2014数学模型实验报告实验三
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告
数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
数学建模实验报告
《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模的实验报告
数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告
内江师范学院中学数学建模实验报告册编制数学建模组审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2016年3月说明1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;2.要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格;3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;4.实验成绩评定分为优秀、合格、不合格,实验只是对学生的动手能力进行考核,跟据所做的的情况酌情给分。
根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。
实验名称:数学规划模型(实验一)指导教师:实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。
实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。
实验内容及要求原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种,如何下料最节省?实验过程:摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。
按工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题。
以此次钢管下料问题我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 对题目所提供的数据进行计算从而得出最优解。
线性规划问题求解----数学建模实验报告
084实验报告1、实验目的:(1)学会用matlab软件解决线性规划问题的最优值求解问题。
(2)学会将实际问题归结为线性规划问题用MATLAB软件建立恰当的数学模型来求解。
(3)学会用最小二乘法进行数据拟合。
(4)学会用MATLAB提供的拟合方法解决实际问题。
2、实验要求:(1)按照正确格式用MATLAB软件解决课本第9页1.1、1.3,第100页5.1、5.3这几个问题,完成实验内容。
(2)写出相应的MATLAB程序。
(3)给出实验结果。
(4)对实验结果进行分析讨论。
(5)写出相应的实验报告。
3、实验步骤:(1)、对于习题1.1:a.将该线性规划问题首先化成MATLAB标准型b.用MATLAB软件编写正确求解程序:程序如下:c=[3,-1,-1];a=[4,-1,-2;1,-2,1]; b=[-3;11]aeq=[-2,0,1]; beq=1;[x,y]=linprog(-c,a,b,aeq,beq,zeros(3,1))x,y=-y(2)、对于习题1.3:a.建立适当的线性规划模型:对产品I 来说,设以A1,A2完成A 工序的产品分别为x 1,x 2件,转入B 工序时,以B1,B2,B3完成B 工序的产品分别为x 3,x 4,x 5件;对产品II 来说,设以A1,A2完成A 工序的产品分别为x 6,x 7件,转入B 工序时,以B1完成B 工序的产品为x 8件;对产品III 来说,设以A2完成A 工序的产品为x 9件,则以B2完成B 工序的产品也为x 9件。
由上述条件可得x 1+x 2=x 3+x 4+x 5, x 6+x 7=x 8.由题目所给的数据可建立如下的线性规划模型:Min z =(1.25-0.25)( x 1+x 2)+(2-0.35) x 8+(2.8-0.5) x 9-3006000(5x 1+10x 6)-32110000(7x 2+9x 7+12x 9)- 2504000(6x 3+8x 8)-7837000 (4x 4+11x 9)-2004000⨯7x 5s.t.{ 5x 1+10x 6≤60007x 2+9x 7+12x 9≤100006x 3+8x 8≤40004x 4+11x 9≤70007x 5≤4000x 1+x 2=x 3+x 4+x 5 x 6+x 7=x 8x i ≥0,i =1,2,3,…9 b.运用MATLAB 软件编写程序求解:程序如下:c=[0.75,1-(321*7*0.0001),-16*6,(-783*4)/7000,-7/20,-0.5,-321*9*0.0001,1.15,2.3-(321*12*0.0001-(783*11)/7000)]; a=[-5,0,0,0,0,-10,0,0,0;0,-7,0,0,0,0,-9,0,-12;0,0,-6,0,0,0,0,-8,0;0,0,0,-4,0,0,0,0,-11;0,0,0,0,-7,0,0,0,0]; b=[-6000;-10000;-4000;-7000;-4000];aeq=[1,1,-1,-1,-1,0,0,0,0;0,0,0,0,0,1,1,-1,0];beq=[0;0];[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1))(3)、对于习题5.1:用MATLAB中的三次函数,二次函数,四次函数进行数据拟合,然后与原来结果进行比较。
