弧长和扇形的面积教学课件
合集下载
弧长及扇形的面积ppt课件
如图所示,扇形OAB的圆心角为60°,半径为1,将它向右 滚动到扇形O′A′B′的位置,点O到O′所经过的路线长
A.π B .4/3π C.5/3π D.2π
B' A
B
C' D
A
C
扇形的定义 如图,一条弧和经过这条弧的端点的两条半径所组成 的图形叫做扇形.
弧
A B
O
探究二
1.如图,圆的半径为R,圆心角为90°, 怎样计算扇形的面积呢?
∠BAC=60°.设⊙O的半径为2,求 B⌒C 的
长.
例2、 如图:在△AOC中,∠AOC=90°, ∠C=15°,以O为圆心,AO为半径的圆交AC于B 点,若OA=6, 求弧AB的长。
C
B
O
A
试一试:
如图:AB与⊙O相切于点B,AO的延长线交⊙O 于点C,连接BC,若∠ABC=120°,OC=3,求 弧BC的长.
B●
B
B2
B1
F'
U
A
BCD的边AB=8,AD=6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它 翻滚至类似开始的位置时(如图所示),则顶点 A所经过的路线长是_________.
如图,半径为5的半圆的初始状态是直径平行于桌 面上的直线b,然后把半圆沿直线b进行无滑动滚动 ,使半圆的直径与直线b重合为止,则圆心O运动路 径的长度等于______.
1 4
π×(652-152)=1000π(cm2)
例题解析
例2 如图,正三角形ABC的边长为2,分别以A、B、C为 圆心,1为半径的圆两两相切于点O1、O2、O3,求弧O1O2、 弧O2O3、弧O3O1围成的图形的面积S(图中阴影部分).
弧长和扇形面积课件
VS
详细描述
通过观察扇形的形状,我们可以将其分解 为三角形和其他基本图形,然后通过测量 各部分的长度来计算面积。这种方法需要 一定的几何知识,但对于一些简单的情况 非常有效。
04
弧长和扇形面积的应用
在几何图形中的应用
弧长和扇形面积是几何学中重要的概念,广泛应用于各种几何图形的研究和计算。
在圆形、椭圆、抛物线等图形中,弧长和扇形面积的计算对于确定图形的形状、大 小以及解决相关问题具有重要意义。
THANKS FOR WATCHING
感谢您的观看
扇形面积的单位
扇形面积的单位是面积单位,常用的单位有平方米、平方 厘米、平方千米等。
弧长和扇形面积的关联知识
弧长和扇形面积的关系
在同一个圆或等半径的圆中,如果圆 心角增大,则对应的弧长和扇形面积 都会增大。这是因为弧长和扇形面积 都与圆心角的大小有关。
弧长和扇形面积的应用
在实际生活中,弧长和扇形面积的应 用非常广泛,例如在几何学、工程学 、天文学等领域都有应用。
利用微积分计算弧长
总结词
通过微积分的方法,我们可以对弧长进行精确的计算,适用于复杂曲线的弧长计 算。
详细描述
微积分提供了一种积分的方法来计算曲线的长度。对于弧长,可以通过对曲线函 数进行积分来得到。具体来说,弧长 = ∫(sqrt(1 + (y')^2)) dx,其中 y' 是曲线 在 x 处的导数。
弧长和扇形面积课件
目录
• 弧长和扇形面积的基本概念 • 弧长的计算方法 • 扇形面积的计算方法 • 弧长和扇形面积的应用 • 弧长和扇形面积的扩展知识
01
弧长和扇形面积的基本 概念
弧长的定义
弧长是圆弧上任意两点间的长度,它 是圆的一部分。
《弧长及扇形的面积》圆PPT课件教学课件
1 360
... .
..
