第85课时 正态分布

合集下载

《正态分布》教学课件(2024)

《正态分布》教学课件(2024)

2024/1/29
4
正态分布定义及特点
特点
分布的形状由标准差决定,标准 差越小,曲线越陡峭;标准差越 大,曲线越平缓。
定义:正态分布是一种连续型概 率分布,描述了许多自然现象的 概率分布情况。在统计学中,正 态分布又被称为高斯分布。
2024/1/29
曲线呈钟形,对称于均值,且均 值、中位数和众数相等。
正态分布在实际问题中解 决方案
2024/1/29
24
问题背景描述
2024/1/29
实际问题中,很多数据分布情况呈现出一种钟型曲线, 即正态分布。 正态分布在自然界、社会科学、工程技术等领域都有广 泛应用。
掌握正态分布的性质和参数估计方法,对于解决实际问 题具有重要意义。
25Βιβλιοθήκη 解决方案设计思路确定问题背景和数据来源,对数据进行 收集和整理。
02
正态分布是一种连续型概率 分布,具有钟形曲线特征。
03
正态分布的概率密度函数由 均值和标准差决定。
29
关键知识点总结回顾
正态分布具有对称性 、可加性和稳定性等 重要性质。
标准正态分布是均值 为0、标准差为1的正 态分布。
2024/1/29
标准正态分布及其性 质
30
关键知识点总结回顾
标准正态分布的概率密度函数具有标准形式,便于计算和分析。
如果数据符合正态分布,则可以利用正 态分布的性质和参数估计方法,对数据
进行建模和分析。
2024/1/29
利用统计分析方法,对数据进行描述性 统计和推断性统计,判断数据是否符合 正态分布。 根据建模结果,对实际问题进行解释和 预测,提出相应的解决方案。
26
具体实施步骤和结果展示

正态分布ppt课件统计学

正态分布ppt课件统计学
详细描述
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象

大学正态分布ppt课件

大学正态分布ppt课件
记号
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

正态分布分布ppt课件

正态分布分布ppt课件

通过样本数据可以估计总体的均值、方差等 参数,进而对总体进行推断和分析。
假设检验
质量控制
在假设检验中,通常需要比较样本数据与某 个理论分布的差异,中心极限定理提供了理 论依据。
在工业生产等领域中,可以利用中心极限定 理对产品质量进行监控和预测。
03
正态分布在各领域应用举例
自然科学领域应用
1 2
描述自然现象的概率分布 正态分布可以描述许多自然现象的概率分布情况, 如身高、体重、智商等的分布情况。
根据显著性水平和自由度 确定t分布的临界值,进 而确定拒绝域。
将计算得到的t统计量与 拒绝域进行比较,若t统 计量落在拒绝域内,则拒 绝原假设,否则接受原假 设。
配对样本t检验原理及步骤
01
02
03
04
05
原理:配对样本t检验是 提出假设:设立原假设 用于比较同一组受试者 (H0)和备择假设 在两个不同条件下的测 (H1),原假设通常为 量值是否存在显著差异 两个测量值的均值相等。 的统计方法。它基于正 态分布假设和配对设计, 通过计算t统计量来推断 两个测量值的差异是否 显著。
设立原假设(H0)和备择假 设(H1),原假设通常为样 本均值等于总体均值。
计算t统计量,公式为t=(样 本均值-总体均值)/标准误, 其中标准误=样本标准差/根 号n。
根据显著性水平和自由度确 定t分布的临界值,进而确 定拒绝域。
将计算得到的t统计量与拒 绝域进行比较,若t统计量 落在拒绝域内,则拒绝原假 设,否则接受原假设。
06
非参数检验在处理非正态数据 时应用
非参数检验方法简介
非参数检验的概念
非参数检验是一种基于数据秩次的统计推断方法,它不依赖于总 体分布的具体形式,因此适用于处理非正态数据。

正态分布 课件

正态分布 课件

[一点通] 解答此类问题的关键在于充分利用正态 曲线的对称性,把待求区间内的概率向已知区间内的概 率进行转化,在此过程中注意数形结合思想的运用.
3.若随机变量X~N(μ,σ2),则P(X≤μ)=________.
解析:若随机变量 X~N(μ,σ2),则其正态密度曲 线关于 x=μ 对称,故 P(X≤μ)=12. 答案:12
1.设有一正态总体,它的概率密度曲线是函数 f(x)的图象,

f(x)=
1 8πe
(
x
10 )2 8
,则这个正态总体的均值与标准差
分别是
()
A.10 与 8
B.10 与 2
C.8 与 10
D.2 与 10
解析:由正态曲线 f(x)=
1 2πσe
(
x )2 8
知,
2πσ= 8π, μ=10,
即 μ=10,σ=2.
[例3] (10分)据调查统计,某市高二学生中男生的身高 X(单位:cm)服从正态分布N(174,9).若该市共有高二男生3 000人,试估计该市高二男生身高在(174,180)范围内的人数.
[思路点拨] 因为μ=174,σ=3,所以可利用正态分布 的性质可以求解.
[精解详析] 因为身高X~N(174,9),
4.设随机变量X服从正态分布N(2,9),若P(X>c+1)= P(X<c-1),则c=________.
解析:∵μ=2,P(X>c+1)=P(X<c-1), ∴c+1+2 c-1=2,解得 c=2. 答案:2
5.若X~N(5,1),求P(5<X<7).
解:∵X~N(5,1),∴μ=5,σ=1. 因为该正态曲线关于 x=5 对称, 所以 P(5<X<7)=12P(3<X<7)=12×0.954 4=0.477 2.

