第三章 中值定理及导数的应用

合集下载

中值定理与导数的应用

中值定理与导数的应用

第三章 中值定理与导数的应用§3. 1 中值定理 一、罗尔定理 费马引理设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0.罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即0)('=ξf .例:设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)1(=f ,证明:在(0,1)内存在ξ,使得ξξξ)()(f f -='.【分析】本题的难点是构造辅助函数,可如下分析:()0)(0)()(0)()()()(='→='+→='+→-='x xf x f x x f f f f f ξξξξξξ【证明】令)()(x xf x G =,则)(x G 在[0,1]上连续,在(0,1)上可导,且0)1(1G (1)0,0)(0)0(====f f G ,)()()(x f x x f x G '+=' 由罗尔中值定理知,存在)1,0(∈ξ,使得)()()(ξξξξf f G '+='.即ξξξ)()(f f -='例:设函数f (x ), g (x )在[a , b ]上连续,在(a , b )内具有二阶导数且存在相等的最大值,f (a )=g (a ), f (b )=g (b ), 证明:存在(,)a b ξ∈,使得()().f g ξξ''''=【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令()()()F x f x g x =-,则问题转化为证明()0F ξ''=, 只需对()F x '用罗尔定理,关键是找到()F x '的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F (a )=F (b )=0, 若能再找一点(,)c a b ∈,使得()0F c =,则在区间[,],[,]a c c b 上两次利用罗尔定理有一阶导函数相等的两点,再对()F x '用罗尔定理即可。

三章微分中值定理与导数应用

三章微分中值定理与导数应用
(2) 构造辅助函数 F ( x) e x f ( x) ,则由题设可知 F ( x) 在[a,b] 上满足罗尔定理条件. 于是, (a, b) ,使得 F() f ( )e g() f ( )e g( ) 0 ,即 f () f ()g() 0 .
证毕.
例 8 设 f ( x) C[0,1] ,在(0,1)内可导,且
0 可知, f (b) 也不可能是 f ( x) 在[a, b] 上的最小值.
f ( x) 在[a, b] 上可导,所以连续,从而最小值存在. 记
(a, b) 为 f ( x) 在[a, b]上的一个最小值点, 必为(广义) 极小值点,从而为驻点.所以有 f ( ) 0 .
(2)令 F( x) f ( x) cx ,则 F( x) 在[a,b] 上存在,且由 c 介于 f (a) 与 f (b) 之间,有
F(a)F(b) [ f (a) c][ f (b) c] 0 ,
于是,由(1), (a, b) ,使得 F () 0 ,即得 f () c .
证毕.
例 11 设 f ( x) 、g( x) 二阶可导,且 g( x) 0 ,f (a) f (b) g(a) g(b) 0 .试证: (1) g( x) 0 , x (a, b) .
b

2
a
2
b
,
b

记 (a, b) 为1 、 2 中使 f (1 ) 、 f (2 ) 最大者,则有
4
f ( ) f ( )
f (b) f (a)
| f ( ) | ,
(b a)2
2
即得所要不等式.证毕.
例 7 设 f ( x)、g( x) C[a,b] ,在 (a, b) 内可导,且 f (a) f (b) 0 .试证:

高等数学 第3章 第一节 中值定理

高等数学 第3章 第一节 中值定理
6 6
(函数

6
,
y
5
6
ln sin x
是 y
是初等函数, 且当
x
6
ln sin x 定义域内的一部分;
,
5
6
时,cossixn
y'
sin x
x
0,
cot x.)
且ln s in
lnsin 5
ln 1 .
6
62
令 y' cos x cot x 0, sin x
得 x , 5 .
F(b) F(a)
( x) 满足罗尔定理的全部条件,且:
'(x) f '(x) f (b) f (a) F '(x)
F(b) F(a)
Y F , f Fb, f b
C•
•B
由罗尔定理,至少存在一点 ∈(a,b) ,
即:
使
f
'( )
'( ) 0,
f (b) f (a) F '( ) 0
即 1、 2、 3都是方程 f 'x 0 的根。 注意到 f ' x 0 为三次方程, 它最多有三个根。
我们已经找到它的三个实根
1、 2、 3 ,
所以这三个根就是方程
f 'x 0 的全部根。
14
例3 证明当x 0时, x ln1 x x
1 x
证 设f x ln1 x, 显然,函数 f x 在 0, x 上满足
f (b) f (a)
O a
bx
结论等价于: f f b f a
ba
或: f f b f a 0
ba
AB的方程为:

第三章 微分中值定理与导数的应用

第三章 微分中值定理与导数的应用

第3章 导数的应用学习了导数的概念后,本章将介绍微分学中值定理、利用导数求极限的方法 洛必达法则、利用导数研究函数的单调性、凹凸性等性质及函数的作图等方面的知识.3.1 中值定理目的要求:1. 理解罗尔定理的内容,会求定理中的;2. 理解拉格朗日中值定理的内容,会求定理中的,能利用其证明一些不等式;3. 了解柯西中值定理。

重点:柯西中值定理。

难点:中值定理的应用。

3.1.1 罗尔定理定理3.1 如果函数()y f x =满足:(1) 在闭区间[, ]a b 上连续; (2) 在开区间(, )a b 内可导; (3) ()()f a f b =.那么,在(, )a b 内至少存在一点ξ,使得()0f ξ'=.这就是罗尔(Rolle )定理.图3-1这个定理的几何解释如图3-1所示,如果连续曲线()y f x =在开区间(, )a b 内的每一点处都存在不垂直于x 轴的切线,并且两个端点A 、B 处的纵坐标相等,即连结两端点的直线AB 平行于x 轴,则在此曲线上至少存在一点( ())C f ξξ,,使得曲线()y f x =在点C 处的切线与x 轴平行.例1 验证函数234y x x =--在区间[1, 4]-上满足罗尔定理,并求出相应的ξ点.解 函数234y x x =--为初等函数,在闭区间[1, 4]-上连续,且导数'23y x =-在开区间(1, 4)-内存在,且(1)(4)0f f -==,所以函数234y x x =--在区间[1, 4]-上满足罗尔定理的三个条件.因此,在开区间(1, 4)-内一定存在ξ点,使得()0f ξ'=.事实上,令()230f x x '=-=,解得32x =,且3(1, 4)2∈-,即32ξ=,使得 (3())02f f ξ''==.3.1.2 拉格朗日中值定理定理3.2 如果函数()y f x =满足:(1) 在闭区间[, ]a b 上连续; (2) 在开区间(, )a b 内可导.那么,在(, )a b 内,至少存在一点ξ,使得()()()f b f a f b aξ-'=-. (3-1)也可以写成()()()()f b f a f b a ξ'-=-.这就是拉格朗日(Lagrange )中值定理.在此定理中,如果区间[, ]a b 的两个端点处的函数值相等,就变成了罗尔定理.也就是说,罗尔定理是拉格朗日定理的特殊情况. 拉格朗日定理的几何解释如图3-2所示,若()y f x =是闭区间[, ]a b 上的连续曲线弧段AB ,连接点(, ())A a f a 和点(, ())B b f b 的弦AB 的斜率为()()f b f a b a--,而弧段AB上某点(, ())C f ξξ的斜率为()f ξ'.定理3.2的结论表明:在曲线弧段AB 上至少存在一点( ())C f ξξ,,使得曲线在点C 处的切线与曲线的两个端点连线AB 平行.图3-2拉格朗日定理有两个推论:推论1 如果在区间(, )a b 内,函数()y f x =的导数()f x '恒等于零,那么在区间(, )a b 内,函数()y f x =是一个常数.证明 在区间(, )a b 内任取两点1212, ()x x x x <,在12[, ]x x 上,用拉格朗日中值定理,有2121()()()()f x f x f x x ξ'-=- 12()x x ξ<<.由于函数()y f x =的导数()f x '恒等于零,所以21()()f x f x =.这说明在区间(, )a b 内,函数()y f x =的在任何两点处的函数值都相等.故在区间(, )a b 内,函数()y f x =是一个常数.推论2 如果在区间(, )a b 内,()()f x g x ''≡,则在区间(, )a b 内,()f x 与()g x 只相差一个常数,即()()f x g x C =+ (C 为一常数).证 令()()()h x f x g x =-,则'()'()'()0h x f x g x =-=,由推论1知,()h x 为一常数,于是有()()f x g x C =+ (C 为常数).例2 对于函数()ln f x x =,在闭区间[1, e]上验证拉格朗日定理的正确性. 解 对于函数()ln f x x =在闭区间上[1, e]连续,在区间(1, e)内可导,又1(1)ln10, (e)ln e 1, ()f f f x x'=====,由拉格朗日中值定理,存在(1, e)ξ∈,使得ln e ln11e 1ξ-=-,从而解得1(1, )e e ξ=-∈.例3 若0a b <<,证明ln b a b b ab a a--<<. 证 设()ln , [, ]f x x x a b =∈.因为()ln f x x =在区间[, ]a b 上连续,在(, )a b 内可导,所以满足拉格朗日中值定理的条件,于是()()()()f b f a f b a ξ'-=-,而1()ln , ()ln , ()f a a f b b f x x'===, 代入上式为1ln ln ln() ()b b a b a a b a ξξ-==-<<. 又因为111b aξ<<, 所以ln b a b b ab a a--<<. *3.1.3 柯西中值定理定理3.3 设函数()f x 与函数()g x 满足:(1) 在闭区间[, ]a b 上连续;(2) 在开区间(,)a b 内可导; (3) 在区间(, )a b 内()0g x '≠. 那么,在(, )a b 内,至少存在一点ξ,使得()()()()()()f b f a fg b g a g ξξ'-='-. (3-2)这就是柯西(Cauchy )中值定理.在此定理中,若()g x x =,则其就变成了拉格朗日定理,说明拉格朗日定理是柯西定理的特殊情况.课堂练习:1.验证函数sin y x =在区间3, 44ππ⎡⎤⎢⎥⎣⎦上满足罗尔定理,并求出ξ值. 2.验证函数lnsin y x =在区间5, 66ππ⎡⎤⎢⎥⎣⎦上满足罗尔定理,并求出ξ值. 3.验证函数arctan y x =在区间[]0, 1上满足拉格朗日定理,并求出ξ值.3.2 洛必达法则学时:2学时 目的要求:1. 理解并掌握洛必达法则;2. 能够用洛必达法则求00或∞∞型极限。