✓圆心角是n0的扇形面积是圆面积的
n 360
no
若字母 S 表示扇形的面积,n表示圆 心角度数,r 表示圆半径,
S则扇计形算=扇形面3n6积0 的公式=为:3n60
πr2
1. 扇形面积大小( C )
(A)只与半径长短有关
(B)只与圆心角大小有关
2. 如果(半C)径与为圆r心,角圆的心大角小为、n0半的径扇的形长的短面有积关是S,那
2r
1200
2r
解:设折扇的骨柄长为2r,
由于折扇扇面面积为两个扇形面积之差 ,
∴S 折扇=120π36×0 (2r)2
-120πr2 360
=πr2
而S团扇=πr2 ∴两把扇子扇面的面积一样大;
答:两把扇子扇面的面积一样大。
与
✓当圆心角确定时,弧长与圆的 周长有关 ✓扇形的面积与圆的 面积 有关
又∵S 扇形=3n60 πr2,∴S 扇形=12 l 弧 r
1.扇形AOB的半径为1米, ∠AOB=45°,
︵
AB
求
的长和扇形AOB的面积?(结果保留π)
B
A
解:A︵BLeabharlann 的长为45×18π0×1π =4
(米)
扇形 AOB 的面积为45×3π60×12
π =8
(米 2)
O
2.某引水工程的主干线输水管的半径为1米,如果水管截面
l= 360 = 180
.
例1 一段圆弧形的公路弯道, 圆弧的半径是2公里.
一辆汽车以每小时60公里的速度通过弯道,需时间20秒,
试求弯道(弧AB)所对圆心角的度数(结果精确到0.1度).
解:由题意知,圆弧形的公路弯道长度为
人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)
-
1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面
《弧长和扇形面积的计算》PPT课件
科学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
/kejian/shengwu/
地理课件: .
/kejian/dili/
历史课件: .
/kejian/lishi/
c
甲
问题2: 怎样来计算弯道的“展直长度”?
面积S扇=
4
cm2
3
.
(3)已知半径为2的扇形,面积为π,则这个扇形的弧长
=
4
3
.
(4)已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长
为
8
cm.
(5)已知扇形的圆心角为210°,弧长是28π,则扇形的面
积为 336
.
5.如图,在四边形ABCD中,AB=CD,AD∥BC,以点B
为圆心,BA为半径的圆弧与BC交于点E,四边形AECD
知识讲解
1.认识扇形
扇形:一条弧和经过这条弧端点的两条半径所
组成的图形叫做扇形.
如图所示,在☉O中,由半径OA,OB和所组
成的图形为一个扇形.由半径OA,OB和
所
组成的图形也是扇形.
【思考】一个扇形对应几个圆心角?一个圆心角对应几个扇形?
在同一个圆中,一个扇形对应一个圆心角,反过来,一个圆心角对
范文下载: .
/fanwen/
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
/kejian/shengwu/
地理课件: .
/kejian/dili/
历史课件: .
/kejian/lishi/
c
甲
问题2: 怎样来计算弯道的“展直长度”?
面积S扇=
4
cm2
3
.
(3)已知半径为2的扇形,面积为π,则这个扇形的弧长
=
4
3
.
(4)已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长
为
8
cm.
(5)已知扇形的圆心角为210°,弧长是28π,则扇形的面
积为 336
.
5.如图,在四边形ABCD中,AB=CD,AD∥BC,以点B
为圆心,BA为半径的圆弧与BC交于点E,四边形AECD
知识讲解
1.认识扇形
扇形:一条弧和经过这条弧端点的两条半径所
组成的图形叫做扇形.
如图所示,在☉O中,由半径OA,OB和所组
成的图形为一个扇形.由半径OA,OB和
所
组成的图形也是扇形.
【思考】一个扇形对应几个圆心角?一个圆心角对应几个扇形?
在同一个圆中,一个扇形对应一个圆心角,反过来,一个圆心角对
范文下载: .
/fanwen/
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
(2)弧长单位和半径单位一致.