正态分布 课件

正态分布  课件


• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:

高中数学正态分布教案及反思

高中数学正态分布教案及反思

高中数学正态分布教案及反思
一、教学目标
1. 理解正态分布的定义和性质。

2. 掌握使用正态分布表求解实际问题。

3. 能够在实际问题中应用正态分布理论解决问题。

二、教学重点和难点
重点:正态分布的定义和性质。

难点:应用正态分布理论解决实际问题。

三、教学流程
1. 导入:通过引入一个实际问题,引发学生对正态分布的思考。

2. 讲解:介绍正态分布的定义、性质以及正态分布表的使用方法。

3. 练习:让学生通过练习掌握正态分布的应用,并解决一些实际问题。

4. 拓展:让学生通过拓展性问题,进一步巩固对正态分布的理解。

5. 总结:对本节课的内容进行简单总结,澄清学生的疑惑。

四、课后作业
1. 完成练习题,巩固对正态分布的掌握。

2. 思考如何在日常生活中应用正态分布理论。

反思范本:
在本节课中,我认为我的教学方法比较灵活,能够引发学生的兴趣,让他们更加主动地参
与学习。

但是在讲解部分,我发现有些学生对正态分布的概念理解不够清晰,可能是因为
我在讲解时没有用简单明了的语言表达,导致学生理解困难。

在以后的教学中,我会更加
注重引导学生思考,让他们通过实际问题解决的方式来学习,以加深对知识的理解。

同时,我也会在备课时更加充分地考虑学生的接受能力,选择合适的教学方法和语言表达,让教
学效果更加明显。

正态分布ppt精品课件

正态分布ppt精品课件

σ=2 -3 -2 -1 0 1 2 3 4x
-3 -2 -1 0
1 2
x
-3 -2 -1 0
1 2 3 x
(1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点) (4)曲线与x轴之间的面积为1
1 σ 2π
(5)当一定时,曲线随着的变化而沿x轴平移 (6)当一定时,曲线的形状由的确定.
十、正态分布的示例
例1.下列函数是正态密度曲线的是(
A.f (x) C.f ( x) 1 2 1 2 2
( x )2
).
x2 2
e e
22 ( x 1) 2 4
2 B.f ( x) e 2 2 x 1 D.f ( x) e2 2
例2.设随机变量 ~ N 2, ( 2), 1 则D )的值为( C ) ( 2 1 A.1; B.2; C. ; D.4. 2
八、现实生活中的正态分布
20
频数
10
0
身高(cm)
某地13岁女孩118人身高(cm)频数分布图
身高(cm)
频数分布逐渐接近正态分布示意图
九、正态分布的3σ原则
若X~N(,2),则对于任何实数a>0,概率
P a X a
a
a
,a x dx
如果随机变量的总体密度曲线为:
f ( x)
1 e 2 ( x )2 2 2
(x R),
标准差σ越小,曲 线越“瘦高”,表 示总体分布越集中.
标准差σ越大, 曲线越“矮胖”, 表示总体分布越 分散.
6、已知X~N (0,1),则X在区间 (, 2) 内取值的概率 等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 , 7、设离散型随机变量X~N(0,1),则 P( X 0) = 0.5 P(2 X 2) = 0.9544 . 8、若X~N(5,1),求P(6<X<7).

正态分布课件

正态分布课件

_N__(μ_,__σ2_)_.
批注❶ 概率密度曲线能反映随机变量X的取值规律以及它取值在
某个区间的概率,它所起到的作用与离散型随机变量分布列的作用是
相同的.
要点二 正态分布密度曲线的特点
1.曲线位于x轴上方,与x轴不相交;
2.曲线是单峰的,它关于直线___x_=_μ___对称;
3.p(x)在___x_=_μ___处达到最大值
1;
2πσ
4.当σ一定时,曲线随着μ的变化而沿x轴平移;
5.σ越大,正态曲线越扁平,σ越小,正态曲线越尖陡;
6.曲线与x轴之间所夹区域的面积等于____1____.
要点三 正态分布的均值与方差
若X~N(μ,σ2)❷,则E(X)=____μ____, D(X)=____σ_2___.
批注❷ 特别地,数学期望μ=0,方差σ2=1时的正态分布为标准正 态分布.
答案:AD
解析:由题中图象可知三科总体的平均数(均值)相等, 由正态密度曲线的性质, 可知σ越大, 正态曲线越扁平;σ越小, 正态曲线越尖陡, 故三科总体的标准 差从小到大依次为甲、乙、丙.
题型 2 正态分布的概率计算 例2 设X~N(1,22),试求: (1)P(-1<X≤3); (2)P(3<X≤5).
4 . 已 知 随 机 变 量 X ~ N(μ , σ2) , 若 P(X< - 1) = P(X>5) , 则 μ = ____2____.
解析:因为P(X<-1)=P(X>5),故μ=−12+5=2.
题型探究·课堂解透
题型 1 正态曲线的应用 例1 已知某地农民工年均收入ξ服从正态分布,其密度函数图象如
答案:D
解析:因为X~N(4,σ2),所以直线X=4为正态分布的对称轴,所以P(X<4)=12.

