宁夏银川一中2014届高三第二次模拟考试 数学(理)
宁夏银川一中2014届高三物理上学期第二次月考试题新人教版
宁夏银川一中2014届高三上学期第二次月考物理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅱ卷第33~40题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
第Ⅰ卷(共126分)二、选择题:本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分.14.我国第一艘航母“辽宁”号的跑道长200m.飞机在航母上滑行的最大加速度为6m/s 2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为 A.5m/sB.10m/sC.15m/sD.20m/s15.小船横渡一条河,船在静水中的速度大小不变,方向始终垂直于河岸。
已知小船的部分运动轨迹如图所示,则可判断,此过程中河水的流速A .越接近B 岸水速越小 B .越接近B 岸水速越大C .由A 到B 水速先增大后减小D .水流速度恒定16.如右图所示一根轻质弹簧上端固定,下端挂一质量为m 的平盘,盘中有一物体,质量为M ,当盘静止时弹簧的长度比其自然长度伸长了L ,今向下拉盘,使弹簧再伸长△L 后停止,然后松手放开,设弹簧始终处在弹性限度以内,则刚松开手时盘对物体的支持力等于A .1+⎛⎝⎫⎭⎪∆L L Mg B . ()1+⎛⎝⎫⎭⎪+∆L L m M g C .∆LLmgD .()∆LLM m g +A .根据图2和图3能估测出电梯向上启动时的加速度B .根据图4和图5能估测出电梯向下制动时的加速度C.图1到图5反映出超重或失重现象与电梯运动方向有关D.图1到图5反映出超重或失重现象与电梯的加速度方向有关18.物体在变力F作用下沿水平方向做直线运动,物体质量m=10kg,F随坐标x的变化情况如图所示。
若物体在坐标原点处由静止出发,不计一切摩擦。
宁夏银川一中高三数学第二次模拟考试(理)1
银川一中2009届高三年级第二次模拟考试数 学 试 卷(理科)命题教师:赵冬奎本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22-24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上.在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 参考公式:用最小二乘法求线性回归方程系数公式2121-=--=--=∑∑xn x y x n y xb ni i ni i i,---=x b y a .第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数i i21+(i 是虚数单位)的实部是( )A .52B .52-C .51-D .512.设R b a ∈,,已知命题b a p =:;命题22:222b a b a q +≤⎪⎭⎫ ⎝⎛+,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3. 已知等比数列}{n a 的前三项依次为4,1,1++-a a a ,则=n a ( )A .n⎪⎭⎫ ⎝⎛⋅234 B .n⎪⎭⎫ ⎝⎛⋅324 C .1234-⎪⎭⎫ ⎝⎛⋅n D .1324-⎪⎭⎫⎝⎛⋅n4.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为( )A .-2B .2C .-4D .45.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)= p ,则P(-1<ξ<0)=( )A .p +21B .1-pC .1-2pD .p -216.若)(x f 是偶函数,且当0)1(,1)(,),0[<--=+∞∈x f x x f x 则时的解集是( )___ _ __ A1_ _ A 主视图俯视图B 1 A 1B 1B A BA .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2) 7.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥面A 1B 1C 1, 正视图是边长为2的正方形,该三棱柱的侧视图面积为( ).A. 4B. 22C. 23 D . 3 8.如图所示,在一个边长为1的正方形AOBC 内,曲线2x y =和曲线x y =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点 是等可能的),则所投的点落在叶形图内部的概率是( )A. 21B. 41C. 31D. 619.若点),(y x P 在以A(-3,1),B(-1,0),C(-2,0)为顶点的△ABC 的内部运动(不包含边界),则12--x y 的取值范围( ) A.]1,21[ B. )1,21( C. ]1,41[ D. )1,41(10.已知圆014222=+-++y x y x 关于直线),(022R b a by ax ∈=+-对称,则 ab 的取值范围是( )A .⎥⎦⎤⎝⎛∞-41, B.⎪⎫⎛1,0 C. ⎪⎭⎫⎝⎛-0,41D. ⎪⎭⎫⎢⎣⎡+∞-,4111.若实数y x ,满足0ln |1|=--y x ,则y 关于x12.已知,0,3||,1||=⋅==OB OA OB OA 点C 在AO B ∠内,且︒=∠30AO C ,设),(R n m n m ∈+=,则n m等于( )A .3B .31C .33D .311B.AB CD EA 1 B1C 1D 1第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.如果随机变量ξ~B (n ,p ),且E ξ=7,D ξ=6, 则p 等于_________14.已知4433221022)1(x a x a x a x a a x x ++++=+-, 则4321a a a a +++=______; 15.已知x 、y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为a x y+=95.0ˆ,则a = . 16.如图,是一程序框图,则输出结果为 .三、解答题(解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)函数R x Z k xk x x f ∈∈-++-=,),2214cos(2cos()(π。
宁夏银川一中2014-2015学年高二下学期期末考试数学(理)试卷 (Word版含答案)
银川一中2014/2015学年度(下)高二期末考试数学试卷(理科)命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={x|y=lg(2x-x2)},B={y|y=2x,x>0},R是实数集,则(∁R B)∩A等于() A.[0,1] B.(0,1] C.(-∞,0] D.以上都不对2.函数f(x)=ln(x-2)-2x的零点所在的大致区间是()A.(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=1ln(1)x++)A.[)(]-2,002, B. (]-1,002(), C. []-2,2 D. (]-21,4.设a=60.7,b=0.76,c=log0.76,则a,b,c的大小关系为() A.c<b<a B.c<a<b C.b<a<c D.a<c<b5.以下说法错误的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.若命题p:∃x0∈R,使得2x+x0+1<0,则﹁p:∀x∈R,则x2+x+1≥06.函数y=lg|x|x的图象在致是()7.偶函数y=f(x)在x∈[0,)+∞时,f(x)=x-1,则f(x-1)<0的解集是( ) A.{x|-1<x<0}B.{x|x<0或1<x<2}C.{x|0<x<2}D.{x|1<x<2}8.函数f(x)=⎪⎩⎪⎨⎧≤+-〉), )(1(524)1(xxaxa x满足对任意121212()(),0f x f xx xx x-≠>-都有成立,则实数a 的取值范围是( )A .),4(+∞B .)8,6[C .)8,6(D .)8,1( 9.若不等式x 2+ax+1≥0对于一切x ∈(0,12)恒成立,则a 的取值范围是( ) A .a≥0 B .a≥-2 C .a≥-52D .a≥-3 10.已知函数f (x )=112log (421)x x +-+的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14]∪[4,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间[)0+∞,上的函数,且在该区间上单调递增,则满足f(2x-1)<f(13)的x 的取值范围为__________ 15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=(12)x -3.其中所有正确命题的序号是________. 三、解答题(共70分) 17.(12分)DEABP 给定两个命题:p :对任意实数x 都有012>++ax ax 恒成立;q :关于x 的方程02=+-a x x 有实数根;如果P ∨q 为真,P ∧q 为假,求实数a 的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围. 19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值. 20.(12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+ax ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且BC BD 31=,CA CE 31=,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