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
弧长和扇形面积通用课件
THANKS
弧长和扇形面积的进一步研究
弧长和扇形面积的应用
弧长和扇形面积在几何、物理、工程等领域有广泛的应用,如计 算物体运动轨迹、分析机械运动等。
弧长和扇形面积的性质
弧长和扇形面积具有一些重要的性质,如对称性、可加性等,这些 性质在解决实际问题时具有重要意义。
弧长和扇形面积的拓展
弧长和扇形面积的计算方法可以拓展到其他形状,如椭圆、抛物线 等,这些形状在现实世界中也有广泛的应用。
弧长和扇形面积的概念在日常生活中 也有广泛的应用,如计算圆形物体的 运动轨迹、建筑物的圆弧形结构等。
弧长和扇形面积的计算公式在物理学、 工程学、天文学等领域也有广泛的应 用,是解决实际问题的重要工具之一。
在日常生活和工程设计中,弧长和扇 形面积的计算有助于优化设计方案, 提高效率和质量。
在科学计算中的应用
04 弧长和扇形面积的应用
在几何图形中的应用
弧长和扇形面积是几何学中重要的概念,用于描述和计算各种几何图形,如圆形、 椭圆、抛物线等。
在几何图形中,弧长和扇形面积的计算有助于解决各种问题,如周长、面积、体积等。
弧长和扇形面积的计算公式在几何学中具有广泛的应用,是解决几何问题的关键工 具之一。
在日常生活中的应用
弧长和扇形面积通用 课件
目录
CONTENTS
• 弧长和扇形面积的基本概念 • 弧长的计算方法 • 扇形面积的计算方法 • 弧长和扇形面积的应用 • 弧长和扇形面积的拓展知识
01 弧长和扇形面积的基本概 念
弧长的定义
描述弧长的定义
弧长是指圆弧的长度,通常用字母L表示。在圆中,弧长是连接圆心和圆上任意 一点的线段的长度。弧长的计算公式为:L = θ/360° × 2πr,其中θ是圆心角的 大小,r是圆的半径。
弧长和扇形面积的计算ppt课件
式 S扇形=
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
弧长与扇形的面积PPT教学课件
1.已知⊙O半径为R,⊙O的周长C是多 大?
2.已知⊙O的周长是C,⊙O的半径R等 于多少
例1,已知:如图,圆环的外圆周C1=250cm, 内圆周长C2=150cm,求圆环的宽度d(精确到 1mm).
圆周长
圆周长C与半径R之间 的关系:C=2πR
我们知道,把顶点在圆心的周角等分成360份时, 每一份的圆心角是1°的角,因为同圆中相等的圆 心角所对弧相等,所以整个圆也被等分成360份, 每一份这样的弧就是1°的弧,大家知道圆的周长 是2πR,想想看1°的弧长应是多少?怎样求? n°的弧长应是多少?
南宋词的最高成就,对后世产生了 深远的影响。有《稼轩长短句》。
背景材料
这首词写于淳熙十五年(1188)左右,辛弃 疾退居江西上饶时。辛弃疾不只是词人,还 是一位爱国武将,他积极主张抗金北伐,在 任职期间坚持练兵备战,因而不断遭受主和 派的排斥、诬陷。
淳熙八年(1181),辛弃疾在两浙西路提 点刑狱公事任上,被人弹劾罢官。他不得已 而在上饶带湖赋闲家居。陈同甫,名亮,也 是主张北伐的爱国志士,与辛弃疾是志同道 合的朋友,二人经常有书信往来,诗词唱和。 这首词就是寄给陈亮的。
1°的圆心角所对的扇形面积=πR2/360 n°的圆心角所对的扇形面积=nπR2/360
一、弧长的计算公式
l n 2r nr
360
180
二、扇形面积计算公式
s n r 2 或s 1 lr
360
2
1.已知扇形的圆心角为120°,半径为2cm,则这个扇形 的面积,S扇=____.
R=____.