数学实验报告的总结(3篇)
第1篇一、实验背景随着科技的不断发展,数学实验在各个领域中的应用越来越广泛。
数学实验作为一种以计算机为工具,通过模拟、计算和验证等方法,对数学理论进行实践探索和研究的方法,已经成为数学研究的重要手段。
本次实验旨在通过数学实验,加深对数学理论的理解,提高数学应用能力,培养创新意识和团队协作精神。
二、实验目的1. 熟悉数学实验的基本方法,掌握数学实验的基本步骤。
2. 通过实验,加深对数学理论的理解,提高数学应用能力。
3. 培养创新意识和团队协作精神,提高自身综合素质。
三、实验内容本次实验主要包括以下内容:1. 实验一:线性方程组的求解通过编写程序,实现线性方程组的直接法、迭代法等求解方法,并对比分析各种方法的优缺点。
2. 实验二:矩阵运算实现矩阵的加法、减法、乘法、转置等基本运算,以及求逆矩阵、特征值和特征向量等高级运算。
3. 实验三:数值积分通过编写程序,实现定积分、变积分、高斯积分等数值积分方法,并分析各种方法的误差和适用范围。
4. 实验四:常微分方程的数值解法实现欧拉法、龙格-库塔法等常微分方程的数值解法,并对比分析各种方法的稳定性、精度和适用范围。
四、实验过程1. 确定实验内容,明确实验目的。
2. 设计实验方案,包括实验步骤、算法选择、数据准备等。
3. 编写实验程序,实现实验方案。
4. 运行实验程序,收集实验数据。
5. 分析实验数据,得出实验结论。
6. 撰写实验报告,总结实验过程和结果。
五、实验结果与分析1. 实验一:线性方程组的求解通过实验,验证了直接法和迭代法在求解线性方程组时的有效性。
直接法在求解大规模线性方程组时具有较好的性能,而迭代法在求解稀疏线性方程组时具有较好的性能。
2. 实验二:矩阵运算实验结果表明,矩阵运算的程序实现具有较高的精度和效率。
在实际应用中,可以根据具体需求选择合适的矩阵运算方法。
3. 实验三:数值积分通过实验,验证了各种数值积分方法的有效性。
高斯积分具有较高的精度,但在求解复杂函数时,需要调整积分区间和节点。
运筹学实验报告
数学与计算科学学院
实验报告
实验项目名称Lingo、MATLAB关于线性问题的求解所属课程名称运筹学
实验类型综合
实验日期2014年10月12日
班级统计1201班
学号201247100126
姓名杨赛波
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
数学建模实习报告
数学建模实习报告一、引言数学建模是运用数学方法和技巧来解决实际问题的一门学科。
在大学数学课程中,培养学生的数学建模能力已经成为教学的重点之一。
本次实习报告旨在总结我在数学建模实习中的学习经验和收获,并将所学知识应用在实际问题中。
二、实习内容1. 实习项目介绍我所参与的数学建模实习项目是关于城市交通流量预测的研究。
通过对城市交通数据进行收集和分析,利用数学模型和算法来预测未来的交通流量,以便城市规划者和交通管理部门能够更好地优化交通流动。
2. 数据收集与预处理为了进行交通流量预测,我们首先需要收集一定时期内的交通数据,包括车辆数量、速度、道路状况等信息。
根据实际情况,我们选择了某城市的主干道作为研究对象,并在道路上安装了传感器来收集数据。
然后,我们对收集到的原始数据进行清洗和预处理,消除异常值和缺失值的影响,以保证数据的准确性和完整性。
3. 模型选择与建立在交通流量预测中,我们需要选择合适的数学模型来描述交通流动的规律。
经过研究和实践,我们选择了时间序列模型和神经网络模型作为预测模型的候选。
时间序列模型考虑了时间的连续性和相关性,适用于交通流量数据的预测;而神经网络模型则可以通过对历史数据的学习和训练来预测未来的交通流量。
4. 数据分析与模型评估在建立完预测模型后,我们对历史数据进行了分析和验证,评估了模型的准确性和可靠性。
通过比较模型预测结果和实际观测值,计算相关的误差指标和准确率,以评估模型的优劣,并进行进一步的改进和调整。
5. 结果与讨论经过一段时间的实验和分析,我们得到了相对准确的交通流量预测结果,并与城市交通管理部门进行了交流和反馈。
根据预测结果,他们可以提前做好交通管理和调度工作,以缓解拥堵和提高交通效率。
同时,我们也对模型的不足之处进行了讨论,并提出了一些改进和优化的建议。
三、实习收获通过参与数学建模实习,我获得了如下的收获和体会:1. 熟悉了数学建模的基本流程和方法,了解了数学建模在实际问题中的应用和意义。
几何体的体积实验报告
华南师范大学数学科学学院数学实验报告日期:2014 年3 月30日班级:114班组别:第七组1. 实验名称:几何体的体积2. 实验目的:通过深入了解探求几何体的体积的方法,探究不同几何体体积的关系。
3. 实验方法:探究型实验:1、利用课件进行模拟实验;2、利用模型完成体积测量、3.利用密度公式,算出体积比。
