2.2.2向量的减法和数乘运算

合集下载

向量减法运算及其几何意义,向量的数乘运算及其几何意义教案

向量减法运算及其几何意义,向量的数乘运算及其几何意义教案

向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。

任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。

如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。

向量的加减乘除运算

向量的加减乘除运算

向量的加法OB+OA=OC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=的反向量为0向量的减法AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.当λ>0时,λa与a同方向;向量的数乘当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.4、向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.5、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b ∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a垂直b〈=〉a×b=|a||b|.向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);a×(b+c)=a×b+a×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.。

2.2.向量加减法、数乘运算及其几何意义

2.2.向量加减法、数乘运算及其几何意义
向量加减法向量的加减法平面向量加减法加减法运算加减法互为逆运算加减法简便运算小数加减法简便运算向量运算空间向量与立体几何向量的运算
2.2.向量加法、减法运算 及其几何意义
1、位移
AB + BC = AC
C A B F1
2、力的合成
F1 + F2 = F
F2
F
数的加法启发我们,从运算的角度看, AC可以认为 是AB与BC的和,F可以认为是F1与F2的和,即位移、力的 合成可以看作向量的加法。
(1)同向
a
(2)反向
a
b
A
B C B C
b
A
AC = a + b
规定: a + 0 = 0 + a = a
AC = a + b
当向量a ,b不是共线向量时,a + b又如何 作出来?
b a

a
A
a+ b
b
B
| a+ b|< | a|+ |b| 一般地,有 | a + b |? | a | |b|
E
3AB BC
3 AC
∴ AC与 AE 共线.
作业:
课本P 4, P 5, P 4 84 90 91
数的加法满足交换律与结合律,即对任意a,b∈R,有
a+b=b+a
任意向量
a、 b
(a+b)+c=a+(b+a)
的加法是否也满足交换律与结合律?
a+ b = b+ a (a + b) + c = a + (b + c )

向量的减法和数乘运算

向量的减法和数乘运算

向量的减法和数乘运算1.引言1.1 概述向量是数学中的重要概念之一,广泛应用于物理、工程、计算机科学等领域。

与标量不同的是,向量不仅有大小(模),还有方向。

向量的减法和数乘运算是向量运算的两个基本操作,对于理解和应用向量具有重要意义。

向量的减法是指将一个向量从另一个向量中减去,得到一个新的向量。

减法的结果向量的大小和方向由原向量的差决定。

在减法运算中,我们需要考虑向量的顺序,即被减向量和减向量的区别。

向量的减法可以帮助我们描述物体的位移、速度的变化等动态的情况。

向量的数乘运算是指将一个实数与一个向量相乘,得到一个新的向量。

数乘运算主要改变了向量的大小,并保持了向量的方向。

当数乘为正数时,向量的方向不变,而大小会相应放大;当数乘为负数时,向量的方向相反,而大小仍然放大。

数乘运算可以用来描述力的大小、物体的质量等变化情况。

本文将详细介绍向量的减法和数乘运算的定义和计算方法,以便读者能够更好地理解和应用向量运算。

通过学习向量的减法和数乘运算,读者可以更准确地描述和分析现实生活中的各种问题,并为进一步学习更高级的向量运算奠定基础。

接下来,我们将首先介绍向量的减法,包括其定义和计算方法。

然后,我们将详细讨论向量的数乘运算,包括其定义和计算方法。

最后,我们将总结本文的主要内容,并给出相关结论。

文章结构部分的内容可以编写如下:1.2 文章结构本文分为引言、正文和结论三个部分。

具体结构如下:引言部分:在引言部分,我们将对文章的主题进行概述,并介绍本文的目的和重要性。

正文部分:正文部分主要包括两个重要的内容:向量的减法和向量的数乘运算。

在向量的减法部分,我们将首先给出向量的减法的定义,并介绍如何进行向量的减法运算。

然后,我们将通过具体的计算方法,展示向量的减法运算的过程和步骤。

在向量的数乘运算部分,我们将同样给出向量的数乘运算的定义,并详细说明如何进行向量的数乘运算。

通过举例和计算方法的介绍,我们将展示向量的数乘运算的实际应用和计算过程。

§2.2.2 向量减法运算及其几何意义

§2.2.2 向量减法运算及其几何意义

1/27/2020
重庆市万州高级中学 曾国荣 wzzxzgr@
18
A
a a+b
O
b
BA OA OB a b
bC
a
B
AB OB OA b a
1/27/2020
重庆市万州高级中学 曾国荣 wzzxzgr@
17
§2.2.2 向量减法运算及其几何意义
课堂练习
<<教材>>
P.87
练习1.2.3
书面作业
<<教材>>
P.9 1
习题2.2 A组4.5
12
§2.2.2 向量减法运算及其几何意义
4.向量减法的平行四边形法则