马作的卢飞快,弓如霹雳弦惊。
战马像的卢一样飞快的 奔驰,利箭射出,弓弦像 震雷一样惊响。
生动地描绘了惊险激烈的场 面;
2.已知⊙O的周长是C,⊙O的半径R等 于多少
例1,已知:如图,圆环的外圆周C1=250cm, 内圆周长C2=150cm,求圆环的宽度d(精确到 1mm).
圆周长
圆周长C与半径R之间 的关系:C=2πR
我们知道,把顶点在圆心的周角等分成360份时, 每一份的圆心角是1°的角,因为同圆中相等的圆 心角所对弧相等,所以整个圆也被等分成360份, 每一份这样的弧就是1°的弧,大家知道圆的周长 是2πR,想想看1°的弧长应是多少?怎样求? n°的弧长应是多少?
南宋词的最高成就,对后世产生了 深远的影响。有《稼轩长短句》。
背景材料
这首词写于淳熙十五年(1188)左右,辛弃 疾退居江西上饶时。辛弃疾不只是词人,还 是一位爱国武将,他积极主张抗金北伐,在 任职期间坚持练兵备战,因而不断遭受主和 派的排斥、诬陷。
淳熙八年(1181),辛弃疾在两浙西路提 点刑狱公事任上,被人弹劾罢官。他不得已 而在上饶带湖赋闲家居。陈同甫,名亮,也 是主张北伐的爱国志士,与辛弃疾是志同道 合的朋友,二人经常有书信往来,诗词唱和。 这首词就是寄给陈亮的。
1°的圆心角所对的扇形面积=πR2/360 n°的圆心角所对的扇形面积=nπR2/360
一、弧长的计算公式
l n 2r nr
360
180
二、扇形面积计算公式
s n r 2 或s 1 lr
360
2
1.已知扇形的圆心角为120°,半径为2cm,则这个扇形 的面积,S扇=____.
R=____.
马作的卢飞快,弓如霹雳弦惊。
战马像的卢一样飞快的 奔驰,利箭射出,弓弦像 震雷一样惊响。
生动地描绘了惊险激烈的场 面;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中的计算
23.3.1弧长和扇形的面积
知识回顾
圆的周长公式 o
r
p
C=2πr
圆的面积公式
2 S=πr
问题情景:
如图23.3.1是圆弧形状的铁轨示意图,其中铁轨 的半径为100米,圆心角为90°.你能求出这段 铁轨的长度吗? 解:∵圆心角900 ∴铁轨长度是圆周长的 则铁轨长是
问题探究
上面求的是的圆心角900所对的弧长,若圆心角 为n心角分别为1800、900、 450、n0所对的弧长。
圆心角占整个周角的
1800
所对弧长是
900
450
n0
结论:
如果弧长为l,圆心角度数为n,圆的半径为r,那 么,弧长的计算公式为:
练一练:
已知圆弧的半径为50厘米,圆心角为60°,求此 圆弧的长度。 解: 答:此圆弧的长度为 = cm cm
例题讲解
例1 如图23.3.5,圆心角为60°的扇形的半径为 10厘米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为 ≈52.33(平方厘米); 扇形的周长为
≈ 30.47(厘米)。
例2.
扇形AOB 的半径为12cm, AOB =120,
求AB的长(精确到0.1cm)和扇形 AOB 的面积 (精确到0.1cm2). 解:∵n=1200,r=12厘米 ∴弧AB为
扇形: 如图,由组成圆心角的两条半径
和圆心角所对的弧所围成的图形 叫扇形.
Q l n° r O
扇 形面 积 S
怎样计算圆心角是n0 的扇形面积?
圆心角占整个周角的 所对扇形面积是
1800
900
450
n0
结论:
如果扇形面积为s,圆心角度数为n,圆半径是r, 那么 扇形面积计算公式为
Q
l n° r O
25.12 ∴扇形AOB面积为 cm
=150.72
cm2
题型三:弧长公式和扇形面 积公式的综合运用
例:已知扇形的圆心角为270°, 弧长为12∏。求扇形的面积。( 用两种方法)
下面是圆弧形桥拱,其每拱的跨度为40m,拱形 的半径为29m,求拱形的高.