4. 实验器材:细沙,半个球壳(与实验一圆柱体等底等高),蛋糕,小刀,天平秤或弹簧秤。
5.实验过程:(操作步骤、异常情况报告、处理方法)实验一:1.(1)1)步骤:先往正三棱柱和正三棱锥中倒满沙子,然后利用电子称分别称量它们的质量。
2)因为填充的物体是一样,然后再根据密度公式。
所以它们的体积比等于它们的质量比。
(2)1)步骤:先选用形状与圆柱等底等高的、接近于球形的橙子,然后去掉果肉,制成半球形,再往里面填满沙子。
然后再分别将圆柱体和圆锥体填满沙子,最后用电子称分别它们的质量,最后利用密度公式,得出体积比等于质量比。
2.(1)【运用称重法】步骤:在陶园购买一个长方体形状的蛋糕,然后利用度量工具画出正三棱柱的底面。
然后利用小刀小心翼翼地划出正三棱柱。
然后用小刀划出一个三棱锥,最后分别测量三棱柱和小三棱锥的质量。
再利用密度公式,体积比等于质量比。
异常情况分沙子之间具往容器中装一定完全填华南师范大学数学科学学院析:1)有空隙,沙子不满容器的。
2)利用已经做好的圆柱与圆锥再从自然界中寻找等底等高的半球壳是一件几乎不可能的事情。
3)在制作模型过程中,模型本身就不是完美的,或者说模型存在一些偏差。
4)沙子有大颗粒的有小颗粒的,密度不是完全均匀的。
5)土豆太硬,在切割过程中不易切成平面。
6)找不到专门的天平秤或弹簧秤异常情况处理:1)在往容器中装沙子的过程,采取不断震动和轻轻压实的方法,使得沙子的空隙尽可能小。
2)采用近似代替的方法,选用尽可能接近球形的物体,替代真正的半球壳,减少误差。
3)尽可能地保持模型的完整和使用与真正的模型相差不大模型容器,尽可能减少不必要的误差。
数学建模全部实验报告
一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
2. 提高数学建模能力,培养创新思维和团队合作精神。
3. 熟练运用数学软件进行数据分析、建模和求解。
二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。
请为公司制定招聘计划。
3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。
请建立模型分析居民出行方式选择的影响因素。
三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。
2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。
3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。
5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。
四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。
(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。
(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。
(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。
(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。
2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。
数学建模实习报告
数学建模实习报告一、引言本报告是对我在数学建模实习中的经历和成果的总结和分析。
通过这次实习,我深入了解了数学建模的基本理论和应用,并且在实际操作中获得了一定的实践经验。
本报告将主要包括以下几个方面的内容:实习项目的背景介绍、问题分析、模型建立和求解、实验结果和讨论以及总结。
二、实习项目的背景介绍本次实习项目是针对某企业的运输调度问题展开的。
该企业负责将一批货物从不同的发货点运送到不同的收货点,要求在最短的时间内完成任务,并且要尽量减少总运输成本。
由于存在各种各样的限制条件,如道路的限制、车辆的限制以及货物的限制等,因此该企业希望我们通过数学模型来解决这个运输调度问题。
三、问题分析在开始建立数学模型之前,我们首先对该问题进行了全面的分析。
我们详细了解了该企业的运输调度流程,并且查阅了相关的资料,了解了道路限制、车辆限制和货物限制等方面的信息。
经过分析,我们确定了以下几个关键的问题:如何确定最优的运输路线、如何合理安排车辆的使用、如何考虑货物的不同特性。
四、模型建立和求解基于上述问题的分析,我们建立了一套数学模型来解决该运输调度问题。
我们首先将该问题抽象成图论中的最短路径问题,并且引入了线性规划模型来解决车辆的安排问题。
在考虑货物特性的时候,我们使用了多目标规划模型,并对其进行了求解。
通过数学模型的建立和求解,我们得到了一组最优的调度方案,并且进行了实验验证。
五、实验结果和讨论在实验中,我们将得到的最优调度方案与该企业原有的调度方案进行了对比。
实验结果表明,我们提出的调度方案相比原有方案具有更高的效率和更低的成本。
通过与企业员工的讨论和交流,我们也收集到了他们的反馈意见,并根据反馈意见进行了相应的调整和改进。