高中物理课件-第三章-微分中值定理、导数的应用

高中物理课件-第三章-微分中值定理、导数的应用

lim x3 1 . x x 1
一、 0 0 型不定式 定理:设函数 f (x) 与 F (x) 满足:
0
(1)在点 a 的某去心邻域U (a) 内可导且 F(x) 0;
(2)
lim
xa
f
(x)
0,
lim
x a
F ( x)
0;
f (x)
(3)
lim
xa
F
(
x)
存在(或
).

lim
xa
f F
(x) (x)
提示: f (2) f (1) f (0) f (1) 0, 且 f (x) 在三个区间 [2,1], [1,0] 和[0,1] 上都满足 Rolle 定理的条件.
在 (2,1), (1,0), (0,1) 内分别至少存在一点1, 2, 3 使 f (1) 0, f (2) 0, f (3 ) 0 .即 f (x) 0 至少有三个实根.
F( )
f
( ) 2
f
( )
由 F ( ) 0 得 f ( ) f ( ).
【例】设 f (x) 在[a,b]上连续,在(a, b) 内可导且 f (a) f (b) 0,
证明:在(a,b) 内至少存在一点 使 f ( ) f ( ). 提示:令 F(x) ex f (x) ,可验证 F (x) 在[a,b] 上满足 Rolle
g(x) 0, f (a) f (b) g(a) g(b) 0.
证明:(1)在(a,b)内 g(x) 0;
(2)在(a,b)内至少存在一点, 使得
f ( ) g( )
f ( ) . g( )
提示:(1)假设c (a,b) 使 g(c) 0, 则由 Rolle 定理,

高数上册第3章微分中值定理与导数的应用

高数上册第3章微分中值定理与导数的应用

f ( x) 在以 x0 , x1 为端点的区间满足罗尔定理条件 , 在 x0 , x1 之间
至少存在一点
假设另有

矛盾, 故假设不真!
二、拉格朗日中值定理
满足: (1) 在区间 [ a , b ] 上连续
y
y f ( x)
b x (2) 在区间 ( a , b ) 内可导 f (b) f (a ) . 至少存在一点 使 f ( ) ba f (b) f (a ) 0 证: 问题转化为证 f ( )
1 sec 2 x 1 1 tan 2 x lim lim 2 x0 1 cos x 2 x 0 1 cos x
1 x2 lim 2 2 x 0 x 2
0 型 0
1.
二、 型未定式 定理 2. (洛必达法则)
(2) 存在 0,使得x U ( x0 , ) 时,f ( x), g ( x)可导,

f ( x) (3) lim A (或为∞) x x0 g ( x )
f ( x) f ( x) lim lim . x x0 g ( x ) x x0 g ( x )
例4. 求 解: 原式 lim
1 x n 1
x
nx
1 0 lim n x n x
则 ( x) 在[a, b] 上连续, 在 (a, b)内可导, 且 f (b) g (a) f (a) g (b) (a) (b) g (b) g (a)
由罗尔定理知, 至少存在一点
使

f (b) f (a) f ( ) . g (b) g (a) g ( )
ba 显然 , 在[a, b] 上连续, 在(a, b)内可导, 且 (a) b f (a) a f (b) (b) , 由罗尔定理知至少存在一点 ba 思路: 利用逆向思维找出一个满足罗尔定理条件的函数 即定理结论成立 . 证毕

高等数学 微分中值定理与导数的应用

高等数学 微分中值定理与导数的应用
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
f (b) f (a) f ( )
ba
y 几何解释:
在曲线弧 AB 上至少有
一点 C ,在该点处的切
A
C
y f (x)
有一点(a b),使等式
f (a) F (a)
f (b) F (b)
f F
' () 成立. ' ()
Cauchy定理又称为广义微分中值定理
结构图
特例
推广
Rolle定理
Lagrange定理
Cauchy定理
拉格朗日中值定理又称微分中值定理.
第二节 洛必达法则
一、0 型及 型未定式解法: 洛必达法则 0
且除去两个端点外处 o a 处有不垂直于横轴的
1
2 b x
切线,在曲线弧AB上至少有一点C ,在该点处的
切线是水平的.
注① Rolle定理有三个条件:闭区间连续;开区间可导
区间端点处的函数值相等; 这三个条件只是充分条件,而非必要条件
如:y=x2在[-1,2]上满足(1),(2),不满足(3) 却在(-1,2)内有一点 x=0 使
第三章 微分中值定理与导数的应用
§3. 1 微分中值定理
一、罗尔(Rolle)定理
定理(Rolle) 若函数f ( x ) 满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)在区间端点处的函数值相等f(a)=f(b)
则在(a,b)内至少存在一点 , (a,b)使得函数 f ( x)在该点的导数为零,即 f ( ) 0