宁夏回族自治区银川一中2024-2025学年高三第二次月考数学试卷
宁夏回族自治区银川一中2024-2025学年高三第二次月考数学试卷一、单选题1.设集合{}1,4A =,{}240B x x x m =-+=,若{}1A B ⋂=,则集合B =( )A .{}1,3-B .{}1,3C .{}1,0D .{}1,52.已知函数()10,()31x f x a a a -=>≠-恒过定点(),M m n ,则函数1()n g x m x +=+的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b a c a -<+B .2c ab <C .c c b a> D .b c a c <4.已知函数()f x 及其导函数()f x '的定义域均为R ,且()1f x '+为奇函数,则( ) A .()10f = B .()20f '= C .()()02f f =D .()()02f f '='5.如图为函数()y f x =在[]6,6-上的图像,则()f x 的解析式只可能是( ).A .())ln cos f x x x =B .())ln sin f x x x =C .())ln cos f x x x =D .())ln sin f x x x =6.当[]0,2πx ∈时,曲线cos y x =与π2cos 36y x ⎛⎫=- ⎪⎝⎭交点的个数为( )A .3B .4C .5D .67.已知3,24ππα⎛⎫∈ ⎪⎝⎭,π1πtan tan 424αα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则21sin 24cos αα-=()A.6+B .6-C .17+D .17-8.已知(),()f x g x 是定义域为R 的函数,且()f x 是奇函数,()g x 是偶函数,满足2()()2f x g x ax x +=++,若对任意的1212x x <<<,都有()()12125g x g x x x ->--成立,则实数a 的取值范围是( ) A .[)0,∞+B .5,4∞⎡⎫-+⎪⎢⎣⎭C .5,4∞⎛⎫-+ ⎪⎝⎭D .5,04⎡⎤-⎢⎥⎣⎦二、多选题9.下列说法正确的是( )A .函数()2f x x =+与()2g x =是同一个函数B .若函数()f x 的定义域为[]0,3,则函数(3)f x 的定义域为[]0,1C .已知命题p :0x ∀>,20x ≥,则命题p 的否定为0x ∃>,20x <D .定义在R 上的偶函数()f x 满足()(2)0f x f x --=,则函数()f x 的周期为2 10.已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则下列说法正确的是( )A .π2是函数()f x 的周期B .函数()f x 在区间π0,6⎛⎫⎪⎝⎭上单调递增C .函数()f x 的图象可由函数sin 2y x =向左平移π8个单位长度得到()πsin 24f x x ⎛⎫=+ ⎪⎝⎭D .函数()f x 的对称轴方程为()ππZ 48k x k =-∈ 11.已知函数()323f x ax ax b =-+,其中实数0,a b >∈R ,则下列结论正确的是( )A .()f x 在()0,∞+上单调递增B .当()f x 有且仅有3个零点时,b 的取值范围是()0,4aC .若直线l 与曲线()y f x =有3个不同的交点()()()112233,,,,,A x y B x y C x y ,且AB AC =,则1233x x x ++=D .当56a b a <<时,过点()2,P a 可以作曲线()y f x =的3条切线三、填空题12.已知函数2()()f x x x a =+在1x =处有极小值,则实数a =.13.已知函数y =f x 为奇函数,且最大值为1,则函数()21y f x =+的最大值和最小值的和为.14.在三角函数部分,我们研究过二倍角公式2cos 22cos 1x x =-,我们还可以用类似方式继续得到三倍角公式.根据你的研究结果解决如下问题:在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若π3A ≤,3cos 4cos 3cos 0C A A +-=,则()14tan tan AB A +-的取值范围是.四、解答题 15.已知函数()cos e xxf x =. (1)讨论函数()f x 在区间()0,π上的单调性;(2)若存在0π0,2x ⎡⎤∈⎢⎥⎣⎦,使得00()0f x x λ-≤成立,求实数λ的取值范围.16.如图,AB 是半圆ACB 的直径,O 为AB 中点,,2OC AB AB ⊥=,直线BD AB ⊥,点P 为»BC 上一动点(包括,B C 两点),Q 与P 关于直线OC 对称,记,,POB PF BD F θ∠=⊥为垂足,,PE AB E ⊥为垂足.(1)记»CP 的长度为1l ,线段PF 长度为2l ,试将12L l l =+表示为θ的函数,并判断其单调性;(2)记扇形POQ 的面积为1S ,四边形PEBF 面积为2S ,求12S S S =+的值域.17.已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><,再从条件①,条件②,条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定.条件①:(0)0f =;条件②:若12()2,()2f x f x ==-,且12x x -的最小值为π2;条件③:()f x 图象的一条对称轴为π4x =-. (1)求()f x 的解析式;(2)设函数()()()6g x f x f x π=++,若π0,2α⎛⎫∈ ⎪⎝⎭,且()2g α=,求π()224f α-的值.18.已知函数(1)()ln 1a x f x x x -=-+.(1)当2a =时,求函数()f x 在点(1,(1))f 处的切线方程;(2)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (3)讨论函数()f x 的零点个数.19.定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由; (2)是否存在a 使()f x 的极值差比系数为2a -?若存在,求出a 的值;若不存在,请说明理由;(3)52a ≤≤,求()f x 的极值差比系数的取值范围.。
银川一中高三第二次月考数学(理科)试卷
银川一中2016届高三年级第二次月考数 学 试 卷(理) 命题人:刘正泉第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y=的定义域为A.{x|x≠} B.(,+∞) C.(-∞,) D.[,+∞)2.函数的值域为A、 B、 C、 D、3. 设函数f(x)=lo g a x(a>0且a≠1)满足f(9)=2,y=f-1(x)是y=f(x)的反函数,则f-1(lo g2)等于aA.2 B. C. D.lo g24. 函数y=cos2(2x+)-sin2(2x+)的最小正周期是( )A. B.2 C.4 D.5.已知等差数列满足,则有A. B. C. D.6.x为三角形的一个内角,且 sinx+cosx=,则sin2x等于A. B.- C.3 D.-37.函数f(x) =的零点所在的大致区间是A.(1, 2) B.(e,3) C.(2,e) D.(e,+∞)8.已知定义域为的函数为偶函数,且上是增函数,若的解集为A. B. C. D.9.下面能得出△ABC为锐角三角形的条件是A. B.C. D.10.在三角形ABC中,AB=2,AC=4.P是三角形ABC的外心,数量积等于A.6 B.-6 C.3 D.-311.已知函数在区间[1,2]上单调递增,则实数a的取值范围是A. B. C. D.12.已知可导函数在点处切线为(如图),设,则A.的极大值点B.的极小值点C.的极值点D.的极值点第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.13. 已知,,与的夹角为,要使与垂直,则= .14.已知函数在一个周期内的图象如图所示,要得到函数的图象,则需将函数的图象向_______平移 ________个单位。
O132-xy15. 向量=(-2,3),=(1,m),若、夹角为钝角,则实数m的范围是_________.16.关于的方程有负数根,则实数的取值范围为___________三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知A、B是△ABC的两个内角,,其中、为互相垂直的单位向量,若求的值.18.(本小题满分12分)数列各项均为正数,其前项和为,且满足.(1)求证:数列为等差数列(2)求数列的通项公式(3)设, 求数列的前n项和,并求使对所有的都成立的最大正整数m的值.19. (本小题满分12分)已知函数(1)若的表达式;(2)若函数上单调递增,求b的取值范围20.(本小题满分14分)已知数列{}中,在直线y=x上,其中n=1,2,3….(1)令求证数列是等比数列;(2)求数列(3)设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。
2023届宁夏回族自治区银川一中高三下学期第二次模拟考试 数学(理)答案