例2.如图,平行四边形ABCD中,AB a, AD b,


用a, b 表示向量 AC、DB


D
C
AC a b
b


DB a b
A
a
B
1/27/2020
重庆市万州高级中学 曾国荣 wzzxzgr@
重庆市万州高级中学 曾国荣 wzzxzgr@
6
二、讲解新课
§2.2.2 向量减法运算及其几何意义
2.向量减法的定义:
向量a加上向量b的相反向量,叫做a与b的 差,即a - b= a + (-b)。
定义:求两个向量差的运算叫向量的减法。 表示: a b a (b),
1/27/2020


思考:若a // b ,怎样作a b
1

a

与b同


2

高中数学教学课例《2.2.2向量的减法运算及其几何意义》课程思政核心素养教学设计及总结反思

高中数学教学课例《2.2.2向量的减法运算及其几何意义》课程思政核心素养教学设计及总结反思

(4)充分挖掘和利用学习资源。因地制宜开展探究
活动
(5)采用多样化的评价方式,鼓励学生参与评价
3.重视同伴评价和自我评价
4.在活动中评价学生的探究能力、情感态度和价值
观 5.在纸笔测试中注重考核学生分析、解决问题的能
力 6.既关注对学生量的评价,又要注重对学生质的评

2.新知探究 提出问题:①向量是否有减法? ②向量的加法运算有平行四边形法则和三角形法 教学过程 则,那么,向量的减法是否也有类似的法则? 引导学生思考,相反向量有哪些性质 a 和-a 互为相 反向量.于是-(-a)=a. 我们规定,零向量的相反向量仍是零向量. 任一向量与其相反向量的和是零向量,即 a+(-a)=(-a)+a=0.如果 a、b 是互为相反的向量,那么 a=-b,b=-a,a+b=0. (1)平行四边形法则 如图 1,设向量=b,=a,则=-b,由向量减法的定义, 知=a+(-b)=a-b.又 b+=a,所以=a-b.由此,我们得到 a-b 的作图方法.
1.先由学生回顾本节学习的数学知识:相反向量,
向量减法的定义,向量减法的几何意义,向量数学方法,类
比,数形结合,几何作图,分类讨论.
七、课后作业
促进学生的全方面发展,关键是课堂的实施,那么
教学方式的转变当然要体现在教学的设计之中,因此课
堂的教学设计在遵循一定策略的基础上,一定要以学生
减法运算是加法运算的逆运算,学生在理解相反向 量的基础上结合向量的加法运算掌握向量的减法运算; 并利用三角形做出减向量.运用几何直观,类比等思维 教学策略选 方法,进一步提高理性思维能力.像数的代数和那样, 择与设计 把减式看成和式.类比数的减法(减去一个数等于加上 这个数的相反数),首先引进相反向量的概念,然后引 入向量的减法(减去一个向量,等于加上这个向量的相 反向量),通过向量减法的三角形法则和平行四边形法

第二章 2.2 2.2.2 向量减法运算及其几何意义

第二章 2.2 2.2.2 向量减法运算及其几何意义

解析:① AB + BC + CA = AC + CA =0; ② OA+ OC + BO + CO =( CO + OA)+( BO + OC ) = CA+ BC = BA ; ③ AB - AC + BD - CD = CB + BC =0; ④ NO + QP + MN - MP = NP + PN =0.
法三:( AB - CD )-( AC - BD ) = AB - CD - AC + BD =( OB - OA)-( OD - OC )-( OC - OA )+(OD - OB ) = OB - OA- OD + OC - OC + OA + OD - OB =0.
先根据向量加、减法的运算法则将易求的向量表 示出来,再表示 BD . [提示]
[解] ∵四边形 ACDE 为平行四边形, ∴ CD = AE =c. BC = AC - AB =b-a. BE = AE - AB =c-a, CE = AE - AC =c-b, ∴ BD = BC + CD =b-a+c.
1.下面给出了四个式子: ① AB + BC + CA ;② OA + OC + BO + CO ; ③ AB - AC + BD - CD ;④ NQ + QP + MN - MP . 其中值为 0 的有 A.①② C.①③④ B.①③ D.①②③ ( )
如图 1 所示.
法二:a+b-c=(a+b)+(-c)在平面内任取一点 O,作 OA =a, AB =b, BC =-c,则 OC =a+b-c,如图 2 所示.