第三章 微分中值定理与导数的应用

第三章	微分中值定理与导数的应用

第三章 微分中值定理与导数的应用§1 微 分 中 值 定 理一、 罗尔定理1. 费马定理:设f (x )在U (x 0)内有定义,且在x 0处可导,若∀x 0∈U (x 0),有f (x )≤f (x 0)[或f (x )≥f (x 0)], 则 f ′(x 0)=0.证明:不妨设x ∈U (x 0)时,有f (x )≤f (x 0).则对x 0+∆x ∈U (x 0),有f (x 0+∆x )≤f (x 0)即 当∆x >0时,xx f x x f ∆-∆+)()(00≤0; 当∆x <0时,xx f x x f ∆-∆+)()(00≥0;从而:f ′(x 0)= f ′+(x 0)=+→∆0limx xx f x x f ∆-∆+)()(00≤0;f ′(x 0)= f ′-(x 0)=+-→∆0limx xx f x x f ∆-∆+)()(00≥0;于是 f ′(x 0)= 0定义:称满足f ′(x )=0的点为驻点(或稳定点,或临界点). 2. 罗尔定理:如果函数y =f (x )满足:1) f (x )∈C [a ,b ] 2) f (x )∈D(a ,b ) 3) f (a )=f (b )那么在(a ,b )内至少存在一点ξ (a <ξ<b ),使得: f ′(ξ)=0.证明:因为f (x )∈C [a ,b ],所以f (x )在[a ,b ]内存在最大值M 和最小值m . 以下分两种情形讨论: 1) M =m .此时f (x )在[a ,b ]上必然取得相同的值f (x )=M .此时有f ′(x )=0,即 对∀ξ∈(a ,b ),有f ′(ξ)=0. 2) M >m .由于f (a )=f (b ),所以M 和m 中至少有一个不等于f (x )在[a ,b ]上的函数值.不妨设:M ≠f (a ).则在(a ,b )内必有ξ使得f (ξ)=M . 即∀x ∈[a ,b],有f (x )≤f (ξ). 有费马定理得: f ′(ξ)=0.例1. 验证罗尔定理对函数y =lnsin x 在区间[π/6,5π/6]上的正确性.证明:显然函数在区间[π/6,5π/6]上连续,在(π/6,5π/6)上可导,且有:y (π/6)=y (5π/6)=ln1/2.令y ′=cot x =0,则有:x =π/2,因此存在ξ=π/2∈(π/6,5π/6),使得y ′(ξ)=0.例2. 不求函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f ′(x )=0的根的个数,并指出根所在的区间.解:由于f (1)=f (2)=0,且f (x )在[1,2]上连续,可导,且当x ∈(1,2)时f (x )≠0从而存在点ξ1∈[1,2]使得f ′(ξ1)=0;同理存在ξ2∈[2,3],ξ3∈[3,4]使得f ′(ξ2)= f ′(ξ3)=0.例3. 证明无论C 为何实数值,方程x 3-3x +C =0在[0,1]上至多有一个实数根.证明:(反证法)假设方程x 3-3x +C =0在[0,1]上有两个实数根ξ1,ξ2,且ξ1<ξ2.则f (x )= x 3-3x +C 在[0,1]上连续,可导且f (ξ1)=f (ξ2)=0,于是 f (x )在[ξ1,ξ2]上满足罗尔定理的条件, 从而存在ξ∈(ξ1,ξ2)⊂(0,1)使得f ′(ξ)=0.但f ′(x )=3(x -1)(x +1)=0只有两个根-1和1,且此两个根显然不在(ξ1,ξ2)⊂(0,1)内,矛盾.所以原命题正确. 二、 拉格朗日中值定理 拉格朗日定理: 如果函数y =f (x )1) f (x )∈C [a ,b ] 2) f (x )∈D(a ,b )那么在(a ,b )内至少存在一点ξ (a <ξ<b ),成立等式:f (b )-f (a )=f ′(ξ)(b -a )此公式称为拉格朗日中值公式.此公式称为拉格朗日中值公式. 定理的几何解释:ab a f b f --)()(为弦AB 的斜率.f ′(ξ)为曲线点C 处的斜率.几何意义:如果曲线y =f (x )在弧AB 上除端点外处处具有不垂直于x 轴的切线,那么在这弧上至少存在一点C ,使曲线在C 点处的切线平行于弦AB . 辅助函数的建立:有向线段NM 的值是x 的函数,记为φ(x ),则显然有φ(a )=φ(b )=0. 由于直线AB 的方程为:L (x )=f (a )+ab a f b f --)()((x -a )又点N 、M 的纵坐标分别为L (x )、f (x ),因此有向线段NM 的值的函数为:φ(x )=f (x )-L (x )=f (x )-f (a )-ab a f b f --)()((x -a )此函数满足罗尔定理的全部条件.证明:作辅助函数: φ(x )=f (x )-L (x )=f (x )-f (a )-ab a f b f --)()((x -a )则该函数在[a ,b ]内满足罗尔定理的条件,从而在(a ,b )内存在一点ξ,使得φ′(ξ)=0. 又φ′(x )=f ′(x ) -ab a f b f --)()(所以:f ′(ξ)=ab a f b f --)()(.注:拉格朗日公式对a >b 也成立. 拉格朗日公式的其它形式:当x ,x +Δx ∈[a ,b ]时,则在区间[x ,x +Δx ](x >0)或区间[x +Δx ,x ](Δx <0)上有:f (x +Δx )-f (x )=f ′(x +θΔx )·Δx (0<θ<1).或 Δy = f ′(x +θΔx )·Δx (0<θ<1).此公式表明当Δx 有限时,Δy 有精确值,定理也称为有限增量定理.定理: 如果函数f (x )在区间I 上的导数恒为零,那么f (x )在区间I 上时一个常数.证明:在区间I 上任取x 1,x 2 (x 1<x 2),则有:f (x 2)-f (x 1)=f ′(ξ)( x 2-x 1) (x 1<ξ<x 2)由假定:f ′(ξ)=0,所以: f (x 2)-f (x 1)=0.即: f (x 2)=f (x 1).例4. 证明等式:arcsin x +arccos x =π/2.证明:设f (x )= arcsin x +arccos x ,则f ′(x )=0,从而f (x )=C =f (0)=π/2.例5. 验证拉格朗日定理对函数y =4x 3-5x 2+x -2在区间[0,1]上的正确性.证明:函数在[0,1]上显然连续可导.令y ′=12x 2-10x +1=0,得:x =12135-∈(0,1).例6. 证明:当x >0时,xx +1<ln(1+x )<x .证明:设f (x )=ln(1+x ),则f (x )在[0,x ]上满足拉格朗日中值定理的条件,于是有: f (x )-f (0)=f ′(ξ)(x -0), (0<ξ<x ). 由于f (0)=0,f ′(x )=x+11, 所以上式为:ln(1+x )=ξ+1x又 0<ξ<x ,所以: xx +1<ξ+1x<x .即:xx +1<ln(1+x )<x .例7.设a >b >0,证明:ab a -< ba ln <bb a -.证明:设f (x )=ln x ,则f (x )在[b ,a ]上满足拉格朗日定理的条件,从而 ∃ξ∈(b ,a ) 使得:ba b a --ln ln =ξ1,由于a1<ξ1<b1,所以结论成立.三、 柯西中值定理:柯西中值定理:如果函数f (x )和F (x )满足 1) f (x ),F (x )∈[a ,b ]2) f (x ),F (x )∈(a ,b ),且F ′(x )≠0,∀x ∈(a ,b )则在(a ,b )内至少存在一点ξ,成立等式:)()()()(a F b F a f b f --=)()(ξξF f ''.分析:在参数方程:⎩⎨⎧==)()(x f Y x F X (a ≤x ≤b )表示的曲线上,弦AB 的斜率为:)()()()(a F b F a f b f --.曲线上点(X ,Y )处的切线的斜率为: dXdY =)()(x F x f ''.当x =ξ时,则点C 处的切线平行于弦AB . 证明:因为F (b )-F (a )=F ′(η)(b -a ) (a <η<b ), 由假设:F ′(η)≠0,所以F (b )-F (a )≠0. 所以AB 的方程为:Y -f (a )=)()()()(a F b F a f b f --[F (x )-F (a )].于是:N 点的纵坐标为:Y =f (a )+)()()()(a F b F a f b f --[F (x )-F (a )],M 的纵坐标为f (x ).于是:NM 的方程为:φ(x )=f (x )-f (a )-)()()()(a F b F a f b f --[F (x )-F (a )]此函数满足罗尔定理的条件,即:存在ξ∈(a ,b ),使得:f ′(ξ)-)()()()(a F b F a f b f --F ′(ξ)=0.即:)()()()(a F b F a f b f --=)()(ξξF f ''.当F (x )=x 时,即为拉格朗日中值定理.例8. 设函数y =f (x )在x =0的某邻域内具有n 阶导数,且f (0)=f ′(0)=…=f(n -1)(0)=0.证明:nxx f )(=!)()(n x fn θ(0<θ<1)证明:设F (x )=x n ,则f (x )和F (x )在[0,x ](或[x ,0])上满足柯西中值定理.即: ∃θ1∈(0,x ),使得nxx f )(=)0()(--nx f x f =111)(-'n n f θθ.在[0,θ1]上,函数f ′(θ1)和n θ1n -1满足柯西中值定理,即:∃θ2∈(0,θ1)使得111)(-'n n f θθ=)0()(111-'-'-n n f f θθ=212)1()(--''n n n f θθ同理:nxx f )(=nn n n fθθ!)()(.由于θn =θx ,(0<θ<1)所以:nxx f )(=!)()(n x fn θ(0<θ<1)§2 洛必达法则当x →a (或x →∞)时,f (x ),F (x )→0(或f (x ),F (x )→∞), 称极限)()(lim )(x F x f x ax ∞→→为未定式.记为:00或∞∞.一、未定式00或∞∞的求法.定理:设1) x →a 时,f (x )和F (x )→0;2) 在点a 的某个去心邻域内,f ′(x )和F ′(x )存在,且F ′(x )≠0;3) ax →lim)()(x F x f ''存在(或为∞).那么ax →lim)()(x F x f =ax →lim)()(x F x f ''.证明:定义f (a )=F (a )=0.则f (x )和F (x )在[x ,a ]或[a ,x ]上满足柯西中值定理的条件,于是)()(x F x f =)()()()(a F x F a f x f --=)()(ξξF f '' (ξ在a 与x 之间).令x →a ,则有ξ→a ,于是: ax →lim)()(x F x f =ax →lim)()(x F x f ''.当f ′(x )和F ′(x )满足定理的条件时,可以继续使用.即:ax →lim)()(x F x f =ax →lim)()(x F x f ''=ax →lim)()(x F x f ''''.对x →∞时的未定式00及x →a 或x →∞时的未定式∞∞,有相应的结论.例1. 求下列极限:1)lim→x bxax sin sin (b ≠0)解:原式=0lim →x bxb ax a cos cos =ba 2)1lim→x123233+--+-x x x x x解:原式=1lim→x 1233322---x x x =1lim→x 266-x x =233)lim→x 3sin xx x - 解:原式=0lim →x 23cos 1xx -=0lim→x xx 6sin =0lim→x 6cos x =614)+∞→x limx (xarctan 2-π)解:原式=+∞→x limxx 1arctan 2-π=+∞→x lim22111xx -+-=+∞→x lim221xx+=1.5)+∞→x limnxx ln (n >0)解:原式=+∞→x lim 11-n nxx =+∞→x limnnx1=0.6)+∞→x limxnex λ(n 为正整数,λ>0)解:原式=+∞→x limxn enxλλ1-=…=+∞→x limxn en λλ!