2014年上海市五校初三联合调研模拟测试数学卷
2014年九年级数学中考一模 调研试卷及答案
2014年初三统一练习暨毕业考试数学试卷一、选择题(本题共32分,每小题4分) 1.32-的相反数是 A .23- B .23 C .32- D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯ D .3105245⨯ 3.正五边形的每个内角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是A .7.8,9B .7.8,3C .4.5,9D .4.5,3 5.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D . 33)4(22--=x y6.如图,△ABC 内接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,则∠DAC 的度数是 A .2530° C .40° D .50°7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘, 当转盘停止后,则指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P , Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x的函数关系的图象大致是红 黄蓝 红蓝 蓝二、填空题(本题共16分,每小题4分) 9. 分解因式:ax ax 163-=_______________.10. 如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :x y =,作1A (1,0)关于xy =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分)13.02014130tan 3512(-︒+--. 14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =, AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:(1)△ABD ≌△ACE ;(2)ADC BDA ∠=∠.16.已知:23=y x ,求代数式y x yx 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B (0 2-,),与函数xmy =2(0>x )的图象交于点A (a 1,).(1)求k 和m 的值; BBDCC(2)将函数xmy =2(0x >)的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案? 四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:BCP APC ∠=∠; (2)若53sin =∠APC ,4=BC ,求AP 的长.P三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若将(1)求m 的值;(2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;(3)将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,若抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义: “水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah .(1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.备用图数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.)4)(4(-+x x ax ; 10.6; 11.34; 12.(3,2),(2013,2014). 三、解答题(本题共30分,每小题5分)13.解:02014130tan 3512)(-︒+-- =1333532-⨯+- ………………………………………4分 =6-33 ………………………………………5分 14. 解:方程两边同乘以)5(-x ,得 ………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解. ………………………………4分所以25=x 是原方程的解. ………………………………………5分15.证明:(1)DAE BAC ∠=∠ ,DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴. …………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE . ………………………3分 (2)AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴. …………………………4分 ADC BDA ∠=∠∴. …………………………5分16.解:由已知y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=. ………………………………………5分 17.解:(1)根据题意,将点B (0 2-,)代入21+=kx y ,∴22-0+=k . ………………………………………………………1分∴1=k . …………………………………………………2分∴A (3 1,). 将其代入x my =2,可得:3=m …………………3分(2)(2 53,)或(2 3-,). ………………………………………5分 18.解:设该公司购进甲型显示器x 台, 则购进乙型显示器()50-x 台.(1)依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分∵23≥x∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台. …………5分四、解答题(本题共20分,每小题5分)19. 解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C , 260tan =︒=∴DECE . ……………………4分62+=∴BC .………………………………5分20.解:(1)条形统计图补充数据:6(图略). ………………………………………1分 扇形统计图补充数据:20. ……………………………2分(2)180×308=48(人). ………………………………………………3分 (3)()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++. ……………4分144540154=⨯(人). …………………………………………5分 21.(1)证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分(2)解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,则k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分 COPOCD PA =∴ kkPA 352=∴∴310=PA …………………………5分PE34π=⋂AB ……………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分(2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y )(或742+-=x x y . …………5分(3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为(322-n n ,), ………………6分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n . ……………………………7分24.解:(1)90° ………………………………………………2分 (2)正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形,∴GC =FC .BC=AD =12,∴GB=12.………………………………5分 (3)过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB, ∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:(1)由题意:4=a .①当2>t 时,1-=t h , 则12)1(4=-t ,可得4=t ,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,则12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积”的最小值为4. ……………………3分 (2)①∵E ,F ,M 三点的“矩面积”的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积”的最小值为16,…………………………5分 n 的取值范围为84≤≤n ………………………………………………7分。
2014上海中考数学模拟测试参考答案(2014.6)
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年上海市中考数学一模试卷 (1)DOC
2014年上海市中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于().2.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m的值等于()3.如图,已知平行四边形ABCD中,向量在,方向上的分量分别是()..、、4.(4分)抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是()5.(4分)在△ABC,点D、E分别在边AB、AC上,如果AD=1,BD=2,那么由下列条件能够判定DE∥BC的是()..6.(4分)如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B 处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为()米0二、填空题:(本大题12小题,每题4分,满分48分)7.函数y=(5+x)(2﹣x)图象的开口方向是_________.8.在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=_________.9.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于_________cm.10.如果两个相似三角形周长的比是2:3,那么它们面积的比是_________.11.如图,在△ABC于△ADE中,,要使△ABC于△ADE相似,还需要添加一个条件,这个条件是_________.12.已知点G是△ABC的重心,AB=AC=5,BC=8,那么AG=_________.13.(4分)已知向量与单位向量方向相反,且,那么=_________(用向量的式子表示)14.如果在平面直角坐标系xOy中,点P的坐标为(3,4),射线OP与x的正半轴所夹的角为α,那么α的余弦值等于_________.15.(4分)已知一条斜坡的长度为10米,高为6米,那么坡角的度数约为_________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)16.如果二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,那么k=_________.17.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.18.(4分)(2014•静安区一模)如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形相似缩放,使重叠的两边互相重合,我们称这样的图形为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC中,AB=6,BC=7,AC=5,△A1B1C是△ABC 以点C为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△A2B2C(点A2,B2分别与A、B对应)的边A2B2的长为_________.