2.2.2向量减法运算及其几何意义

2.2.2向量减法运算及其几何意义

连南民族高级中学“学案导学”课堂教学活页学案 执笔人:李水尧 审阅人:高一数学备课组 2010-3-181 §2.2.2 向量的减法运算及其几何意义一、学习目的:1、了解相反向量的概念;2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3、通过阐述向量的减法运算可以转化成向量的加法运算,理解事物之间可以相互转化的辩证思想.二、教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.三、自学设计1、与向量a 的向量,叫做a 的相反向量,记作 , 零向量的相反向量是 。

2、()a -- = ,a +(a - )= 。

3、若a 、b 是相反向量,则a = ,b = ,a +b = 。

4、向量a 加上b 的相反向量,记作:a b - = ,即减去一个向量, 等于加上这个向量的_______________。

5、如右图,根据向量加法,____BC a += ,从而有_________a =-6、向量减法的几何意义:a b - 可以表示为从_____的终点指向_______的终点的向量。

在右图中作出c d - 。

7、阅读例3,例4.四、达标练习(A )1、完成P87练习1,2,32、化简:____AB C B -= ;O P -Q P +PS+SP ____= ;()()____AB C D AC BD ---=(B )3、在矩形ABCD 中,AC =A .BC +BAB .AB+DAC .AD +CD D .AD +DC4、平行四边形ABCD 中, AB + CA + BD 等于( ).A.ABB.CDC.DCD. BA5、若向量||2,||3a b == ,则||a b - 的最大值是_________,最小值是______________.五、课后拓展延伸如图,平行四边形ABCD 中,O 为对角线交点,设,O A a O B b ==用,a b 表示,,,O C B O A D A B 。

2.2.2向量减法运算及其几何意义

2.2.2向量减法运算及其几何意义
2.2.2
向量减法运算及其几何意义
班级:高一(1)班 制作:韦玉显
向量减法运算及其几何意义
1、相反向量:规定与a长度相等,方向相反的 向量,记作-a. a与-a互为相反向量,有 -(a)=a
(1)零向量的相反向量仍是零向量
(2)任一向量与其相反向量的和是零向量,即: a+(-a)=(-a)+a=0 如果a和b为相反向量 ,有a=-b,b=-a,a+b=0. 定义: a-b=a+(-b)
向量减法运算及其几何意义
几何意义
B
AE=a+(-b)=a-b a-b可以表示为从向量b的终点指向 向量a的终点的向量。 又 b+BC=a BC=a-b
b a a-b -b C
所以
A
D
E
向量减法运算及其几何意义
a
b b
a a-b
向量减法运算及其几何意义
例3 已知向量a、b、c、d,求向量a-b,c-d.
b a
c d
向量减法运算及其几何意义
例4 如图,平行四边行ABCD中,AB=a,AD=B,你能 用a,b表示向量AC,DB吗?
解:由向量加法的平行四边形法则,有 AC=a+b 又由向量的减法,有 DB=AB-AD=a-b
b D C
ห้องสมุดไป่ตู้
A
a B

2.2.2 向量减法运算及其几何意义

2.2.2 向量减法运算及其几何意义

uuur
uuur
uuur
3.若| AB |=5,| AC |=8,则| BC |的取值范围是
( C)
A.[3,8]
B.(3,8)
C.[3,13]
D.(3,13)
4.若 a 与 b 为非零向量,且|a+b|=|a|+|b|,则( A )
A.a∥b,且 a 与 b 方向相同 B.a、b 是方向相反的向量 C.a=-b D.a、b 无论什么关系均可
ABCD
中,设
uuur AB
uuur
=a,AD
=b,uBuCur
=c,则
uuur DC
等于(
A)
A.a-b+c B.b-(a+c) C.a+b+c D.b-a+c
2.已知 O 为平行四边形 ABCD 内一点, OA =a , OB =b,OC =c,用 a,b,c 表示 OD .
【解析】 = - = - = - + =c-b+a.
B
ab
D
b a
d c
A
d b
cd
C a
c
O
作法:如图,在平面内任取一点O,作OuuAur
r a,
uuur OB
r b,
uuur OC
cr ,则OuuDur
r d,
BA a b,DC c d.
【变式练习】
如图,已知a,b, 求作 a b.
(2)
(1)a
ab
a
b
b
(3)
a
(4)
ab
a
b
r
b r ra
.
7.在平行四边形 ABCD 中,| + |=| - |,则有
()
A. =0 C.ABCD 是矩形