银川一中2023届高三第二次模拟数学(理科)参考答案一、单选题1.【答案】A【分析】根据给定条件,求出复数z 及z ,再利用复数除法运算求解作答.【详解】依题意,12z i =+,则12i z =-,所以12i (12i)(12i)34i 34i 12i (12i)(12i)555z z +++-+====-+--+.故选:A2.【答案】D 【分析】由已知可推得2B ∈,代入即可解得2m =-,代入即可得出答案.【详解】由题意可知,2B ∈,即2220m -+=,所以2m =-,所以,{}{}2202,1B x x x =--==-.故选:D.3.【答案】C【分析】根据含量词命题的否定形式可得到原命题,通过反例可说明原命题为假命题.【详解】 命题P 的否定为特称命题,P ∴:x ∀∈R ,211x +>,当0x =时,211x +=,P ∴为假命题,ABD 错误,C 正确.故选:C.4.【答案】B【分析】求出基本事件总数,再求出和为奇数事件所包含的基本事件个数,根据古典概型求解.【详解】不超过17的质数有:2,3,5,7,11,13,17,共7个,随机选取两个不同的数,基本事件总数27C 21n ==,其和为奇数包含的基本事件有:(2,3),(2,5),(2,7),(2,11),(2,13),(2,17),共6个,所以62217P ==.故选:B 5.【答案】B【分析】执行程序即可算出其输出值结果.【详解】由题意可知,流程图的功能为计算111111223344556S =++++⨯⨯⨯⨯⨯的值,裂项求和可得:111111111122334455566S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.6.【答案】D【分析】根据一次函数、反比例函数、幂函数和分段函数的性质,逐个选项进行判断即可得到答案.【详解】对于A :函数2y x =-+的定义域为R ,值域也为R ,不符合题意;对于B:函数y =的定义域和值域都为[)0,∞+,不符合题意;对于C :2y x =的定义域和值域都为{}0x x ≠,不符合题意;对于D :2,02,0x x y x x -≤⎧=⎨+>⎩的定义域为R ;当0x ≤时,22y x =-≤-;当0x >时,22y x =+>;所以值域为(](),22,∞∞--⋃+,定义域和值域不相同,符合题意;故选:D .7.【答案】A【分析】利用向量垂直的坐标表示,结合数量积公式,即可求解.【详解】因为()2cos 75cos152sin 75sin152cos 15750a b ⋅=-=+=,2a = ,1b = .所以()()222280a b a b a b λλλ+⋅-=-=-= .所以8λ=.故选:A 8.【答案】A 【分析】由题意求出双曲线的一条渐近线的倾斜角,可得渐近线的斜率,根据离心率的计算公式可得答案.【详解】由题意设一条渐近线的倾斜角为π,(0,)2αα∈,则另一条渐近线的倾斜角为5α,由双曲对称性可得π5π,=6ααα+=∴,则一条渐近线的斜率为πtan 6=设双曲线的长半轴长为a ,短半轴长为b,则b a =,故离心率为3e ==,故选:A 9.【答案】C 【分析】根据已知条件求得123R h =,243R h =,代入体积公式计算即可.【详解】设小球缺的高为1h ,大球缺的高为2h ,则122h h R +=,①由题意可得:122π12π2Rh Rh =,即:212h h =,②所以由①②得:123R h =,243R h =,所以小球缺的体积23112228ππ333381R R R V R ⎛⎫⎛⎫=-⨯= ⎪ ⎝⎭⎝⎭,大球缺的体积23214480ππ333381R R R V R ⎛⎫⎛⎫=-⨯= ⎪ ⎪⎝⎭⎝⎭,所以小球缺与大球缺体积之比为313228π78180π2081R V R V ==.故选:C.10【答案】B 【分析】由判别式可解得6k ,由根与系数关系可得121212111331x x k x x x x k k ++===++ ,由k 的范围结合不等式的性质变形可得答案.【详解】由题意可得∆2()4(3)0k k =--+,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331kk k==++,6k ,∴1106k <,3102k <,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B 11.【答案】B 【分析】根据二倍角公式得到11tan 10γ=,代入式子得到22111061410hhD d ==++,解得答案.【详解】10sin 211cos 21γγ=+,即220sin cos 10tan 112cos γγγγ==,所以11tan 10γ=,22111061410h h D d ==++,解得66h =,故选:B.12.【答案】B【分析】结合229x y +≥可确定曲线上的点的位置,结合双曲线和圆的图象可确定曲线Γ的图象,采用数形结合的方式可求得结果.【详解】由题意得:2290x y +-≥,即229x y +≥,即曲线Γ上的点(),x y 为圆229x y +=上或圆229x y +=外的点,由221033x y ⎛⎫-- ⎪⎝⎭得:22133y x -=或229x y +=,由22221339x y x y ⎧-=⎪⎨⎪+=⎩得:xy ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩x y ⎧⎪⎨⎪⎩x y ⎧=⎪⎨=⎪⎩由此可得曲线Γ的图象如下图所示,由图象可知:当()3,m ∈- 时,直线y m =与曲线Γ有四个不同交点;∴实数m的取值范围为()3,- .故选:B.二、填空题13.【答案】11【分析】根据题设的抽取方式,结合随机表法依次写出所得编号,即可得答案.【详解】由题设,依次取出的编号为08、02、14、07、11、05,所以第5个个体的编号为11.故答案为:1114.【答案】2【分析】由题,利用导数及韦达定理可得37a a,后利用等比中项性质可得答案.【详解】()284f x x x '=-+,由题37a a ,是方程2840x x -+=的两个不等实根,则由韦达定理373740,80a a a a =>+=>,所以370,0a a >>又5a 是37a a ,的等比中项且5a 与37a a ,同号,则2555402a a a =>⇒=,.故答案为:2.15.【答案】60︒【分析】把展开图恢复到原正方体,得到AE //DC ,从而得到∠BAE 或其补角是异面直线AB 与CD 所成的角,从而可解.【详解】如图所示,把展开图恢复到原正方体.连接AE ,BE .由正方体可得//CE AD 且CE AD =,∴四边形ADCE 是平行四边形,∴AE //DC .∴BAE ∠或其补角是异面直线AB 与CD 所成的角.由正方体可得:AB AE BE ==,∴ABE 是等边三角形,∴60=︒∠BAE .∴异面直线AB 与CD 所成的角是60°.故答案为:60°16.【答案】1【分析】构造函数()x f x e =,设切点为11(,)x y ,设()ln g x x =,设切点为22(,)x y ,结合条件得到12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x =交点的横坐标,利用对称性得出1122(,),(,)x y x y 关于直线y x =对称,从而得出12e x x =,12ln x x =,然后计算出12k k .【详解】设()x f x e =,则()e x f x '=,设切点为11(,)x y ,则11e x k =,则切线方程为111e ()x y y x x -=-,即111e e ()x x y x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以1111e e (1)x x x --=--,所以11e 1x x =,设()ln g x x =,则1()g x x '=,设切点为22(,)x y ,则221k x =,则切线方程为2221()y y x x x -=-,即2221ln ()y x x x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以22211ln (1)x x x --=--,所以22ln 1x x =,则12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x =交点的横坐标,易知()f x 与()g x 的图象关于直线y x =对称,而曲线1y x =也关于直线y x =对称,因此点1122(,),(,)x y x y 关于直线y x =对称,从而12e x x =,12ln x x =,所以1122e 1x k k x ==.故答案为:1.三、解答题17.【答案】(1)21n a n =+;(2)详见解析.【分析】(1)设数列{}n a 的公差为d ,将已知条件转化为1,a d 关系,即可求解;(2)根据{}n b 通项公式,用裂项相消法求出和n T ,即可证明结论.【详解】(1)由设数列{}n a 的公差为d ,则11393315a d a d +=⎧⎨+=⎩解得2d =,13a =,所以{}n a 是首项为3,公差为2的等差数列,所以21n a n =+;(2)由21n a n =+,可得111111()(21)(23)22123n n n b a a n n n n +===-++++,所以12n n T b b b =+++ 1111111()()()235572123n n ⎡⎤=-+-++-⎢⎥++⎣⎦11111()2323646n n =-=-++,又1046n >+,故.18.【答案】(1)12(2)分布列见解析,()87E X =(3)3月3日【分析】(1)根据古典概型公式求解即可.(2)根据题意得到0,1,2X =,()2327C 10C 7P X ===,()113427C C 41C 7P X ===,()2427C 22C 7PX ===,再写出分布列数学期望即可.