=0.7)2limπ→x2)2(sin ln x x -π解: 原式=2lim π→x )2(4cot x x --π=2lim π→x 8csc 2x-=-818)lim→x xx x cos sec )1ln(2-+解:原式=0lim→x x x x x xsin tan sec 122++=0lim→x )1)(1(secsin 222x x x x++=19)1lim→x 13)1()1()1)(1(-----n nx x x x解:原式=1lim→x xx--11•1lim→x x x--113•…•1lim→x x xn--11=1lim→x 121--x•1lim→x 13132---x •…•1lim→x 111----nn xn=!1n二、 未定式0·∞;∞- ∞; 00; 1∞; ∞0的求法. 例2. 求下列极限: 1)lim+→x x n ln x (n >0)解:原式=0lim +→x nxx 1ln =0lim+→x 111+-n xnx =0lim +→x -nxn=02)2limπ→x (sec x -t a n x );解: 原式=2lim π→x xx cos sin 1-=2lim π→x xx sin cos --=03)lim+→x x x ;解:原式=0lim +→x xx eln =xx x e1ln lim+→=211limxx x e-+→=14)lim→x x x x x sin tan 2-解:原式=0lim→x 3tan xxx -=0lim→x 2231secxx -=0lim→x xx x 222cos 3cos 1-=315)0lim →x 21arctan xx x ⎪⎭⎫ ⎝⎛ 解:设y =21arctan xx x ⎪⎭⎫ ⎝⎛则ln y =xxxarctan ln12=2ln arctan ln xxx -由于0lim →x 2ln arctan ln x x x -=0lim →x xx x x 21arctan 112-+=0lim→x xxxx 21arctan )1(12-+=0lim→x xx x x x x arctan )1(2arctan )1(222++-=0lim→x 211x+•0lim→x 322arctan )1(xxx x +-=0lim→x 222611)1(arctan 21xxx x x ++--=0lim→x 2262xx -=-31所以,原式=31-e .6)lim +→x )1(-xx x解:设y =)1(-xx x⇒ln y =(x x -1)ln x由于0lim +→x x ln x =0lim +→x xx 1ln =0lim+→x 2/1/1xx -=0所以当x →0时,e x ln x -1~x ln x ,从而lim+→x (x x -1)ln x =0lim +→x x ln x •ln x ==0lim+→x xx1ln2=0lim+→x 2/11ln 2xx x -∙=0lim +→x -2xx 1ln =0. 即: 0lim +→x )1(-xxx =1例3. 求常数a 和n ,使当x →0时,ax n 与ln(1-x 3)+x 3为等价无穷小.解:0lim→x naxx x )1ln(33-+=0lim→x 1322133---+n naxxx x =0lim →x -)1(136x naxn --6=n当n =6时, 0lim→x naxx x )1ln(33-+=-a61例4. 求下列极限:1) ∞→n lim nn解:xx=xxe ln 1 由于 +∞→x limxx ln =+∞→x limx1=0; 所以+∞→x limxx=+∞→x lim xxe ln 1=1从而 ∞→n limnn=11)∞→n lim nnnnc b a ⎪⎪⎭⎫⎝⎛++3(a ,b ,c 均为正数)解:n nnnc b a ⎪⎪⎭⎫ ⎝⎛++3=)3ln(111nn n c b a n e++因为:+∞→x lim )3ln(111xx xc b ax ++t x=1+→0lim t tc b a tt t 3ln )ln(-++=+→0limt tt t tttcb a cc b b a a ++++ln ln ln =3)ln(abc所以∞→n lim )3ln(111nnncban ++=3)ln(abc即:∞→n lim nnnnc b a ⎪⎪⎭⎫⎝⎛++3=3)ln(abc e =3abc例5. 求下列极限:1) 0lim→x xx x sin 1sin2解:此题不能用洛必塔法则,因为0lim→x xx x x cos 1cos1sin2-不存在原式=0lim →x )1sin (sin x x x x ∙=0lim→x x xsin •0lim →x x x 1sin =0 2) +∞→x lim xxx cos -解:此题也不能用洛必塔法则,因为:+∞→x lim 1sin 1x-不存在原式=+∞→x lim (1-xxcos )=1例6. 讨论函数f (x )=⎪⎪⎩⎪⎪⎨⎧≤>+-0,0,])1([2111x e x ex x x 在x =0处的连续性. 解:当x >0时,ln f (x )=ln x xex 11])1([+=x1·[x1ln(1+x )-ln e ]=2)1ln(xxx -+所以0lim +→x ln f (x )=0lim+→x 2)1ln(xxx -+=0lim +→x xx2111-+=0lim+→x )1(21x +-=-1/2.从而: 0lim +→x f (x )=e -1/2.由0lim -→x f (x )=f (0)=e -1/2=0lim +→x f (x ),所以函数在x =0处连续.例7. 设f ′′(x 0)存在,证明20000)(2)()(limhx f h x f h x f h --++→=f ′′(x 0).解: 0lim→h 2000)(2)()(h x f h x f h x f --++=0lim→h hh x f h x f 2)()(00-'-+'= f ′′(x 0).§3 泰 勒 公 式一、 泰勒公式设函数f (x )在x 0处可导,则由微分公式有:f (x )=f (x 0)+f ′(x 0)(x -x 0)+o (x -x 0)这表明在x 0处f (x )可以用一个一次多项式来近似表示.但这种表示存在缺陷:函数的表示不够精确,且误差不易估计.为了解决此问题,用一个高次多项式来近似表示函数,且使其误差容易估计,这就是泰勒公式.设函数f (x )在含有x 0的开区间内具有直到(n +1)阶导数, 下面找出(x -x 0)的n 次多项式:p n (x )=a 0+a 1(x -x 0)+ a 2(x -x 0)2+...+ a n (x -x 0)n (1)使其近似表示f (x ),要求1) p n (x )与f (x )之差是比(x -x 0)n 高阶的无穷小; 2) 给出误差|f (x )-p n (x )|的具体表达式.假设p n (x )在x 0处的函数值及n 阶导数在x 0处的值满足:p n (x 0)=f (x 0), p ′n (x 0)= f ′(x 0), p n ′′(x 0)=f ′′(x 0),… ,p n (n )(x 0)=f (n )(x 0). 下面确定多项式的系数a 0,a 1,a 2 …,a n 为此, 对(1)式求各阶导数,然后分别代入以上等式,得:a 0=f (x 0),a 1=f ′(x 0), 2!a 2=f ′′(x 0),…, n ! a n =f (n )(x 0),即得:a 0=f (x 0), a 1=f ′(x 0), a 2=!21f ′′(x 0),… a n =!n 1f (n )(x 0).从而p n (x )= f (x 0)+f ′(x 0)(x -x 0)+!2)(0x f '' (x -x 0)2+…+!)(0)(n x fn (x -x 0)n .泰勒中值定理:如果函数f (x )在含有x 0的某个开区间(a ,b )内具有直到(n +1)阶的导数,则∀x ∈(a ,b ),f (x )可以表示为关于(x -x 0)的一个n 次多项式与p n (x )一个余项R n (x )之和:f (x )=f (x 0)+f ′(x 0)(x -x 0)+!2)(0x f '' (x -x 0)2+…!)(0)(n x fn (x -x 0)n +R n (x ). (2)其中R n (x )=)!1()()1(++n fn ξ (x -x 0)n +1, (3)这里ξ是x 0与x 之间的某个值.证:记 R n (x )=f (x )-p n (x ).只需证明R n (x )=)!1()()1(++n fn ξ(x -x 0)n +1,(ξ在x 0与x 之间).由假设可知,R n (x )在(a ,b )内具有直到(n +1)阶导数,且R n (x 0)=R n ′(x 0)=R n ′′(x 0)=…=R n (n )(x 0)=0.则R n (x )和(x -x 0)n +1在[x 0,x ]或[x ,x 0]满足柯西中值定理,即有:10)()(+-n n x x x R =0)()()(100---+n n n x x x R x R =nnx n R ))(1()(011-+'ξξ (ξ1在x 0与x 之间),同样函数R n ′(x )与(n +1)(x -x 0)n 在[x 0,x ]或[x ,x 0]满足柯西中值定理,即:nnx n R ))(1()(011-+'ξξ=))(1()()(0101--+'-'x n x R R n nξξ=1022))(1()(--+''n nx n n R ξξ(ξ2在x 0与ξ1之间).余此经过n +1次后,得:10)()(+-n n x x x R =)!1()()1(++n R n nξ,(ξ在x 0与ξn 之间,从而在x 0与ξ之间) 由于R n (n +1)(x )=f (n +1)(x ) ;[因为p n (n +1)(x )=0]所以R n (x )=)!1()()1(++n fn ξ (x -x 0)n +1, 这里ξ是x 0与x 之间的某个值.(2)称为泰勒公式,余项(3)称为拉格朗日余项.对某个固定的n 值,如果∃M >0,使得|f (n +1)(x )|≤M ,则有余项估计式:|R n (x )|=|)!1()()1(++n fn ξ (x -x 0)n +1|≤)!1(+n M |x -x 0|n +1.且limx x →10)()(+-n n x x x R =0, 因此R n (x )=o [(x -x 0)(n )].特别当n =0时,有:f (x )=f (x 0)+f ′(ξ)(x -x 0) (ξ在x 与x 0之间)此为拉格朗日中值定理.当不需要余项的精确表达式时,则n 阶泰勒公式为:f (x )=f (x 0)+f ′(x 0)(x -x 0)+!2)(0x f '' (x -x 0)2+…!)(0)(n x fn (x -x 0)n +o [(x -x 0)(n )].此式称为Peano 公式R n (x )= o [(x -x 0)(n )] 称为Peano 余项公式 特别当x 0=0时,即为麦克劳林公式:f (x )=f (0)+f ′(0)x +!2)0(f '' x 2+…+!)0()(n fn x n+)!1()()1(++n x fn θx n +1. (0<θ<1).或 f (x )=f (0)+f ′(0)x +!2)0(f '' x 2+…+!)0()(n fn x n+o (x n ). 于是 f (x )≈f (0)+f ′(0)x +!2)0(f '' x 2+…+!)0()(n fn x n.且|R n (x )|≤)!1(+n M|x |n +1.二、 求函数的泰勒公式: 例1. 求函数f (x )=e x 的n 阶麦克劳林公式.解: 由于 f ′(x )=f ′′(x )=…=f (n )(x )=e x . 所以f (0)=f ′(0)=f ′′(0)=…=f (n )(0)=1.|R n (x )|=|)!1(+n exθxn +1|<|)!1(||+n ex |x |n +1.当x =1时,则有: e =1+1+!21+…+!n 1其中|R n (1)|=|)!1(+n eθ|<|)!1(3+n .例2. 求函数f (x )=sin x 的n 阶麦克劳林公式.解: 由于 f (n )(x )=sin(x +n π/2). 