高中数学公式大全向量的基本运算与坐标系转换公式

高中数学公式大全向量的基本运算与坐标系转换公式

高中数学公式大全向量的基本运算与坐标系转换公式高中数学公式大全:向量的基本运算与坐标系转换公式向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。

本文将详细介绍向量的基本运算以及坐标系的转换公式。

1. 向量的基本运算在向量的基本运算中,常用到以下几种运算:加法、减法、数量乘法和点积。

1.1 向量的加法设有两个向量a和b,它们的加法可以表示为a + b。

向量的加法满足交换律和结合律,即a + b = b + a和(a + b) + c = a + (b + c)。

向量的加法可以简单地将它们的对应分量相加。

1.2 向量的减法向量的减法可以表示为a - b。

减法运算可以通过将被减向量b取反,即-b,然后进行加法运算来实现。

1.3 数量乘法数量乘法是指将一个标量与向量的每个分量相乘。

设有向量a和标量k,数量乘法可以表示为ka。

数量乘法满足结合律,即k(la) = (kl)a。

点积,也称为数量积或内积,在向量的运算中起着重要的作用。

设有向量a和b,它们的点积可以表示为a · b。

点积具有以下性质:- a · b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ为它们夹角的余弦。

- 点积满足交换律,即a · b = b · a。

- 如果a与b垂直,则它们的点积为0,即a · b = 0。

2. 坐标系转换公式在数学中,常用的坐标系有直角坐标系、极坐标系和球坐标系。

在进行向量运算时,有时需要在不同的坐标系之间进行转换。

下面介绍一些常见的坐标系转换公式。

2.1 直角坐标系与极坐标系的转换在直角坐标系中,一个二维向量可以由其x和y的分量表示为a = (x, y)。

在极坐标系中,向量的长度用其模长r表示,与x轴的夹角用θ表示。

直角坐标系到极坐标系的转换公式为:- r = √(x^2 + y^2)- θ = arctan(y/x) (其中arctan为反正切函数)极坐标系到直角坐标系的转换公式为:- y = rsinθ2.2 直角坐标系与球坐标系的转换在直角坐标系中,一个三维向量可以由其x、y和z的分量表示为a = (x, y, z)。

2.2.2向量的减法

2.2.2向量的减法
uuur uuur uuur uuur
重要提请示问: AB重的要相B提A反示向: A量B是 BA
uuur uuur 重要提示 : AB BA
A
B
练习1: (1) (a)
(2)a (a)
_____a__0____(a)

a

__0____
a(3)如__果__ab_, b_互, b为 _相__反_a_的_,向a量 b,那__么0____

b就
可以表示为从向量b的终点指向向量a
的终点的向量.
(比较:如果两个向量a,
b首尾顺次连接,
则a b可表示为从向量a的始点指向向量
向量的减法:
r
r
a
Oa
r
起 A点
r
b
rr

b
ab

B 指向被减向量
rr
uuur r uuur r
已知向量 a 、b , 在平面内任取一点O,作OA a,OB b,
((33))aa((aa)) 00;; (4)(若3)a,b(是a互) 为0相; 反向量,那么(3)a =_(__ba_), 0b; (=3–_)_a_, (a)
(3)(a1)(b0a)=__00;_;_
§ 2.2 向量的减法
向量的加法:
a r b

C


ab
r接
b
A
a
B
rr
uuur r uuur r
已知非零向量 a 、b , 在平面内任取一点A,作 AB a, BC b,
uuur r r
rr
则向量 AC叫做a与b的和,记作a b,即
r r uuur uuur uuur

2.2.2 向量减法运算及其几何意义

2.2.2  向量减法运算及其几何意义
如3+3+3+3+3=5×3=15.那么相等的几个 向量相加是否也能转化为数乘运算呢?这需 要从理论上进行探究.
探究一:向量的数乘运算及其几何意义
思考1:已知非零向量a,如何求作向
量a+a+a和(-a)+(-a)+
(-a)?
aa a
OA B C
-a
a
uuur
OC = a+a+a
-a -a
uuur
P NMO
用. 向量的坐标表示的理解及运算的准确性.
一、问题情境
(1)如何求此时竖直 和水平方向速度?
(2)利用什么法则?
v
v sin