(3)根据折线图和频率分布直方图求解即可.【详解】(1)令时间A 为“职工甲和职工乙微信记步数都不低于10000”,从3月2日至3月7日这6天中,3月2日、5日、7日这3天中,甲乙微信记步数都不低于10000,故()3162P A ==.(2)由(1)知:0,1,2X =,()2327C 10C 7P X ===,()113427C C 41C 7P X ===,()2427C 22C 7P X ===,X的分布列为:X 012P 174727()14280127777E X =⨯+⨯+⨯=(3)根据频率分步直方图知:微信记步数落在[]20,25,[)15,20,[)10,15,[)5,10,[)0,5(单位:千步)区间内的人数依次为2000.1530⨯=人,2000.2550⨯=人,2000.360⨯=人,2000.240⨯=人,2000.120⨯=人,由甲微信记步数排名第68,可知当天甲微信记步数在15000到20000万之间,根据折线图知:只有3月2日,3月3日,3月7日.由乙微信记步数排名第142,可知当天乙微信记步数在5000到10000万之间,根据折线图知:只有3月3日和3月6日,所以3月3日符合要求.19.【答案】(1)26y x =(2)证明见解析【分析】(1)将(6,6)M -代入抛物线即可求解;(2)设()()1122,,,A x y B x y ,直线l 的方程为,(0)my x t t =-≠,将直线l 与抛物线进行联立可得12126,6y y m y y t +==-,结合OA OB ⊥可得6t =,即可求证【详解】(1)因为抛物线C 过点(6,6)M -,∴2(6)26p -=⨯,解得3p =,∴抛物线C 的标准方程为26y x =.(2)设()()1122,,,A x y B x y ,直线l 的方程为,(0)my x t t =-≠,联立26my x ty x =-⎧⎨=⎩,化为2660y my t --=,236240m t ∆=+>,∴12126,6y y m y y t +==-,∵OA OB ⊥,∴()212121236y y OA OB x x y y ⋅=+= 12661036t y y t -⎛⎫+=-+= ⎪⎝⎭,0t ≠,16n T <解得6t =,满足236240m t ∆=+>,∴直线l的方程为6my x =-,∴直线过定点()6,0.20.【答案】(1)存在,理由见解析【分析】(1)根据面面平行的判定定理、性质定理分析证明;(2)根据题意结合长方体的外接球可得12AA =,建系,利用空间向量求二面角.【详解】(1)当点D 为AB 的中点时,1O D 平面1A AC ,证明如下:取AB 的中点D ,连接OD ,∵O ,D 分别为BC ,AB 的中点,则OD AC ,OD ⊄平面1A AC ,AC ⊂平面1A AC ,∴OD 平面1A AC ,又∵1OO 1AA ,1OO ⊄平面1A AC ,1AA ⊂平面1A AC ,∴1OO 平面1A AC ,1O O OD O ⋂=,1,O O OD ⊂平面1OO D ,∴平面1OO D 平面1A AC ,由于1O D ⊂平面1OO D ,故1O D ∥平面1A AC .(2)∵BC 是O 的直径,可得90BAC ∠=︒,即AB AC ⊥,且2BC =,30ABC ∠=︒,故AB =1AC =,又∵1AA ⊥平面ABC ,且,AB AC 平面ABC ,∴11,AA AB AA AC ⊥⊥,即AB ,AC ,1AA 两两垂直,且点1A ,A ,B ,C 可知该球为以AB 、AC 、1AA 则(22221AB AC AA ++=,可得12AA =,以A为原点,AB ,AC ,1AA 所在直线分别为x ,y ,z 轴建立直角坐标系,则()0,0,0A,)B ,()0,1,0C ,()10,0,2A ,得)12A B =- ,()10,1,2AC=- ,设(),,n x y z =r 为平面1A BC 的一个法向量,则112020n A B z n A C y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令2x=,则y z =,可得(2,=r n ,且()0,1,0AC = 为平面1A AB 的一个法向量,设二面角1C A B A--为θ,则cos cos ,19AC n AC n AC n θ⋅===uuu r r uuu r r uuu r r ,所以二面角1C A B A --的余弦值为19.21.【答案】(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析.【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围;(2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明;②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明.【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221a f x x x '=+++.(1)由()01f '=,可得2202a ++=,8a =-.又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增.故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增,故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立,即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+,即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤,解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<>令:11x k =+,得11ln(111k k +<++,即:12ln()11k k k +>++∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2即证.【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题.22.【答案】(1)C 的极坐标方程为2sin22ρθλ=,ππ,Z 2k k θ≠+∈,l的直角坐标方程为40x +=(2)1λ=【分析】(1)消去参数得到C 的普通方程,再利用公式得到极坐标方程,注意定义域,再求出l 的直角坐标方程;(2)将()π12θρ=∈R 代入C 的极坐标方程,求出,A B 的坐标,得到AB 为直径的圆的圆心和半径,根据相切关系得到方程,求出答案.【详解】(1)将曲线C 的参数方程x ty tλ=⎧⎪⎨=⎪⎩消去t ,得C 的普通方程为xy λ=,且因为0t ≠,所以0x ≠,将cos ,sin x y ρθρθ==,ππ,Z 2k k θ≠+∈,代入xy λ=,得2sin cos ρθθλ=,即2sin22ρθλ=,ππ,Z 2k k θ≠+∈,即为C 的极坐标方程,由直线l 的方程πsin 26ρθ⎛⎫-= ⎪⎝⎭化简得1sin cos 222ρθρθ-=,化简得40x +=,即为l 的直角坐标方程.(2)将直线π12θ=代入2sin22ρθλ=,得24ρλ=,即12ρρ==-故以AB 为直径的圆圆心为O,半径r =圆心O 到直线l的距离2d =,由已知得2=,解得1λ=.23.【答案】(1)(0,4)【分析】(1)根据零点分区间,分类求解即可,(2)根据绝对值三角不等关系可得21a =,进而结合基本不等式即可求解.【详解】(1)当1a =-时,()4f x <等价于|1||3|4x x -+-<,当1x ≤时,13420x x x -+-<⇒-<,则01x <≤,当13x <<时,13424x x -+-<⇒<,则13x <<,当3x ≥时,134244x x x -+-<⇒-<,则34x ≤<,综上所述,不等式()4f x <的解集为(0,4).(2)()3(3)2f x x a x a x a x a a =+++≥+-+= ,当且仅当()(3)0x a x a ++≤等号成立,min ()|2|2f x a ∴==,即21a =,24()()a m a m n -+= ,∴22241a m n =+=,∴2222222211445()59()n n m mn m m n mn ⎛⎫⎛⎫+=++=++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当224()()mn mn =,即2()2mn =,即213m =,26n =时,等号成立,故221n m +的最小值为9。
宁夏回族自治区银川一中2023届高三二模数学(理)试题
②设 an
1 n 1
n
1
2
n
1
n
1
n
N
* ,求证: an
ln
2
(二)选考题:共 10 分.请考生在第 22、23 两题中任选一题做答,如果多做,则按所做的第一题记分. 22.[选修 4—4:坐标系与参数方程]
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
y
t t
(t
为参数,常数
0
),以坐标原点为极点,
(1)弦 AB 上是否存在点 D ,使得 O1D ∥平面 A1AC ,请说明理由; (2)若 BC 2 , ABC 30 ,点 A1 , A , B , C 都在半径为 2 的球面上,求二面角 C A1B A 的余
弦值. 21.(12 分)
已知函数 f x a x11 dt x 12 x 1 .
7.【答案】A【详解】因为 a b 2 cos 75 cos15 2sin 75sin15 2 cos 15 75 0 ,
a 2 , b 1.所以
2a b
a b
2 2a
b
2
8
0 .所以
8.