所以 f (0)=0, f ′(0)=1, f ′′(0)=0, f ′′′(0)=-1, f (4)(0)=0, 即有: f (2m )(0)=0, f (2m -1)(0)=(-1)m -1. m =0,1,2,…. 因此:其中R 2m (x )=)!12(]2)12(sin[+++m m x πθx 2m +1.(0<θ<1).当m =1时, sin x ≈y =x , |R 2|=|!3)23sin(πθ+x x 3|≤|x |3/6.当m =2时,sin x ≈y =x -!33x,|R 4|≤|x |5/5!.当m =2时, sin x ≈y =x -!33x +!55x|R 6|≤|x |7/7!例3.求函数f (x )=cos x 的麦克劳林公式.π解:其中R 2n +1(x )=)!22(])1(cos[+++n n x πθx 2n +2.例4.其中: R n (x )=11)1)(1()1(++++-n n nxx n θ (0<θ<1)其中: R n (x )=)!1())(1()1(+-+--n n n αααα (1+θx )α-n -1x n +1 (0<θ<1)例5.求函数f (x )=t a n x 的二阶麦克劳林公式. 解:f (0)=0,f ′(0)=sec 2x |x =0=1;f ′′(0)=2sec 2x tan x |x =0=0. f ′′′(x )=4sec 2x tan 2x +2sec 4x =2·xx42cos sin21+所以 tan x =x +!32)(cos )(sin 2142x x θθ+x 3=x +)(cos 3)(sin 2142x x θθ+x 3 (0<θ<1).例6. 用Talor 公式求极限1)+∞→x lim(3233x x +-4342x x -)解:3233xx +=331x x +=x [1+x 331∙+2)3(!2)131(31x-∙+2)3(x o ]=x +1-x 1+)1(x o 4342x x -=421x x -=x [1-x 241∙+2)2(!2)141(41x--∙+2)2(x o ]=x -21-x 83+)1(x o3233x x +-4342x x -= x +1-x1+)1(xo -[ x -21-x 83+)1(xo ]=23-x85+)1(xo+∞→x lim(3233x x +-4342x x -)=+∞→x lim [23-x85+)1(xo ]=232)lim→x xe x xx xsin )(cos 1211222-+-+解:21x +=1+221x +4!2)121(21x -+o (x 4);221211xx +-+=481x +o (x 4);cos x =1-!21x 2+!41x 4+o (x 4);2xe=1+x 2+4!21x+ o (x 4);cos x -2xe =-23x 2-42411x + o (x 4); 0lim→x xe x xx xsin )(cos 1211222-+-+=0lim→x )](241123[)(81442244x o x x x x o x +--+=0lim→x )](23)(814444x o x x o x +-+=-121§4 函数的单调性与曲线的凹凸性一、 函数单调性的判定法定理:(函数单调性的判定法) 设函数y =f (x )∈C [a ,b ], f (x )∈D (a ,b ).1) 如果:∀x ∈(a ,b ),f ′(x )>0, 则y =f (x )在[a ,b ]上单调增加; 2) 如果:∀x ∈(a ,b ),f ′(x )<0, 则y =f (x )在[a ,b ]上单调减少.yf ′(x )>0,图形上升图 f ′(x )<0图形下降证明1)由于f (x )∈C [a ,b ],f (x )∈D (a ,b ),在(a ,b )内任取两点x 1、x 2(x 1<x 2),由拉格朗日中值定理,得f (x 2)-f (x 1)=f ′(ξ)(x 2-x 1) (x 1<ξ<x 2)由于x 2-x 1>0,且f ′(x )>0,从而有f ′(ξ)>0,于是f (x 2)-f (x 1)=f ′(ξ)(x 2-x 1)>0, 即 f (x 2)>f (x 1).例1. 判定函数y =x -sin x 在[0,2π]上的单调性. 解: 因为在(0,2π)内y ′=1-cos x >0,所以函数y =sin x 在[0.2π]上单调增加. 例2. 讨论函数y =e x -x -1的单调性. 解: y ′=e x -1.y =e x -x -1的定义域为(-∞,+∞),因为在(-∞,0)内y ′<0,所以函数y =e x -x -1在(-∞,0)上单调减少; 因为在(0,+∞)内y ′>0,所以函数y =e x -x -1在[0,+∞]上单调增加.例3. 讨论函数y =32x 的单调性.解 这函数的定义域为(-∞,+∞).当x ≠0时,这函数的导数为y ′=332x,当x =0时,函数的导数不存在,∀x ∈(-∞,0), y ′<0, 函数y =32x 在(-∞,0)上单调减少,∀x ∈(0,+∞), y ′>0,函数y =32x 在[0,+∞]上单调增加.例4. 确定函数f (x )=2x 3-9x 2+12x -3的单调区间.解:函数的定义域为(-∞,+∞), 函数的导数为:f ′(x )=6x 2-18x +12=6(x -1)(x -2).令f ′(x )=0,即解6(x -1)(x -2)=0.得x 1=1、x 2=2,这两个根把(-∞,+∞)分成三个部分区间(-∞,1)、[1,2]及(2,+∞).∀x ∈(-∞,1)U (2,+∞), f ′(x )>0, 函数单调上升; ∀x ∈(1,2), f ′(x )<0, 函数单调下降.例5. 讨论函数y =x 3的单调性.解: 函数定义域为(-∞,+∞).且y ′=3x 2≥0,函数单调上升. 例6. 证明:当x >1时,2x >3-x1证: 令f (x )=2x -(3-x 1),则 f ′(x )=-x 121x=21x(x x -1).f (x )∈C [1,+∞],∀x ∈(1,+∞),f ′(x )>0, f (x )在 [1,+∞]上单调增加,从而 当x >1时, f (x )>f (1)=0. 即: 2x -(3-x1)>0,亦即2x >3-x 1(x >1).例7. 证明当0<x <π/2时,t a n x >x +x 3/3. 证: 设f (x )=x +x 3/3-t a n x .则f ′(x )=1+x 2-sec 2x =x 2-t a n 2x =(x -t a n x )(x +t a n x )<0. 所以 f (x )<f (0)=0. 即: t a n x >x +x 3/3. [这里用了:x <t a n x ].例8. 讨论方程ln x =ax (其中a >0)有几个实根? 解:设f (x )=ln x -ax ,则令f ′(x )=x 1-a =0得: x =1/a .当0<x <a 时, f ′(x )>0, 函数单调上升, 当a <x <+∞时, f ′(x )<0, 函数单调下降. 又+→0lim x f (x )=-∞, +∞→x lim f (x )=+∞→x lim x [xx ln -a ]=-∞.因此f (1/a )=-ln a -1为函数的最大值. 当 f (1/a )=-ln a -1>0,即0<a <1/e 时, 在(-∞,1/a )内存在唯一点ξ1,使f (ξ1)=0. 在(1/a ,+∞)内,存在唯一点ξ2,使f (ξ2)=0,此时函数f (x )有两个零点,从而方程有两个根. 当f (1/a )=-ln a -1=0,即a =1/e 时,此时x =1/a 为函数的唯一零点,从而方程只有唯一根. 当f (1/a )=-ln a -1<0时,即:1/e <a <+∞时 函数无零点,从而方程没有根.y=lnx-ax (a=1/e) y=lnx-ax(0<a<1/e)y=lnx-ax(a>1/e)例9. 设α>β>e ,证明αβ<βα. 证明:设f (x )=xx ln ,(x ≥e )则f ′(x )=2ln 1xx -<0.因此函数在(e ,+∞)上单调下降.从而当α>β时,f (α)<f (β),即:ααln <ββln ,于是βln α<αln β,从而有: αβ<βα.例10.比较e π和πe 的大小.解: 由于πe =e e ln π.于是只要比较e π和e e ln π的大小.从而只要比较π和e ln π的大小. 设 f (x )=x -e ln x (x >1)令f ′(x )=1-e x 1=0得:x =e .当1<x <e 时,f ′(x )<0,函数单调下降, 当e <x <+∞时,f ′(x )>0,函数单调上升.所以f (e )=0为函数的最小值.从而f (π)>f (e )=0.即:π-e ln π>0. 从而: e π>πe .二、 曲线的凹凸性与拐点定义:设f (x )在区间I 上连续,如果对I 上的任意两点x 1和x 2有:)2(21x x f +<2)()(21x f x f +称f (x )在I 上的图形是向上凹的(或凹弧); )2(21x x f +>2)()(21x f x f +称f (x )在I 上的图形是向上凸的(或凸弧);另一定义为:定义:设f (x )在区间I 上连续,如果对∀x 1,x 2∈I 及实数t (0<t <1)有:f [tx 1+(1-t )x 2]<tf (x 1)+(1-t )f (x 2),称f (x )在I 上的图形是向上凹的(或凹弧); f [tx 1+(1-t )x 2]>tf (x 1)+(1-t )f (x 2),称f (x )在I 上的图形是向上凸的(或凸弧); 凹凸性的判断定理:定理:设f (x )∈C [a ,b ],在(a ,b )内具有连续的一阶和二阶导数,则: 1) 若在(a ,b )内有f ′′(x )>0,则f (x )在[a ,b ]上的图形是向上凹的; 2) 若在(a ,b )内有f ′′(x )<0,则f (x )在[a ,b ]上的图形是向上凸的; 证明:1)∀x 1,x 2∈[a ,b ],记x 0=(x 1+x 2)/2.则由泰勒公式有:f (x )=f (x 0)+f ′(x 0)(x -x 0)+f ′′(ξ1)(x -x 0)2/2< f (x 0)+f ′(x 0)(x -x 0)(ξ1在x 与x 0之间)从而: f (x 1)< f (x 0)+f ′(x 0)(x 1-x 0); f (x 2)< f (x 0)+f ′(x 0)(x 2-x 0); 所以: f (x 1)+f (x 2)<2 f (x 0)+f ′(x 0)(x 1+x 2-x 0)=2f (x 0). 同理可证明2).例11. 判断函数y =ln x 的凹凸性.解:由于y ′=1/x ,y ′′=-1/x 2<0 (x >0),所以函数在(0,+∞)内是向上凸的. 例12. 判断函数y =x 3的凹凸性 解:由于:y ′=3x 2,y ′′=6x ,当x ∈(-∞,0)时,y ′′<0,曲线在(-∞,0)内是向上凸的, 当x ∈(0,+∞)时,y ′′>0,曲线在(0,+∞)内是向上凹的. 拐点的定义:定义:曲线由凹变凸(或由凸变凹)的分界点称为曲线的拐点. 连续曲线上凹弧与凸弧的分界点为曲线的拐点. 例13. 判断函数y =3x 的凹凸性. 解:y ′=3231x;y ′′=-3292xx.当x ∈(-∞,0)时, ,y ′′<0,曲线在(-∞,0)内是向上凸的, 当x ∈(0,+∞)时,y ′′>0,曲线在(0,+∞)内是向上凹的.函数在x =0处的一阶和二阶导数不存在,但(0,0)为函数图形的拐点. 例14. 判断函数y =x 4的凹凸性.解:由于y ′′=12x 2>0 ,∀x ∈(-∞,+∞),所以函数在(-∞,+∞)内是向上凹的. 这里y ′′(0)=0,但(0,0)不是曲线的拐点. 拐点的求法:1) 求f ′′(x )=0的根;2) 求f ′′(x )不存在的点;3) 对上面求出的每一个点x 0,判断f ′′(x )在点(x 0,f (x 0))的左右两侧的符号,当两侧符号相反时,点(x 0,f (x 0))为拐点,当两侧的符号相同时,点(x 0,f (x 0))不是拐点. 例15. 求函数y =(x -1)3x 的凹凸区间和拐点. 解:函数的定义区间为:(-∞,+∞).y ′=32313134--xx, y ′′=35329294--+xx=359)12(2x x +当x例16. 