三、解答题:(本大题共7题,满分78分)19.(10分)如图,已知在直角坐标系中,点A在第二象限内,点B和点C在x轴上,原点O为边BC的中点,BC=4,AO=AB,tan∠AOB=3,求图象经过A、B、C三点的二次函数解析式.20.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,,如果,.(1)求(用向量的式子表示)(2)求作向量(不要求写作法,但要指出所作图表中表示结论的向量)21.(10分)(2014•静安区一模)已知:如图,在平行四边形ABCD中,E、F分别是边BC,CD上的点,且EF∥BD,AE、AF分别交BD与点G和点H,BD=12,EF=8.求:(1)的值;(2)线段GH的长.22.(10分)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.23.(12分)(2014•静安区一模)已知,如图,在梯形ABCD中,AD∥BC,∠BCD=90°,对角线AC、BD相交于点E,且AC⊥BD.(1)求证:CD2=BC•AD;(2)点F是边BC上一点,联结AF,与BD相交于点G,如果∠BAF=∠DBF,求证:.24.(12分)已知在平面直角坐标系xOy中,二次函数y=﹣2x2+bx+c的图象经过点A (﹣3,0)和点B(0,6).(1)求此二次函数的解析式;(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,tanA=,点D是斜边AB上的动点,联结CD,作DE⊥CD,交射线CB于点E,设AD=x.(1)当点D是边AB的中点时,求线段DE的长;(2)当△BED是等腰三角形时,求x的值;(3)如果y=,求y关于x的函数解析式,并写出它的定义域.2014年上海市中考数学一模试卷参考答案1. B2. C3. C4. A5. D6. B7. 向下8. 69. 2.10. 4:9 11. ∠B=∠E12. 213. :﹣3.14..15. 答案为:37°.16. K=-3 17. 2 18.答案为:.19. 解:∵原点O为边BC的中点,BC=4,∴B点坐标为(﹣2,0),C点坐标为(2,0),作AH⊥OB于H,如图,∵AO=AB,∴OH=BH=1,∵tan∠AOB==3,∴AH=3,∴A点坐标为(﹣1,3),设抛物线的解析式为y=a(x+2)(x﹣2),把A(﹣1,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴经过A、B、C三点的二次函数解析式为y=﹣(x+2)(x﹣2)=﹣x2+4.20. 解:(1)∵DE∥BC,∴=,∵,,∴=+=+,∴==(+)=+;(2)如图,取点AB的中点M,作=,连接,则即为所求.21.解:(1)∵EF∥BD,∴=,∵BD=12,EF=8,∴=,∴=,∵四边形ABCD是平行四边形,∴AB=CD,∴=;(2)∵DF∥AB,∴==,∴=,∵EF∥BD,∴==,∴=,∴GH=6.22. 解:解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴=∵AB=CB=8∴BD=4,AD=12.∴=∴CD=3≈6.928>6.∴船继续向东航行无触礁危险.23. 证明:(1)∵AD∥BC,∠BCD=90°,∴∠ADC=∠BCD=90°,又∵AC⊥BD,∴∠ACD+∠ACB=∠CBD+∠ACB=90°,∴∠ACD=∠CBD,∴△ACD∽△DBC,∴=,即CD2=BC×AD;(2)方法一:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=,∴=,又∵△ABG∽△DBA,∴=,∴AB2=BG•BD,∴===,方法二:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=()2=,而=,∴=.24. 解:(1)由题意得,,解得,所以,此二次函数的解析式为y=﹣2x2﹣4x+6;(2)∵y=﹣2x2﹣4x+6=﹣2(x+1)2+8,∴函数y=2x2﹣4x+6的顶点坐标为(﹣1,8),∴向右平移5个单位的后的顶点C(4,8),设直线BC的解析式为y=kx+b(k≠0),则,解得,所以,直线BC 的解析式为y=x+6,令y=0,则x+6=0,解得x=﹣12,∴点D的坐标为(﹣12,0),过点A作AH⊥BD于H,OD=12,BD===6,AD=﹣3﹣(﹣12)=﹣3+12=9,∵∠ADH=∠BDO,∠AHD=∠BOD=90°,∴△ADH∽△BDO,∴=,即=,解得AH=,∵AB===3,∴sin∠ABD===;(3)AB∥OC.理由如下:方法一:∵BD=6,BC==2,AD=9,AO=3,∴==3,∴AB∥OC;方法二:过点C作CP⊥x轴于P,由题意得,CP=8,PO=4,AO=3,BO=6,∴tan∠COP===2,tan∠BAO===2,∴tan∠COP=tan∠BAO,∴∠BAO=∠COP,∴AB∥OC.25. 解:(1)在△ABC中,∵∠ACB=90°,AB=10,tanA=,∴BC=8,AC=6,∵点D为斜边AB的中点,∴CD=AD=BD=5,∴∠DCB=∠DBC,∵∠EDC=∠ACB=90°,∴△EDC∽△ACB,∴=,即=,则DE=;(2)分两种情况情况:(i)当E在BC边长时,∵△BED为等腰三角形,∠BED为钝角,∴EB=ED,∴∠EBD=∠EDB,∵∠EDC=∠ACB=90°,∴∠CDA=∠A,∴CD=AC,作CH⊥AB,垂足为H,那么AD=2AH,∴=,即AH=,∴AD=,即x=;(ii)当E在CB延长线上时,∵△BED为等腰三角形,∠DBE为钝角,∴BD=DE,∴∠BED=∠BDE,∵∠EDC=90°,∴∠BED+∠BCD=∠BDE+∠EDC=90°,∴∠BCD=∠BDC,∴BD=BC=8,∴AD=x=AB﹣BD=10﹣8=2;(3)作DM⊥BC,垂足为M,∵DM∥AC,∴==,∴DM=(10﹣x),BM=(10﹣x),∴CM=8﹣(10﹣x)=x,CD=,∵△DEM∽△CDM,∴=,即DE==,∴y==,整理得:y=(0<x<10).。
2013—2014学年第二学期上海市五校联合教学调研数学(文科)试卷及答案
正视图 俯视图左视图2013—2014学年第二学期上海市五校联合教学调研数学(文科)试卷考生注意:1、本试卷考试时间120分钟,试卷满分150分。
2、答题前,考生务必在试卷和答题纸的规定位置准确填写、填涂学校、姓名、准考证号。
3、考试结束只交答题纸。
一、填空题:(本大题共14题,每题4分,共56分,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.)1.已知线性方程组的增广矩阵为116 02a ⎛⎫⎪⎝⎭,若该线性方程组解为42⎛⎫ ⎪⎝⎭,则实数a =___. 2.已知i 为虚数单位,复数ii-25的虚部是______. 3.若sin(2)cos(2)y x x αα=+++为奇函数,则最小正数α的值为 .4.已知()|2||4|f x x x =++-的最小值为n ,则二项式1(n x x-展开式中2x 项的系数为 .5.已知x ,y 满足⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0,则y -2x -4的取值范围是________.6.ΔABC 中,顶点A 在椭圆13422=+y x 的一个焦点上,边BC 是过原点的弦,则ΔABC 面积的最大值 .7.设P 为函数x x f πsin )(=的图象上的一个最高点,Q 为函数x x g πcos )(=的图象上一个最低点,则|PQ|最小值是 . 8. 一个几何体的三视图如图所示,其中俯视图与 左视图均为半径是2的圆,则这个几何体的 表面积是 .9. 过点P(1,1)的直线,将圆形区域{(x ,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大, 则该直线的方程为 .10. 某海军编队将进行一次编队配置科学试验,要求2艘不同的攻击型核潜艇一前一后,3艘不同的驱逐舰和3艘不同的护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为 .11. 在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN AB AC λμ=+, 则λ+μ的值为 .12. 定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a -=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是____. 13.设A 和B 是抛物线L 上的两个动点,在A 和B 处的抛物线切线相互垂直,已知由A B 、及抛物线的顶点P 所成的三角形重心的轨迹也是一抛物线,记为1L .对1L 重复以上过程,又得一抛物线2L ,以此类推.设如此得到抛物线的序列为12,,,n L L L ,若抛物线L 的方程为26y x =,经专家计算得,则=-n n S T 32 .14.对于实数a 和b ,定义运算“﹡”:⎪⎩⎪⎨⎧>-≤-=*ba ab b ba ab a b a ,,22,设)1()12()(-*-=x x x f ,且关于x 的方程为(),()f x m m R =∈恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是_________________.二、选择题:(本大题共4题,每题5分,共20分,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.)15. “1m <”是“函数2()2f x x x m =++有零点”的 ( )A .充要条件 ;B. 必要非充分条件;C .充分非必要条件;D. 既不充分也不必要条件; 16. 将函数y=2x 的图像按向量a →平移后得到函数y=2x+6的图像,给出以下四个命题:①a →的坐标可以是(-3.0); ②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0,6);④a→的坐标可以有无数种情况;其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 17. 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2 的距离之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条C .有无穷多条 D .不存在18. 设a >0,b >0 ( )A .若b a ba3222+=+,则a >b ; B .b a ba3222+=+,则a <b ; C .若b a ba3222-=-,则a >b ;AA 11B 1C 1C BD .若b a ba 3222-=-,则a <b ;三、解答题:(本大题满分74分,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .)19. (12分)直三棱柱ABC-A 1B 1C 1中,AB=AA 1 ,CAB ∠=2π (Ⅰ)证明:1A B ⊥平面CAB 1(Ⅱ)已知AB=2,11C A AB -的体积。
2014年上海市初三模拟测试(含答案)