8.【答案】A【详解】由题意设一条渐近线的倾斜角为
,
0,
2
,
则另一条渐近线的倾斜角为 5 ,由双曲对称性可得 5 ,∴ ,则一条渐近线的斜率为 6
(1)求an 的通项公式;
(2)若 bn
1 an an 1
,bn 的前 n
项和为 Tn
,证明: Tn
1 6
.
18.(12 分) 某校工会开展健步走活动,要求教职工上传 3 月 1 日至 3 月 7 日的微信记步数信息,下图是职工甲和职工乙微 信记步数情况:
宁夏银川九中2014届高三下学期第二次模拟考试 数学(理) 含答案
命题人:高国君 审题人:宋云日期:2014.3.12数学(理)试题头说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22-24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上.在本试卷上答题无效. 注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对姓名、准考证号信息.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0。
5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 参考公式:样本数据x 1,x 2, …,x n 的标准参 锥体体积公式V =31Sh银川九中2014年第二次高考模拟考试数学理科试题其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V =Sh24S R =π,343V R =π 其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设复数z 满足i 2)i 1(=-z ,则=z ( )A .i 1+-B .i 1--C .i 1+D .i 1- 2、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则此双曲线的离心率为( )A 。
B 。
C.D.3、等差数列}{na 中,已知121-=a ,013=S,使得0>na的最小正整数n 为( )A .7B .8C .9D .104、设命题P :在△ABC 中,sin 2A=sin 2B+sin 2C —sinBsinC ,则B=6π;命题q :将函数y =cos2x 的周期为π.则下列判断正确的是 ( )A .p 为真B .┑q 为真C .p ∧q 为假D .p ∨q 为假命题5、)sin()(ϕω+=x A x f (0,0>>ωA )的图象如右图所示,为了得到x A x g ωsin )(=的图象,可以将)(x f 的图象( )A .向右平移6π个单位长度 B .向左平移3π个单位长度C .向左平移6π个单位长度D .向右平移3π个单位长度6、若||2||||a b a b a=-=+,则向量a b +与a 的夹角为()A .6π B.3π C.32πD.65π7、从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有( )A 。
2014银川一中高三第二次模拟考试卷
文科综合能力测试政治科(2014银川一中高三第二次模拟考试卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第42~48题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题目涂黑。
第Ⅰ卷12.作为成本的一部分,税负变化会影响企业生产。
若用P表示价格,Q表示数量,A1到A2表示某商品减税前后的变化,在不考虑其它因素的情况下,该项减税政策的影响可以表示为图6中的图613. 某地方政府预推出新政,“新能源汽车免摇号不限行”,这一做法①将推动人们转变消费方式;②是市场配置资源的具体体现③有利于解决汽车拥堵的现象;④将增强新能源汽车的市场竞争力A. ①②B. ②③C. ①④D. ③④14.2013年11月李克强总理在黑龙江考察时指出,要着力创新农村生产经营体制,在保护农民合法权益、尊重农民意愿的前提下,积极探索股份合作等多种方式的适度规模经营。
这是因为①股份合作等多种形式,有利于壮大集体经济,增强公有制的主体地位②个体经济力量单薄,无力抵御市场风险和自然灾害③家庭联产承包责任制已不适应农村经济的发展④农村的适度规模经营有利于提高经济效益A. ①④B. ①②C. ②③D. ③④15.中国(上海)自由贸易试验区(2013年9月29日举行挂牌仪式),是中国大陆境内第一个自由贸易区,将在未来十年给上海发展带来红利。
【数学】宁夏银川市宁夏大学附属中学2014届高三下学期第一次模拟考试(理)
宁大附中2013-2014学年第二学期第一次模拟考试高三数学(理)试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是:( ) A .4 B .3 C .2 D .1 2.已知复数z =z 是z 的共轭复数,则z z ∙=( )A.14 B.12C.1D.2 3. 下列结论正确的...是:( )A .命题“如果222p q +=,则2p q +≤”的否命题是“如果2p q +>,则222p q +≠”;B .命题:[0,1],1x p x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为假; C .“若22,am bm <则a b <”的逆命题为真命题; D. 设0<x <2π,则“x sin 2x <1”是“x sinx <1”的必要而不充分条件4.函数y=cos 2(2x+3π)-sin 2(2x+3π)的最小正周期是( ) A .π B .2π C .4π D .2π5. 如右图所示的程序框图,输出S 的结果的值为( )A. 12-B. 0C.1D.126.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 1、BC 1的中点,则以下结论中不成立...的是( ) A. EF 与BB 1垂直 B. EF 与BD 垂直 C. EF 与CD 异面 D. EF 与A 1C 1异面7.已知正项等比数列{a n }满足:a 2 014=a 2 013+2a 2 012,且a n ·a m =4a 1, 则6⎝ ⎛⎭⎪⎫1m +1n 的最小值为:( )A. 23B .2C .4D .68.如图,长方形的四个顶点为2,4(),0,4(),0,0(B A O x y =经过点B .现将一质点随机投入长方形图中阴影区域的概率是( )A .32 B .21 C .125 D .439.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )A .12种 B. 18种 C. 36种 D. 54种的焦点F 作渐近线的垂线l ,则直线l 与圆A .相交B .相离C .相切D .无法确定11.若f (n )为n 2+1(n ∈N +)的各位数字之和,如:142+1=197,1+9+7=17,则f (14)=17;记f 1(n )=f (n ),f 2(n )=f (f 1(n )),…,f k +1(n )=f (f k (n )),k ∈N +,则f 2 012(8)=( )A .1B .3C .5D .712.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()x f x a g x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f fg g -+=-.若数列(){}()f n g n 的前n 项和大于126,则n 的最小值为: ( )A. 6B. 7C. 8D. 9第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知数列{}n a 的前n 项和为2n S n =,某三角形三边之比为234::a a a ,则该三角形最大角为_____________. 14. 设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .15.四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。
银川一中第二次模拟考试-理科数学