证明曲线y =112+-x x 有三个拐点在同一直线上. 解: y ′=222)1(12+++-x x x ,y ′′=3223)1(2662++--x x x x =32)1()32)(32)(1(2+--+--x x x x可以判断点A (-1,-1)、B (2-3,)32(431--)、C (2+3,)32(431++)为拐点.k AB =)1(32)1()32(431-------=41=k AC .例17. 试确定k 的值,使曲线y =k (x 2-3)2的拐点处的法线通过原点. 解:由于 y ′=2k (x 2-3)2x =4kx 3-12kx , y ′′=12k (x -1)(x +1). 显然x 1=-1和x 2=1为拐点的横坐标. 当x 1=-1时,y 1=4k ,点(-1,4k )处有: y ′(-1)=8k , 所以法线方程为:y -4k =-k81(x +1).由法线通过原点有:32k 2=1,即: k =±82.当x 2=1时, y 1=4k ,点(1,4k )处有:y ′(1)=-8k , 所以法线方程为:y -4k =k81(x -1).由法线通过原点有:32k 2=1,即: k =±82.因此当k =±82时,曲线在拐点处的法线通过原点.例18. 设y =f (x )在x =x 0的某一邻域内具有三阶连续的导数,如果f ′(x 0)=0, f ′′(x 0)=0而f ′′′(x 0)≠0,问x =x 0是否为极值点?(x 0, f (x 0))是否为拐点?为什么?解:由f ′′′(x 0)≠0,不妨设f ′′′(x 0)>0.由于f ′′′(x )在U (x 0)内连续,从而存在区间I ⊂U (x 0),对∀x ∈I ,有f ′′′(x )>0.于是由泰勒公式有: f (x )= f (x 0)+f ′(x 0)(x -x 0)+!21f ′′(x 0)(x -x 0)2+!31f ′′′(ξ)(x -x 0)3 ,ξ在x 与x 0之间.即: f (x )- f (x 0)=!31f ′′′(ξ)(x -x 0)3 ,由于f ′′′(ξ)>0,所以当x >x 0时,有f (x )>f (x 0); 当x <x 0时,有f (x )<f (x 0);从而x 0非极值点. 又f ′′(x )-f ′′(x 0)=f ′′′(ξ1)(x -x 0), ξ1在x 与x 0之间.即: f ′′(x )=f ′′′(ξ1)(x -x 0),所以当x <x 0时,有f ′′(x )<0, 当x >x 0时,有f ′′(x )>0. 所以点(x 0,f (x 0))为拐点.一般地:如果f (x )在U (x 0)内具有n 阶连续的导数,且f ′(x 0)= f ′′(x 0)=…= f (n -1)(x 0)=0,f (n )(x 0)≠0,当n 为奇数时,x =x 0为曲线拐点的横坐标; 当n 为偶数时,x =x 0为极值点,且当f (n )(x 0)>0时x =x 0为极小值点; 当f (n )(x 0)<0时x =x 0为极大值点. 例19. 证明不等式:1)21(x n +y n )>ny x)2(+ (x >0,y >0,x ≠y ,n >1).2) x ln x +y ln y >(x +y )ln2y x +(x >0,y >0,x ≠y ).证明:1)设f (x )=x n (x >0,n >1).则f ′′(x )=n (n -1)x n -2>0.从而f (x )在(0,+∞)内是向上凹的,于是对∀x ≠y ∈(0,+∞)有:21(x n +y n )>ny x)2(+2)设f (x )=x ln x ,则f ′(x )=1+ln x ,f ′′(x )=1/x >0.从而f (x )在(0,+∞)内是向上凹的,于是对∀x ≠y ∈(0,+∞)有:21(x ln x +y ln y )>21(x +y )ln2y x +,即: x ln x +y ln y >(x +y )ln 2y x+.§5 函数的极值与最大值最小值一、 极值及求法1. 定义: 设函数f (x )在区间(a ,b )内有定义, x 0是(a ,b )内的一个点,如果存在点x 0的一个去心邻域Ů(x 0,δ),对于∀x ∈Ů(x 0,δ),有f (x )<f (x 0), 称f (x 0)是函数f (x )的一个极大值;∀x ∈Ů(x 0,δ),有f (x )>f (x 0),称f (x 0)是函数f (x )的一个极小值. 2. 极值存在的必要条件:定理(必要条件)设f (x )在点x 0处可导,且在x 0处取得极值,则 f ′(x 0)=0. 证明:设函数f (x )在x 0处取得极大值f (x 0).由于f ′(x 0)=00)()(limx x x f x f x x ---→≥0; f ′(x 0)=00)()(limx x x f x f x x --+→≤0.所以f ′(x 0)=0.驻点: 方程f ′(x )=0的点 (或导数为零的点). 3. 驻点与极值点的关系:可导函数的极值点必为驻点,但驻点不一定是极值点. 例如y =x 3有驻点x =0,但不是极值点. 4. 极值存在的充分条件定理(第一种充分条件)设函数f (x )在x 0连续,在Ů(x 0,δ)可导,且f ′(x 0)=0. 1) 若∀x ∈(x 0-δ,x 0),f ′(x )>0, ∀x ∈(x 0,x 0+δ),f ′(x )<0, f (x )在x 0处取极大值; 2) 若∀x ∈(x 0-δ,x 0),f ′(x )<0, ∀x ∈(x 0,x 0+δ),f ′(x )>0, f (x )在x 0处取极小值; 3) 若∀x ∈ Ů(x 0,δ) f ′(x )不变号,则 f (x )在x 0处没有极值. 证明:1) 当∀x ∈(x 0-δ,x 0),f ′(x )>0 函数是单调上升的;当∀x ∈(x 0,x 0+δ),f ′(x )<0 函数是单调下降的; 所以f (x 0)为函数的极大值. 同理可证明2)和3). 5. 求极值的方法:如果函数f (x )在定义区间内可导,则求极值步骤为: 1) 求函数的导数f ′(x );2) 求出f ′(x )=0的全部实根(即函数的所有驻点);3) 对每个驻点讨论f ′(x )在其左、右两边的符号,确定是否为极值. 例1. 求函数f (x )=x 3-3x 2-9x +5的极值.解:f ′(x )=3x 2-6x -9=3(x +1)(x -3); 令f ′(x )=0得 驻点:x 1=-1 ;x 2=3.当x <-1时,f ′(x )>0,当-1<x <3时,f ′(x )<0,所以x 1=-1为函数的极大值点; 当x >3时,f ′(x )>0,从而x 2=3为函数的极小值点; 所以函数的极大值为:f (-1)=10;极小值为f (3)=-22. 当函数在驻点处的二阶导数存在且不为零时,有定理3(第二充分条件)设函数f (x )在点x 0处具有二阶导数且f ′(x )=0, f ′′(x )≠0, 那末1) f ′′(x 0)<0时,函数f (x )在x 0处取得极大值; 2) f ′′(x 0)>0时,函数f (x )在x 0处取得极小值.证明:1)由于f ′′(x 0)=0limx x →00)()(x x x f x f -'-'<0.由保号性定理,存在Ů(x 0,δ),对x ∈Ů(x 0,δ),有00)()(x x x f x f -'-'=0)(x x x f -'<0.即f ′(x )与x -x 0异号.所以在Ů(x 0,δ)内, 当x <x 0时,f ′(x )>0;当x >x 0时,f ′(x )<0,由第一充分条件得f (x 0)为函数的极大值.同理可证2).注:当f ′′(x 0)=0时,f (x )在x 0处可能有极值,也可能没有极值.例如y =x 3和y =x 4在x =0处有f ′(0)=f ′′(0)=0,但x =0不是y =x 3的极值点,而x =0是y =x 4的极小值点.例2. 求函数f (x )=(x 2-1)3+1的极值.解:由于:f ′(x )=6x (x 2-1)2=6x (x -1)2(x +1)2, 所以驻点: x 1=-1, x 2=0, x 3=1. 又 f ′′(x )=6(x 2-1)(5x 2-1)f ′′(0)=6>0,所以x =0为函数的极小值点,极小值为f (0)=0. 而f ′′(-1)=f ′′(1)=0.不能用第二充分条件判断.但当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )<0,所以x =-1不是极值点. 同理x =1也不是极值点.例3. 求函数f (x )=1-(x -2)2/3的极值.解:当x ≠2时,f ′(x )=-3232-x .当x <2时, f ′(x )>0, 当x >2时,f ′(x )<0,所以x =2为函数的极大值点,且极大值为f (2)=1.注:函数在x =2处不可导.函数的极值可能在导数不存在的点处取得. 但导数不存在的点处函数也可能没有极值,例如函数y =3x 在x =0处不可导,函数在x =0处没有极值.由此可得求函数极值的方法如下:1) 求出函数的所有驻点和导数不存在的点;2) 对上述每一个点讨论其左、右两边f ′(x )的符号,判断是否为极值点. 3) 求出极值. 例4.求函数f (x )=⎩⎨⎧≤+>0,202x x x x x ,的极值.解:当x >0时, f ′(x )=2x 2x (1+ln x ); 当x <0时, f ′(x )=1. f ′+(0)=+→0limx xxx22-=-∞;f ′-(0)=-→0limx xx 22-+=0所以函数在x =0处不可导.令f ′(x )=0得驻点:x =1/e .当0<x <1/e 时,f ′(x )<0,当1/e <x <+∞时,f ′(x )>0,所以f (1/e )=e -2/e 为函数的极小值.当x =0时,由于f (0-0)=2=f (0);f (0+0)=+→0lim x x 2x =+→0lim x e 2x ln x =1,所以函数在x =0处间断.由于f (0+0)=1,所以对ε=1/2,存在δ>0,当0<x <δ时,有|f (x )-1|<1/2,即有f (x )<f (0)=2.而当x <0时,f ′(x )=1>0,所以f (x )<f (0)=2,于是f (0)=2为函数的极大值. 例5. 求函数f (x )=x 2/3-(x 2-1)1/3极值.解:f (x )的定义域为(-∞,+∞).f ′(x )=xx x2)1(313232231∙----=3223134322)1()1(32---x x x x令f ′(x )=0得驻点x 1=-1/2,x 2=1/2.设函数f (x )∈C [a ,b ],则在[a ,b ]上f (x )有最大值和最小值,求法如下: 1) 求出函数在[a ,b ]上的驻点x 1,x 2,…,x n .2) 求出函数在[a ,b ]上的导数不存在的点y 1,y 2,…,y m .3) 求出函数值:f (x 1), f (x 2),…f (x n ), f (y 1), f (y 2),…, f (y n ), f (a ),f (b ). 4) m =min{ f (x 1), f (x 2),…f (x n ), f (y 1), f (y 2),…, f (y n ), f (a ),f (b )} M =m ax { f (x 1), f (x 2),…f (x n ), f (y 1), f (y 2),…, f (y n ), f (a ),f (b )} 特别情形:1) 当函数在一个区间(有限或无限,开或闭)内可导且只有一个驻点x 0,且此驻点x 0为函数的极值点,那么当f (x 0)为极小值时,则它为最小值;当f (x 0)为极大值时,它为最大值.2) 由实际问题可以断言函数的最值存在并在区间的内部取得,且只有唯一的一个驻点时,可以不必判断此驻点是否为极值,直接断定f (x 0)是最大值或最小值.例6. 求函数y =2x 3-6x 2-18x -7(1≤x ≤4)的最大值和最小值. 解:令 y ′=6x 2-12x -18=6(x +1)(x -3)=0 得驻点 x =3. 又 y (1)=-29; y (3)=-61,y (4)=81.例7. 如图,从南到北的铁路干线经过A ,B 两城,两城之间的距离为150公里,某工厂位于B 城正西20公里处,今要从A 城把货物运往工厂C ,已知。