1 / 72014年上海市初三模拟测试数 学 试 卷(满分150分,考试时间100分钟) 2014.3考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是 ( ) (A(B )8;(C )2x ;(D )12+x .2.k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是 ( ) (A)有两个不相等的实数根; (B)有两个相等的实数根; (C)没有实数根; (D)无法确定.3.如果用A 表示事件“若a b >,则ac bc >”,那么下列结论正确的是 ( ) (A )P(A)=0; (B )P(A)=1; (C )0<P(A)<1; (D) P(A)>14.下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是 ( )5. ( ) (C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.6.下图描述了小丽散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是 ( ) (A )从家出发,到了一个公共阅报栏,看了一会儿报,就回家了; (B )从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了;(C )从家出发,一直散步(没有停留),然后回家了;(D )从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回. 二、填空题:(本大题12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.比较大小:-2.2 / 7 A B C D E F (第15题)(第17题)(第16题) ① ②③ 8.因式分解:2221x x y ++-= .9.两个..不相等...的无理数,它们的乘积为有理数,这两个数可以是 . 10.方程4210x =的根是 .11.若一次函数(12)y k x k =-+的图像经过第一、二、三象限,则k 的取值范围是 . 12.抛物线221y x =-的顶点坐标是 .13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:则可估计该城市一年中日平均气温为26℃的约有 天.14.若圆的半径是10cm ,则圆心角为40°的扇形的面积是 cm 2.15.如图,在梯形ABCD 中,AD//BC ,EF 是梯形的中位线,点E 在AB 上,若A D ︰B C =1︰3,AD a =,则用a 表示FE 是:FE = .16.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去.17.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO 为2.4m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是___ _______.18.如图,点G 是等边ABC △的重心,过点G 作BC 的平行线,E ,点M 在BC 边上.如果以点B 、D 、M 的三角形相似(但不全等),那么:BDM CEM S S =△△ . 三、解答题:(本大题共7题,满分78分)19.(本题10分)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-. 20.(本题10分)解方程: 33201x x x x+--=+ 21.(本题10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的60BAD ∠=.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm 1.732≈) 22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是AB B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 点G .(第18题)3 / 7(1)求ACAF的值; (2)求ABCAFGS S ∆∆的值; 23.(本题12分)如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. ⑴ 若BK =52KC ,求CDAB的值; ⑵ 联结BE ,若BE 平分ABC ∠,则当12AE AD =时,猜想线段AB 、BC 、CD 三者之间有怎样的数量关系?请写出你的结论并予以证明;⑶ 试探究:当BE 平分ABC ∠,且()12AE AD n n =>时,线段AB 、BC 、CD 三者之间有怎样的数量关系?请直接写出你的结论,不必证明.24.(本题12分)已知一次函数m x y +=43的图像分别交x 轴、y 轴于A 、B 两点(如图),且与反比例函数x y 24=的图像在第一象限交于点C (4,n ),CD ⊥x 轴于D 。
2014年上海中考数学模拟试卷25
初三数学教学试卷25(时间100分钟,满分150分)一、选择题(本大题共6题,满分24分)1.下列实数中,属于有理数的是……………………………………( ) A 、8 B 、722 C 、2πD 、32 2.把不等式组⎩⎨⎧≥->11x x 的解集表示在数轴上,正确的是……………( )3.直线b x y +=2的图像一定经过………………………( )A、一、二象限 B 、一、三象限 C 、二、三象限D 、二、四象限4.从2,3,4,5,6中任取一个数,是素数的概率是…………( )A 、51 B 、52 C 、53D 、54 5.已知,在ABC ∆中,90=∠C °,那么B sin 等于……………( )A 、BC ACB 、AC BC C 、ABBC D 、AB AC6.已知正多边形的半径与边长相等,那么正多边形的边数是……( ) A 、4 B 、5 C 、6 D 、8 二、填空题(本大题共12题,满分48分)7.9的平方根是 .8.因式分解:ay ax y x -+-22= . 9.方程21=+x 的解是 .10.函数13+-=x x y 的定义域是 . 11.已知正比例函数kx y =(0≠k )经过点)3,2(-,那么这个正比例函数的解析式是 .12.若关于x 的方程022=+-k x x 有两个实数根,则k 的取值范围是______________. 13.将二次函数3)1(22--=x y 的图像向右平移2个单位,那么平移后的二次函数的解析式是 . 14.用换元法解方程122222=+--x x x x 时,如设xx y 212-=,则将原方程化为关于y 的整式方程是________________.(A )(B )(C )(D )15.在ABC ∆中,记==,,则=______________.(用向量、来表示) 16.如图,在ABC ∆中, BC DE //, 2=AD ,3=BD , 1=AE ,那么=AC . 17.已知ABC ∆~'''C B A ∆,ABC ∆、'''C B A ∆的面积分别为5和20,那么=''B A AB. 18.已知等腰ABC ∆的两条边长分别为6、4,AD 是底边上的高,圆A 的半径为3,圆A 与圆D 内切,那么圆D 的半径是 .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算: 60sin )13(2271+-+-°)14.3(--π°20.(本题满分10分)解方程组:⎩⎨⎧+=-=+)(25222y x y x y x21.(本题满分10分) .如图,已知在ABC ∆中,点D 是BC 边上一点,DA AB ⊥,12AC =, 7BD =,9CD =.(1)求证:ACD ∆∽BCA ∆; (2)求tan CAD ∠的值.A B C DEA B C (第21题图)22.(本题满分10分)如图是地下排水管的截面图(圆形),小敏为了计算地下排水管的直径,在圆形弧上取了A ,B 两点并连接AB ,在劣弧AB 上取中点C 连接CB ,经测量45=BC 米,87.36=∠ABC °,根据这些数据请你计算出地下排水管的直径(精确到1.0米)(87.36sin °60.0≈,87.36cos °80.0≈,87.36tan °75.0≈)23.(本题满分12分)已知:如图,在ABC Rt ∆中,90=∠BAC °,DE 是直角边AB 的垂直平分线,ABC DBA ∠=∠,连接AD求证:(1) 四边形ADBC 是梯形(2)BC AD 21=24.(本题满分12分)已知抛物线c bx ax y ++=2)0(≠a 过点)0,3(-A ,)0,1(B ,)3,0(C 三点(1)求抛物线的解析式;(2) 若抛物线的顶点为P ,求PAC ∠正切值;(3)若以A 、P 、C 、M 为顶点的四边形是平行四边形,求点M 的坐标.CBCAB25.(本题满分14分)如图,正方形ABCD 的边长是4,M 是AD 的中点.动点E 在线段AB 上运动.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG .(1)求证:GEF ∆是等腰三角形;(2)设x AE =时,EGF ∆的面积为y .求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在点E 运动过程中GEF ∆是否可以成为等边三角形?请说明理由.错误!未指定书签。
2014年上海市初三五校联考数学卷和答案
2014年上海市五校初三联合调研测试数学卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是(A(B(C(D2.某机构对30万人的调查显示,沉迷于手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为(A )52.110⨯; (B )32110⨯; (C )50.2110⨯; (D )42.110⨯. 3.图1是2014年巴西世界杯吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是 (A )27; (B )29; (C )30; (D )31. 4.若一个正九边形的边长为a ,则这个正九边形的半径是(A )cos20a ︒; (B )sin 20a ︒; (C )2cos20a ︒; (D )2sin 20a︒.5.下列命题: ① 若a b =,b c =,则a c =; ② 若a ∥b ,b ∥c ,则a ∥c ;③ 若||2||a b =,则2a b =或2a b =-; ④ 若a 与b 是互为相反向量,则0a b +=. 其中真命题的个数是(A )1个; (B )2个; (C )3个; (D )4个. 6.如图2,在△ABC 中,D 是边AC 上一点,联结BD ,给出下列条件: ① ∠ABD =∠ACB ; ② 2AB AD AC =⋅; ③ AD BC AB BD ⋅=⋅; ④ AB BC AC BD ⋅=⋅. 其中单独能够判定△ABD ∽△ACB 的个数是(A )1个; (B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】 7.0(2014)-的平方根等于 ▲ .2014.5.4图1AB CD图28.已知函数1()xf xx-=,那么1)f=▲ .9.点(1,2)P m m--在第四象限,则m的取值范围是▲ .10.关于x的一元二次方程210kx+=有两个不相等的实数根,则k的取值范围是▲ .11.两位同学在描述同一反比例函数的图像时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y轴作垂线,与两坐标轴所围成的矩形面积为2014.”乙同学说:“这个反比例函数图像与直线y x=-有两个交点.”你认为这两位同学所描述的反比例函数的解析式是▲ .12.在平面直角坐标系中,若将抛物线2243y x x=-+先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是▲ .13.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:则这10个小组植树株数的方差是▲ .14.已知两圆半径分别为3和7,圆心距为d,若两圆相离,则d的取值范围是▲ .15.如图3,一座拦河大坝的横截面是梯形ABCD,AD∥BC,∠B = 90°,AD = 6米,坡面CD的坡度41:3i=,且BC = CD,那么拦河大坝的高是▲ 米.16.定义:若自然数n使得三个数的加法运算“(1)(2)n n n++++”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为2349++=不产生进位现象;4是“连加进位数”,因为45615++=产生进位现象;51是“连加进位数”,因为515253156++=产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是▲ .17.如图4,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为▲ .18.在△ABC中,∠A = 30°,AB = m,CD是边AB上的中线,将△ACD沿CD所在直线翻折,得到△ECD,若△ECD与△ABC重合部分的面积等于△ABC面积的14,则△ABC的面积为▲ (用m的代数式表示).