|≤2 的解集为{x| 1≤x≤3},则实数 k=______
1 . (Ⅰ)试利用基本不等式求 m 的最小值 t ; (a b)b 2 2 2 (Ⅱ)若实数 x, y , z 满足 x 4 y z t ,求证: x 2 y z 3
11、已知 a b 0 ,且 m a
1
12、设不等式 | x 2 | 1 的解集与关于 x 的不等式 x ax b 0 的解集相同.
(Ⅰ)求 a , b 的值;(Ⅱ)求函数 f ( x) a x 3 b 5 x 的最大值,以及取得最大值时 x 的值
13、 (Ⅰ) 函数 f x x 3 , g x m 2 x 11 , 若 2 f x g x 4 恒成立, 求实数 m 的取值范围。
)
3、已知 p:|2x-5|≤1,q:(x+2)(x-3)≤0,则 p 是 q 的 A、充分不必要条件 B.必要不充分条件 C、充要条件 D、既不充分也不必要条件 4、不等式 3≤|5-2x|<9 的解集为( ) A.(-2,1] B.[-1,1] C.[4,7) D.(-2,1]∪[4,7) 5、如果关于 x 的不等式|x-a|+|x+4|≥1 的解集是全体实数,则实数 a 的取值范围是( A.(-∞,3]∪[5,+∞) B.[-5,-3] C.[3,5] D.(-∞,-5]∪[-3,+∞) 6、对一切实数 x,不等式 x2+a|x|+1≥0 恒成立,则实数 a 的取值范围是 A.[-2,+∞) B.(-∞,-2) C.[-2,2] D.[0,+∞) 1 1 7、若实数 x、y 满足 2+ 2=1,则 x2+2y2 有( ) x y A.最大值 3+2 2 B.最小值 3+2 2 C.最大值 6 D.最小值 6
2、已知 0 a, b 1 ,用反证法证明 a(1 b), b(1 a) 不能都大于 A、 a(1 b), b(1 a) 都大于
1 , 4
1 4
C、 a(1 b), b(1 a) 都大于或等于
1 时,反设正确的是( 4 1 B、 a(1 b), b(1 a) 都小于 4 1 D、 a(1 b), b(1 a) 都小于或等于 4
2 2 2 2 2 2
求证: ax by cz 1.
2ห้องสมุดไป่ตู้
2 2 2 (Ⅱ)已知实数 x、y、z 满足 2x 3 y 6 z a (a 0), 且 x y z 的最大值是 1,求 a 的值.
14、已知函数 f ( x) m x 1 x 2 , m R ,且 f ( x 1) 0 的解集为 0,1 . (1)求 m 的值; (2)若 a, b, c, x, y, z R ,且 x y z a b c m,
2014 年北师大附中《不等式选讲》期末复习 3
班级: 姓名:
2 2
号数:
日期:
1、欲证 2 3 6 7 ,只需证(
C、
A、
2 7
2
3 6 3 6 7
2
2
D、
B、
)
2 6
2
2 3 6
7
2
3 7
2
2
)
8、下列不等式: 2 18 2 10 , 4.5 15.5 2 10 , 3 2 17 2 2 10 ,……, 根据以上不等式的规律,请你写出一个类似的不等式: 9、若存在实数 x 使|x-a|+|x-1|≤3 成立,则实数 a 的取值范围是______ 10、若不等式|kx-4|≤2 的解集为{x| 1≤x≤3},则实数 k=______
1 . (Ⅰ)试利用基本不等式求 m 的最小值 t ; (a b)b 2 2 2 (Ⅱ)若实数 x, y , z 满足 x 4 y z t ,求证: x 2 y z 3
11、已知 a b 0 ,且 m a
1
12、设不等式 | x 2 | 1 的解集与关于 x 的不等式 x ax b 0 的解集相同.