绝密★启用前2014年普通高等学校招生全国统一考试理 科 数 学(银川一中第二次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R ,集合⎭⎬⎫⎩⎨⎧<-=01|A x x x ,{}1|≥=x x B ,则集合{}0|≤x x 等于 A .A B ⋂B .A B ⋃C .U C A B ⋂()D .U C A B ⋃() 2.若复数z 满足i iz 42+=,则z = A .i 42+B .i 42-C .i 24-D .i 24+3.已知等比数列{}n a 的公比大于1,7273=a a ,2782=+a a ,则=12a A .96B .64C .72D .484.设l ,m ,n 表示不同的直线,α、β、γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α; ③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ⊂β,则l ∥m . 其中正确命题的个数是A .2B .1C .3D .4 5.从抛物线x y 42=上一点P 引抛物线准线的垂线, 垂足为M ,且|PM|=5,设抛物线的焦点为F , 则△MPF 的面积( )A .5B .10C .20D .156.阅读如图所示的程序框图,若输入919a =,则输出的k A .9 B . 10 C . 11 D . 127.将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为 A .18 B .15 C .12 D .9 8.某几何体的三视图如图所示,则该几何体的表面积为 A .π2 B .π22C .(212+)πD .(222+)π9.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形10.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象A .①④②③B .①④③②C .④①②③D .③④②①11.过双曲线12222=-by a x )0,0(>>b a 的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为B , C .若BC AB =2,则双曲线的离心率是 A .2B .3C .5D .1012.设函数)(x f y =在(-∞,+∞)内有定义,对于给定的正数k ,定义函数:x⎩⎨⎧>≤=))(()(()()(k x f kkx f x f x f k ,取函数x e x x f ---=2)(,若对任意的),(∞+-∞∈x ,恒有)()(x f x f k =,则 A. k 的最大值为2 B. k 的最小值为2 C. k 的最大值为1D. k 的最小值为1第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知向量)1,(z x -=,),2(z y +=,且⊥,若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x xy x ,则z 的最大值为 14.6)1xx -(的二项展开式中含3x 的项的系数为15.若(0,)απ∈,且3cos 2sin()4παα=-,则sin 2α的值为 .16.在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为三、解答题:解答应写出文字说明.证明过程或演算步骤17.(本小题满分12分)设数列{}n a 的各项均为正数,它的前n 项的和为n S ,点(,)n n a S 在函数2111822y x x =++的图像上;数列{}n b 满足1111,()n n n n b a b a a b ++=-=.其中n N *∈. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设n n na cb =,求证:数列{}n c 的前n 项的和59n T >(n N *∈).理科数学试卷 第3页(共6页)18 (本题满分12分)今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。
宁夏银川市第一中学2014届高三上学期第二次月考数学试卷(理)
宁夏银川市第一中学2014届高三上学期第二次月考数学试卷(理)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合}02|{≥-=x x A ,|{x B =0<x 2log <2},则)(B A C R ⋂是( ) A .|{x 2<x <4} B .}2|{≥x x C .}4,2|{≥≤x x x 或 D . ,2|{〈x x 或}4≥x 2. 在ABC ∆中,“3π=A ”是“1cos 2A =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数4.已知)4sin(cos 22sin ,2,21)4tan(2παααπαππα--<<-=+则且等于( )A .552-B .1053-C .552 D .10103 5. 下列函数中,图像的一部分如右图所示的是( )A .sin()6y x π=+ B. sin(2)6y x π=-C. cos(4)3y x π=-D. cos(2)6y x π=- 6.由直线x =1,x =2,曲线1y x=及x 轴所围图形的面积为( ) A .47 B .411 C .ln2 D .2ln 27. 为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A. 向左平移3π个单位 B. 向右平移6π个单位 C. 向右平移3π个单位 D. 向左平移6π个单位 8. 定义在R 上的偶函数,f (x )满足:对任意的x 1, x 2∈(],0-∞(x 1≠x 2), 有(x 1-x 2)[f (x 2)-f (x 1)]>0,则当n *N ∈时,有( )A .f (-n)<f (n-1)<f (n+1) B. f (n -1)<f (-n )<f (n +1) C. f (n +1)<f (-n )<f (n -1) D. f (n +1)<f (n -1)<f (-n ) 9. 函数1|log |3)(21-=x x f x 的零点个数为( )A .0B .1C .4D .210.函数12,41()),3),7),2(2),4x x f x a f b f c f xf x x ⎧->⎪====⎨⎪+≤⎩记则( )A .a >c >bB .b <a <cC .a <c <bD .a >b >c11. )0)()((),(≠x g x g x f 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''<,且0)()(,0)3(<=-x g x f f 的解集为( ) A .(-∞,-3)∪(3,+∞) B .(-3,0)∪(0,3)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.已知定义在R 上的偶函数f (x )在[0,+∞]上是增函数,不等式f (ax + 1)≤f (x –2) 对任意x ∈[21,1]恒成立,则实数a 的取值范围是( )A .[–3,–1]B .[–2,0]C .[–5,1]D .[–2,1]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13. 设定义在R 上的函数f (x )满足7)()2(=∙+x f x f ,若f (1)=2,则f (107)=__________. 14.已知直线y =2x +1与曲线)ln(a x y +=相切,则a 的值为 . 15. 下列几个命题:①函数y =是偶函数,但不是奇函数;②“⎩⎨⎧≤-=∆>0402ac b a ”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③ 设函数()y f x =定义域为R ,则函数(1)y f x =-与(1)y f x =-的图象关于y 轴对称; ④若函数)0)(cos(≠+=A x A y ϕω为奇函数,则)(2Z k k ∈+=ππϕ;⑤已知x ∈(0,π),则y =sin x +xsin 2的最小值为 其中正确的有___________________。
宁夏银川一中高考数学二模试卷(理科)解析版
k0
2.072
P(K2≥k0) 0.15
2.706 0.10
3.841 0.05
5.024 0.025
6.635 0.010
7.879 0.005
10.828 0.001
参考公式:
,n=a+b+c+d.
19. 如图所示,ABCD 是边长为 2 的正方形,AE⊥平面 BCE,且 AE=1.
(Ⅰ)求证:平面 ABCD⊥平面 ABE;
③异面直线 A1P 与 AD1 所成角的取值范围是
;
④三棱锥 D1-APC 的体积不变.
A. ①②
B. ①②④
C. ③④
D. ①④
12. 已知函数 f(x)=
若函数 g(x)=f(f(x))-2 恰有 5 个零点,且最
小的零点小于-4,则 a 的取值范围是( )
A. (-∞,-1)
B. (0,+∞)
A. x1,x2,…xn 的平均数
B. x1,x2,…xn 的标准差
C. x1,x2,…xn 的最大值
D. x1,x2,…xn 的中位数
4. 已知等比数列{an}中,有 a3a11=4a7,数列{bn}是等差数列,其前 n 项和为 Sn,且 b7=a7
,则 S13=( )
A. 26
B. 52
C. 78
D. 104
5. 如图,在
中,
,则实数 的值为( )
, 是 上一点,若
A. B. C. D.
6. 学校就如程序中的循环体,送走一届,又会招来一级.老师们目送着大家远去,渐 行渐远…执行如图所示的程序框图,若输入 x=64,则输出的结果为( )
第 1 页,共 19 页
2014届宁夏银川一中高三4月模拟考试理科数学试题(含答案解析)扫描版
a12 q 2, ……………2 分 2 5 a q 32 , 1
a1 1 , q 2,
………………3 分
∴ an 2 n1 ;…………………5 分 (Ⅱ)由题意可得
b b1 b2 b3 L n 2 n 1 , 1 3 5 2 n 1
第 1 页 共 11 页
第 2 页 共 11 页
第 3 页 共 11 页
第 4 页 共 11 页
(数学理科答案)
一、选择题: A 卷答案:1---5CAACC B 卷答案:1---5DAADD
3
6---10CABDB 6---10DABCB
11-12DB 11-12CB
11.提示:曲线 f ( x) = x + 2 x + 1 关于(0,1)中心对称. 12.提示:函数图象不随 p, q 的变化而变化. 二、填空题: 13.