中值定理与导数的应用-§3.1 中值定理

中值定理与导数的应用-§3.1 中值定理
证明 不妨设 x U ( x0 ) 时,f ( x ) f ( x0 )
于是对于x0 x U ( x0 ) ,有 f ( x0 x) f ( x0 )
微积分 第3章 中值定理与导数的应用
3.1 中值定理
f ( x0 x ) f ( x0 ) 当 x 0 时, 0; x f ( x0 x ) f ( x0 ) 0. 当 x <0 时, x 根据函数 f ( x ) 在 x0 处可导及极限的保号性得
微积分 第3章 中值定理与导数的应用
3.1 中值定理
同理可知,方程还有两个根 2 , 3分别属于区间 2,3 及
3,4 . 因此,有且仅有三个实根,它们分别属于区间 1, 2 , 2, 3 及 3, 4 .
例3 若 f ( x )在区间 [a , b]上连续,在 ( a , b ) 内可导,且 满足 f ( x ) 0,及 f (a ) f (b) 0 , 证明方程 f ( x ) 0
三、柯西中值定理
柯西中值定理 设函数 f ( x ) 及 F ( x ) 满足条件: (1)在闭区间 [a , b] 上连续; (2)在开区间( a , b ) 内可导, 且 F ( x ) 在 ( a , b ) 内每一点处均不为零. 则在 ( a , b ) 内 至少有一点 (a b), 使得
微积分 第3章 中值定理与导数的应用
3.1 中值定理
(2)若 M m , 由于 f (a ) f (b), 所以 M 和 m 至少有一个不 等于 f ( x ) 在区间 [a , b] 端点处的函数值.不妨设 M f (a ) , 则必定在 (a, b) 有一点 使 f ( ) M . 因此任取 x [a, b] 均有 f ( x ) f ( ) , 从而由费马引理有 f ( ) 0 . 证毕

高等数学-第三章微分中值定理与导数的应用

高等数学-第三章微分中值定理与导数的应用
(3) y f ( x x) x (0 1).
增量y的精确表达式. 注 由(3)式看出, 它表达了函数增量和某点的
导数之间的直接关系. 这里 ,未定, 但是增量、
导数是个等式关系. 这是十分方便的. 拉格朗日中值公式又称 有限增量公式.
拉格朗日中值定理又称 有限增量定理.
微分中值定理
f ( x)在[1,2]上连续, 在(1, 2)内可导,
f (1) 0 f (2) (2) 结论正确
方程f ( x) 0, 即3x2 8x 7 0有实根
1 x1 3 (4
1
37),
x2

(4 3
37)
其中 x2 (1,2), 符合要求.
罗尔定理肯定了 的存在性, 一般没必要知道
c0
c1 2

cn n1
0.
试证方程
证设
c0 c1 x cn xn 0在(0,1)内存在一个实根.
f
(x)
c0 x
c1 2
x2

cn n1
x n1 ,
f ( x)在[0,1]上连续,在(0,1)内可导,且
f (0) 0 f (1)
罗尔定理
在(0,1)内至少存在一个实根 , 使得f ( ) 0,
即 c0 c1 cn n 0 即x 为所求实根.
微分中值定理
拉格朗日 Lagrange (法) 1736-1813
二、拉格朗日(Lagrange)中值定理
拉格朗日中值定理 若函数f ( x)满足 : (1) 在闭区间[a, b]上连续; (2)在开区间(a, b)内可导;
g( ) f ( ) f (b) f (a) 0.

第三章 中值定理与导数的应用

第三章 中值定理与导数的应用
第3章 中值定理与导数的应用
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;

第三章中值定理与导数的应用

第三章中值定理与导数的应用

第三章中值定理与导数的应用教学目的:1、理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。

2、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

3、会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

4、掌握用洛必达法则求未定式极限的方法。

5、知道曲率和曲率半径的概念,会计算曲率和曲率半径。

6、知道方程近似解的二分法及切线性。

教学重点:1、罗尔定理、拉格朗日中值定理;2、函数的极值,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达法则。

教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。

§3 , 1 中值定理一、罗尔定理费马引理设函数f(x)在点X。

的某邻域U(x o)内有定义.并且在X。

处可导.如果对任意x U(x o).有f(x)兰f(x o)(或f(x)可(X o)).那么 f (x。

) =o ,罗尔定理如果函数y#(x)在闭区间[a, b]上连续.在开区间(a, b)内可导.且有f(a)=f(b).那么在(a, b)内至少在一点「使得f ( ) =0 .简要证明:(1)如果f(x)是常函数.则「(x)P .定理的结论显然成立,(2)如果f(x)不是常函数.则f(x)在(a . b)内至少有一个最大值点或最小值点.不妨设有一最大值点工(a .b),于是f()=口)= im f(x)—f()_0IJ x_.仁)“()訓空严_0 所以 f (x)=0.罗尔定理的几何意义:二、拉格朗日中值定理拉格朗日中值定理如果函数f(x)在闭区间[a b]上连续.在开区间(a b)内可导.那么在(a b)内至少有一点(a< <b).使得等式f(b)-f(a)f(々b-a)成立.拉格朗日中值定理的几何意义:f(b)—f(a)f ()二 b -a定理的证明:引进辅函数f(b)-f (a)令(x)孑(x) _f(a) — b —a (x^),容易验证函数f(x)适合罗尔定理的条件::(a)V (b)d O . :(x)在闭区间[a.b ]上连续在开区间(a b)内可导.且f(b)-f (a)申(x)=f "(x) — b~a ,根据罗尔定理.可知在开区间(a b)内至少有一点•.使「()=0 .即f (b) - f ⑻ f ()_ b-a =0f(b)-f(a) 由此得b —a 二f ()即 f(b)_f(a)=f ( )(bv). 定理证毕,f(b)-f(a)f ( )(b-a)叫做拉格朗日中值公式 .这个公式对于b<a 也成立 拉格朗日中值公式的其它形式 :设x 为区间[a . b ]内一点.x : =x 为这区间内的另一点 (.:x>0或.:x<0).则在[x. x7x ] C x>0)或[x i x x ] (. x<0)应用拉格朗日中值公式 .得f(x+心x) -f(x)甘 lx 说x) ‘ Z (0< 日<1), 如果记f(x)为y .则上式又可写为L y f (x n :x) L X (0< T <1),试与微分dyf (x)x 比较:dy=f(x) 是函数增量冷的近似表达式.而 f(x-,x) 是函数增量:y 的精确表达式.作为拉格朗日中值定理的应用 .我们证明如下定理:定理 如果函数f(x)在区间I 上的导数恒为零.那么f(x)在区间I 上是一个常数. 证 在区间I 上任取两点X 1.X 2(X 1<X 2).应用拉格朗日中值定理.就得f(X 2)斗(X 1)斗"(9(X 2 — x i ) (x i < -< X 2). 由假定 f ( ) =0 .所以 f(X 2) _f(X i )=0 .即f(X 2)=f(X l ),因为X i X 2是I 上任意两点.所以上面的等式表明:f(x)在I 上的函数值总是相等的.这就是说 f(x)在区间I 上是- -个常数,证 设f(x)=ln(1 x).显然f(x)在区间[0 . x ]上满足拉格朗日中值定理的条件 就有f(x)—f(0)=f (勺(x-0) . 0<®x 。

高数)第3章:微分中值定理与导数的应用共91页

高数)第3章:微分中值定理与导数的应用共91页
的一个零点。
在(2, 3)内至少存在一点 2,使f (2)0,2也是f (x)
的一个零点。 f (x) 是二次多项式,只能有两个零点,分别在区间
(1, 2)及(2, 3)内。
可导函数的两个零点之间必有其导数的零点。
9
3.将拉罗 格尔 朗日定(L理ag条 ran件 gfe(中 )a中)去 值f(定b掉 )理,得到
第一节 微分中值定理
微分中值定理的核心是拉格朗日(Lagrange) 中值定理,费马定理是它的预备定理,罗尔定理 是它的特例,柯西定理是它的推广。
1. 预备定理——费马(Fermat)定理
若函f数 (x)在(a,b)内一x0取 点得 最值 且f(x)在x点 0可 导 , f(x则 0)0.
费马(Fermat,1601-1665),法国人,与笛卡尔共 同创立解析几何。因提出费马大、小定理而著名于世。
1
2
y
几何解释:
曲线在最高点和最低点 显然有水平切线,其斜
率为 0,当切线沿曲线连 o
续滑动时,就必然经过 位于水平位置的那一点 .
yf(x)
1
2
x
3
证明: 只就f (x)在x0达到最大值证明。
由f于 (x)在 x0达到最大值x, 0所 x在 (以 a,b)内 只 , 要
就f有 (x0x)f(x0), 即 f(x 0 x ) f(x 0 ) 0 ,
从f(而 x 0 x )f(x 0)0 ,当 x0 时 ; x
f(x0 x)f(x0)0,当 x0时 ; x
这 f(x 样 0 0 ) lx 0 im f(x 0 x x ) f(x 0 ) 0 f(x 0 0 ) lx i0 m f(x 0 x x )f(x 0) 0 .