v cos
探究: uur uur 给定平面内两个向量 e、1 e2,平面内
任一向量是否都可以在这两向量方向上分解呢?
N
B
uuv
e2
A
uv e1
M
e2
分解
a
平移
共同起点
a-b与b-a是相反向量.
|a-b|≤|a|+|b|,当且仅当a与b反向时取
等号;
|a-b|≥||a|-|b||,当且仅当a与b同向时
取等号.
思考7:|a-b|与|a+b|有什么大小关 系吗?为什么?
B
C

a+b
a-b
O
a
A
思考8:对于非零向量a与b,向量a+b与
a-b可能相等吗?
理论迁移
例1 如图,已知向量a,b,c,求作
O L
uuuur 则OM=
uuur uuur OA OB (线段AB中点的向量表达式)
2
例2.设ueu1r,ueu2r是不共线的非零向量, ( 1) 证 明 :u且ar,ubuuarr可=以ueu1r作- 2为ueu2r一,ubr组= ue基u1r +底3eu;u2r

人教a版必修4学案:2.2.2向量减法运算及其几何意义(含答案)

人教a版必修4学案:2.2.2向量减法运算及其几何意义(含答案)

A.a-b+c B.b-(a+c) C.a+b+c D.b-a+c → → → → 2.化简OP-QP+PS+SP的结果等于( ) → → → → A.QP B.OQ C.SP D.SQ → → 3.在平行四边形 ABCD 中,AC-BD等于( ) → → → → A.2AB B.2BA C.2CD D.2DB → → → 4.若|AB|=5,|AC|=8,则|BC|的取值范围是( ) A.[3,8] B.(3,8) C.[3,13] D.(3,13) → → 5.边长为 1 的正三角形 ABC 中,|AB-BC|的值为( A.1 B.2 3 C. D. 3 2
知识点三 向量减法的几何意义及应用 → → → → 例 3 在平行四边形 ABCD 中,AB=a,AD=b,先用 a,b 表示向量AC和DB,并回答: 当 a,b 分别满足什么条件时,四边形 ABCD 为矩形、菱形、正方形?
回顾归纳 向量的表示、向量的加减法的定义都是与图形相联系的,体会|a|,|b|,|a+ b|,|a-b|在相应图形中的含义是解题的关键.
向量的减法 (1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的 ___________________________________________________________________. → → (2)作法:在平面内任取一点 O,作OA=a,OB=b,则向量 a-b=__________.如图所 示. (3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点 → → 为________,被减向量的终点为________的向量.例如:OA-OB=________. 自主探究 我们已经知道向量不等式:||a|-|b||≤|a+b|≤|a|+|b|,若以向量-b 去替换向量 b 就会 得到向量不等式:________________________. 当向量 a、b 共线同向且|a|≥|b|时,有________________; 当向量 a,b 共线反向时,有________________________; 当向量 a,b 不共线时,总有________________________. 对点讲练 知识点一 作两向量的差向量 例 1 任意画一对向量 a,b,求作它们的差.

高中数学 人教A版必修4 第2章 2.2.2向量的减法运算及其几何意义

高中数学 人教A版必修4    第2章 2.2.2向量的减法运算及其几何意义

→ → → OA=a,OB=b,则BA=a-b;
研一研·问题探究、课堂更高效
2.2.2
③若 a 与 b 反向,在给定的直线 l 上作出差向量 a-b:
本 课 时 栏 目 开 关
→ → → OA=a,OB=b,则BA=a-b.
研一研·问题探究、的作图,探究|a-b|与|a|,|b|之间的大小关系:
仍是零向量
研一研·问题探究、课堂更高效
2.2.2
对比项 对 比
本 课 时 栏 目 开 关
实数的减法
向量的减法
(3)互为相反数的 (3) 两个相反向量的和是 和是零
零向量
内 容
(4)实数的减法:减 (4)向量的减法:减去一个 去一个数等于加上 向量相当于 加上这个向量 这个数的相反数
的相反向量
根据相反向量的含义,完成下列结论: → → (1)-AB=___ a; BA ;(2)-(-a)=__
填一填·知识要点、记下疑难点
2.2.2
3.向量减法的平行四边形法则 → → 以向量AB=a,AD=b 为邻边作 平行四边形ABCD ,则
本 课 时 栏 目 开 关
→ → 对角线的向量BD=b-a,DB=a-b. 4.向量减法的三角形法则 → → → 在平面内任取一点 O,作OA=a,OB=b,则BA=a-b, 即 a-b 表示从向量 b 的终点指向向量 a 的终点的向量.
本 课 时 栏 目 开 关
请你利用平行四边形法则作出差向量 a-b.
解 利用平行四边形法则. → → 在平面内任取一点 O,作OA=a,OB=b,
→ → → 作OC=-b,以OA,OC为邻边作平行四 → 边形 OAEC,则OE=a-b.
研一研·问题探究、课堂更高效