六、总结通过这次数学建模实习,我深入了解了数学建模的基本理论和方法,并且在实际操作中提高了自己的实践能力。
我学会了如何分析问题、建立模型和求解模型,并且学会了如何将数学建模的成果应用于实际问题中。
数学建模实验报告
在下面的题目中选做100分的题目,给出详略得当的答案。
一.通过举例简要说明数学建模的一般过程或步骤。
(15分)答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型为例):1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。
(查资料得出数学式子或算法)。
3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。
注意要尽量采用简单的数学公具。
例如:马尔萨斯模型,洛杰斯蒂克模型4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。
二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。
(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分)答:模型假设:1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。
2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。
3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。
4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。
5.挪动仅只是旋转。
我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。
将AC和BD这两条腿逆时针旋转角度θ。
记AC到地面的距离之和为f(θ)。
数学模型的实验验证
数学模型的实验验证为了解决实际问题,数学模型在科学研究和工程应用中起着至关重要的作用。
然而,数学模型的实际效果如何,需要通过实验验证来评估。
本文将探讨数学模型的实验验证方法以及其重要性。
一、数学模型实验验证的方法1. 理论分析法:数学模型通常基于一定的假设和推导,可以通过理论分析进行验证。
通过推导结果与已知理论知识进行对比,评估模型的准确性和适用性。
2. 数值模拟法:数学模型可通过数值计算进行模拟。
利用计算机等工具,将模型转化为数值方法,并进行仿真实验。
通过与实际观测数据对比评估模型的合理性。
3. 实际实验法:数学模型的实验验证也可以通过真实的实验来进行。
根据模型的预测,设计相应的实验方案,进行实际的物理实验。
通过实验结果与模型的预测进行比对,验证其正确性。
二、数学模型实验验证的重要性1. 评估模型的有效性:数学模型实验验证是评估模型的有效性的重要手段。
模型可能存在一定的假设和简化,通过实验验证可以判断模型是否具有足够的准确性和可信度。
2. 优化模型设计:数学模型实验验证可以帮助研究人员发现模型的不足之处,进而针对性地对模型进行改进和优化。
通过实验验证的结果,可以对模型参数进行调整,提高模型的可靠性和适应性。
3. 提高科学研究的可重复性:数学模型实验验证能够确保科学研究的可重复性。
通过公开的实验验证过程和结果,其他研究者可以复现同样的实验并获得相似的结果,进一步验证模型的有效性。
4. 促进实际应用:数学模型实验验证的结果可以为实际应用提供依据。
只有通过实验验证的数学模型才能够在实际工程和实际问题中得到应用,发挥应有的作用。
三、数学模型实验验证的案例以疫情传播模型为例,数学模型可以预测疫情传播的趋势和规律。
通过实验验证,可以评估模型对实际情况的准确性,并提供政策制定的参考依据。
实验验证结果可能需要对模型参数进行调整,进而提高模型的预测能力。
另外,金融领域中的风险管理模型也需要实验验证来评估其有效性。
数学建模实验报告模版
数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。
本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。
二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。
该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。
但由于资源有限,调查机构只能选择一部分顾客进行调查。
在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。
三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。
2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。
假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。
我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。