三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:22444442x x x xx x x++--÷++-,其中212sin60()2x-=︒-.A BCD图4AB CD图320.(本题满分10分)解方程组:222220,20.x xy y x xy y x y ⎧--=⎨--+++=⎩①②21.(本题满分10分)如图5所示,一测量小组发现8米高旗杆DE 的影子EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小张身高 1.6米,测得其影长为2.4米,同时测得EG 的长为3米,HF 的长为1米,测得拱高(弧GH 的中点到弦GH 的距离,即MN 的长)为2米,求小桥所在圆的半径.22.(本题满分10分,其中第(1)小题3分,第(2)小题4分,第(3)小题3分)如图6,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时又以0.8m /s 的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8m /s 的速度往下跑,而乙到达底端后则在原地等候甲.图7中线段OB 、AB 分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y (m )与所用时间x (s )之间的部分函数关系,结合图像解答下列问题: (1)求点B 的坐标;(2)求AB 所在直线的函数表达式;(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?23.(本题满分12分)已知:如图8,在△ABC 中,AD 是边BC 上的中线,点E 在线段DC 上,EF ∥AB 交边AC 于点F ,EG ∥AC 交边AB 于点G ,FE 的延长线与AD 的延长线交于点H .求证:GF = BH .图5图6 图7 ABCDEF G(反面还有试题)24.(本题满分12分,每小题各4分)已知:在平面直角坐标系xOy中,二次函数224y mx mx=+-(0)m≠的图像与x轴交于点A、B (点A在点B的左侧),与y轴交于点C,△ABC的面积为12.(1)求这个二次函数的解析式;(2)点D的坐标为(2,1)-,点P在二次函数的图像上,∠ADP为锐角,且tan2ADP∠=,请直接写出点P的横坐标;(3)点E在x轴的正半轴上,45OCE∠>︒,点O与点O'关于EC所在直线对称,过点O作O E'的垂线,垂足为点N,ON与EC交于点M.若48EM EC⋅=,求点E的坐标.25.(本题满分14分,其中第(1)小题6分,第(2)小题8分)已知:如图9,在△ABC中,AB= 4,BC= 5,点P在边AC上,且12AP AB=,联结BP,以BP为一边作△BPQ(点B、P、Q按逆时针排列),点G是△BPQ的重心,联结BG,∠PBG =∠BCA,∠QBG =∠BAC,联结CQ并延长,交边AB于点M.设PC = x,MQy MC=.(1)求BPBQ的值;(2)求y关于x的函数关系式.C图92014年上海市五校初三联合调研测试数学卷答案要点与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.C ; 4.D ; 5.A ; 6.C . 二、填空题:(本大题共12题,每题4分,满分48分)7.1±; 8.2; 9.2m >; 10.1122k -≤<且0k ≠; 11.2014y x=-;12.(4,3); 13.35; 14.04d ≤<或10d >; 15.18; 16.2225;17; 182或218m . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式2(2)244(2)(2)x x x x x x x +-=-⋅+++-…………………………………………………………(2分) 244x x x x +=-++………………………………………………………………………………(2分) 24x =-+.…………………………………………………………………………………(1分) ∵244x =,……………………………………………………………………(3分)∴原式==.………………………………………………………………(2分) 20.(本题满分10分)解:由①得()(2)0x y x y +-=.……………………………………………………………………(1分)∴ x y =-或2x y =.……………………………………………………………………………(2分) 将x y =-代入②,得220y +=,无解.………………………………………………………(2分) 将2x y =代入②,得2320y y ++=,解得11y =-,22y =-.………………………………(2分) 分别代入2x y =,得12x =-,24x =-.………………………………………………………(2分) ∴ 原方程组的解是112,1,x y =-⎧⎨=-⎩ 224,2.x y =-⎧⎨=-⎩………………………………………………………(1分)21.(本题满分10分)解:设弧GH 所在圆的圆心为O ,联结OG 、OM .由题意,易知O 、M 、N 三点共线.∵ 在同一时刻,平行光线下的实物长与影长比例相等,∴1.62.4DE EF =,∴ 8 2.4121.6EF ⨯==.…………………………………………………………(3分) 又∵ EG = 3,HF = 1,∴ 12318GH EF EG HF =--=--=.………………………………(1分) 根据垂径定理,得142GM GH ==.…………………………………………………………(1分)在Rt △OMG 中,设圆O 的半径OG = r ,则2OM r MN r =-=-.根据勾股定理,得222OM GM OG +=,即222(2)4r r -+=,………………………………(2分) 解得r = 5.………………………………………………………………………………………(2分) ∴ 小桥所在圆的半径为5米.…………………………………………………………………(1分) 22.(本题满分10分,其中第(1)小题3分,第(2)小题4分,第(3)小题3分) 解:(1)设扶梯的上行和下行速度为v m /s .由题意,得7.5(20.8)30v +=,……………………………………………………………(1分) 解得v = 1.6.………………………………………………………………………………(1分) ∵ 7.5(1.60.8)18+=,∴ 点B 的坐标为(7.5,18).…………………………………(1分) (2)设AB 所在直线的函数表达式为y kx b =+,……………………………………………(1分)得30,7.518.b k b =⎧⎨+=⎩……………………………………………………………………………(1分)解得 1.6,30.k b =-⎧⎨=⎩………………………………………………………………………………(1分)∴ AB 所在直线的函数表达式为 1.630y x =-+.………………………………………(1分) (3)∵ 甲到达扶梯底端所需时间为(302)(1.60.8)25⨯÷+=s ,……………………………(1分)乙到达扶梯底端所需时间为30 1.618.75÷=s ,………………………………………(1分) ∴ 还需等待的时间为2518.75 6.25-=s .………………………………………………(1分)23.(本题满分12分)证明:∵ AD 是边BC 上的中线,∴ BD = DC .…………………………………………………(1分)∵ HF ∥AB ,∴2EF EC EC AB BC DC ==,HE DE DC ECAB BD DC-==.……………………………(2分) ∴ 22EF HE DC EC AB DC +-=,…………………………………………………………………(2分) 即HF BE AB BC=.……………………………………………………………………………(2分) ∵ EG ∥AC ,∴ BE BGBC AB=.………………………………………………………………(1分) ∴ HF BG AB AB=.………………………………………………………………………………(1分) ∴ HF = BG .…………………………………………………………………………………(1分) 又∵ HF ∥BG ,∴ 四边形BGFH 是平行四边形.…………………………………………(1分) ∴ GF = BH .…………………………………………………………………………………(1分) 24.(本题满分12分,每小题各4分)解:(1)当x = 0时,4y =-,∴ (0,4)C -.∵ 1122ABC C S AB y ∆=⋅=,∴ AB = 6.…………………………………………………(1分)又∵ 二次函数图像的对称轴是直线212mx m=-=-,∴ (4,0)A -,(2,0)B .………………………………………………………………(1分) ∴ 4440m m +-=,解得12m =.………………………………………………………(1分) ∴ 二次函数的解析式为2142y x x =+-.………………………………………………(1分)(2)2-.…………………………………………………………………………(4分) (第一种情况1分,第二种情况3分) (3)如图1,联结OO ',交EC 于点T ,联结O C '.∵ 点O 与点O '关于EC 所在直线对称,∴ OO '⊥EC ,OCE O CE '∠=∠,90CO E COE '∠=∠=︒. ∴ O C '⊥O E '.又∵ ON ⊥O E ',∴ O C '∥ON . ∴ OMC O CE OCE '∠=∠=∠.∴ OC = OM .………………………………(1分) ∴ CT = MT .在Rt △ETO 中,∠ETO = 90°,cos ETOEC OE ∠=. 在Rt △COE 中,∠COE = 90°,cos OEOEC EC∠=.∴ OE ET EC OE =. ∴ 2()48OE ET EC EM MT EC EM EC MT EC MT EC =⋅=+⋅=⋅+⋅=+⋅.…………(1分) 同理可得216OC CT EC MT EC =⋅=⋅=.…………………………………………………(1分) ∴ 2481664OE =+=. ∵ 0OE >,∴ OE = 8. ∵ 点E 在x 轴的正半轴上,∴ 点E 的坐标为(8,0).…………………………………………………………………(1分)25.(本题满分14分,其中第(1)小题6分,第(2)小题8分)解:(1)如图2,延长BG ,交边PQ 于点D ,由点G 是△BPQ 的重心,可知PD = DQ ,……(1分)延长BD 至点E ,使DE = BD ,联结PE . ∵ PD = DQ ,DE = BD ,∠PDE =∠QDB , ∴ △PDE ≌△QDB .………………………(1分) ∴ PE = BQ ,∠PED =∠QBD .∵ ∠QBG =∠BAC ,∴ ∠PED =∠BAC .(1分) 又∵ ∠PBG =∠BCA ,∴ △BPE ∽△CBA .(1分)图1C∴54BP BC PE AB ==.…………………………(1分) ∴ 54BP BQ =.………………………………(1分)(2)如图3,延长AB 至点F ,使BF = AB ,联结QF ,过点Q 作QH ∥AC ,交边AB 于点H .∵54BP BQ =,54BC BF =,∴BP BCBQ BF=. ∵ PBQ BAC BCA ∠=∠+∠,CBF BAC BCA ∠=∠+∠, ∴ ∠PBQ =∠CBF . ∴ ∠PBC =∠QBF .∴ △PBC ∽△QBF .………………………………………………………………………(1分) ∴ ∠BCP =∠BFQ ,54PC BP QF BQ ==.…(1分) ∵ HQ ∥AC ,∴ ∠BHQ =∠BAC .∴ △FQH ∽△CBA .……………………(1分) ∴ 54QF BC HQ AB ==.………………………(1分)∴ 25()4PC QF QF HQ ⋅=,即2516PC HQ =. ∴ 16162525HQ PC x ==.…………………(2分) ∵ HQ ∥AC ,∴ MQ HQ MC AC=,即16252xy x =+.……………………………………………(1分) ∴ y 关于x 的函数关系式为162550xy x =+.………………………………………………(1分)(本卷中许多问题解法不唯一,请各位老师参照评分标准酌情给分)C图3。
word2014版本初三第一次五校联考数学试卷及答案
∴OP与半圆D相切于点O.