中值定理导数的应用知识点

中值定理导数的应用知识点
第三章中值定理与导数的应用
一、四个中值定理பைடு நூலகம்关系
推 广 推 广
罗 拉格朗日定理 柯
尔 特例 推 特例 特例 西
定 广 定
理 理
泰勒定理
二、微分中值定理
名称
条件
结论
罗尔定理
在 内存在
使得
拉格朗日定理
在 内存在
使得
推论1
在定理条件下,若
则 ( 为常数)
推论2
若 都满足定理条件,


( 为常数)
柯西定理

、 在 内存在
使得
三、洛比达法则
类型
条件
结论


1若 时, (或 );
2在 内, 和 都存在,且
③ (有限或 )( 可以是 )
四、其他不定型转化为 或
不定型
转 化 过 程.
;或
五、泰勒公式
分 类
定 理
泰勒公式
设 在含有 的某开区间 内具有直到 阶的导数,则 其中 。
麦克劳林公式
六、可导函数单调性的判定
若 ,又 存在,则
是 的一条斜渐近线
九、弧微分
1. 时,
2. 时,
3. 时,
定理(判别法)
设 ,在 内可导,则
① 上单调递增
② 上单调递减
七、曲线凹凸性的判定定理
定理
补充说明
设 , 在 上存在, 为凹弧
设 , 上可导, 为凹弧 在 内上升。
曲线为凹弧 切线斜率
单调递增
八、曲线的渐近线
铅直渐近线
若 或 ,则 是
的铅直渐近线( 可以是 )
水平渐近线
若 或 ,则 是
的水平渐近线
斜渐近线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 中值定理及导数的应用一.验证罗尔中值定理、拉格朗日中值定理的条件及结论是否成立要牢记三个中值定理成立的条件及其结论。

关于这个知识点,往往会出验证题例1.验证:()()⎪⎩⎪⎨⎧>≤-=.1,1,1,232x xx x f x 在[]2,0上满足拉氏定理的条件,并求出定理结论中的点()2,0∈ξ.解:(一)1.由()()()110101==+=-f f f ,知()x f 在1=x 处连续,从而在[]2,0上连续;2.按左、右导数的定义不难求出()(),111//-==+-f f 从而()x f 在()2,0内可导,且().21,1,10,2/⎪⎩⎪⎨⎧<<-≤<-=x x x x x f因此,()x f 在[]2,0上满足拉氏定理的条件.(二)由拉氏定理的结论:()2,0∈ξ,使()()()210202/-=--=f f f ξ.不难算得:21=ξ或()2,02∈=ξ.注意:中值定理中结论只保证中间值()2,0∈ξ的存在性,至于ξ是否唯一,不唯一时有几个,如何求ξ?定理本身并未指出.二.利用拉格朗日中值定理证明不等式(尤其是双向不等式)利用拉格朗日中值定理证明不等式的一般方法是;先根据所要证明的不等式的特点作一辅助函数,并恰当选择相应的闭区间;然后利用拉格朗日中值定理,得到一个含中值ξ的等式,最后适当放大或缩小不等式即可.例2.证明:对x x xxx <+<+>∀)1ln(1,0. 证明:设()()0,ln >=t t t f ,则()t t f 1/=.在[]x +1,1上由拉氏定理知,()()()/1ln(1)ln111(5)x f x f x x f ξξ+-=+-==----即:.111)1ln(11x x x x x x =<=+<+ξ. (().1,1x ξ∈+)例3.证明:对0,1.x x e x ∀>>+. 例4.证明:对()0,ln 1.x x x ∀>+<.大家自己证明,这两个结论要记住.三.利用中值定理证明等式成立(或方程有无根)例5.设()x f 在[]1,0上连续,在()1,0内可导,且(),01=f 证明:()1,0∈∃ξ使()().0/=+ξξξf f证明:(分析 寻找合适的辅助函数应用罗尔中值定理,采用倒推的方法分析。

命题只须证()1,0∈∃ξ,使()()0|/=⎥⎦⎤⎢⎣⎡+=ξx x f x xf,或者()[]0|/==ξx x xf .故令()()x xf x F =。

显然,()()010==F F 且()x F 在[]1,0上连续,在()1,0内可导,从而由罗尔定理知,()1,0∈∃ξ,使()()().0//=+=ξξξξf f F例6.设()()()()()1234f x x x x x =----,证明方程()0f x '=有三个实根,并且它们分别位于区间()()()1,2,2,3,3,4.(见书第105页) 例7.证明方程510x x +-=只有一个正根.(反证). 拉氏定理有两个重要的的推论,也要会记会用. 推论1:若对任意()0,/≡∈∀x I x f ,则().,I x C x f ∈∀≡例8.证明:[]1,1,2arccos arcsin -∈=+x x x π.证明:设()[]1,1,arccos arcsin -∈+=x x x x f , 则,()()1,1,0/-∈=x x f ,所以,由推论1,()().20π=≡f x f推论2:若对于()()x x I x g f //,=∈∀,则()()C x g x f I x ≡-∈∀,.四.洛必达法则我们在第一章曾注意到,考试时考察得最多的求极限问题要么是0型,要么是∞∞。

对付这种问题,我们根据具体情形曾给出了因式分解约零因子、根式有理化约零因子、等价无穷小替换、凑重要极限等方法。

现在有一个著名的法则——洛必达法则,可用一招统一解决大部分的00或∞∞的极限问题。

现在先回顾一下洛必大达法则的条件及结论:第一种:00型的洛必达法则设函数()()x F x f ,满足: (1)()()0lim lim 000==→→x F x f x x x x ;(2)()()x F x f ,在x 0的某个去心邻域⎪⎭⎫⎝⎛∧δ,0x U 内,()()x x F f//,都存在()0/≠x F ;(3)()()A x x x F f x =→//lim 存在(或为∞).则,()()()()A x x x x F x f x F f x x ==→→//lim lim 存在(或为∞).第二种.∞∞型的洛必达法则 设函数()()x F x f ,满足: (1)()()∞==→→x F x f x x x x 00lim lim 0;(2)()()x F x f ,在x 0的某个去心邻域⎪⎭⎫⎝⎛∧δ,0x U 内,()()x x F f //,都存在,()0/≠x F ;(3)()()A x x x F f x =→//lim 存在(或为∞). 例1. 求;11lim1nm x x nm x =--→ 例2.求.......x x x →→→===越来越麻烦,说明洛必达法则虽在大多数情况下可简化运算,但有时它可能并不是最简单的做法。

如能采用其他方法先行简化欲求极限的函数,再使用洛必达法则,则效果可能会更好!例3.的另一种作法:2012lim .2x x x x x→→==; 例4.求2cos lim sin lim cos 12lim sin 2lim 0000=+=-=--+=---→-→-→-→xxxxx x ee ee e e e exxx xxx xxx xxx ; 例5.求()2230011.213lim 23x x xx x -→→+==; 例6.11lim 111lim1arctan 2lim 2222=+=-+-=-+∞→+∞→+∞→x x xx x x x xx π;例7.求01lim1limln lim1===+∞→-+∞→+∞→xxxnx n x nx n n x x;例8.求0!lim...2limlim22122====+∞→-+∞→+∞→eex exxn x xn x xnx n n ;例9.求()()()()∞=--=----+∞→--+∞→e e e e exxxx xxx 121lim 1ln 1ln lim22.对于不直接表现为00型或∞∞型的不定型,要首先合理转化,使其成为00型或∞∞型,然后在利用洛必达法则来算.例10.(∞.0型)求00lim 11lim 1ln 0lim ln 0lim 2=-=-==++++→→→→x x x xx x x x x x x.例11.(00型)求10lim 0lim 0lim 11lim1ln lim ln 0200=====+→+→+→++--=→→e eeeex xx xxxx x x x x x x x.例12.(∞-∞型)求()0sin cos lim cos sin 1limtan sec lim 222=--=-=-→→→x xx x x x x x x πππ.例13.(∞0型)求1limln lim1===∞→+∞→e exxx xx x .注意:(1)若()()x x x F f x //0lim→不存在(并且也不是∞),则不能说()()x F x f x x 0lim →也不存在.比如:1sin 11lim sin lim=⎪⎭⎫⎝⎛+=+∞→∞→x x x x x x x 存在;但()()1cos lim lim//sin x x x x x x +=∞→∞→+不存在.(2)法则不是万能的,也有失效的时候.比如: (i)lim=-+=+---+∞→--+∞→ee ee ee ee xxx xx xxx xx 形成循环,永远也得不到结果.用洛必达法则时最好作一步,就及时检查一步,看是否划得来.另外,如果在用洛必达法则时,还可以同时再结合其他的求极限方法,效果可能会更好.总之,我们的方针是:“百花齐放、百家争鸣”.例14.讨论函数()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤>=-⎥⎥⎦⎤⎢⎢⎣⎡+.0,,0,12111x x xx f e e x x在0=x 处的连续性. 解:()e f 2100-=-;令()⎥⎥⎦⎤⎢⎢⎣⎡+=e x x y x111,则()()xxx x x x y 21ln 11ln 11ln -+=⎥⎦⎤⎢⎣⎡-+=. ()().21120lim 21110lim 1ln 0lim ln 0lim 2-=+-=-+=-+=++++→→→→x x x x x x x y x x x x x 所以,()e eyx x y f 21ln lim 00lim 00-→===++→+.因为,()()e f f 210000-=+=-,所以,()x f 在0=x 处连续.例15.求:21cos limx x→-011sin 2sin 2sin lim ....cos 2cos cos 22cos x x x n nx x x x x nx nx →⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦()()1112 (124)n n n =+++=+. 例16.()212111lim 1ln lim 11ln lim 02012=+-=+-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-→→=∞→=t t t t x x t t xt x t x .例17.求()()()()1/12011ln(1limlim lim(1)111xxx x x ex x x x xx x x x x →→→-⎡⎤-++==⎢⎥+⎢⎥⎣⎦+⎡⎤++⎢⎥⎣⎦2lim.223x x ee x x→-==-+五.单调性单调的充要条件:若函数()x f 在()b a ,内可导,则()x f 在()b a ,内递增(或递减的)的充要条件是:()≥x f /0(或()0/≤x f ),()b a x ,∈. 注意:(1)这里的()b a ,可以是无限区间,如()+∞∞-,;(2)其实,当把()b a ,改为有限的闭区间[]b a ,时,结论也成立.即: 若函数()x f 在()b a ,内可导,则()x f 在[]b a ,内递增(或递减的)的充要条件是:()≥x f /0(或()0/≤x f ),()b a x ,∈; 当将()b a ,改为有限的半开半闭区间时,也有类似的结论.(3)有时我们关心的是()x f 在()b a ,内是否严格单增(或单减),则有: 严格单调的充分条若()x f 在()b a ,内可导,且对()()())0(0,,//<>∈∀x x b a x f f 或,则()x f 在()b a ,内严格单增(或单减).上述定理2的逆不成立,即:若()x f 在()b a ,内严格单增(或单减),且()x f 在()b a ,内可导,但未必有对()()())0(0,,//<>∈∀x x b a x f f 或.比如:(),0,,,/3≥+∞∞-∈=y xx y 但xy 3=严格单增.严格单调的充分必要条件:若()x f 在()b a ,内可导,则()x f 在()b a ,内严格单增(或单减)的充分必要条件是: (1)()()0,,/≥∈∀x f ba x (或()0/≤x f ); (2)在()b a ,内任何子区间上,()x f /不恒等于0.上述定理告诉我们:只要()()0,,/≥∈∀x f ba x ,且使()0/=x f 的点x 都是一些孤立的点,则()x f 在()b a ,内严格单增。

相关文档
最新文档