3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。
4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。
四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。
根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。
五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。
我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。
这对我们今后在实际问题中的应用具有重要意义。
在实验过程中,我们也发现了一些问题和不足之处。
例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。
此外,我们的模型也有一些局限性,不适用于所有情况。
因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。
以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。
实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。
Matlab数学建模实验报告
数学实验报告实验序号:实验一日期:实验序号:实验二日期:实验序号: 实验三 日期:班级 姓名 学号实验 名称架设电缆的总费用问题背景描述:一条河宽1km ,两岸各有一个城镇A 与B ,A 与B 的直线距离为4km ,今需铺设一条电缆连接A 于B ,已知地下电缆的铺设费用是2万元/km ,水下电缆的修建费用是4万元/km 。
实验目的:通过建立适当的模型,算出如何铺设电缆可以使总花费最少。
数学模型:如图中所示,A-C-D-B 为铺设的电缆路线,我们就讨论a=30度,AE (A 到河岸的距离)=0.5km ,则图中:DG=4-AC cos b -1/tan c ; BG=0.5km AC=AE/sin bCD=EF/sin c=1/sin c BD=BG D 22G则有总的花费为:W=2*(AC+BD )+4*CD ;我们所要做的就是求最优解。
实验所用软件及版本:Matlab 7.10.0实验序号: 实验四 日期:班级 姓名 学号实验 名称慢跑者与狗问题背景描述:一个慢跑者在平面上沿曲线25y x 22=+以恒定的速度v 从(5,0)起逆时钟方向跑步,一直狗从原点一恒定的速度w ,跑向慢跑者,在运动的过程中狗的运动方向始终指向慢跑者。
实验目的:用matlab 编程讨论不同的v 和w 是的追逐过程。
数学模型:人的坐标为(manx,many ),狗的坐标为(dogx,dogy ),则时间t 时刻的人的坐标可以表示为manx=R*cos(v*t/R); many=R*sin(v*t/R);sin θ=| (many-dogy)/sqrt((manx-dogx)^2+(many-dogy)^2)|;cos θ=| (manx-dogx)/sqrt((manx-dogx)^2+(many-dogy)^2)|;则可知在t+dt 时刻狗的坐标可以表示为:dogx=dogx(+/-)w* cos θ*dt; dogy=dogy(+/-)w* sin θ*dt; (如果manx-dogx>0则为正号,反之则为负号)实验所用软件及版本:Matlab 7.10.0实验序号:实验五日期:班级姓名学号两圆的相对滚动实验名称问题背景描述:有一个小圆在大圆内沿着大圆的圆周无滑动的滚动。
数学建模实验报告
《数学建模实验报告》Lingo软件的上机实践应用简单的线性规划与灵敏度分析学号:班级:姓名:日期:2010—7—21数学与计算科学学院一、实验目的:通过对数学建模课的学习,熟悉了matlab和lingo等数学软件的简单应用,了解了用lingo软件解线性规划的算法及灵敏性分析。
此次lingo上机实验又使我更好地理解了lingo程序的输入格式及其使用,增加了操作连贯性,初步掌握了lingo软件的基本用法,会使用lingo计算线性规划题,掌握类似题目的程序设计及数据分析。
二、实验题目(P55课后习题5):某工厂生产A、2A两种型号的产品都必须经过零件装配和检验两道工序,1如果每天可用于零件装配的工时只有100h,可用于检验的工时只有120h,各型号产品每件需占用各工序时数和可获得的利润如下表所示:(1)试写出此问题的数学模型,并求出最优化生产方案.(2)对产品A的利润进行灵敏度分析1(3)对装配工序的工时进行灵敏度分析(4)如果工厂试制了A型产品,每件3A产品需装配工时4h,检验工时2h,可获3利润5元,那么该产品是否应投入生产?三、题目分析:总体分析:要解答此题,就要运用已知条件编写出一个线性规划的Lingo 程序,对运行结果进行分析得到所要数据;当然第四问也可另编程序解答.四、 实验过程:(1)符号说明设生产1x 件1A 产品,生产2x 件2A 产品.(2)建立模型目标函数:maxz=61x +42x 约束条件:1) 装配时间:21x +32x <=100 2) 检验时间:41x +22x <=120 3) 非负约束:1x ,2x >=0所以模型为: maxz=61x +42xs.t 。