又∵PH与半圆D相切于点E,
∴OP=EP,
∠DPO=∠DPE= ∠OPH=30°,
∠OHP=90°-∠OPH=30°.
∴DP=2OD=2
,
HP=2OP= ,
.
∴P( ),H(0 ),
设切线PH的解析式为:
将P( ),H(0 )代入上式,得
解得
∴所求的解析式为:
15.如下图,在△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,
∠BCD=40°,则∠A=.
16.已知二次函数y=-x2+bx+c(a≠0)的图象如下图,且关于x的一元二次方程-x2+bx+c-m=0有两个不同的实数根,则m的取值范围为:.
第14题图第15题图第16题图
三.解答题(一)(本大题3个小题,每小题6分,共18分)
∴y=[6+2(x﹣1)][95﹣5(x﹣1)],
即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);
(2)由题意可得:﹣10x2+180x+400=1120
整理得:x2﹣18x+72=0
解得:x1=6,x2=12(舍去).
答:该产品的质量档次为第6档.
25.解:(1)由题意知点 的坐标为 .设 的函数关系式为 .
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
25.如图,已知与 轴交于点 和 的抛物线 的顶点为 ,抛物线 与 关于 轴对称,顶点为 .
(1)求抛物线 的函数关系式;
(2)已知原点O,定点 , 上的点P与 上的点 始终关于 轴对称,则当点P运动到何处时,以点D,O,P, 为顶点的四边形是平行四边形?
2014年上海中考数学模拟试卷5
中考数学模拟卷5(时间:100分钟,满分:150分)一、单项选择题:(本大题共6题,每题4分,满分24分) 1.下列运算正确的是……………………………………………………………………( ).(A) 221-=-; (B) 632)(mn mn = ; (C) 39±= ;(D) 426m m m =÷ . 2. 在49,a 9,25xy ,92+a ,23+x ,1.0中,是最简二次根式的个数是( ). (A) 1; (B) 2; (C) 3; (D) 4. 3.下列语句错误的是……………………………………………………………………( ).(A )如果m 、n 为实数,那么m (n a )=(mn )a;(B )如果m 、n 为实数,那么(m +n )a =m a +n a;(C )如果m 、n 为实数,那么m (a +b )=m a+ m b ;(D )如果k =0或0=a ,那么k a =0.4.顺次连结菱形的各边中点所得到的四边形是………………………………………( ).(A) 平行四边形; (B)菱形; (C) 矩形; (D)正方形. 5.下列说法中正确的是…………………………………………………………………( ).(A) 每个命题都有逆命题; (B) 每个定理都有逆定理; (C) 真命题的逆命题是真命题; (D) 真命题的逆命题是假命题.6. 给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角. 利用尺规作图,能作出唯一的三角形的条件是…( ). (A) ①②③; (B) ①②④; (C) ②③④; (D) ①③④.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.分解因式:652--x x = . 8.如果3=a ,那么a2= . 9.请你根据如图写出一个乘法公式:.10.用科学计数法表示-0.00000628= . 11.已知方程3124-=+-x ax 的解为1=x ,那么a 2的值为 .12.不等式组⎪⎩⎪⎨⎧-≥-<-3132,31x x 的解集是 .13.从数字1、2、3中任取两个不同的数字组成一个两位数,那么这个两位数小于23的概率是 .14. 某市2008年的人均GDP 约为2006年的人均GDP 的1.21倍,如果该市每年的人均GDPa a bb(第9题)增长率相同,均为x ,那么可列出方程: __.15.已知点G 是△ABC 的重心,△ABC 的面积为182cm ,那么△AGC 的面积为 2cm . 16. 某人在斜坡上走了13米,上升了5米,那么这个斜坡的坡比i = . 17.在Rt △ABC 中,∠C =90°,AC =5,BC =8,如果以点C 为圆心作圆,使点A 在圆C 内,点B 在圆C 外,那么圆C 半径r 的取值范围为 .18.已知圆1O 与圆2O 相切,圆1O 的半径长为3cm ,21O O =7cm ,那么圆2O 的半径长是 cm . 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分)19.计算:1)41(45cos 2)1(18-+︒---π.20.解方程:2)2(-x x +2-x x -6=0.21.如图,在梯形ABCD 中,AD ∥BC ,AB=DC=AD ,∠C =60°,AE ⊥BD 于点E . (1) 求∠ABD 的度数; (2) 求证:BC=2CD ;(3) 如AE =1,求梯形ABCD 的面积.22、已知:如图所示,点P 是⊙O 外的一点,PB 与⊙O 相交于点A 、B ,PD 与⊙O 相 交于C 、D ,AB=CD . 求证:(1)PO 平分∠BPD ;(2)P A=PC ;(3)AE EC =.ABCDE第21题O DC PA B第22题E23.如图,双曲线xy 5=在第一象限的一支上有一 点C (1,5),过点C 的直线0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B . (1)求点A 的横坐标a 与k 之间的函数关系式; (2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积.24. 如图,在矩形ABCD 中,将边AD 折叠,使点D 落在边BC 的点F 处.已知折痕AE =55,且∠EFC的正切值为43.(1)求证:∠BAF =∠EFC ; (2)求AB 的长;(3)延长AE 交BC 的延长线于点G ,过点F 的直线分别交直线AB 、线段AE 于点P 、Q ,是否存在这样直线,使点P 、A 、Q 为顶点的三角形与△FGQ 相似,如果存在,请求出AP 的长;如果不存在,请说明理B A D E F25.如图,在平面直角坐标系xOy 中,O点A 、C 的坐标分别为(2,0)、(1,33将△AOC 绕AC 的中点旋转180°,点O 落到点B 的位置,抛物线x ax y 322-=点A ,点D 是该抛物线的顶点.(1)求证:四边形ABCO 是平行四边形; (2)求a 的值并说明点B 在抛物线上;(3)若点P 是线段OA 上一点,且∠APD=∠求点P 的坐标;(4) 若点P 是x 轴上一点,以P 、A 、D 为顶点作平行四边形,该平行四边形的另一顶点在y 轴 上,写出点P 的坐标.第25题。
2014届九年级教学质量检测联合调研考试数学试题
2014届九年级教学质量检测联合调研考试数学试题一、相信你的选择(本大题共12个小题.1~6小题,每小题2分;7~12小题,每小题2分,共30分.在每个小题给出的四个选项中,只有一项是正确的,把正确选项的代码填在题后的括号内)﹣<=2.(2分)(2012•黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对)=,AM=﹣的坐标为(3.(2分)(2012•珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为,,,.二月份白解:因为甲、乙、丙、丁四个市场的方差分别为,4.(2分)(2012•河北)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()5.(2分)(2012•本溪)已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,6.(2分)(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()7.(3分)(2013•衡水模拟)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过()8.(3分)(2013•衡水模拟)如图所示,A 、B 是边长为1的小正方形组成的网格的两个格点,在图中的网格的格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( ) B . 的概率为.9.(3分)(2012•广安)时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y 度,运行时间为t 分,当时间从3:00开始到3:30止,图中能大致表示y 与t 之间的函数关 B C D11.(3分)(2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()=的面积是(=为线段一定为正值,故=|MO PQ==MO 的面积是12.(3分)(2012•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是()k+k=k,应停在第k)代入可得,7p=7m+二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)(2013•衡水模拟)计算(﹣2a)3的结果是﹣8a3.14.(3分)(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.15.(3分)(2013•衡水模拟)如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为10cm.=AB+AE+BE=AB+AD=16.(3分)(2013•衡水模拟)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为D、E.则线段DE的长为.AB=,DE=AB=故答案为:17.(3分)(2013•衡水模拟)已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是k≤4且k≠3.18.(3分)(2012•东营)某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是30 cm.