第1部分 第2章 2.2 2.2.2 向量的减法

第1部分   第2章   2.2   2.2.2   向量的减法
a,b,c 表示 DC ,OH ,BH . 解:由题意可知四边形 OADB 为平行四边形, ∴OD=OA+OB=a+b. ∴ DC =OC -OD=c-(a+b)=c-a-b. 又四边形 ODHC 为平行四边形, ∴OH =OC +OD=c+a+b. ∴ BH =OH -OB=a+b+c-b=a+c.
返回
[例 2] 如图所示,已知正方形 ABCD 的边长等于 1,AB= a, BC =b, AC =c,试作向量 a-b+c,并求出它的模.
[思路点拨] 可先作a-b,再与c求和.
返回
[精解详析] 延长 AB 至 F,使| AB|=| BF |, 连结 CF,由于 BF = AB=a,
∴CF =a-b. a-b+c=CF + AC = AC +CF = AF . 则 AF 即为所求,如图所示. 且| AF |=2| AB|=2.
返回
[一点通] (1)作两个向量的差向量,起点要重合、箭 头指向的是被减向量的终点,即“统一起点,连结终点,指 向被减”.
(2)对比两个向量的求和运算,掌握向量减法的运算法 则.向量减法是加法的逆运算.作图一般要通过表示向量 的有向线段的字母符号运算来解决.
返回
4.保持例题条件不变,求作向量a+b+c,并求它的模. 解:如图,由已知得 a+b= AB+BC = AC , 又 AC =c,所以延长 AC 至 E, 使|CE |=| AC |, 则 a+b+c= AC +CE = AE , 且|a+b+c|=| AE |=2| AC |=2 2.
2.2

2.2.2
2







线





高中数学必修四 2.2.2 向量减法运算及其几何意义(步步高)

高中数学必修四 2.2.2 向量减法运算及其几何意义(步步高)
解答
反思与感悟 求作两个向量的差向量时,当两个向量有共同始点,直 接连接两个向量的终点,并指向被减向量,就得到两个向量的差向量; 若两个向量的始点不重合,先通过平移使它们的始点重合,再作出差 向量.
跟踪训练 1 如图所示,O 为△ABC 内一点,O→A=a,O→B=b,O→C=c. 求作:b+c-a.
梳理 (1)定义:如果两个向量长度 相等 ,而方向 相反, 那么称这两 个向量是相反向量. (2)性质:①对于相反向量有:a+(-a)=(-a)+a=0. ②若a,b互为相反向量,则a=-b,b=-a,a+b=0. ③零向量的相反向,已知a,b如图,如何作出向量a,b的差 向量a-b?
解答
类型二 向量减法法则的应用
例2 化简下列式子: (1)N→Q-P→Q-N→M-M→P; 解 原式=N→P+M→N-M→P=N→P+P→N=N→P-N→P=0. (2)(A→B-C→D)-(A→C-B→D). 解 原式=A→B-C→D-A→C+B→D
=(A→B-A→C)+(D→C-D→B)=C→B+B→C=0.
解答
(2)(A→C+B→O+O→A)-(D→C-D→O-O→B). 解 (A→C+B→O+O→A)-(D→C-D→O-O→B) =A→C+B→A-D→C+(D→O+O→B) =A→C+B→A-D→C+D→B =B→C-D→C+D→B=B→C+C→D+D→B =B→C+C→B=0.
解答
类型三 向量减法几何意义的应用 例 3 已知|A→B|=6,|A→D|=9,求|A→B-A→D|的取值范围. 解 ∵||A→B|-|A→D||≤|A→B-A→D|≤|A→B|+|A→D|,且|A→D|=9,|A→B|=6, ∴3≤|A→B-A→D|≤15. 当A→D与A→B同向时,|A→B-A→D|=3; 当A→D与A→B反向时,|A→B-A→D|=15. ∴|A→B-A→D|的取值范围为[3,15].