⎪⎩⎪⎨⎧>=<=+<=+0,1202410032212121x x x x x x(3)模型求解:1)程序model:title 零件生产计划; max=6*x1+4*x2; 2*x1+3*x2<=100; 4*x1+2*x2<=120; end附程序图1:2)计算结果Global optimal solution found。
数学建模实验三 Lorenz模型与食饵模型
数学建模实验三 Lorenz模型与食饵模型一、实验目的1、学习用Mathematica求常微分方程的解析解和数值解,并进行定性分析;2、学习用MATLAB求常微分方程的解析解和数值解,并进行定性分析。
二、实验材料问题图是著名的洛仑兹混沌吸引子,洛仑兹吸引子已成为混沌理论的徽标,好比行星轨道图代表着哥白尼、开普勒理论一样。
洛仑兹是学数学出身的,1948年起在美国麻省理工学院(MIT)作动力气象学博士后工作,1963年他在《大气科学杂志》上发表的论文《确定性非周期流》是混沌研究史上光辉的著作。
以前科学家们不自觉地认为微分方程的解只有那么几类:1)发散轨道;2)不动点;3)极限环;4)极限环面。
除此以外,大概没有新的运动类型了,这是人们的一种主观猜测,谁也没有给出证明。
事实上这种想法是非常错误的。
1963年美国麻省理工学院气象科学家洛仑兹给出一个具体模型,就是著名的Lorenz模型,清楚地展示了一种新型运动体制:混沌运动,轨道既不收敛到极限环上也不跑掉。
而今Lorenz 模型在科学与工程计算中经常运用的问题。
例如,数据加密中。
我们能否绘制出洛仑兹吸引子呢图洛仑兹混沌吸引子假设狐狸和兔子共同生活在同一个有限区域内,有足够多的食物供兔子享用,而狐狸仅以兔子为食物.x为兔子数量,y表狐狸数量。
假定在没有狐狸的情况下,兔子增长率为400%。
如果没有兔子,狐狸将被饿死,死亡率为90%。
狐狸与兔子相互作用的关系是,狐狸的存在使兔子受到威胁,且狐狸越多兔子增长受到阻碍越大,设增长的减小与狐狸总数成正比,比例系数为。
而兔子的存在又为狐狸提供食物,设狐狸在单位时间的死亡率的减少与兔子的数量成正比,设比例系数为。
建立数学模型,并说明这个简单的生态系统是如何变化的。
预备知识1、求解常微分方程的Euler 折线法求初值问题⎩⎨⎧=='00)(),,(y x y y x f y () 在区间],[0n x x 上的数值解,并在区间插入了结点)()(110n n x x x x <<<<- 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型实验—实验报告3
学院:数学与计算机学院专业:电气信息类(计算机类)姓名:王赛赛学号:___ 2012436138 实验时间:__ 2014年5月实验地点:主楼402
一、实验项目:Matlab中单元数组和结构体
二、实验目的和要求
a.了解单元数组和结构两种数据类型
b.掌握建立、处理单元数组和结构的方法
三、实验内容
1.通过查询有关资料了解两种数据类型的特点。
2.练习单元数组的创建和处理,区分{ }和( )的不同.
有关命令:cell,iscell,celldisp,deal
3. 练习结构的创建和处理.
有关命令: struct, fieldnames
4.联系字符串变量建立,
有关命令:char,double,int2str,num2str
>> a=cell(5)
a =
[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
>> cell_arr{1,1}='wangsaisai';
>> cell_arr{1,2}=[1,2,3;4,5,6];
>> cell_arr
cell_arr =
'wangsaisai' [2x3 double]
>> celldisp(c)
Undefined function or variable 'c'.
>> c={'wangsaisai',eye(2);[1 2;3 4],[3 4]} c =
'wangsaisai' [2x2 double]
[2x2 double] [1x2 double]
>> celldisp(c)
c{1,1} =
wangsaisai
c{2,1} =
1 2
3 4
c{1,2} =
1 0
0 1
c{2,2} =
3 4
>> s=struct('wangsaisai',{'all','star'},'enough','num') s =
1x2 struct array with fields:
wangsaisai
enough
>> s(1,1)
ans =
wangsaisai: 'all'
enough: 'num' >> s(1,2)
ans =
wangsaisai: 'star'
enough: 'num'
>> char(97)
ans =
a
>> char(59)
ans =
;
>> a=4.13
a =
4.1300
>> b=double(a)
b =
4.1300
>> int2str(1+2) ans =
3
>> int2str(eye(3)) ans =
1 0 0
0 1 0
0 0 1。