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)(2012•广州)已知(a≠b),求的值.求出=,通分得出﹣,推出,化简得出,代入求解:∵=,∴=∴﹣,﹣,,,,.键,用了整体代入的方法(即把20.(8分)(2012•丹东)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.﹣×﹣21.(8分)(2012•河源)为实施校园文化公园化战略,提升校园文化品位,在“回赠母校一棵树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了200人;(2)条形统计图中的m=70,n=30;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是.=..22.(8分)(2012•鞍山)如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.(1)求⊙O的半径;(2)求证:BF是⊙O的切线.ACB=,x=OB=3x=,则=,而=,于是得到,根据相似三角形的ACB=,BOD=,,OB=3x=的半径为OF=3OE=∴=,=,∴=,23.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)OCA=ODB=(OEF=OCA=(ODB=(∴…OEF=∴,24.(9分)(2012•永州)在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示.Q(1,)是函数图象上的最低点.请仔细观察甲、乙两图,解答下列问题.(1)请直接写出AB边的长和BC边上的高AH的长;(2)求∠B的度数;(3)若△ABP为钝角三角形,求x的取值范围.,在AH=AH=,BP==425.(10分)(2005•青岛)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD 和ME之间有什么数量关系?并结合图4加以证明.ACP=﹣时,此时∵,∴∴.26.(12分)(2013•衡水模拟)如图1,在平面直角坐标系中,四边形OABC是梯形,BC∥AO,顶点O在坐标原点,顶点A(4,0),顶点B(1,4),动点P从O点出发,以每秒1个单位长度的速度沿OA的方向向A运动,同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.当其中一个点到达终点时,另一个也随之停止.设运动时间为t秒.(1)当t为何值时,PB与AQ互相平分?(2)设△PAQ的面积为S,求S与t的函数关系式.当t为何值时,S有最大值?最大值是多少?(3)在整个运动过程中,是否存在某一时刻t,使得以PQ为直径的圆与y轴相切?若存在,求出相应的t值;若不存在,请说明理由.时,点OAB=(,求出当;②≤≤•t=时,点t t,得出方程=PQ≤)(AB=时,点•tS=PA•t﹣﹣有最大值是≤≤S=t=时,有最大值是<﹣t t(t﹣﹣﹣=PQ)(t+16t=∵<,t=符合题意;≤的中点的横坐标是,即﹣=PQ)(t=,使得以。
2014年上海中考数学模拟试卷10 (1)
模拟试卷 10- 1数学试模拟试卷 10一、选择题(本大题共 6题,每题 4分,满分 24分1.下列运算中,计算结果正确的是………………………………………( A . 22a a a =; B . 632a a a ÷=; C . 333( ab a b +=+; D . 236( a a =. 2.在下列各数中,无理数是………………………………………………( A . 2.1-; BC . π;D .227. 3.下列二次三项式中可以在实数范围内分解的是………………………( A . 2 1x x ++; B . 231x x ++; C . 21x x -+; D . 23x x ++.4.在平面直角坐标系中,直线 1y x =-经过……………………………( A .第一、二、三象限 ; B .第一、二、四象限; C .第一、三、四象限 ; D .第二、三、四象限.5.下列交通标志中既是中心对称图形,又是轴对称图形的是…………(6.如果平行四边形 ABCD 对角线 AC 与 BD 交于 O , AB a =, BC b =,那么下列向量中与向量 1( 2a b -相等的是……………………………………( A . AO ; B . BO ; C . CO ; D . DO .二、填空题(本大题共 12题,每题 4分,满分 48分 7.函数 1xy x =+自变量的取值范围是 . 8.有一个质地均匀且六个面上分别刻有 1到 6的点数的正方体骰子,掷一次骰子,向上一面的点数为偶数的概率是 .9.不等式 521x ->的正整数解是10.在方程 223343x x x x+=--中,如果设 23y x x =-,那么原方程可化为关于 y 的整式方程是 .11x =的根是A. B. C. D. ba2模拟试卷 10- 212. 在平面直角坐标系中, 如果双曲线 (0 ky k x=≠经过点 (23 -, , 那么 k = 13.写出一个开口向下且对称轴为直线 1x =-的抛物线的函数解析式14.如图,已知 a b ∥ ,如果 150∠=,那么 2∠的度数等于 .15.如果一个梯形的两底长分别为 4和 6,那么这个梯形的中位线长为 . 16. 某飞机在离地面 2000米的上空测得地面控制点的俯角为α, 此时飞机与该地面控制点之间的距离是米. (用含有α的锐角三角比表示17.若正六边形的外接圆半径为 4,则此正六边形的边长为 .18.已知某种商品的售价每件为 150元,即使促销降价 20%后,扣除成本仍有 20%的利润,那么该商品每件的成本价是元. 三、解答题19. (本题满分 10分先化简,再求值:2221 1212x x x x x x x x -+--++-,其中 x =20. (本题满分 10分解方程组:222220 ,320 .x y x xy y ⎧+=⎨-+=⎩2( 1(21. (本题满分 10分,第(1小题满分 5分,第(2小题满分 5分如图,已知 A 、 B 、 C 分别是圆 O 上的点, OC 平分劣弧 AB 且交弦 AB 于点H , AB =CH =3. (1求劣弧 AB 的长; (结果保留π(2 将线段 AB 绕圆心 O 顺时针旋转 90°得线段 ' ' A B , 线段 ' ' A B 与线段 AB 交于点 D , 在答题纸上的 21题图 -2中画出线段 ' ' A B , 并求线段 AD 的长.14题图 21题图模拟试卷 10-3如图, 平行四边形 ABCD 中, 点 E 、 F 、 G 、 H 分别在 AB 、 BC 、 CD 、AD 边上且 AE =CG , AH =CF . (1 求证:四边形 EFGH 是平行四边形; (2 如果 AB=AD ,且 AH =AE , 求证:四边形 EFGH 是矩形.23、抛物线 2812(0 y ax ax a a =-+<与 x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ,抛物线上另有一点 C 在第一象限,满足∠ ACB 为直角,且恰使△ OCA ∽△ O B C . (1求线段 OC 的长. (2求该抛物线的函数关系式.(3在 x 轴上是否存在点 P ,使△ BCP 为等腰三角形?若存在,求出所有符合条件的 P 点的坐标;若不存在,请说明理由.24. (本题满分 12分,第(1小题满分 7分,第(2小题满分 5分在平面直角坐标系 xOy 中,将抛物线 22y x =沿 y 轴向上平移 1个单位,再沿 x 轴向右平移两个单位,平移后抛物线的顶点坐标记作 A ,直线 3x =与平移后的抛物线相交于 B ,与直线 OA 相交于 C . (1求△ ABC 面积;(2点 P 在平移后抛物线的对称轴上,如果△ ABP 与△ ABC 相似,求所有满足条件的 P 点坐标.C A在等腰△ ABC 中,已知 AB =AC =3,1cos3B∠=, D 为 AB 上一点,过点 D 作 DE ⊥ AB 交 BC边于点 E ,过点 E 作 EF ⊥ BC 交 AC 边于点 F .(1当 BD 长为何值时,以点 F 为圆心,线段 FA 为半径的圆与 BC 边相切?(2过点 F 作 FP ⊥ AC ,与线段 DE 交于点 G ,设 BD 长为 x ,△ EFG 的面积为 y ,求 y 关于 x 的函数解析式及其定义域.25题图模拟试卷 10- 4。
九年级数学五校联考试卷
(图4)(图5)2014届九年级数学上册五校联考试卷(命题人:李家平 审核人:陈恩来)一、选择题。
(本大题共10小题,每小题4分,满分40分)1、若5a = 4b ,则ba等于( )A 、45B 、54C 、59D 、952、若反比例函数xky =的图象经过(1,– 2 ),则k 的值为 ( )A 、2B 、– 2C 、1D 、– 13、抛物线221x y =向左平移3个单位,再向下平移2个单位后,所得抛物线的表达式是( )A 、2)3(212--=x yB 、2)3(212+-=x y C 、2)3(212-+=x y D 、2)3(212++=x y 4、在△ABC 中,∠A ,∠B 都是锐角,且cosB =23,tanA = 1,则△ABC 三个角的大小 关系是 ( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A 5、二次函数c bx ax y ++=2的图象如图(1)所示,则一次函数y = bx +a 的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6、下列三角形中,与图甲中的三角形相似的是( )7、如图(2),A 、C 是函数xy 1=的图象上的任意两点,过A 作x垂线,垂足为点B ,过点C 作y 轴的垂线,垂足为点D ,记作 Rt △COD 的面积为S 1,Rt △AOB 的面积为S 2,则() A 、S 1>S 2 B 、S1 = S 2C 、S 1<S 2D 、S 1与S 2的大小关系不能确定8、有下列说法:①位似图形都相似; ②位似图形都是由平移后再放大(或缩小)得到的;③对应角都相等的多边形相似;④边数相同的正多边形相似; ⑤两个相似多边形的面积比为2:3,则周长的比为4:3。
其中正确的有( )A 、1个B 、2个C 、3个D 、4个9、如图(3)所示。
给出下列条件:①∠B =∠ACD ; ②∠ADC =∠ACB ;③BCAB CD AC =;④AC 2= AD·AB 。