正态分布ppt课件

正态分布ppt课件
收集数据
从实际问题中收集相关数据,如某产品的质量指 标数据。
数据拟合
使用正态分布函数对数据进行拟合,判断数据是 否符合正态分布特征。
参数估计
采用最大似然估计等方法,估计出正态分布的均 值和标准差等参数值。
案例分析:某产品质量指标服从正态分布检验
案例背景介绍
介绍某产品的质量指标数据及其背景信息。
正态性检验
选举结果预测 在政治学中,选举结果的预测也往往基于正态分布模型, 通过分析选民的支持率和投票行为来预测选举结果。
经济金融数据中正态分布检验
在金融市场中,股票价格的波动往往呈现出正态分布 的特点,即大部分价格波动都集中在平均值附近,而
极端波动出现的概率很小。
输入 收益标率题分布
在投资组合理论和风险管理中,收益率的分布也往往 假设为正态分布,以便进行风险度量和资产配置。
连续型随机变量及其性质
均匀分布
均匀分布是描述在某一区间内取值的随机变量,其取值具有等可能性。
指数分布
指数分布是描述无记忆性的随机变量的概率分布,常用于可靠性分析 和排队论中。
正态分布
正态分布是描述连续型随机变量的最重要的一种分布,具有对称性和 集中性等特点,广泛应用于自然科学和社会科学领域。
其他连续型随机变量
概率分布的概念
概率分布用于描述随机变量取不同值 的概率规律,包括离散型概率分布和 连续型概率分布。
离散型随机变量的概率分布
离散型随机变量取值为有限个或可数 个,其概率分布通常用分布列表示。
连续型随机变量的概率分布
连续型随机变量取值充满某个区间, 其概率分布用概率密度函数表示。
期望与方差
期望的概念
方差的概念
利用正态分布性质,识别 并处理回归模型中的异常 值。

正态分布课件课件

正态分布课件课件

医学研究
正态分布经常被用来描述人体的生理指标,例 如血压、体重、心率和血糖等。
工程技术
正态分布在工程技术中也有着很重要的应用, 例如在质量控制和可靠性分析中。
正态分布在数据分析中的应用
偏度和峰度
使用偏度和峰度帮助了解正态 分布的形状和分布。偏度描述 了平均值分布在曲线的何处, 而峰度则描述了曲线的陡峭程 度。
正态分布在适用性和排除异常值方面存在一 些限制。如果样本不符合正态分布,此时用 正态分布进行分析可能会导致错误的结论。
Hale Waihona Puke 正态分布的常用假设及检验假设检验
假设检验是指在一定的显著水平下,对总体参数提 出假设,并根据样本数据的分布,用统计学方法判 断原假设是否成立。
P值
P值是在假设检验中使用的一个统计量,通常一起出 现的是显著性水平。 p值是落在拒绝域的概率,越小 说明差异越显著。
正态分布优缺点
1 优点
2 缺点
正态分布具有左右对称性,易于使用和理解, 广泛适用于各行各业的数据分析。
中心极限定理
中心极限定理告诉我们,样本 均值的分布逼近于正态分布, 无论样本分布如何。这意味着 我们可以在特定条件下使用正 态分布来预测总体分布。
置信区间
使用正态分布来计算置信区间。 在数据分析中,置信区间是指 根据样本数据计算出的一个区 间,以此来推测总体参数的范 围。
正态分布的概率计算方法
1
累积分布函数
正态性检验方法
正态Q-Q图
Q-Q图是通过将样本数据分布和正态分布进行比较来检验正态性的。如果点的分布趋近于一 条直线,则样本数据符合正态分布。
Shapiro-Wilk检验
Shapiro-Wilk检验是一种经典的正态性检验方法。该检验基于样本数据的偏度、峰度、样本 大小和简单随机抽样的原则,可以判断样本数据是否符合正态分布。

正态分布课件

正态分布课件

矩估计
定义
矩估计法是利用样本矩估计总体矩的一种方法。
原理
基于概率论中的矩理论,通过样本矩来估计总体 矩。
方法
首先需要计算样本的一阶矩(均值)和二阶矩( 方差),然后用样本矩来估计总体矩。
贝叶斯估计
定义
01
贝叶斯估计法是通过贝叶斯定理来估计参数的方法。
原理
02
基于概率论中的贝叶斯定理,通过已知的先验概率和样本信息
应用
累积分布函数在统计学中 有广泛应用,如概率模拟 、置信区间的计算等。
正态分布的分位数函数
定义
正态分布的分位数函数是Φ(x) = (1/2) * [1 + erf(x / (√(2) * σ))] ,其中erf是误差函数。
解释
分位数函数描述了随机变量取值大于等于x的概率,即Φ(x) = P(X >= x)。
预测
正态分布还被用于时间 序列数据的预测,例如 在ARIMA模型中,差分 项通常假定服从正态分 布。
状态空间模型
在状态空间模型中,正 态分布被用于描述系统 扰动项的分布,以确保 模型的有效性和准确性 。
在金融风险管理中的应用
风险度量
正态分布被广泛用于金融风险度量,例如在计算VaR(风险价值 )时,通常假定回报率服从正态分布。
率密度函数为f(x)
=
(1/√(2πσ^2)) * exp(-(x-
μ)^2/(2σ^2)),其中μ为均值,σ
为标准差。
正态分布的特点
钟形曲线
正态分布的曲线呈钟形,左右对 称,最高点位于均值μ处,而标准 差σ则决定了曲线的宽度和扁平程
度。
连续性
正态分布是一种连续型概率分布, 其概率密度函数在全实数域上定义 。