C
转化为数学模型为: 有一圆弧形桥拱,拱的跨 度AB=40m,拱形的半 径R=29m,求拱形的高.
扇 形面 积 S
小试牛刀: 1、如果扇形的圆心角是230°,那么这个扇形的 面积等于这个扇形所在圆的面积的____________; 2、扇形的面积是它所在圆的面积的 形的圆心角的度数是_________°. ,这个扇
3、扇形的面积是S,它的半径是r,这个扇形的弧 ; 长是_____________ 答案: 240°,
D
A B
O
解:如图:由垂径定理得:BD=
=20m
在直角三角形BOD中: OD2 =OB2 - BD2 OD2 =292 - 202 OD=21 m 所以拱形的高CD=29-
一、弧长的计算公式
二、扇形面积计算公式
23.3.1弧长和扇形的面积
知识回顾
圆的周长公式 o
r
p
C=2πr
圆的面积公式
2 S=πr
问题情景:
如图23.3.1是圆弧形状的铁轨示意图,其中铁轨 的半径为100米,圆心角为90°.你能求出这段 铁轨的长度吗? 解:∵圆心角900 ∴铁轨长度是圆周长的 则铁轨长是
问题探究
上面求的是的圆心角900所对的弧长,若圆心角 为n心角分别为1800、900、 450、n0所对的弧长。
圆心角占整个周角的
1800
所对弧长是
900
450
n0
结论:
如果弧长为l,圆心角度数为n,圆的半径为r,那 么,弧长的计算公式为:
练一练:
已知圆弧的半径为50厘米,圆心角为60°,求此 圆弧的长度。 解: 答:此圆弧的长度为 = cm cm
例题讲解
例1 如图23.3.5,圆心角为60°的扇形的半径为 10厘米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为 ≈52.33(平方厘米); 扇形的周长为
≈ 30.47(厘米)。
例2.
扇形AOB 的半径为12cm, AOB =120,
求AB的长(精确到0.1cm)和扇形 AOB 的面积 (精确到0.1cm2). 解:∵n=1200,r=12厘米 ∴弧AB为
扇形: 如图,由组成圆心角的两条半径
和圆心角所对的弧所围成的图形 叫扇形.
Q l n° r O
扇 形面 积 S
怎样计算圆心角是n0 的扇形面积?
圆心角占整个周角的 所对扇形面积是
1800
900
450
n0
结论:
如果扇形面积为s,圆心角度数为n,圆半径是r, 那么 扇形面积计算公式为
Q
l n° r O
25.12 ∴扇形AOB面积为 cm
=150.72
cm2
题型三:弧长公式和扇形面 积公式的综合运用
例:已知扇形的圆心角为270°, 弧长为12∏。求扇形的面积。( 用两种方法)
下面是圆弧形桥拱,其每拱的跨度为40m,拱形 的半径为29m,求拱形的高.
C
转化为数学模型为: 有一圆弧形桥拱,拱的跨 度AB=40m,拱形的半 径R=29m,求拱形的高.
扇 形面 积 S
小试牛刀: 1、如果扇形的圆心角是230°,那么这个扇形的 面积等于这个扇形所在圆的面积的____________; 2、扇形的面积是它所在圆的面积的 形的圆心角的度数是_________°. ,这个扇
3、扇形的面积是S,它的半径是r,这个扇形的弧 ; 长是_____________ 答案: 240°,
D
A B
O
解:如图:由垂径定理得:BD=
=20m
在直角三角形BOD中: OD2 =OB2 - BD2 OD2 =292 - 202 OD=21 m 所以拱形的高CD=29-
一、弧长的计算公式
二、扇形面积计算公式