2014年上海中考数学模拟试卷19
数学试模拟试卷19一、选择题(本大题共6题,每题4分,满分24分)1.东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为…………………………………().A.1:5000000; B.1:500000; C.1:50000; D.1:5000.2.如果两个相似三角形对应高之比是9∶16,那么它们的对应周长之比是…………………………().A.3∶4; B.4∶3; C.9∶16; D.16∶9.3.Rt△ABC中,∠C=90º,若AC=a,∠A=,则AB的长为……………………().A.; B.; C.; D..4.在平面直角坐标系中,将二次函数的图像向下平移2个单位,所得图像的解析式为………………………………………………………().A.; B.; C.; D..5.若点A(2,y1)、B(3,y2)是二次函数图像上的两点,则y1与y2的大小关系是…………………………………………………().A.;B.;C.; D.不能确定.6.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值………………………………().A.有且仅有1个; B.有且仅有2个;C.有3个及以上但个数有限; D.有无数个.二、填空题(本大题共12题,每题4分,满分48分7.若,则__________.8.若是单位向量,与的方向相反,且长度为3,则用表示是_______.9.计算:__________.10.抛物线的顶点坐标是__________.11.若某二次函数图像的顶点在原点,且经过点(2,1),则此二次函数的解析式是__________.(第13题图)12.抛物线与轴的交点坐标是.13.如图,在□ABCD中,点在边上,若,则的值为__________.14.在△ABC中,如果,,那么BC的长为_________.(第16题图)15.某山路的路面坡度为,若沿此山路向上前进 90 米,则升高了 ____ 米.16.如图,在△ABC中,D是AC边上一点,且,设,,如果用向量,表示向量,那么_________.17.如果将抛物线向右平移个单位后,恰好过点(3,6),那么的值为_________.北18.如图,有一所正方形的学校,北门(点A)和西门(点B)各开在北、西面围墙的正中间。
上海市九年级五校联考数学卷参考答案
在 Rt△OMG 中,设圆 O 的半径 OG = r,则 OM r MN r 2 .
根据勾股定理,得 OM 2 GM 2 OG2 ,即 r 22 42 r 2 ,………………………………(2 分)
解得 r = 5.………………………………………………………………………………………(2 分)
23.(本题满分 12 分)
证明:∵ AD 是边 BC 上的中线,∴ BD = DC.…………………………………………………(1 分)
∵ HF∥AB,∴ EF EC EC , HE DE DC EC .……………………………(2 分) AB BC 2DC AB BD DC
∴ EF HE 2DC EC ,…………………………………………………………………(2 分)
将 x y 代入②,得 y2 2 0 ,无解.………………………………………………………(2 分)
将 x 2 y 代入②,得 y2 3y 2 0 ,解得 y1 1, y2 2 .………………………………(2 分)
分别代入 x 2y ,得 x1 2 ,x2 4 .………………………………………………………(2 分)
∴ HF = BG.…………………………………………………………………………………(1 分)
又∵ HF∥BG,∴ 四边形 BGFH 是平行四边形.…………………………………………(1 分)
∴ GF = BH.…………………………………………………………………………………(1 分)
25.(本题满分 12 分,每小题各 4 分)
EF 2.4
1.6
又∵ EG = 3,HF = 1,∴ GH EF EG HF 12 3 1 8 .………………………………(1 分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年上海市五校初三联合调研模拟测试数学卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是(A(B; (C(D2.某机构对30万人的调查显示,沉迷于手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为(A )52.110⨯; (B )32110⨯; (C )50.2110⨯; (D )42.110⨯. 3.图1是2014年巴西世界杯吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是 (A )27; (B )29; (C )30; (D )31. 4.若一个正九边形的边长为a ,则这个正九边形的半径是(A )cos20a ︒; (B )sin 20a ︒; (C )2cos20a ︒; (D )2sin 20a︒.5.下列命题: ① 若a b =,b c =,则a c =; ② 若a ∥b ,b ∥c ,则a ∥c ;③ 若||2||a b =,则2a b =或2a b =-; ④ 若a 与b 是互为相反向量,则0a b +=. 其中真命题的个数是(A )1个; (B )2个; (C )3个; (D )4个. 6.如图2,在△ABC 中,D 是边AC 上一点,联结BD ,给出下列条件: ① ∠ABD =∠ACB ; ② 2AB AD AC =⋅; ③ AD BC AB BD ⋅=⋅; ④ AB BC AC BD ⋅=⋅. 其中单独能够判定△ABD ∽△ACB 的个数是(A )1个; (B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】 7.0(2014)-的平方根等于 ▲ .8.已知函数1()x f x x-=,那么1)f = ▲ . 9.点(1,2)P m m --在第四象限,则m 的取值范围是 ▲ . 2014.5.4图1AB CD图210.关于x的一元二次方程210kx+=有两个不相等的实数根,则k的取值范围是▲ .11.两位同学在描述同一反比例函数的图像时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y轴作垂线,与两坐标轴所围成的矩形面积为2014.”乙同学说:“这个反比例函数图像与直线y x=-有两个交点.”你认为这两位同学所描述的反比例函数的解析式是▲ .12.在平面直角坐标系中,若将抛物线2243y x x=-+先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是▲ .13.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:则这10个小组植树株数的方差是▲ .14.已知两圆半径分别为3和7,圆心距为d,若两圆相离,则d的取值范围是▲ .15.如图3,一座拦河大坝的横截面是梯形ABCD,AD∥BC,∠B = 90°,AD = 6米,坡面CD的坡度41:3i=,且BC = CD,那么拦河大坝的高是▲ 米.16.定义:若自然数n使得三个数的加法运算“(1)(2)n n n++++”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为2349++=不产生进位现象;4是“连加进位数”,因为45615++=产生进位现象;51是“连加进位数”,因为515253156++=产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是▲ .17.如图4,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为▲ .18.在△ABC中,∠A = 30°,AB = m,CD是边AB上的中线,将△ACD沿CD所在直线翻折,得到△ECD,若△ECD与△ABC重合部分的面积等于△ABC面积的14,则△ABC的面积为▲ (用m的代数式表示).三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:22444442x x x xx x x++--÷++-,其中212sin60()2x-=︒-.20.(本题满分10分)解方程组:222220,20.x xy yx xy y x y⎧--=⎨--+++=⎩①②A BCD图4AB CD图3(反面还有试题)21.(本题满分10分)如图5所示,一测量小组发现8米高旗杆DE 的影子EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小张身高 1.6米,测得其影长为2.4米,同时测得EG 的长为3米,HF 的长为1米,测得拱高(弧GH 的中点到弦GH 的距离,即MN 的长)为2米,求小桥所在圆的半径.22.(本题满分10分,其中第(1)小题3分,第(2)小题4分,第(3)小题3分)如图6,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时又以0.8m /s 的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8m /s 的速度往下跑,而乙到达底端后则在原地等候甲.图7中线段OB 、AB 分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y (m )与所用时间x (s )之间的部分函数关系,结合图像解答下列问题: (1)求点B 的坐标;(2)求AB 所在直线的函数表达式;(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?23.(本题满分12分)已知:如图8,在△ABC 中,AD 是边BC 上的中线,点E 在线段DC 上,EF ∥AB 交边AC 于点F ,EG ∥AC 交边AB 于点G ,FE 的延长线与AD 的延长线交于点H .求证:GF = BH .图5 图6 A BCD EFGH 图824.