2.2.2向量的减法

2.2.2向量的减法

例 3: 如 图 平 行 四 边 形 A B C D , A B a , D D A b, O C c, c b 证 明 : c a OA b
O
C
A
a
B
证明:b c DA OC OC CB OB b c a OB AB OB BA OA
问题1:如果 b=λa , 那么,向量a与b是否共线?
问题2:如果 向量a与b共线 例题讲解 那么,b=λa ?
定理讲解 课堂练习 向量 b 与非零向量 a 共线当且仅当
有且只有一个实数λ,使得 b=λa
小结回顾
向量 b 与非零向量 a 共线当且仅当 引入练习 有且只有一个实数λ,使得 b=λa
新课讲解 例2
复 习
引入练习 新课讲解 例题讲解 定理讲解
已知非零向量 a (如图)
a
试作出: a+a+a 和 (-a)+(-a)+(-a)
a
O A
a
B
a
C
-a
N M
-a
Q
-a
P
课堂练习 小结回顾
相同向量相加以后, 和的长度与方向有什么变化?
复 习
引入练习 一般地,实数λ与向量a的积是一个向量, 这种运算叫做向量的数乘运算,记作λa, 新课讲解 它的长度和方向规定如下: 例题讲解 (1) |λa|=|λ| | a | 定理讲解 (2) 当λ>0时,λa的方向与a方向相同; 当λ<0时,λa的方向与a方向相反; 课堂练习 特别地,当λ=0或a=0时, λa=0 小结回顾
复 习
如图,已知AD=3AB,DE=3BC,
E