【全文】正态分布-课件

【全文】正态分布-课件
(1)如何描述这100个样本误差数据的分布? (2)如何构建适当的概率模型刻画误差X的分布?
观察图形可知:误差观测值有正有负.并大 致对称地分布在X=O的两侧,而且小误差比 大误差出现得更频繁.
如何画频率分布折线图?
随着样本数据量越来越大,让分组越来越多,组距越来越小,由频 率的稳定性可知,频率分布直方图的轮廓就越来越稳定,接近一条光 滑的钟形曲线,如图7.5-2所示
(4)曲线在_x___μ__处达到峰值σ
1; 2π
(5)当|x|无限增大时,曲线无限接近__x_轴_.
中间高 两头低 左右对 称
4.正态分布的特征
思考一个正态分布由参数 和 完全确定,这两个参数对正态曲
线的形状有何影响?它们反映正态分布的哪些特征?
(1)当σ一定时,曲线的位置由μ确定.曲线随着μ的变化而沿x_轴___
总体密度曲线
y=f(x)?
根据频率与概率的关系,可用图 7.5-3中的钟形曲线(曲线与水平 轴之间的面积为 1 ) 来描述袋装食盐质量误差的概率分布.例如, 任意抽取一袋食盐,误差落在[-2,-1]内的概率,可用图中黄色阴影 部分的面积表示.
1.正态密度函数(简称正态曲线)
若 f(x)=__σ__12_π__e_-_(_x- 2_σ_μ2)_2_,x∈R,其中μ∈R,σ>0 为参数,我们
解:(1)随机变量X的样本均值为30,样本标准差为6;随机变量Y的样
本均值为34,样本标准差为2.用样本均值估计参数 ,用样本标准
差估计参数 可以得到
X ~ N 30,62 , Y ~ N 34,22 ,
三、例题讲解
例1李明上学有时坐公交车,有时骑自行车.他各记录了 50 次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车 平均用时30min ,样本方差为36;骑自行车平均用时34min,样本 方差为4.假设坐公交车用时X和骑自行车用时Y都服从正态分布. (1)估计X,Y的分布中的参数; (2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密 度曲线; (3)如果某天有38min可用,李明应选择哪种交通工具?如果某天 只有34 min可用,又应该选择哪种交通工具?请说明理由. (2)X和Y的分布密度曲线如图 (3)应选择在给定时间内不迟到的概率 大的交通工具.由图7.5一7可知,

正态分布 课件

正态分布   课件

()
A.0
B.σ
C.-μ
D.μ
答案:D
题型一 正态分布下的概率计算
例1 设X~N(1,22),试求: (1)P(-1<X≤3);(2)P(3<X≤5). 【解】 因为X~N(1,22),所以μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2) =P(μ-σ<X≤μ+σ)=0.682 6.
示总体的分布越分散.
3.正态分布 一般地,如果对于任何实数 a<b,随机变量 X 满足 P(a<
X≤b)=___ab_φ_μ_,_σ_x__d_x__,则称随机变量 X 服从正态分布.
正态分布完全由参数__μ__和___σ_确定,因此正态分布常记
作 _N_(_μ_,σ__2)___. 如 果随 机 变量 X 服 从 正 态分 布 ,则 记 为 _X__~__N_(_μ_,_σ_2)__.
(2)因为 P(3<X≤5)=P(-3≤X<-1), 所以 P(3<X≤5) =12[P(-3<X≤5)-P(-1<X≤3)] =12[P(1-4<X≤1+4)-P(1-2<X≤1+2)] =12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)] =12(0.954 4-0.682 6)=0.135 9.
【名师点评】 对于正态分布N(μ,σ2),由x=μ是正态曲 线的对称轴知: (1)对任意的a,有P(X<μ-a)=P(X>μ+a); (2)P(X<x0)=1-P(X≥x0); (3)P(a<X<b)=P(X<b)-P(X≤a).
题型二 正态分布的实际应用
例2 某年级的一次信息技术测验成绩近似服从正态 分布N(70,102),如果规定低于60分的学生 为不及格学 生. (1)成绩不及格的人数占多少? (2)成绩在80~90之间的学生占多少? 【 解 】 (1) 设学 生的 得分 情况 为随 机变 量 X,则 X~ N(70,102),其中 μ=70,σ=10. 在 60 到 80 之间的学生占的比为 P(70-10<X≤70+10)= 0.682 6=68.26%, ∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7= 15.87%.