(本题满分12分,每小题各4分)已知:在平面直角坐标系xOy 中,二次函数224y mx mx =+-(0)m ≠的图像与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,△ABC 的面积为12. (1)求这个二次函数的解析式;(2)点D 的坐标为(2,1)-,点P 在二次函数的图像上,∠ADP 为锐角,且tan 2ADP ∠=,请直接写出点P 的横坐标;(3)点E 在x 轴的正半轴上,45OCE ∠>︒,点O 与点O '关于EC 所在直线对称,过点O 作O E '的垂线,垂足为点N ,ON 与EC 交于点M .若48EM EC ⋅=,求点E 的坐标. 25.(本题满分14分,其中第(1)小题6分,第(2)小题8分)已知:如图9,在△ABC 中,AB = 4,BC = 5,点P 在边AC 上,且12AP AB =,联结BP ,以BP 为一边作△BPQ (点B 、P 、Q 按逆时针排列),点G 是△BPQ 的重心,联结BG ,∠PBG =∠BCA ,∠QBG =∠BAC ,联结CQ 并延长,交边AB 于点M .设PC = x ,MQy MC=. (1)求BPBQ的值; (2)求y 关于x 的函数关系式.2014年上海市五校初三联合调研测试数学卷答案要点与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.C ; 4.D ; 5.A ; 6.C . 二、填空题:(本大题共12题,每题4分,满分48分)7.1±; 8.2; 9.2m >; 10.1122k -≤<且0k ≠; 11.2014y x=-;C图912.(4,3); 13.35; 14.04d ≤<或10d >; 15.18; 16.2225;17; 182或218m . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式2(2)244(2)(2)x x x x x x x +-=-⋅+++-…………………………………………………………(2分) 244x x x x +=-++………………………………………………………………………………(2分) 24x =-+.…………………………………………………………………………………(1分) ∵244x =-=,……………………………………………………………………(3分) ∴原式==.………………………………………………………………(2分)20.(本题满分10分)解:由①得()(2)0x y x y +-=.……………………………………………………………………(1分)∴ x y =-或2x y =.……………………………………………………………………………(2分) 将x y =-代入②,得220y +=,无解.………………………………………………………(2分) 将2x y =代入②,得2320y y ++=,解得11y =-,22y =-.………………………………(2分) 分别代入2x y =,得12x =-,24x =-.………………………………………………………(2分) ∴ 原方程组的解是112,1,x y =-⎧⎨=-⎩ 224,2.x y =-⎧⎨=-⎩………………………………………………………(1分)21.(本题满分10分)解:设弧GH 所在圆的圆心为O ,联结OG 、OM .由题意,易知O 、M 、N 三点共线.∵ 在同一时刻,平行光线下的实物长与影长比例相等,∴1.62.4DE EF =,∴ 8 2.4121.6EF ⨯==.…………………………………………………………(3分) 又∵ EG = 3,HF = 1,∴ 12318GH EF EG HF =--=--=.………………………………(1分) 根据垂径定理,得142GM GH ==.…………………………………………………………(1分)在Rt △OMG 中,设圆O 的半径OG = r ,则2OM r MN r =-=-.根据勾股定理,得222OM GM OG +=,即222(2)4r r -+=,………………………………(2分)解得r = 5.………………………………………………………………………………………(2分) ∴ 小桥所在圆的半径为5米.…………………………………………………………………(1分) 22.(本题满分10分,其中第(1)小题3分,第(2)小题4分,第(3)小题3分) 解:(1)设扶梯的上行和下行速度为v m /s .由题意,得7.5(20.8)30v +=,……………………………………………………………(1分) 解得v = 1.6.………………………………………………………………………………(1分)∵ 7.5(1.60.8)18+=,∴ 点B 的坐标为(7.5,18).…………………………………(1分) (2)设AB 所在直线的函数表达式为y kx b =+,……………………………………………(1分)得30,7.518.b k b =⎧⎨+=⎩……………………………………………………………………………(1分)解得 1.6,30.k b =-⎧⎨=⎩………………………………………………………………………………(1分)∴ AB 所在直线的函数表达式为 1.630y x =-+.………………………………………(1分) (3)∵ 甲到达扶梯底端所需时间为(302)(1.60.8)25⨯÷+=s ,……………………………(1分)乙到达扶梯底端所需时间为30 1.618.75÷=s ,………………………………………(1分) ∴ 还需等待的时间为2518.75 6.25-=s .………………………………………………(1分)23.(本题满分12分)证明:∵ AD 是边BC 上的中线,∴ BD = DC .…………………………………………………(1分)∵ HF ∥AB ,∴2EF EC EC AB BC DC ==,HE DE DC ECAB BD DC-==.……………………………(2分) ∴ 22EF HE DC EC AB DC +-=,…………………………………………………………………(2分) 即HF BE AB BC=.……………………………………………………………………………(2分) ∵ EG ∥AC ,∴ BE BGBC AB=.………………………………………………………………(1分) ∴ HF BG AB AB=.………………………………………………………………………………(1分) ∴ HF = BG .…………………………………………………………………………………(1分) 又∵ HF ∥BG ,∴ 四边形BGFH 是平行四边形.…………………………………………(1分) ∴ GF = BH .…………………………………………………………………………………(1分) 24.(本题满分12分,每小题各4分) 解:(1)当x = 0时,4y =-,∴ (0,4)C -.∵ 1122ABC C S AB y ∆=⋅=,∴ AB = 6.…………………………………………………(1分)又∵ 二次函数图像的对称轴是直线212mx m=-=-,∴ (4,0)A -,(2,0)B .………………………………………………………………(1分) ∴ 4440m m +-=,解得12m =.………………………………………………………(1分) ∴ 二次函数的解析式为2142y x x =+-.………………………………………………(1分)(2)2-.…………………………………………………………………………(4分) (第一种情况1分,第二种情况3分)(3)如图1,联结OO ',交EC 于点T ,联结O C '.∵ 点O 与点O '关于EC 所在直线对称,∴ OO '⊥EC ,OCE O CE '∠=∠,90CO E COE '∠=∠=︒.∴ O C '⊥O E '.又∵ ON ⊥O E ',∴ O C '∥ON . ∴ OMC O CE OCE '∠=∠=∠.∴ OC = OM .………………………………(1分) ∴ CT = MT .在Rt △ETO 中,∠ETO = 90°,cos ETOEC OE ∠=. 在Rt △COE 中,∠COE = 90°,cos OEOEC EC∠=.∴ OE ET EC OE =. ∴ 2()48OE ET EC EM MT EC EM EC MT EC MT EC =⋅=+⋅=⋅+⋅=+⋅.…………(1分) 同理可得216OC CT EC MT EC =⋅=⋅=.…………………………………………………(1分) ∴ 2481664OE =+=. ∵ 0OE >,∴ OE = 8. ∵ 点E 在x 轴的正半轴上,∴ 点E 的坐标为(8,0).…………………………………………………………………(1分)25.(本题满分14分,其中第(1)小题6分,第(2)小题8分)解:(1)如图2,延长BG ,交边PQ 于点D ,由点G 是△BPQ 的重心,可知PD = DQ ,……(1分)延长BD 至点E ,使DE = BD ,联结PE . ∵ PD = DQ ,DE = BD ,∠PDE =∠QDB , ∴ △PDE ≌△QDB .………………………(1分) ∴ PE = BQ ,∠PED =∠QBD .∵ ∠QBG =∠BAC ,∴ ∠PED =∠BAC .(1分) 又∵ ∠PBG =∠BCA ,∴ △BPE ∽△CBA .(1分)∴54BP BC PE AB ==.…………………………(1分) ∴54BP BQ =.………………………………(1分) (2)如图3,延长AB 至点F ,使BF = AB ,联结QF ,过点Q 作QH ∥AC ,交边AB 于点H .∵54BP BQ =,54BC BF =,∴BP BC BQ BF =. ∵ PBQ BAC BCA ∠=∠+∠,CBF BAC BCA ∠=∠+∠, ∴ ∠PBQ =∠CBF . ∴ ∠PBC =∠QBF .∴ △PBC ∽△QBF .………………………………………………………………………(1分) ∴ ∠BCP =∠BFQ ,54PC BP QF BQ ==.…(1分) ∵ HQ ∥AC ,∴ ∠BHQ =∠BAC .∴ △FQH ∽△CBA .……………………(1分) ∴54QF BC HQ AB ==.………………………(1分)图1C图2C图3∴25()4PC QF QF HQ ⋅=,即2516PC HQ =. ∴ 16162525HQ PC x ==.…………………(2分) ∵ HQ ∥AC ,∴ MQ HQMC AC=,即16252xy x =+.……………………………………………(1分) ∴ y 关于x 的函数关系式为162550xy x =+.………………………………………………(1分)(本卷中许多问题解法不唯一,请各位老师参照评分标准酌情给分)。