5 ,
cos ÐP1 BA1 =
A1 B 2 2 5 , = = P1 B 5 5
5
故二面角 P - A B - A1 的平面角的余弦值是 2 5
------12 分
第 6 页 共 11 页
19.解: (Ⅰ)由题意得 2 ´
t t 1 ´ (1 - ) = ,解得 t = 1 .……………3 分 2 2 2
两式相减得
Tn 1 2 2 22 L 2n1 2n 1 2n 2n 3 2n 3 ,
第 5 页 共 11 页
∴ Tn 2n 3 2 3 .…………………12 分(整理结果正确即可,不拘泥于形式)
n
18. (本小题满分 12 分) 如 图, 在 三 棱柱 ABC - A1 B1C1 中, AB ^ AC , 顶 点 A1 在底面 ABC 上的 射影恰 为点 B , AB = AC = A1 B = 2 . (Ⅰ)证明:平面 A1 AC ^ 平面 AB1 B ; (Ⅱ)若点 P 为 B1C1 的中点,求出二面角 P - AB - A1 的余弦值. 证明: (Ⅰ)由题意得: A1B ^ 面 ABC , ∴ A1B ^ AC , 又 AB ^ AC , AB I A1B = B ∴ AC ^ 面 AB1 B , ------3 分 ∴平面 A1 AC ^ 平面 AB1 B ; ------5 分 ∵ AC Ì 面 A1 AC , ------2 分
宁夏银川一中2014-2015学年度高二上学期期末考试(数学理)
MD 1C 1B 1A 1D CBA银川一中2014/2015学年度(上)高二期末考试数 学 试 卷(理科)一、选择题:(每题5分)1.若复数z 满足i iz 42+=,则z 等于 A .2+4iB .2-4iC .4-2iD .4+2i2. 用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数 3.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条 件(c -a )·(2b )=-2,则x 的值为( )A .1B .2C .3D .4 4.曲线12ex y =在点2(4e ),处的切线的纵截距为( ) A.-2eB.-24eC.22eD.29e 25.如图,在底面ABCD 为平行四边形的四棱柱ABCD -A 1B 1C 1D 1 中,M 是AC 与BD 的交点,若AA ===1,,, 则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B. c b a ++2121 C .+--2121 D .-+-2121 6.如图,ABCD 是边长为1的正方形,O 为AD 中点,抛物 线F 的顶点为O 且通过点C ,则阴影部分的面积为( ) A .41 B .21 C .31 D .43ABCO DF(1)(2)(3)(4)(5)7.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AC 1→上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ) A.156 B.66 C.153 D.2168. 如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第100个图形由多少个点组成( )A. 9900B. 9901C. 9902D. 9903 9. 设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( )A .1a <-B .1a >-C .1a e <-D .1a e>-10. 已知32()32f x x x =-+,1,2x x 是区间[]1,1-上任意两个值,12()()M f x f x ≥-恒成立,则M 的最小值是( )A. -2B. 0C. 2D. 411. 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-12.已知定义在R 上的奇函数为f (x ),导函数为)('x f ,当]0,(-∞∈x 时,恒有)()('x f x xf -<,令F(x )=x f(x ),则满足F(3)>F(2x -1)的实数x 的取值范围是( )A .(-1,2) B. (-1,21) C. (-2,21) D. (-2,1) 二、填空题:(每题5分)13.函数3()12f x x x =-在区间[33]-,上的最小值是____. 14.设平面α与向量a =(-1,2,-4)垂直,平面β与向量b =(2,3,1)垂直,则平面α与β的位置关DOCAB P系是________.15. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为_____________________.16.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为________. 三、解答题:17.(本小题满分10分) 已知a>0,b>0,求证:b a ab b a +≥+18.(本小题满分12分)直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°, D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.19.(本小题满分12分)用数学归纳法证明:)()12(2)1()12)(12(532311222+∈++=+-++⋅+⋅N n n n n n n n .20.(本小题满分12分)在四棱锥P OABC -中,PO ⊥底面OABC ,60OCB ∠=︒, 90AOC ABC ∠=∠=︒, 且2OP OC BC ===.(1)若D 是PC 的中点,求证://BD 平面AOP ; (2)求二面角P AB O --的余弦值.21.(本小题满分12分)设函数f(x)=(x 2-x-a1)e ax(a>0,a ∈R)) (1)当a=2时,求函数f(x)的单调区间.(2)若不等式f(x)+a3≥0对x ∈(0,+∞)恒成立,求a 的取值范围.22. (本小题满分12)已知()()[)ln()ln ,,0,()x f x ax x x e g x x-=--∈-=-,其中e 是自然常数,.a ∈R (1)讨论1a =-时, ()f x 的单调性、极值; (2)求证:在(1)的条件下,21)()(+>x g x f ; (3)是否存在实数a ,使()f x 的最小值是3,如果存在,求出a 的值;如果不存在,说明理由.高二期末数学(理科)试卷参考答案一、选择题:(每题5分)13.16- 14.垂直 15. f(n2)≥22+n 16. 2 三、解答题: 17.法1:∵a>0,b>0∴a ab b ba b a ab b a -+-=--+0)()()11()(2≥+-=-⋅-=-+-=abb a b a abb a aa b bb a∴b a ab ba +≥+法2:要证:b a ab ba +≥+只需证:a b b a b b a a +≥+z DP只需证:0)()(≥---b a b b a a 只需证:0))((≥--b a b a只需证:0)()(2≥+-b a b a 恒成立 ∴b a ab b a +≥+18..解:(1)证明:设 CA =a , CB =b , CC '=c ,根据题意,|a |=|b |=|c |且a·b =b ·c =c ·a =0, ∴ CE =b +12c , A D '=-c +12b -12a .∴ CE · A D '=-12c 2+12b 2=0,∴ CE ⊥A D ' ,即CE ⊥A ′D .(2) AC '=-a +c ,∴| AC '|=2|a |,| CE |=52|a |.AC '·CE =(-a +c )·(b +12c )=12c 2=12|a |2, ∴cos 〈 AC ',CE 〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010. 19.证明:①n=1时,左=313112=⋅,右=313221=⨯⨯,等式成立 ②假设n=k 时,)12(2)1()12)(12(532311222++=+-++⋅+⋅k k k k k k当n=k+1时,)32)(12()1()12)(12(5323112222+++++-++⋅+⋅k k k k k k)32)(12()1()12(2)1(2++++++=k k k k k k)32)(12(2)252)(1()32)(12(2)1(2)32)((222+++++=++++++=k k k k k k k k k k k )32(2)2)(1()32)(12(2)2)(12)(1(+++=+++++=k k k k k k k k 即:n=k+1时,等式成立,由①②知,对一切n ∈N +,等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前(银川一中第二次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U=R ,集合⎭⎬⎫⎩⎨⎧<-=01|A x x x ,{}1|≥=x x B ,则集合{}0|≤x x 等于 A .A B ⋂B .A B ⋃C . U C A B ⋂()D .U C A B ⋃()2.若复数z 满足i iz 42+=,则z = A .i 42+B .i 42-C .i 24-D .i 24+3.已知等比数列{}n a 的公比大于1,7273=a a ,2782=+a a ,则=12a A .96B .64C .72D .484.设l ,m ,n 表示不同的直线,α、β、γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α; 2014年普通高等学校招生全国统一考试理 科 数 学A .2B .1C .3D .4 5.从抛物线x y 42=上一点P 引抛物线准线的垂线, 垂足为M ,且|PM|=5,设抛物线的焦点为F , 则△MPF 的面积( )A .5B .10C .20D .156.阅读如图所示的程序框图,若输入919a =,则输出的k 值是 A .9 B . 10 C . 11 D . 127.将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为 A .18 B .15 C .12 D .9 8.某几何体的三视图如图所示,则该几何体的表面积为 A .π2 B .π22C .(212+)πD .(222+)π9.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb <cos A ,则△ABC 为A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形10.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图A .①④②③B .①④③②C .④①②③D .③④②①11.过双曲线12222=-by a x )0,0(>>b a 的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为B , C .若BC AB =2,则双曲线的离心率是 A .2B .3C .5D .1012.设函数)(x f y =在(-∞,+∞)内有定义,对于给定的正数k ,定义函数:⎩⎨⎧>≤=))(()(()()(k x f kk x f x f x f k ,取函数xe x xf ---=2)(,若对任意的),(∞+-∞∈x ,恒有)()(x f x f k =,则xxA. k 的最大值为2B. k 的最小值为2C. k 的最大值为1D. k 的最小值为1第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知向量)1,(z x a -=,),2(z y b +=,且b a ⊥,若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x xy x ,则z 的最大值为 14.6)1xx -(的二项展开式中含3x 的项的系数为15.若(0,)απ∈,且3cos 2sin()4παα=-,则sin 2α的值为 .16.在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为三、解答题:解答应写出文字说明.证明过程或演算步骤17.(本小题满分12分)设数列{}n a 的各项均为正数,它的前n 项的和为n S ,点(,)n n a S 在函数2111822y x x =++的图像上;数列{}n b 满足1111,()n n n n b a b a a b ++=-=.其中n N *∈. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设n n na cb =,求证:数列{}n c 的前n 项的和59n T >(n N *∈).18 (本题满分12分)今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。