正态分布课件

正态分布课件
分别表示总体的平均数与标准差。E , D 2 ; 总体标准差是衡量总体波动大小的特征数, 常用样本标准差去估计.
(2)正态分布与正态曲线
若总体密度曲线就是或近似地是函数:
f x 1 2

x 2
2
2
e
, x ,
的图象
则其分布叫正态分布, 常记作: , 2 。 N
假设检验是就正态总体 进行假设检验可归结为
1 ). 提出统计假设 . 正态分布 N ( , ) .
而言的, 如下三步:
统计假设里的变量服从
2 ). 确定一次试验中
a 的取值是否
落入 ( 3 , 3 )内 .
3 ). 作出判断 . 如果 a ( 3 , 3 ),接受统计假设 如果 a ( 3 , 3 ),就拒绝统计假设 ; .




从 某 中 学 男 生 中 随 机 抽 取 出84名 , 测 量 身 高 , 数 据 如 下 ( 单 位 : cm ) :
164 181 170 168 159 185 169 164 179 156 175 155 169 169 180 164 182 168 161 182 170 178 174 159 154 172 167 173 160 182 163 164 164 174 173 163 165 166 175 168 161 176 167 170 167 172 172 169 161 174 181 171 171 168 171 161 169 177 177 181 176 174 170 185 178 175 173 175 167 172 172 174 157 162 161 165 168 178 174 171 172 174 172 155

《正态分布》 讲义

《正态分布》 讲义

《正态分布》讲义在统计学中,正态分布是一种极其重要的概率分布,它在自然科学、社会科学、工程技术等众多领域都有着广泛的应用。

下面,让我们一起来深入了解正态分布。

一、什么是正态分布正态分布,也被称为高斯分布,是一种连续型概率分布。

它的概率密度函数呈现出一种独特的“钟形”曲线,具有对称性。

从数学表达式上看,正态分布的概率密度函数为:\ f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,决定了曲线的位置;\(\sigma\)是标准差,决定了曲线的“胖瘦”程度。

二、正态分布的特点1、对称性正态分布曲线以均值\(\mu\)为对称轴,左右两侧对称。

这意味着在均值两侧相同距离处,出现观测值的概率相等。

2、集中性大部分数据集中在均值附近,离均值越远,数据出现的概率越小。

3、均值和中位数、众数相等这三个统计量在正态分布中是重合的,反映了数据的中心趋势。

4、标准差的作用标准差\(\sigma\)越大,曲线越“胖”,数据的分散程度越大;标准差越小,曲线越“瘦”,数据越集中。

三、正态分布的产生原因为什么在现实世界中会有如此多的现象符合正态分布呢?1、大量独立随机因素的综合作用许多自然和社会现象受到众多微小、相互独立的随机因素的影响。

例如,人的身高受到遗传、营养、环境等多种因素的影响,当这些因素的数量足够多且相互独立时,最终的结果往往呈现正态分布。

2、中心极限定理根据中心极限定理,当从一个总体中抽取大量独立同分布的随机样本,并计算其均值时,这些均值的分布将近似于正态分布。

四、正态分布的应用1、质量控制在生产过程中,通过对产品质量特征的测量,如果其符合正态分布,可以设定合理的控制界限,来监控生产过程是否处于稳定状态。

2、考试成绩评估考试成绩通常近似服从正态分布。

教师可以根据正态分布来确定合理的分数段,评估学生的学习情况。

《正态分布》 讲义

《正态分布》 讲义

《正态分布》讲义一、什么是正态分布在统计学中,正态分布是一种极其重要的概率分布。

它就像是自然界和人类社会中许多现象的“常客”,无处不在。

想象一下,我们测量一群人的身高,或者记录一段时间内某地区的气温,这些数据往往会呈现出一种特定的规律,这就是正态分布。

正态分布的形状就像一个钟形,中间高,两边逐渐降低并且对称。

这意味着大部分数据集中在平均值附近,而离平均值越远,数据出现的频率就越低。

二、正态分布的特点1、对称性正态分布曲线是关于均值对称的。

也就是说,如果均值是μ,那么在μ 左侧和右侧相同距离处的数据出现的频率是相等的。

2、集中性大部分数据都集中在均值附近。

这反映了在许多情况下,一个典型的或者最常见的值是存在的。

3、均匀变动性从均值向两侧,曲线的下降是均匀的。

这意味着数据的变化是相对平稳和有规律的。

三、正态分布的数学表达式正态分布的概率密度函数可以用下面的公式来表示:f(x) =(1 /(σ √(2π))) e^(((x μ)^2 /(2σ^2)))在这里,μ 是均值,σ 是标准差,π 是圆周率,e 是自然常数。

这个公式看起来可能有点复杂,但它精确地描述了正态分布的形状和特征。

四、正态分布的应用1、质量控制在生产过程中,例如制造零件,产品的某些质量指标往往服从正态分布。

通过对这些指标的监控和分析,可以判断生产过程是否稳定,是否需要进行调整。

2、考试成绩学生的考试成绩通常也近似符合正态分布。

这有助于教师评估教学效果,确定合理的分数段和等级划分。

3、金融领域股票价格的波动、收益率等常常呈现正态分布的特征。

投资者可以利用这一特点进行风险评估和投资决策。

4、医学研究例如人体的生理指标,如血压、身高体重指数等,很多都符合正态分布。

这对于疾病的诊断和预防具有重要意义。

五、如何计算正态分布的概率为了计算给定区间内的概率,我们通常需要借助数学表或者使用统计软件。

例如,要计算某个值 x 以下的概率,可以通过将 x 标准化为 z 分数:z =(x μ) /σ然后,查找标准正态分布表来获取对应的概率。

正态分布知识点总结ppt

正态分布知识点总结ppt

正态分布知识点总结ppt一、概念1. 正态分布,又称高斯分布,是一种连续概率分布2. 具有单峰对称的特点3. 由于其形状近似于钟形,因此也被称为钟形曲线二、特征1. 均值μ:描述分布的中心位置2. 标准差σ:描述数据点相对于均值的离散程度3. 标准差越大,曲线扁平度越高4. 标准差越小,曲线陡峭度越高5. 正态分布的均值、众数和中位数都相等三、标准正态分布1. 当均值μ=0,标准差σ=1时的正态分布2. 应用范围更广,便于做概率计算3. 可通过Z变换,将任意正态分布转化为标准正态分布四、性质1. 概率密度函数:f(x) = (1/σ√(2π)) * e^(-(x-μ)²/(2σ²))2. 总体均值、中位数、众数相等3. 68-95-99.7法则:在正态分布下,大约68%的数据落在均值±1个标准差内,大约95%的数据落在均值±2个标准差内,大约99.7%的数据落在均值±3个标准差内五、应用1. 统计学:用于研究样本数据的分布规律2. 自然科学:许多自然现象的分布都符合正态分布,如身高、体重等3. 工程学:用于分析质量控制、可靠性分析等六、假设检验1. 基于正态分布的概率性质,可对样本数据进行假设检验2. 通过计算样本均值和标准差,判断总体参数是否满足要求七、实际案例1. 身高分布:研究人群的身高分布规律,制定人体工程学标准2. 质量控制:监控产品的质量符合正态分布,及时发现异常情况3. 信用评分:应用正态分布评估个人信用等级八、常见问题1. 如何判断一组数据是否符合正态分布?- 绘制直方图或概率图查看数据分布形状- 进行正态性检验,如Shapiro-Wilk检验、K-S检验等2. 如果数据不符合正态分布,影响有哪些?- 在统计分析中应当选择非参数检验方法- 在数据建模和预测中需要考虑非线性因素的影响九、总结正态分布是统计学中的基础概率分布,具有广泛的应用价值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(八十五)1.(2017·甘肃河西五市联考)设随机变量ξ服从正态分布N(0,1),若P(ξ>2)=p ,即P(-2<ξ<0)=( )A.12+p B .1-p C.12-p D .1-2p答案 C解析 由对称性知P(ξ≤-2)=p ,所以P(-2<ξ<0)=1-2p 2=12-p.2.(2017·广东佛山一模)已知随机变量X 服从正态分布N(3,1),且P(2≤ξ≤4)=0.682 6,则P(ξ>4)=( ) A .0.158 8 B .0.158 7 C .0.158 6 D .0.158 5 答案 B解析 由正态曲线性质知,其图像关于直线x =3对称, ∴P (ξ>4)=1-P (2≤ξ≤4)2=0.5-12×0.682 6=0.158 7,故选B.3.已知随机变量ξ服从正态分布N(0,σ2),P (ξ>2)=0.023,则P(-2≤ξ≤2)=( ) A .0.954 B .0.977 C .0.488 D .0.477 答案 A解析 P(-2≤ξ≤2)=1-2P(ξ>2)=0.954.4.(2017·南昌调研)某单位1 000名青年职员的体重x(单位:kg)服从正态分布N(μ,22),且正态分布的密度曲线如图所示,若体重在58.5~62.5 kg 属于正常,则这1 000名青年职员中体重属于正常的人数约是( )A .683B .841C .341D .667答案 A解析 ∵P(58.5<X<62.5)=P(μ-σ<X<μ+σ)≈0.683,∴体重正常的人数约为1 000×0.683=683人.5.(2017·江西八所重点中学联考)在某次数学测试中,学生成绩ξ服从正态分布(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2答案 B解析 ∵ξ服从正态分布N(100,σ2),∴曲线的对称轴是直线μ=100,∵ξ在(80,120)内取值的概率为0.8,ξ在(0,100)内取值的概率为0.5, ∴ξ在(0,80)内取值的概率为0.5-0.4=0.1.故选B.6.(2017·河南安阳专项训练)已知某次数学考试的成绩服从正态分布N(116,64),则成绩在140分以上的考生所占的百分比为( ) A .0.3% B .0.23% C .1.5% D .0.15%答案 D解析 依题意,得μ=116,σ=8,所以μ-3σ=92,μ+3σ=140.而服从正态分布的随机变量在(μ-3σ,μ+3σ)内取值的概率约为0.997,所以成绩在区间(92,140)内的考生所占的百分比约为99.7%.从而成绩在140分以上的考生所占的百分比为1-99.7%2=0.15%.故选D.7.(2015·湖南,理)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772答案 C解析 由题意可得,P(0<x ≤1)=12P(-1<x ≤1)=0.341 3,设落入阴影部分的点的个数为n ,则P =S 阴影S 正方形=0.341 31=n10 000,则n =3 413,选C.8.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0.025,则P(|ξ|<1.96)=( ) A .0.025 B .0.050 C .0.950 D .0.975 答案 C解析 由随机变量ξ服从正态分布N(0,1),得P(ξ<1.96)=1-P(ξ≤-1.96),所以P(|ξ|<1.96)=P(-1.96<ξ<1.96)=P(ξ<1.96)-P(ξ≤-1.96)=1-2P(ξ≤-1.96)=1-2P(ξ<-1.96)=1-2×0.025=0.950.9.如果随机变量X ~N(μ,σ2),且E(X)=3,D(X)=1,则P(0<X<1)等于( ) A .0.210 B .0.003 C .0.681 D .0.021 5答案 D解析 X ~N(3,12),因为0<X<1,所以P(0<X<1)=0.997 4-0.954 42=0.021 5.10.某中学组织了“自主招生数学选拔赛”,已知此次选拔赛的数学成绩X 服从正态分布N(75,121)(单位:分),考生共有1 000人,估计数学成绩在75分到86分之间的人数约为(参考数据P(μ-σ<X<μ+σ)=0.682 6,P (μ-2σ<X<μ+2σ)=0.954 4)( ) A .261 B .341 C .477 D .683 答案 B解析 ∵X ~N(75,121),∴μ=75,σ=11,因为P(μ-σ<X<μ+σ)=0.682 6, 所以P(64<X<86)=0.682 6,又μ=75,所以P(75<X<86)=12P(64<X<86)=12×0.682 6=0.341 3,所以0.341 3×1 000≈341.即数学成绩在75分到86分之间的人数约为341,故选B.11.(2015·山东,理)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 由已知μ=0,σ=3.所以P(3<ξ<6)=12[P(-6<ξ<6)-P(-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B. 12.若随机变量ξ的密度函数为f(x)=12πe -x 22,ξ在(-2,-1)和(1,2)内取值的概率分别为P 1,P 2,则P 1,P 2的关系为( ) A .P 1>P 2 B .P 1<P 2 C .P 1=P 2 D .不确定 答案 C解析 由题意知,μ=0,σ=1,所以曲线关于x =0对称,根据正态曲线的对称性,可知P 1=P 2.13.如图所示,随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=________.答案 0.7解析 由题意可知,正态分布的图像关于直线x =1对称,所以P(ξ<2)=P(ξ<0)+P(0<ξ<1)+P(1<ξ<2),又P (0<ξ<1)=P(1<ξ<2)=0.2,所以P (ξ<2)=0.7.14.(2017·河北唐山二模)商场经营的某种袋装大米质量(单位:kg)服从正态分布N(10,0.12),任取一袋大米,质量不足9.8 kg 的概率为________.(精确到0.000 1) 注:P(μ-σ<x ≤μ+σ)=0.682 6, P (μ-2σ<x ≤μ+2σ)=0.954 4, P (μ-3σ<x ≤μ+3σ)=0.997 4 答案 0.022 8解析 因为袋装大米质量(单位:kg)服从正态分布N(10,0.12),所以P(ξ<9.8)=12[1-P(9.8<ξ<10.2)]=12[1-P(10-2×0.1<ξ<10+2×0.1)]=12(1-0.954 4)=0.022 8.15.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100). (1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人? 答案 (1)0.954 4 (2)约1 365人解析 ∵ξ~N(90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954 4.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内的取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100)内的概率是0.682 6.一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.682 6≈1 365(人).16.(2017·江西南昌一模)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X ≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ). 答案 (1)0.024 (2)E(ξ)=1.2解析 (1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P =A 33×0.2×0.2×0.1=0.024. (2)P(75≤X ≤85) =1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4), P (ξ=0)=0.63=0.216,P (ξ=1)=3×0.4×0.62=0.432, P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064. 所以随机变量ξ的分布列为E(ξ)=3×0.4=1.2.17.(2017·湖北武汉模拟)某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm 和184 cm 之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.(1)由频率分布直方图估计该校高三年级男生平均身高状况; (2)求这50名男生身高在172 cm 以上(含172 cm)的人数;(3)在这50名男生身高在172 cm 以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望. 参考数据: 若ξ~N(μ,σ2),则 P (μ-σ<ξ≤μ+σ)=0.682 6, P (μ-2σ<ξ≤μ+2σ)=0.954 4, P (μ-3σ<ξ≤μ+3σ)=0.997 4. 答案 (1)168 cm (2)10人 (3)25解析 (1)由频率分布直方图,经过计算该校高三年级男生平均身高为(162×5100+166×7100+170×8100+174×2100+178×2100+182×1100)×4=168.72,高于全市的平均值168 cm.(2)由频率分布直方图知,后3组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm 以上(含172 cm)的人数为10. (3)∵P(168-3×4<ξ≤168+3×4)=0.997 4, ∴P (ξ≥180)=1-0.997 42=0.001 3.∴0.001 3×100 000=130.∴全市前130名男生的身高在180 cm 以上,这50人中180 cm 以上的有2人. 随机变量ξ可取0,1,2,于是P (ξ=0)=C 82C 102=2845,P (ξ=1)=C 81C 21C 102=1645,P (ξ=2)=C 22C 102=145,∴E (ξ)=0×2845+1×1645+2×145=25.1.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人. 答案 100解析 ∵数学考试成绩ξ~N(100,σ2),作出正态分布图像,可以看出,图像关于直线x =100对称.显然P(80≤ξ≤100)=P(100≤ξ≤120)=13;∴P(ξ≤80)=P(ξ≥120).又∵P(ξ≤80)+P(ξ≥120)=1-P(80≤ξ≤100)-P(100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16,∴成绩不低于120分的学生约为600×16=100(人).2.下列函数是正态密度函数的是(μ、σ(σ>0)都是实数)( )A .f(x)=12πσe (x -μ)22σ2B .f(x)=2π2πe -x 22C .f(x)=12 2πe -x -σ4D .f(x)=-12πe x 22答案 B解析 A 中的函数值不是随着|x|的增大而无限接近于零.而C 中的函数无对称轴,D 中的函数图像在x 轴下方,所以选B.3.设随机变量X ~N(μ,σ2),则随着σ的增大,概率P(|x -μ|<3σ)将会( ) A .单调增加 B .单调减少 C .保持不变 D .增减不定答案 C解析 P(|x -μ|<3σ)=P(μ-3σ<X<μ+3σ)=0.997 4是一个常数.4.灯泡厂生产的白炽灯寿命为X(单位:h),已知X ~N(1 000,302),要使灯泡的平均寿命为1 000 h 的概率为99.74%,问灯泡的最低使用寿命应控制在________h 以上. 答案 910解析 因为灯泡寿命X ~N(1 000,302),故X 在(1 000-3×30,1 000+3×30)内取值的概率为99.74%,即在(910,1090)内取值的概率约为99.74%,故灯泡的最低使用寿命应控制在910 h 以上.5.(2012·新课标全国Ⅰ)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.答案 38解析 由题意知每个电子元件的使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.6.(2017·衡水调研卷)衡水市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为φμ,σ(x)=12π·10e -(x -80)2200(x ∈R ),则下列命题不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10 答案 B解析 由密度函数知,均值(期望)μ=80,标准差σ=10,又曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同.所以B 项是错误的.7.(2017·山东青岛一模)已知随机变量ξ服从正态分布N(0,1),若P(ξ>1)=a ,a 为常数,则P(-1≤ξ≤0)=________. 答案 12-a解析 由正态曲线的对称轴为ξ=0,又P(ξ>1)=a ,故P(ξ<-1)=a.所以P(-1≤ξ≤0)=1-2a2=12-a ,即答案为12-a. 8.(2017·沧州七校联考)2015年中国汽车销售量达到1 700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1 200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N(8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆. 答案 180思路 首先根据题意确定正态分布的对称轴,利用正态曲线的对称性即可求得ξ>9的概率,利用概率来估计样本中满足条件的汽车数量.解析 由题意可知ξ~N(8,σ2),故正态分布曲线以μ=8为对称轴.又因为P(7≤ξ≤9)=0.7,故P(7≤ξ≤9)=2P(8≤ξ≤9)=0.7,所以P(8≤ξ≤9)=0.35.而P(ξ≥8)=0.5,所以P(ξ>9)=0.15.故耗油量大于9升的汽车大约有1 200×0.15=180辆.9.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为14 2π. (1)求该正态分布的概率密度函数的解析式; (2)求正态总体在(-4,4]内的概率.答案 (1)φμ,σ(x)=14 2πe -x 232,x ∈(-∞,+∞)(2)0.682 6解析 (1)由于该正态分布的概率密度函数是一个偶函数,所以其图像关于y 轴对称,即μ=0.由12πσ=12π·4,得σ=4.故该正态分布的概率密度函数的解析式是φμ,σ(x)=14 2πe -x 232,x ∈(-∞,+∞). (2)P(-4<ξ≤4)=P(0-4<ξ≤0+4)=P(μ-σ<ξ≤μ+σ)=0.682 6.10.已知某种零件的尺寸ξ(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f(80)=18 2π.(1)求概率密度函数;(2)估计尺寸在72 mm ~88 mm 间的零件大约占总数的百分之几?答案(1)φμ,σ(x)=182πe-(x-80)2128(2)68.26%解析(1)由于正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,所以正态曲线关于直线x=80对称,且在x=80处取得最大值.因此得μ=80,12π·σ=182π,所以σ=8.故密度函数解析式是φμ,σ(x)=182πe-(x-80)2128.(2)由μ=80,σ=8,得μ-σ=80-8=72,μ+σ=80+8=88.所以零件尺寸ξ位于区间(72,88)内的概率是0.682 6.因此尺寸在72 mm~88 mm间的零件大约占总数的68.26%.。

相关文档
最新文档