《2.2.2 向量的减法运算》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上

《2.2.2 向量的减法运算》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上

《向量的减法运算》教学设计方案(第一课时)一、教学目标1. 理解向量的减法运算概念。

2. 掌握向量的减法运算规则和方法。

3. 能够正确进行向量的减法运算。

二、教学重难点1. 教学重点:理解向量的减法运算概念,掌握规则和方法。

2. 教学难点:正确进行向量的减法运算,特别是遇到复杂情况时的处理。

三、教学准备1. 准备教学用PPT,包括图片、案例等,以帮助学生理解。

2. 准备相关数学工具,如笔、纸以及向量图。

3. 设计一些练习题,供学生实践和巩固。

4. 确定互动的教学方式,如小组讨论、个人练习等。

5. 解释清楚向量的概念和加减法运算的规则,为教学打下基础。

四、教学过程:(一)导入1. 复习向量加法的概念及几何意义。

2. 引入向量减法的概念及几何意义,说明向量的减法可以转化为减法的反向加法。

(二)新课探究探究1:用几何方式进行向量减法运算探究2:用代数方式进行向量减法运算教师举例,让学生感受两种运算方式的优劣,从而选择合适的运算方式。

(三)例题分析通过例题分析,让学生掌握向量减法的具体运算方法,并能够解决相关问题。

(四)课堂练习设计一些与本节课内容相关的练习题,让学生进行练习,以检验学生对本节课内容的掌握情况。

(五)小结对本节课的内容进行总结,强调本节课的重点和难点,并引导学生思考向量的减法在实际问题中的应用。

(六)作业布置布置一些与本节课内容相关的作业,以帮助学生进一步巩固和提高对本节课内容的掌握程度。

(七)教学反思对本节课的教学效果进行反思,总结教学中的优点和不足,为今后的教学提供参考。

教学设计方案(第二课时)一、教学目标1. 理解向量减法的定义。

2. 掌握向量减法的运算法则,能进行简单的向量减法运算。

3. 培养观察、比较、分析、归纳和解决问题的能力。

二、教学重难点教学重点:掌握向量减法的运算法则,能进行简单的向量减法运算。

教学难点:理解向量减法运算法则。

三、教学准备1. 准备教学用PPT,包含教学图片、视频等素材。

高一数学《2.2.2向量减法运算及其几何意义》

高一数学《2.2.2向量减法运算及其几何意义》

2.2.2向量的减法运算及其几何意义教学目标:1. 了解相反向量的概念;2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物间可以相互转化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 教学思路:一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:例:在四边形中,=++AD BA CB . 解:CD AD CA AD BA CB =+=++ 二、 提出课题:向量的减法1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量a - b ∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1︒AB 表示a - b . 强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b )4. 探究:OABaB’b -bbBa + (-b )abOabBab a -b1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a. 2)若a ∥b , 如何作出a - b ?三、 例题:例一、(P86 例三)已知向量a 、b 、c 、d ,求作向量a -b 、c -d .解:在平面上取一点O ,作= a , = b , = c , = d , 作, , 则= a -b , = c -d例二、平行四边形ABCD 中,=a ,=b , 用a 、b 表示向量、. 解:由平行四边形法则得: = a + b , = - = a -b 变式一:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |) 变式二:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直) 变式三:a +b 与a -b 可能是相等向量吗?(不可能,∵练习:1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1a 2b)=1a 2b 例题4 计算: -12a (1) (-3)×4a 5b (2) 3(a+b) –2(a-b)-a (3) (2a+3b-c) –(3a-2b+c)-a+5b-2c
向量的加、减、 对于任意的向量
对于向量 a (a≠0), b ,以及实数λ,μ 问题1:如果 b=λa , 那么,向量a与b是否共线? 问题2:如果 向量a与b共线 那么,b=λa ? 向量 b 与非零向量 a 共线当且仅当 有且只有一个实数λ,使得 b=λa
Come on!
已知非零向量 a (如图) a 试作出: a+a+a 和 (-a)+(-a)+(-a) a
O A
a
B
a
C
-a
N M
-a
Q
-a
P
相同向量相加以后, 和的长度与方向有什么变化?
一般地,实数λ与向量a的积是一个向量, 这种运算叫做向量的数乘运算,记作λa, 它的长度和方向规定如下:
(1) |λa|=|λ| |a|
(2) AB AC DB C ( A) AD ( B) AC (C )CD ( D) DC
例3:如图,平行四边形ABCD,AB=a, AD=b,用a、b表示向量AC、DB。 D C b
A a B 注意向量的方向,向量 AC=a+b,向量DB=a-b
练习1
1.如图,已知 a, b, 求作a b.
a
B
b
b
a b
b O
C
a
A
D
方法:平移向量a, b, 使它们起点相同,那么 b的终点指向a的终点的向量就是a b.
二、向量减法的三角形法则
1 在平面内任取一点O
2 作OA a,OB b
A
3 则向量BA a b
注意:
O
.
a b
a b
B
1、两个向量相减,则表示两个向量起点的字母必须相同 2、差向量的终点指向被减向量的终点
小结1:
(一)知识
1.理解相反向量的概念 2. 理解向量减法的定义, 3. 正确熟练地掌握向量减法的三角形法则
(二)重点
重点:向量减法的定义、向量减法的三角形法则
小结回顾2
一、①λ
a 的定义及运算律
②向量共线定理
b=λa
(a≠0)
向量a与b共线
A,B,C三点共线
二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=λBC 3. 证明 两直线平行:
(2) 当λ>0时,λa的方向与a方向相同; 当λ<0时,λa的方向与a方向相反; 特别地,当λ=0或a=0时, λa=0
(1) 根据定义,求作向量3(2a)和(6a) (a为 非零向量),并进行比较。 (2) 已知向量 a,b,求作向量2(a+b)和 2a+2b,并进行比较。
a
3(2a )
向量的减法
•特殊情况
1.共线同向 2.共线反向 a
a
b
a b
B B A
b
C
a b
A C
例1:
• 如图,已知向量a,b,c,d, 求作向量a-b,c-d.
b a d
c
a b
B b d
D
A a
cd
C
c
O
例2:选择题
(1) AB BC AD D ( A) AD ( B)CD (C ) DB ( D) DC
2.2.2向量的减法
走进新课
已知:两个力的合力为 F 其中一个力为 F 1 求:另一个力 F2
F
F2
F
1
定义:求两个向量差的运算叫向量的减法。 表示: a b a (b),
说明:
1、与
b 长度相等、方向相反的向量, 叫做 b 的相反向量
2、零向量的相反向量仍是零向量
3、任一向量和它相反向量的和是零向量
b
3(2a ) = 6 a
a b
a
2a 2b
2b
2a
2(a b ) 2a 2b
设a,b为任意向量,λ,μ为任意实数,则有:
①λ(μa)=(λμ) a ②(λ+μ) a=λa+μa ③λ(a+b)=λa+λb
a、b, 、、,1 2
练习
() 1 (a ) ______ a (2)a ห้องสมุดไป่ตู้a ) _____ 0
0 (a ) a ______
(3)如果a , b 互为相反的向量,那么
a 0 b b ______, a ______, a b ______
已知a, b,根据减法的定义,如何 作出a b呢?
AB=λCD
AB∥CD
AB与CD不在同一直线上
直线AB∥直线CD
作业:P102,12.13
(1) (2)
a
b
a a
b
(4)
b
(3)
a
b
练习2
(1)化简AB AC BD CD
解 : 原式 CB BD CD CD CD 0
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO ) (OA OB) 0 BA
相关文档
最新文档