私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应理科数学试卷 第3页(共6页)该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。
为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查 者中各随机选取两人进行进行追踪调查,记选中的 4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ 的分布列和数学期望.19.(本小题12分)已知正方形ABCD 的边长为1,ACBD O =.将正方形ABCD 沿对角线BD 折起,使1AC =,得到三棱锥A —BCD ,如图所示.(I )若点M 是棱AB 的中点,求证:OM ∥平面ACD ; (II )求证:AO BCD ⊥平面; (III )求二面角A BC D --的余弦值.20.(本小题满分12分)已知F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若P 是第一象限内该图形上的一点,1254PF PF ∙=-,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠AOB 为锐角(其中DEABP O 为作标原点),求直线l 的斜率k 的取值范围.21.(本小题满分12分)设函数1()ln 1af x x ax x-=-+-. (Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)讨论函数()f x 的单调性; (Ⅲ)当31=a 时,设函数25()212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使12()()f x g x ≥成立,求实数b 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且BC BD 31=,CA CE 31=,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
23.(本小题满分10分)选修4—4: 坐标系与参数方程.已知直线: t t y t x (.23,211⎪⎪⎩⎪⎪⎨⎧=+=为参数), 曲线:1C cos ,sin ,x y θθ=⎧⎨=⎩ (θ为参数). (I)设 与1C 相交于B A ,两点,求||AB ; (II)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线 的距离的最小值.24.(本小题满分10分)选修4—5: 不等式选讲.理科数学试卷 第5页(共6页)已知函数a a x x f +-=2)(.(I)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(II)在(I)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.银川一中2014届高三第二次模拟数学(理科)试卷参考答案13. 3 14. 15 15. 1或18-16. 3 17.⑴由已知条件得2111822n n n S a a =++, ①当2n ≥时,2111111822n n n S a a ---=++, ②①-②得:221111()()82n n n n n a a a a a --=-+-,即1111()()4n n n n n n a a a a a a ---+=+-,∵数列{}n a 的各项均为正数,∴14n n a a --=(2n ≥), 又12a =,∴42n a n =-;∵1111,()n n n n b a b a a b ++=-=, ∴1112,4n n b b b +==,∴112()4n n b -=⋅;⑵∵1(21)4n nn na c nb -==-, ∴22113454(23)4(21)4n n n T n n --=+⋅+⋅++-⋅+-⋅,2214434(25)4(23)4(21)4n n n n T n n n --=+⋅++-⋅+-⋅+-⋅,两式相减得21555312(444)(21)4(2)4333n n n n T n n --=++++--=---⋅<-,∴59n T >.18.(Ⅱ)ξ的所有可能取值为:0,1,2,3……………6分()22642251061545150=,104522575C C p C C ξ==⋅=⋅=()21112646442222510510415624102341=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()111224644422225105104246666222=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()124422510461243=,104522575C C p C C ξ==⋅=⋅=所以ξ的分布列是:所以ξ的数学期望5E ξ=.19. (I)在正方形ABCD 中,O 是对角线AC BD 、的交点, ∴O 为BD 的中点, M 为AB 的中点,∴ OM ∥AD. 又AD ⊂平面ACD ,OM ⊄平面ACD , ∴OM ∥平面ACD.(II )证明:在AOC ∆中,1AC =,AO CO ==, ∴222AC AO CO =+,∴AO CO ⊥.又 AC BD 、是正方形ABCD 的对角线,∴AO BD ⊥, 又BD CO O =∴AO BCD ⊥平面.(III )由(II )知AO BCD ⊥平面,则OC ,OA ,OD 两两互相垂直,如图,以O 为原点,建立空间直角坐标系O xyz -.则(0,0,0),(0,O A C B D ,OA =是平面BCD 的一个法向量.2(AC =,2(BC =, 设平面ABC 的法向量(,,)x y z =n ,则0BC ⋅=n ,0AC ⋅=n .即(,,)0(,,)0x y z x y z ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩, 所以,y x =-且,z x =令1,x =则1y =-,1z =,解得(1,1,1)=-n .从而3cos ,||||OA OA OA ⋅〈〉==nn n ,二面角A BC D --20.(Ⅰ)易知2a =,1b =,c=∴1(F ,2F .设(,)P x y (0,0)x y >>.则22125(,,)34PF PF x y x y x y ⋅=----=+-=-,又2214x y +=,联立22227414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得221134x x y y =⎧⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y .联立22222214(2)4(14)1612042x y x kx k x kx y kx ⎧+=⎪⇒++=⇒+++=⎨⎪=+⎩∴1221214x x k =+,1221614k x x k+=-+由22(16)4(14)120k k ∆=-⋅+⋅> 22163(14)0k k -+>,2430k ->,得234k >.①又AOB ∠为锐角cos 00AOB OA OB ⇔∠>⇔⋅>,∴12120OA OB x x y y ⋅=+>又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ∴1212x x y y +21212(1)2()4k x x k x x =++++2221216(1)2()41414kk k k k=+⋅+⋅-+++ 22212(1)21641414k k k k k +⋅=-+++224(4)014k k -=>+∴2144k -<<.②综①②可知2344k <<,∴k 的取值范围是3(2,(,2)- 21. 函数()f x 的定义域为(0,)+∞,'211()af x a x x-=-- (Ⅰ)当1a =时,()ln 1f x x x =--,''1(1)2,()1,(1)0f f x f x∴=-=-∴= ∴()f x 在1x =处的切线方程为2y =-(Ⅱ)2222)]1()[1()1(11)(xa ax x x a x ax x a a x x f ----=--+-=---=' ,)(x f 的定义域为),0(+∞ 当0=a时,21)(xx x f -=',)(x f 的增区间为),1(+∞,减区间为)1,0( 当0≠a 时,时,即21011<<>-a a a ,)(x f 的增区间为)1,1(a a -,减区间为)1,0( ,),1(+∞-a a 时,即2111==-a a a , )(x f 在 ),0(+∞上单调递减时或,即02111<><-a a a a ,21>a 时,),1(),1,0()1,1()(+∞--aaa a x f ,减区间为的增区间为)1,1);,1(),1,0()(0aaa a x f a -+∞-<减区间为(的增区间为时,(Ⅲ)当13a =时,由(Ⅱ)知函数()f x 在区间(1,2)上为增函数,所以函数()f x 在[]1,2上的最小值为2(1)3f =-若对于12[1,2],[0,1]x x ∀∈∃∈使12()()f x g x ≥成立⇔()g x 在[0,1]上的最小值不大于()f x 在[1,2]上的最小值23-(*)又[]22255()2(),0,11212g x x bx x b b x =--=---∈①当0b <时,()g x 在上[]0,1为增函数,min 52()(0)123g x g ==->-与(*)矛盾 ②当01b ≤≤时,2min 5()()12g x g b b ==--,由252123b --≤-及01b ≤≤得,112b ≤≤ ③当1b >时,()g x 在上[]0,1为减函数,min 72()(1)2123g x g b ==-≤-, 此时1b > 综上所述,b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭22.证明:(I )在ABC ∆中,由11,,33BD BC CE CA ==知: ABD ∆≌BCE ∆,………………2分ADB BEC ∴∠=∠即ADC BEC π∠+∠=.所以四点,,,P D C E 共圆;………………5分 (II )如图,连结DE .在CDE ∆中,2CD CE =,60ACD ∠=, 由正弦定理知90CED ∠=.………………8分 由四点,,,P D C E 共圆知,DPC DEC ∠=∠,1),1C x -的普通方程为.122=+y x⎪⎩=+,122y x 与1C 的交点为)0,1(A ,)23,21(-B , 则1||=AB .(II )2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是重庆青学园教育咨询有限公司 24.解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =。