专业英语-波动光学 2
光学课件:2a波动、复振幅的基本概念
复振幅 U (P) A(P) ei(P)
引入复振幅的意义:
考虑单色波迭加时,exp(it) 相同,故可以提出来;
复波函数满足与波函数相同的波动方程,复、实描述是等价的; 复振幅运算简单; 由复振幅容易得到实波函数。
U *(P) A(P)e-i(P)
作业:
P147~148:第1、2、3、4、5题
平面波的复振幅
振幅 A(P) A(常数)
判断依据: 1、振幅为常数; 2、具有线性位相因子
位相 (P) k r 0 kx x ky y kz z 0 复振幅 U (P) Aexp[i(k r 0 )]
沿z轴正向传播的平面波的复振幅
U (P) Aexp[i(kz 0 )]
沿z轴负向传播的平面波的复振幅
1.2 定态光波的概念
定态波:光源持续且稳定地发光,波场中各点都以同一 频率作稳定的振荡。
定态波场的性质: 1)空间各点的扰动是同频率的简谐振动。 2)波场中各点扰动的振幅不随时间变化,
在空间形成一个稳定的振幅分布。 频率单一,振幅稳定。
满足上述要求的光波是无限长的单色波列。 当波列的持续时间比其扰动周期 长得多时,即可将其当作无限长波列处理。
(1 ,2 ,3 )
平面波矢的数学表述
波矢 k k(cosi cos j cos k ) 0 方向余弦 k k(sin1i sin2 j sin3k ) 0 余角表示
位相 (x, y, z) k(x sin1 y sin2 z sin3) 0
定态球面波
A(P) a r
大学物理波动光学知识点总结
大学物理波动光学知识点总结XXX Physics1.Huygens-Fresnel Principle: XXX n of these waves when they meet in space is the result of XXX.2.n of Light Waves: When two coherent light waves meet at point P in space。
the intensity of light at point P is given by I = I1 + I2 + 2I1I2cosΔφ for coherent n。
and I = I1 + I2 for XXX.3.Interference of XXX:1) Optical Path Length: l = ∑ni ri (where ri is the distance that light travels in vacuum and ni is the refractive index of the medium).2) XXX Interference: δ = n2r2 - n1r1 = kλ or (2k+1)λ/2 for constructive and destructive interference。
respectively.3) Young's Double Slit Interference: The optical path difference δ = n(r2 - r1) ≈ d sinθ ≈ tanθ = d。
where d is the distance een the two slits。
The n n of bright and dark fringes onthe screen is given by x = Dλ/d (k+1) or x = Dλ/d(2k+1) for bright or dark fringes。
光学专业英语2词汇
geometrical optics 几何光学rectilinear propagation 直线传播interference 干涉holograpy 全息术limitation 局限burning glass 取火镜refraction 折射reflection 反射metaphysical method 形而上学方法aether 以太refrangibility 可折射性polarization 极化,偏振luminous body 发光体corpuscular 颗粒血细胞solar eclipse 日食elucidate 清楚阐明transversality 横向性longitudinal 纵向的abeyanceenunciation 阐述thin film 薄膜aberration 像差luminiferous 发光的reconcilehypothesis 假设oscillation 振荡elastic wave 弹性波conical refraction 锥形折射dispersion 色散molecular structure 分子结构query 疑问pitch 沥青volume element 体积元conjecture 猜想推测serviceability 适用性manifest 显现spectrum 光谱spectroscopy 光谱仪quanta 量子paradoxical 莫名其妙荒谬悖论photon 光子inexplicable 无法解释的;费解的;photochemistry 光化学convection 对流传递suffice 足够anomaly 异常critique 评论gravitational 引力的重力的foliage 树叶isotropic 各向同性homogeneous 均匀的wavefront 波前ripple 涟漪wavelet 分波小波aperture 缝隙opaque 不透明pencil 光锥pinhole 针孔umbra 全影penumbra 半影flare 耀斑coronae 日冕solid object 实心物体subtended 包夹polished 抛光的specular reflection 镜面放射diffuse reflction 漫反射scatter 散射lens 透镜illuminate 照明constructive interference 相长干涉destructive interference 相消干涉coincideprism 棱镜。
波动光学英文名词
附
录
9
物理学
第五版
物理学
第五版
物理学名词中英文对照
偏振片 起偏器 检偏器 马吕斯定律 布儒斯特角 双折射 寻常光
polaroid polarizer analyzer Malus law Brewster angel birefringence ordinary light
附
录
10
物理学
第五版
物理学
附
录
5
物理学
第五版
物理学
第五版
物理学名词中英文对照
等厚条纹 牛顿环 迈克耳孙 干涉仪 半透明膜 时间相干性 光的衍射
equal thickness fringes Newton ring Michelson interferometer semi-transparent temporal coherence diffraction of light
附
录
2
物理学
第五版
物理学
第五版
物理学名词中英文对照
空间相干性 老埃得镜 双镜 光程 光程差 薄膜干涉 入射线
spatial coherence Lloyd mirror bimirror optical path optical path difference film interference incident ray
附
录
7
物理学
第五版
物理学
第五版
物理学名词中英文对照
圆孔衍射 艾里斑 最小分辨角 光栅 光栅常数 光栅方程 光栅光谱
circular hole diffraction Airy disk angle of minimum resolution grating grating constant grating equation grating spectrum
第七章波动光学Wavenatureoflight
光 轴
5、入射光线在晶体主截面内,o光的振动
4面、垂主直截于面晶体--主-截通面过,光e轴光并的与振任动一面晶同面晶正体交的面
主截面平行,即o光和e光相互垂直。 第七章波动光学Wavenatureoflight
四.尼科尔棱镜 — 较理想偏振光的器件
第七章波动光学Wavenatureoflight
3.二向色性 — 各向异性媒质对于光的吸 收也与振动方向(选择性 吸收)有关的性质。
3.旋光率(specific rotatory) (与物质性质、入射光的波长有关)
右旋物质>0 左旋物质<0 第七章波动光学Wavenatureoflight
D
2
第七章波动光学Wavenatureoflight
明暗纹在屏上的位置
x k D k 0, 1, 2, 明纹;
a
x (2k 1) D k 0, 1, 2, 暗纹
2a
相邻明纹(或暗纹)间的距离
X Xk 1 Xk D
a
第七章波动光学Wavenatureoflight
二、光程和光程差
入射光线在晶体主截面内,o光的振动 面垂直于晶体主截面,e光的振动面同晶体 主截面平行,即o光和e光相互垂直。
第七章波动光学Wavenatureoflight
3、光轴(optical axis)
---晶体内部的一个特殊
方
方向上,o光和e光的
解
折射率相同,不发生
石 晶
双折射现象,这一方
体 的
向称为晶体的光轴。
3.衍射条纹的特点
(1) 中央明纹的宽度是其它明纹宽度2倍
(2) 明、暗条纹条件
asin 2k
2
k 1, 2, 暗条纹
光电英语词汇(O2)
光电英语词汇(O2)光电英语词汇(O2)光电英语词汇(O2)optical strenght 光学强度optical strobe (1)光学选通(2)光学频闪观测仪optical subsystem] 光学分系统optical subtraction 光学相减optical superheterodyne receiver 超外差光接收机optical superposition 光叠加optical surface 光学表面optical surface curvature 光学表面曲率optical switch 光学开关optical symmetry 光学对称optical synchro system 光学同步系统optical system (1)光具组(2)光系optical table 光学台optical table tops 光学桌平台optical target coordinator 光目标坐标方位仪optical target sounding 光学目标探测optical tarnsmission 光传输optical technology satellite 光学技术卫星optical telephone 生电话optical test bed 生学试验台optical test chart 光学测试卡optical test wedge 计量光楔optical testing bench 光具座optical testing with laer 激光光学检验optical theodolite 光学经纬仪optical thickness 光学厚度optical thickness monitor 光学厚度监控器optical thin-film 光学薄膜optical time domain reflectormeter 光学时域反射计optical time-domain reflectometers (otdr)光时域反射计(otdr)optical time-domain reflectometers (otdr)光时域反射计(otdr)optical tolerance 光学容限,光学公差optical tool 光学工具optical tooling bar 光学工具轴optical tooling dock 光学工具站optical tooling instrument 光学工具optical tooling level 光学工具水准仪optical tooling scale 光学工具刻度尺optical tooling tape 光学工具带尺optical track guidance 光学跟踪制导optical tracked missile 光学跟踪导弹optical tracker 光学跟踪装置optical tracking device 光学跟踪装置optical tracking satellite 光学跟踪卫星optical tracking system 光学跟踪系统optical tradjectory 光optical traingulation 光学三角测量optical transfer function 光学传递函婺optical transfer function instrumentationotf (光学转换函数)设备optical transform 光学变换optical transit square 光学经纬仪值角器optical transition rate 光学换速度optical transmission coefficient 光传输系数optical transmission equipment, catv 有线电视光传输设备optical transmission equipment, measure/control 量测/控制信号光传输设备optical transmission equipment, spatial (wireless)空间(无线)光传输设备optical transmission equipment, video/cctv 视讯/闭路监视光传输设备optical transmission line 光透射线optical transmissivity 光透射率optical transmittance 光透射率optical transmitter 光透射器optical trapping 光陷捕获optical tube length 光管长度optical vernier 光学游标尺optical view finder 光学取景器optical vision aid 光学视力辅助器optical voidness 光学纯optical water pollution measurement and detection equipment 光学水质污染检测设optical wave 光波optical waveguide 光学波导optical waveguide detector 光学波导探测器optical waveguide transmission 光学波导传输optical waveguide,travelling-wave modulators 波导形调变器,行波形调变器optical wavelength 光波长optical wavelength meters 光波长计optical wedge 光楔optical wedges 光学楔子optical window 光学窗optical window interferogram 光学窗干涉图optical working 光学加工optical workshop 光学车间optical workshop instrument 光学计量仪器optical zeroing 光学调零optical-coated abrasive 光学研磨材料(研磨布纸)optical-magnetic disk 磁性光碟、可读写光碟optical-powder or grin abrasive 光学研磨材料(砥粒)optical-quality homogeneous glass 光学均匀的玻璃optical-to-electrical transducer 光电转换器optical-wheel abrasive 光学研磨材料(砥石)optical/digital loop carrier equipment (sdh-based)同步数位阶层光数位回路载波optical/digital loop carrier equipment (sonet-based)同步光纤网路光数位回路载optically active 旋光的optically active crystal 旋光晶体optically active isomer 旋光异构体optically cascaded pulse 光学级联脉冲optically contacted etalon 光学接触标准具,光胶合标准具optically coupled circuit 光耦合电路optically coupled device 光合装置optically coupled laser 光学耦合激光器optically denser medium 光密媒质optically deriveed transform 光导变换式optically excited laser 光激发激光器optically excited metastable level 光受激亚稳态能级optically flat filter 光学平面滤光片optically flat glass 光学平面玻璃optically flat window 光学平面窗optically inactive 不旋光的optically levitatecd particle 光学悬浮粒子optically nonlinear crystal 光学非线性晶体optically perfect reflector 理想反光器,理想反光镜optically plane 光学平面optically pumped amplifier 光抽运放大器optically pumped collision laser 光抽运碰撞激光器optically pumped ion 光抽运离子optically pumped laser 光抽运激光器optically pumped maser 光抽运微波激射器optically pumped submillimeter laser 光抽运亚毫米激光器optically pumped waveguide laser source 光抽运波导激光源optically thinner medium 光疏媒质optically transparent meduim 光学透明媒质optically-focused beam 光学聚焦光束optically-read intstrument 光学读数仪器optically-stimulated crystal 光激发晶体optically-thicker medium 光密媒质opticator 光学扭簧测微仪optician (1)光学技工(2)光学仪器商opticist 光学家opticity 旋光性,旋偏振性optics (1)光学(2)光学系统,光学装置(3)光学部件optics custom fabrication 光学元件订制optics kerr cell 光学克尔盒optics of liquids 液体光学optics of metals 金属光学optics of microdensitometry 显微密度计光学optics of superconductor 超导体光学optics of thin film 薄膜光学optidress 光学修正optidress projector scope 光学修整投影显示器optimal 最佳的optimal coupling 最佳耦合optimal decoupling 最佳去耦合optimal filter 最优滤波器optimal mode volume 最佳模体积optimeter (1)光学比较仪(2)光电比色计optiminmeter 光学测微计optimization 最佳化optimizing 最佳化optimum condition 最佳条件optimum efficiency 最佳效率optimum magnification 最佳放大率optimum reflectivity 最佳反射率optimum resolution 最佳分辨率optimum sensitivity 最佳灵敏度optist 验光师optitherm radiometer 光热轴射计optium angle 最佳角optiumum control 最佳控制opto-hybrid integeratecd circuit 光混合集成电路opto-minimeter 光学测微计opto-thermodynamics 光热力学optoacoustic 光声的optoacoustic detection 光声探测optoacoustic detector 光学探测器optoacoustic modulation 光声调制optoacoustic modulator 光声调制器optoelectric shift register 光电移位寄存器optoelectronic cold cathode 光电子冷阴极optoelectronic data processor 光电数据处理机optoelectronic device 光电器件,光学装罝optoelectronic element 光电元件optoelectronic icoeic optoelectronic memory 光电存储器optoelectronic polymers 光电高分子optoelectronic scanning 光电扫描optoelectronic system 光电系统optoelectronics 光电子学optogalvanic effect 光电效应optogram 视网膜像optokinetic drum 眼球运动鼓状器optomagnetic 光磁的optometer 测眼仪,视力计optometrist 验光技师optometry 视力测定optophone 盲人光电阅读装置optotransistor 光晶体管optotype 验光字体optrack 光跟踪装置optron 光导发光元件optronics 光电子学or elementorgan "或"元件or-not "或非"orange 橙色orange filter 橙滤色镜orbit 轨道orbital (1)轨道的(2)轨函数orbiter 轨道飞行器orbiting astronomical observatory 轨道天文台orbiting solar observatory 轨道太阳观察站orbitorn 轨旋管order (1)指令(2)级(3)序(4)阶order of aberration 像差级order of accuarcy 准确程度order of diffraction 衍射级order of interfence 干涉级order of magnitude 数量级order of spectrum 光谱级order of triangulation 三角测量级order parameter 序参数order tarnsition 级跃迁order-code 指令码order-disorder 有序-无序order-sequence 级次顺序order-sorter (1)指令分类器(2)级次分离器ordering 有序化,成序ordinal (1)顺序的(2)序数ordinal number 序数ordinary differential equation 常微分方程ordinary ight source 寻常光源ordinary image 寻常像ordinary index of refraction 寻常折射率ordinary ray 寻常射线,寻常光线ordinary refractive index 寻常折射率ordinary wave 寻常像ordinate 纵坐标ore 矿石organic chelate iquide laser (1)器管(2)元件(3)机构organic compound 有机螫合物液体激光器organic dye laer 有机染料激光器organic dye solution laser 有机螫合物液体激光器organic electro-luminescence display (oeld)有机电激发光显示organic glass 有机玻璃organic laser 有机激光器organic liquid laser 有机液体激光器organic medium 有机媒质organic optical materials 有机光学材料organic photo conductor drum 有机感光鼓organic phtoconductor 有机光电导体organic polymer 有机聚合物organic semiconductor 有机半导体organism 有机体organization 组织organo-electroluminescence (oel)有机电激发光organo-substituted carborane 有机代用碳甲硼烷organoacetylenide 有机乙炔orhtgraphic camera 正交投影照相机orhtogonal axis 正交轴orhtogonal linear polarizaiton 正交线偏振orhtogonal tansformation 正交变换orientating instrument 定向仪orientation 取向,定向orientation effect 取向效应orientation polarizability 取向极化率orientation polarization 取向极化orifice (1)孔,口(2)喷嘴(3)喷管(4)注孔origin (1)原点(2)起源original (1)原片,底片(2)原像(3)原稿original position 初始位置original state 初始状态origination 产生,出现oringinal aratwork 原图ortating mirror framing camera 旋[转]镜分幅照相机orthicon 正析像管orthicon camera system 正析摄像像系统ortho-acid 原酸,正酸ortho-axis 正交轴ortho-hydrogen 正氢ortho-ismer 邻位异构物ortho-isomeride 邻位同分异构体orthocentre 垂心orthochromatic 正色的orthochromatic film 正色胶片orthochromatic filter 正色滤光器orthodiagraph 正摄像仪orthogonal 正交的,直角的orthogonal function 正交函数orthogonal matrix 正交阵orthogonal modes 正交模orthogonal projection 正投影orthogonality 正交性orthogonalization 正交化orthograph 正视图,正投影图orthographic 直线的,直角的orthographic projection 正交投影法orthometar lens 奥索曼泰透镜orthonormal 标准的,正交的orthopanchromatic film 正全色胶片orthopedics 整形外科orthopia 斜视矫正orthoptics (1)斜视矫正(2)正位体视orthoptist 斜视矫正学家orthorhombic crystal styem 正交晶卜orthorhomibc 斜方晶系的orthoscope 正像计,无畸变器orthoscope optical system 无畸变光学系统orthoscopeic lens 无畸变透镜orthoscopic 无畸变的orthoscopic eyepiece 无畸变目镜orthoscopic image 无畸变图像orthoscopic microscopic observation 无畸变显微镜观察orthoscopic ocular 无畸变目镜orthoscopic otpical system (1)无畸变光学系统(2)无畸变光具组orthoscopicity 保真显示性orthoscopy 无畸变orthotester 奥氏测微计,杠杆式比较仪orthotropic 正交各向异性的oscillating dipole 振荡偶极子oscillating point 振动点oscillation (1)振动(2)回摆(3)振荡oscillation frequency 振动频率oscillation photograph 回摆照相oscillationg-crystal roentgenogam 振荡晶体伦琴射线照相,振荡晶体x射线照相oscillator (1)振荡器(2)振子oscillator continuum 振子连续区oscillator field 振动场oscillatory laser output 激光振荡输出oscillatory mode 振动模oscillatory phtoconductivity 振荡光电导率oscillgraph 示波器oscillion 三级振荡管oscillistor 半导振导器oscillocsope-detector 示波器探测器oscillogram 波形图,示波图oscillogreg 激光x-y高速记录器oscilloprobe 示波器测试头oscilloscope 示波器oscilloscope camera 示波器照相机oscilloscope trance 示波器描迹oscilloscope tube 示波管oscillosynchroscope 同步示波示器oscitron 隧道二级管振荡器osjcillating ode 振荡波型,振荡模osmium (os)锇osmosis 渗透性ostwald color system 奥斯瓦德色系other and concerned microscopes/telescopes/cameras 其他显微镜、望远镜、照像机other bar code scanners 其他条码扫描器other copy machines 其他影印机other detectors 其他检光元件other devices 其他光通讯元件other display equipment 其他显示设备other equipment 其他光电设备other excimer laser processing equipment 其他准分子雷射加工机other fiber optic bundles 其他集束光纤other fiber optic sensors 其他光纤感测器other filters 其他滤光镜other flat panel displays 其他平面显示元件other laser components 其他雷射用元件other laser crystals 雷射晶体(其他)other laser processing equipment 其他雷射加工机other lasers 其他雷射other leds 其他发光二极体other lenses 其他透镜other light sources 其他光源other manufacturing/processing equipment 其他制造加工用设备other materials 其他材料other medical equipments 其他医用雷射设备other mirrors 其他面镜other modulators 其他调变器other molding equipment 其他成形机other multimode fiber optic cable 其他多模态光缆other multimode fiber optic connectors 其他多模态光纤连接器other optical communication equipment (telecommunication) 其他公众用光通讯设other optical communication system 其他光通讯系统other optical couplers 其他光纤耦合器other optical data communication network equipment (premises) 其他用户光数据通other optical fiber measurement equipment 其他光纤相关量测设备other optical hardwares/testing equipment 其他光学机构器材/实验设备other optical information equipments 其他光资讯设备other optical measurement equipment 其他光(学)量测器other optical passive devices/control devices 其他光被动元件/控制元件other optical printers 其他光学式印表机other optical sensors 其他光感测器other optical transmission equipment (special purpose)其他特殊用途光传输设备other optical wdm couplers 其他光分波合波器other optoelectronic systems 其他光系统other power supplier/amplifiers 其他电源供应器/放大器other preform rod manufacturing equipment 预型体制造设备(其他)other prisms 其他棱镜other products 其它产品other recordable optical disc drives 其他仅写一次型光碟机other recordable optical discs 其他可写仅读型光碟片other rewritable optical disc drives 其他可覆写型光碟机other rewritable optical discs 其他可覆写型光碟片other semiconductor lasers 半导体雷射(其他波长带)other services 其他服务other single mode fiber optic cable 其他单模态光缆other single mode fiber optic connectors 其他单模态光纤连接器other single mode optic fibers 其他单模态光纤others 其他加工用材料otical biasing 光偏置otical branch 光频支otical quality 光学质量otoscope 耳镜otpcial range gating 光学距离选通otpica ranging 光测距otpica readout 光读出otpical free induction decay 光学无感生研减otpical gain 光增益otpical testing instrument 光学测试仪器otpical tracking cotnrol unit 光学跟踪控制器otpical transistor 光学晶体管ounce 英两out of phase 异相out of roundness 不圆度out of square 不正方out of step 不同步out of tune 失调out-of-field radiation 视场外辐射out-of-focus 离焦out-of-focus appearance 离焦状态out-of-focus image 离焦图像out-of-focus imagery 离焦像out-phase (1)异相(2)相位不重合outage 供电中断,停机outbound 输出的,射出的,引出的outburst (1)爆炸,爆燃(2)闪光,尖头信号outdiffusion 向外扩outer barrel 外筒outer cavity modulation 腔外调制outer cover 外罩outer diameter 外径outer hyperboloid 外双曲面outermost layer 最外层outermost reflector 最外层反射器outfit 成套装备outflow 流出outgassing 放气outgassing rate 释气率outgoin laser beam 出射激光束outgoing beam 出射光束outgoing mirror 射出镜outgoing wave 出射波outlet 出口outline (1)轮廓(2)略图outlook 视野outlying spectral region 边缘光谱区域output (1)输出(2)产量(3)引出线output amplifier 输出放大器output beam 输出光束output beam coupling 输出光束耦合output beam energy 输出光束能量output beam power 输出光束功率output charcteristic 输出特性output end mirror 输出端面镜output energy 输出能量output expander 输出扩展电路output loading factoro 输出负载因数output nosise 输出噪声output photon 输出光子output power 输出功率output power density 输出功率密度output power stability 输出功率稳定度output pulse 输出脉冲output ratio of q-switching to free running q开关与自由运行的输出比,动静比output resistance 输出电output spike 输出尖峰output stability 输出稳定度output transformerless 无输出变压器output-mirroro transmission 输出镜透射率outrush 高速射流outside diameter 外径outside differential quantum efficiency 外微分量子效率outside micrometer 外径千分尺,外径测微计outside shell 外壳outsie view 外观图,外形图outward 向外的outward normal 向外法线outward traveling wave 外向行波oval 椭圆徵的,卵形的ovality 卵形度oven (1)炉(2)乾燥箱over correction 过分校正overactive 高度活化的overal frequgncy response 总频率响应overall accuracy 总准确度overall attenuation 总研减overall cavity gain 共振腔总增益overall dimensions (1)总尺寸,全尺寸(2)最大尺寸overall efficeincy 总效率overall f-number 总f数,总光圈数overall focal length 总焦距长度overall integral metering 总积分测光overall length 总长overall magnification 总放大率overall size 总尺寸,外形尺寸overall system gain 总系统增益overannnealing 过度退火overarm 横臂,悬臂overarm support 撑杆支架overbalance (1)失衡(2)过重overbunching 过聚束overburden 过载,超载overcast (1)拱形支架(2)遮盖的(3)阴的,多云的overcoat 涂层overcoating 外敷层,保护涂层overcompensation 补偿过度overcooling 过冷overcurrent 过电流overdamping 过阻尼overdevelopment 显影过度overdischarge 过量放电overdrive gear 增速齿轮,超速转动齿轮overexcitation 过度激发,过度激励overexpanision 过度膨胀overexposure 过度曝光overflow 溢流overfocus 过焦点overground 过细的,磨过头的overhang 外伸的overhaul 拆修,检修overhearing 串音overheat 过热overirradiation 过度辐照overlap 重叠,交叠,相交overlap integral 重叠积分overlap joint 搭接overlap region 重叠区overlapping area 重叠面积overlapping hologram record 重叠全息图记录overlapping image 重叠像overlapping of grating spectra 光栅光谱重叠overlapping steps 正叠节距overlay transistor 覆盖式晶体管overload 过载overmoded pipe 多模光导管overmodulation 过调制overpopulation 过布居,过粒子数分布overpressure 过压,超压overranging 超限overrich 过浓的overshoot (1)过辐射(2)过冲(3)过调量oversize 尺寸过大oversized helical waveguide 特大螺旋波导overspeed 超速overstability 过度稳定性overstabilityover-the-horizon optical ocmmunication 超视距光学通信overtone pumping 泛音抽运overtone transiton 泛音跃迁overweight 过重,超重ovetone (1)泛音(2)谐波oving foci 动焦点ovograph 硒碲合金静电印刷术oxamide 草先胺(抛光材料)oxidation 氧化oxidation effect 氧化效应oxidation furnaces 氧化设备oxidation of developer 显影剂氧化作用oxidation stain 氧化污染oxidation state 氧化状态,氧化态oxide 氧化物,氧化层oxide ceramic laser 氧化物陶瓷激光器oxide film 氧化膜oxide glass 氧化物玻璃oxide of chromium 氧化铬oxide semiconductor 氧化物半导体oxidecoated 涂氧化物的oxidizing agent 氧化剂oxizole 恶唑oxy-acetylene 氧乙炔oxy-acetylene flame 氧孔炔焰oxygen (o)氧oxygen hydrogen torch 氢氧吹管,氢氧切割器oxygen laser 氧激光器oxygenization (1)氧化(2)充氧oxymeter 测氧计oxyopia 视力锐敏oylet 孔眼,视孔oz (ounce)英两,盎司ozone 臭氧ozone cutoff 臭氧收界限ozone spectroscopy 臭氧光谱学ozonosphere 臭氧层光电英语词汇(O2) 相关内容:。
第13章 波动光学之2-光波的衍射wzj (1)
k 1, 2,
k 1, 2,
3. 衍射与干涉: —都是相干波的叠加 历史的原因:从相干波源在空间的分布条件来区别 干涉: 由有限数目“分立”相干光源传来的光波相干叠加 衍射: 由相干光源“连续”分布的无限多子波波中心发出 的子波相干叠加 双缝干涉:—从两个很窄的双缝得到的是干涉图样 由两个“分立”相干光源传来的光波相干叠加 双缝衍射: 由两个“连续”分布的子波中心发出的光波相干叠加 —从两个较宽的双缝得到的是干涉、衍射结合的图样
(2)对应 P 点的亮纹缝可分成多少个半波带? a sin ( 2k 1) ( 2 3 1) 7 2 2 2 7个“半波带 ”
(3)P点的相对光强?
7π k 3, 2 2 I sin 1 I0 7 2 2
B
a
半波带 半波带 A
1 2 1′ 1 2′ 2 1′ 2′
半波带 半波带
/2
两个“半波带”上发的光在 P处干涉相消形成暗纹 。
3 (3) 当 a sin 时, 2
B a A
可将缝分成 3 个“半波带 P处近似为明纹中心 (4) 当 a sin 2 时, 可将缝分成 4 个“半波带 ” P处形成暗纹。
sin I I 0 cos 2
2
a sin
4
2
1
0
1
2
4
I I0
sin2
2
cos
2
a sin
物理学专业英语词汇
物理学专业英语词汇摘要:物理学是一门研究自然界最基本的规律和现象的科学,它涉及到许多专业的英语词汇,对于物理学专业的学习者来说,掌握这些词汇是非常重要的。
本文根据物理学的不同分支,整理了一些常用的物理学专业英语词汇,并用表格的形式给出了中文和英文的对照,以便于读者查阅和记忆。
本文旨在为物理学专业的学习者提供一个参考资料,帮助他们提高英语水平和物理知识。
1. 基础物理 Basic Physics中文英文物理量physical quantity物理单位physical unit标准单位standard unit国际单位制International System of Units (SI)基本量base quantity导出量derived quantity标量scalar矢量vector位移displacement速度velocity加速度acceleration力force动量momentum动能kinetic energy势能potential energy能量守恒conservation of energy功work功率power压强pressure浮力buoyancy摩擦力friction force弹力elastic force重力gravity force引力常数gravitational constant圆周运动circular motion向心力centripetal force简谐振动simple harmonic motion振幅amplitude频率frequency周期period2. 热学 Thermodynamics中文英文温度temperature热力学温标thermodynamic temperature scale 开尔文温标Kelvin temperature scale摄氏温标Celsius temperature scale华氏温标Fahrenheit temperature scale热平衡thermal equilibrium热力学第零定律zeroth law of thermodynamics热量heat热容量heat capacity比热容specific heat capacity理想气体定律ideal gas law普适气体常数universal gas constant3. 光学 Optics中文英文光light光源light source光线light ray光束light beam光波light wave波长wavelength频率frequency振幅amplitude相位phase干涉interference衍射diffraction偏振polarization光速speed of light折射率refractive index折射定律law of refraction反射定律law of reflection全反射total reflection透镜lens镜头lens焦距focal length焦点focus物镜objective lens可见光visible light紫外光ultraviolet light红外光infrared light4. 电学 Electricity中文英文电荷electric charge电流electric current电压electric voltage电阻electric resistance电阻率resistivity电容electric capacitance电容率permittivity5. 原子物理 Atomic Physics中文英文原子atom原子核atomic nucleus原子序数atomic number原子量atomic mass原子半径atomic radius原子轨道atomic orbit电子electron质子proton中子neutron电子云electron cloud电子壳层electron shell价电子valence electron离子ion同位素isotope同素异形体allotrope核裂变nuclear fission核聚变nuclear fusion核反应堆nuclear reactor核武器nuclear weapon6. 量子物理 Quantum Physics中文英文量子quantum量子力学quantum mechanics量子场论quantum field theory量子数quantum number量子态quantum state量子纠缠quantum entanglement量子隧穿quantum tunneling测不准原理uncertainty principle薛定谔方程Schrödinger equation海森堡矩阵力学Heisenberg matrix mechanics 7. 固体物理 Solid State Physics中文英文固体solid晶体crystal晶格lattice晶胞unit cell晶面指数Miller index点阵常数lattice constant点缺陷point defect线缺陷line defect8. 电磁学 Electromagnetism中文英文电荷electric charge电流electric current电场electric field电势electric potential电压electric voltage电阻electric resistance电阻率resistivity电容electric capacitance电容率permittivity电感electric inductance电磁感应electromagnetic induction电磁波electromagnetic wave磁场magnetic field磁通量magnetic flux磁感应强度magnetic induction intensity磁化率magnetic susceptibility磁导率magnetic permeability9. 光子学 Photonics中文英文光子photon光源light source光纤optical fiber光波导optical waveguide光谱spectrum光谱仪spectrometer激光器laser半导体激光器semiconductor laser激光二极管laser diode发光二极管light-emitting diode (LED)光探测器photodetector光电倍增管photomultiplier tube (PMT) 10. 流体力学 Fluid Mechanics中文英文流体fluid气体gas液体liquid粘性viscosity粘滞力viscous force流速flow velocity流量flow rate流线streamline管流pipe flow层流laminar flow湍流turbulent flow雷诺数Reynolds number伯努利方程Bernoulli's equation压力差pressure difference水头head水锤现象water hammer11. 波动光学 Wave Optics中文英文光波light wave波前wavefront光程差optical path difference干涉条纹interference fringe干涉仪interferometer杨氏双缝实验Young's double-slit experiment 迈克尔逊干涉仪Michelson interferometer法布里-珀罗干涉仪Fabry-Perot interferometer衍射现象diffraction phenomenon衍射级数diffraction order中文英文衍射极限diffraction limit单缝衍射single-slit diffraction双缝衍射double-slit diffraction12. 相对论 Relativity中文英文相对论relativity狭义相对论special relativity广义相对论general relativity惯性系inertial frame参考系reference frame洛伦兹变换Lorentz transformation洛伦兹收缩Lorentz contraction时间膨胀time dilation质能方程mass-energy equation光速不变原理principle of constancy of light speed 相对性原理principle of relativity引力场gravitational field引力波gravitational wave弯曲的时空curved spacetime13. 核物理 Nuclear Physics中文英文核物理nuclear physics原子核atomic nucleus核子nucleon质子proton中子neutron核力nuclear force核结合能nuclear binding energy核裂变nuclear fission核聚变nuclear fusion放射性元素radioactive element放射性衰变radioactive decay半衰期half-lifeα衰变alpha decayβ衰变beta decay。
波动光学
例如:两盏普通白炽灯 的灯光的叠加。
说明:这种非相干性是由于观测效果和受实验手段限制而产生的,
与频率不同的光的非相 干叠加有区别。
2. 相干叠加 设两相干光相遇:
I E E E 2 E10 E20
2 0
2 10
2 20
cos(
0
1
2
1 )dt
I1 I 2 2 I1 I 2 cos( 2 1 ) 其中, I1 I 2 cos( 2 1 )为干涉项。 2
四、获取相干光的办法 1.分波阵面
S
S1
S2
在波振面上分出两 部分S1S2作为相干 光源
见彩图
S
2.分振幅 1
2
通过上下表面反射,把入射光
分为几部分,每部分有一定的 强度(振幅)
相干光的获得 1)分波阵面法 杨氏干涉
原则:‘同出一源,分之为二’
纵截面图
S1
剖面图
r1 r2
S
在波振面上分出 两部分S1S2作为
相干光(conherent light)
频率相同、振动方向相同、相位差恒定
相干现象:合振动强度按空间周期性变化 说明: 1. 对于机械振动,两独立波源容易满足相干条件,但对光波,要 保证两独立波源振动方向、相位差恒定是十分困难的。 2. 产生相干光的办法:将同一个光源发出的光通过分光装置(相当 于变成两个次级光源),从而保证其相干性。
单 缝 双缝
S2
屏
相干光源
2)分振幅法 S 透 镜 等倾干涉
通过上下表面反射,把入 射光分为几部分,每部分
P
S
P 透 镜
有一定的强度(振幅)
薄膜 剖面图
大学物理波动光学英文实验报告
Wavelength references for interferometry in airRichard W.Fox,Brian R.Washburn,Nathan R.Newbury,and Leo HollbergCavity-mode wavelengths in air are determined by measuring a laser’s frequency while it is locked to themode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmo-spheric pressure compression,temperature difference,and material ing a Zerodur ring cavity,we demonstrate a repeatability ofϮ2ϫ10Ϫ8͑3͒,with the wavelength accuracy limited toϮ4ϫ10Ϫ8byknowledge of the absolute helium gas temperature during the pressure calibration.Mirror cleaningperturbed the mode frequency by less than⌬͞ϳ3ϫ10Ϫ9,limited by temperature correctionresiduals.©2005Optical Society of AmericaOCIS codes:120.2230,120.3180,120.3940.1.IntroductionCommercial frequency-stabilized He–Ne lasers typi-cally have a frequency uncertainty of a few parts in 108or smaller,and in vacuum the laser beam’s wave-length uncertainty͑⌬͒͞is fractionally equivalent, although of opposite sign.The wavelength uncer-tainty⌬͞is appreciably larger in air owing to un-certainties in the index of refraction,which can affect the accuracy and repeatability of interferometric mea-surements.There are of course many other potential errors of interferometric measurement,such as cosine error,Abbéerror,dead-path error,polarization-mixing nonlinearities,and thermal drifts of the optics.How-ever,especially for longer interferometer path lengths, wavelength uncertainty can be a significant part of the error budget.Air movement causesfluctuations of the refractive index and hence of wavelength that increase the variance of the interferometer’s phase in a given mea-surement interval or averaging time.The measure-ment precision is often limited by these wavelength fluctuations in applications with airflow and rela-tively short averaging times,for instance,motion stages.1Consequently,increasingly precise knowl-edge of the average wavelength over a longer time interval is generally not useful unless thefluctua-tions can be reduced or compensated for in some way. Low-finesse air-spaced etalons of arbitrary length are sometimes used for compensation,2but absolute ac-curacy requires information from another source, such as measuring a known standard with the inter-ferometer system or estimating the average wave-length from environmental measurements.Two-color techniques that derive changes in the refractivity from interferometric measurements of the same path at different colors have also been shown to reduce fluctuations.1The degree of compensation will de-pend on the correlation between the air in the actual measurement path and the compensation path.3 Most often the beam’s average wavelength is de-termined by use of a refractive-index model and careful measurements of the air’s environmental pa-rameters.Agreement of a model with refractivity measurements has been shown to at least a few parts in108.4However,to achieve a wavelength uncer-tainty͑3͒of even1part in107by this method in a routine manner in an industrial setting is not trivial. For instance,this task requires absolute measure-ment of the average air temperature along the inter-ferometer path toϮ100m°C.Such accuracy requires careful calibration at regular intervals and attention to error sources such as self-heating of the thermistor or platinum resistance temperature detector,which is air-flow velocity dependent.An alternative approach of using one or more res-onances of a stable optical cavity to provide wave-length information in air has been explored in recent years.5–9In a manner similar to etalon-based com-pensation,a moderatefinesse cavity can offer re-duced wavelengthfluctuations but can also supply accurately known wavelengths without the need for precision air-temperature measurements(Fig.1). The wavelength and frequency of a cavity mode areThe authors are with the National Institute of Standards andTechnology,325Broadway,Boulder,Colorado80305.R.W.Fox’se-mail address is richard.fox@.Received6April2005;accepted31May2005.0003-6935/05/367793-09$15.00/0©2005Optical Society of America20December2005͞Vol.44,No.36͞APPLIED OPTICS7793approximately ϭL ͞m and ϭmc ͞nL ,respectively (m represents the mode number,L the round-trip path length,and n the index of refraction).With a tunable laser locked to a cavity mode,the wavelength of the light in the cavity remains constant because the laser’s frequency is adjusted (inversely)propor-tionally to any index-of-refraction change of the air in the cavity.In particular,length measurements have been demonstrated by use of a Fabry–Perot cavity wavelength reference at 633nm that was calibrated with an iodine-stabilized He–Ne laser.7The technol-ogies to create stable reference cavities,tunable la-sers,and locking electronics have been available for some time,although the means to measure easily the frequencies of arbitrary reference modes and there-fore the mode wavelengths has not.Now,with the advent of femtosecond comb fre-quency measurements,10a cavity mode’s resonant frequency and hence wavelength can easily be mea-sured in vacuum during a calibration step.Subse-quently,in air,the cavity mode can serve as a wavelength reference as long as any vacuum-to-air change of the physical size is properly accounted for.In fact,a number of small corrections are necessary to compensate for changes in size since calibration.The corrections and their maximum magnitudes are for atmospheric pressure compression ͑⌬L ͞L ϭ⌬͞Ϸ10Ϫ6͒,temperature ͑Ϸ10Ϫ7͒,and material aging ͑Ϸ10Ϫ7͒.These value’s are quite small compared to the air’s refractivity ͑Ϸ2ϫ10Ϫ4͒that must be com-pensated for when one is using a frequency-stabilized laser to provide a known wavelength in air.In addi-tion,this method can provide several accurately known wavelengths simultaneously,facilitating multiple-wavelength interferometry applications.The primary challenges to obtaining air-wavelength uncer-tainties approaching ⌬͞ϳ10Ϫ8appear to be an accurate accounting of the cavity’s contraction caused by atmospheric pressure 11and,as we discuss here,the ability to measure properly the effective temper-ature of the low-thermal-conductivity cavity spacer.Periodic calibrations,similar to those required for other precision instruments,may be necessary to en-sure the highest accuracy.In this paper we demonstrate the absolute calibra-tion of a mode wavelength by means of femtosecond-comb frequency measurements and present frequency measurements spanning eight months.We also present cavity-mode frequency measurements before and after the mirrors are cleaned,as contamination of the mirror surfaces appears to be an important issue in the design of absolute resonant air-wavelength refer-ences.The paper is organized as follows:First,in Sec-tion 2we discuss resonant wavelength references.In Section 3we present our method of optical frequency measurement the apparatus used;the measurements are reported and discussed in Section 4.2.Cavity Wavelength ReferencesHigh-quality wavelength reference cavities would be fabricated from a low-thermal-expansion spacer and optically contacted or silicate-bonded mirrors.12We have fabricated cavities by using both Zerodur 13and ULE glass 14as the spacer material,but the frequency measurements reported in this paper pertain to the Zerodur cavities only.We consider ring cavities ex-clusively,as this reduces optical feedback problems and avoids the use of expensive optical isolators.We can write the resonant wavelength of an optical cav-ity TEM 00mode asm ϭLͲͫm Ϫ͑͒ϩGͬ,(1)where m is the wavelength of the light in the cavity,or in air with the same refractive index as the cavity medium.L is the round-trip physical path length,m is the longitudinal mode index,and ͑͒is the cumu-lative phase shift that is due to reflection accumu-lated during a single round trip of the cavity.G represents the geometry-dependent Gouy phase shift over a single round trip of the cavity.15Equation (1)is the direct result of requiring an integer number of phase cycles in one round trip of the cavity,͑2L ͒͞ϩ͑͒ϩG ϭ2m .We discuss the stability of each variable in Eq.(1)to gain insight into how stable m can be.Our present research has utilized modes with m Ն1.7ϫ105,a 25cm ring-cavity path length,and ϳ 1.48m,chosen because of the availability of low-cost high-power ͑ϳ20mW ͒fiber-coupled distributed-feedback (DFB)lasers.Return-ing a tunable laser to the previously calibrated mode (same longitudinal mode index m )is an important consideration,and a simple method to accomplish this by use of a small auxiliary air-spaced cavity has been demonstrated at 633nm.7The denominator terms ͑͒͞2and G ͞2are of the order of 1or less;thus a wavelength uncertainty of ⌬͞Ͻ10Ϫ8requires only ϳ0.1%stability of these terms between calibrations,as is evident by inspec-tion of Eq.(1)with L and m constant (and large).With regard to the stability of the phase shift on reflection,we are utilizing mirrors with ion-beam sputtered di-electric coatings of Ta 2O 5and SiO 2.Such coatings are dense,nonporous,and environmentally stableandFig.1.Example of a cavity wavelength reference used with a homodyne Michelson interferometer.A portion of the interferom-eter source illuminates a triangular three-mirror air-spaced refer-ence cavity,and the tunable laser is electronically servocontrolled to remain locked to a cavity mode that has a known wavelength.The reference cavity is placed in close vicinity to the interferometer beams to maximize the correlation between the refractive index of the air in the cavity and in the interferometer path.7794APPLIED OPTICS ͞Vol.44,No.36͞20December 2005may easily be cleaned without damage.We have no evidence that significant changes in the reflection phase shift owing to humidity or other environmental factors occur,but we note that tests of the actual wavelength stability in air or tests with cavities of different lengths8will be required for proof of the validity of this statement.Any temperature depen-dence of the coating phase shift is included in the cavity temperature compensation.The Gouy phase shift is slightly wavelength dependent;however,the change is completely negligible here because the ref-erence mode’s actual(uncorrected)wavelength is suf-ficiently stable.In practical terms,the wavelength stability of the reference depends on how well the temperature,pres-sure,and aging dependence of cavity length L can be compensated for.The cavity’s temperature depen-dence can be determined by several measurements over a near-room-temperature range,and subse-quent temperature monitoring allows afirst-order correction to be made in the wavelength.Such pas-sive monitoring seems preferable to active tempera-ture control,which would perturb the surrounding air temperature.With temperature sensors perma-nently bonded to the wavelength reference before cal-ibration,only the sensor’s repeatability,not the absolute accuracy,is important.In fact,although cav-ity temperature and atmospheric pressure must be monitored and compensated for to account for any changes of the cavity length,the required accuracy of these environmental measurements is far less than is necessary to gain the same performance from a refractive-index model.Indeed,one can estimate a reference wavelength uncertainty owing to temperature of⌬͞ՅϮ1ϫ10Ϫ9by using a nominal temperature coefficient of ␣ϭϮ20ϫ10Ϫ9͞°C together with an uncertainty ofthe relative temperature difference since calibration ofϮ0.05°C.However,we show results in Section4 below that suggest that temperature-related issues limit the resolution of our present system to⌬͞ՅϮ2ϫ10Ϫ8͑3͒.This corresponds(through the measured temperature coefficient)to an effective path-length temperature uncertainty ofϮ0.5°C,far above the random noise level of the array of temper-ature transducersfixed to the cavity.We believe that the temperature compensation is limited by our tem-perature sensing of only six discrete points of a25cm path length in a low-thermal-conductivity structure and also by thermal hysteresis of the Zerodur spacer. Note that to meet even this nonoptimum level of per-formance by way of index-of-refraction calculations is hardly possible,as it would require an absolute-temperature measurement of the air accurate to Ϯ20m°C along with confidence that the refractive-index model was valid to this precision.Likewise,practical considerations limit the ability to compensate,or correct,for the wavelength shift that is due to the pressure-induced contraction of the cavity.The theory of mechanical deformation of simple structures under isotropic pressure is wellknown.11The linear contraction under pressure of 105Pa(760Torr)is approximately⌬L͞Lϳ10Ϫ6inthe case of ULE glass and almost a factor of2smallerfor Zerodur.Thus for ULE it would seem that a pres-sure measurement accurate to1%would be adequateto correct the reported wavelength(measured in vac-uum)to atmospheric pressure with afidelity of ⌬͞Յ10Ϫ8.However,to calculate the change in the cavity size(and hence in the mode wavelength)to a precision of⌬L͞Lϳ10Ϫ8based on theory would re-quire knowledge of Young’s modulus and Poisson’sratio accurate to1%and2%,respectively.These pa-rameters are not guaranteed so precisely by the glassmanufacturers.The change in cavity size can also bedetermined by frequency-shift measurements in con-junction with refractive-index measurements.However,we were not certain that we could mea-sure the absolute average index of refraction of air in the cavity path to much better than1part in107. Therefore we measured the pressure-induced con-traction by placing the cavity in a pure helium envi-ronment.Helium is an excellent choice because its refractivity͑nϪ1͒is nearly a factor of10lower than that of air͑n Heϭ1.0000324at20°C,105Pa, 632.8nm͒and fromfirst-principle calculations is known to approximately the10Ϫ10level.16As Stone and Stejskal16pointed out,the attainable uncertainty of the refractive index would normally be set by the pressure or temperature measurement of the helium gas,or by impurities in the gas.Our present wave-length uncertainty is limited by the absolute-temperature uncertainty͑Ϯ0.4°C͒of the helium gas used to calibrate the pressure change.Wavelength correction for changes in physicallength of the cavity path length owing to aging of theglass is relatively important with Zerodur,a glassceramic material.Optical resonator length contrac-tion of the order of⌬L͞Lϳ10Ϫ7per year for new Zerodur cavities with optically contacted mirrors has been observed.17For ULE cavities held isother-mally in vacuum,apparent aging rates ofՅϪ3.7ϫ10Ϫ9yearϪ1(Ref.18)andՅϪ5.5ϫ10Ϫ9yearϪ1(Ref.19)have been observed.Periodic frequency measure-ments allow us to remove thefirst-order trend,as wedemonstrate in Section4with a logarithmicfit to theZerodur cavity frequency-versus-time data.With re-gard to a wavelength reference fabricated with ULE,we expect that the uncertainties after correction willbe limited by temperature-associated effects ratherthan aging.Contamination of the mirror surfaces in air is apotential error source of a cavity-based wavelengthreference.The magnitude of the potential problemwill scale inversely with cavity size and will be influ-enced by the operating environment.In a typicalroom environment,water molecules will be present inlarge quantities on the mirror surface.Simple anal-ysis of Lϳ25cm length cavities indicates thatseveral molecular layers of water will not be a signif-20December2005͞Vol.44,No.36͞APPLIED OPTICS7795icant error term.Even so,we note that our frequency measurements are performed in only a moderate vac-uum ͑Յ0.1Pa ͒without baking,and significant water is still present on the mirror surfaces during the mea-surement.Consequently the vacuum wavelength cal-ibration to a large extent should account for the surface water.Perhaps more important is the effect of the ever-present dust and room particulate settling on the mirrors.Advantageous cavity designs will pro-tect the mirrors while at the same time permitting a free flow of air and easy mirror cleaning.The cavity described here (Fig.2)is a rectangular ring resonator with a path length of 25.2cm that has four Zerodur mirrors optically contacted to a Zerodur spacer.(Note:The material was standard Zerodur,not Zerodur-M.)ULE glass is a preferable candidate material in terms of aging,possible temperature-induced hysteresis,and also transmission at 1479nm;however,Zerodur was used for this prototype cavity because of other nontechnical constraints.We specifically chose a four-mirror,45°angle of incidence design to study the cavity’s polarization-dependent dispersion characteristics in addition to the fre-quency measurements that we are reporting on here.The mirror mounting surfaces were specified in a square pattern with a tolerance of Ϯ5arc min that earlier tests showed would be sufficient to achieve cavity alignment by adjustment of the input beam alone.Two of the mirrors are flat,while the other two have a 50cm curvature,and all the mir-rors have the same 99.5%front–side reflectivity ͑at 1479nm ͒with a rear antireflection coating.3.Frequency Measurement ApparatusWe determined the wavelength of a mode of the ref-erence cavity by measuring the optical frequency of the mode in vacuum.We performed our optical fre-quency measurements by locking a test laser to the wavelength reference cavity mode and measuring the heterodyne beat note frequency between the test la-ser and a femtosecond laser comb mode.An experi-mental diagram is shown in Fig.3.In this section,first we discuss the relationship of the test laser to the reference cavity-mode center and then we discuss the heterodyne beat identification and measurement.A.Test-Laser Lock ConsiderationsWe have chosen by design a cavity-mode linewidth of no more than a few parts in 108so that certain locking issues are rendered unimportant for the wavelength reference performance.For instance,one can accom-plish locking of a tunable extended-cavity diode laser to a cavity fringe without an expensive external mod-ulator by simply modulating the laser.21The modu-lation width can be small compared with the cavity linewidth,and the modulation rate needs only to be large compared with the desired feedback bandwidth.However,the associated intensity modulation often causes a slight offset from line center that may change with time and,for instance,with the position and temperature of the cable wiring to the laser.Designing the system such that the required stability is roughly equivalent to the fringe width makes this issue unimportant,along with similar problems that are due to rf pickup.We used a DFB diode laser as our test laser and locked it to the p -polarized mode at 1479.4153nm ͑mode line width,Ϸ3.8MHz ͒.Thein-Fig.2.Beam path and locations of the temperature sensors are superimposed upon this photo of the Zerodur optical cavity wave-length reference.A moderately sized cavity (25.2cm round-trip path)was chosen to reduce the influence of mirror contamination.Six temperature sensors were bonded with thermally conductive epoxy to monitor the effective temperature of the cavity.The Ze-rodur base is 7.6mm thick,and the sidewalls are 5mm thick.All the inside corners were filleted and,following standard glass-fabrication procedures,the part was acid treated after milling to improve the glass strength.The average temperature (to 1mK resolution)of the six sensors was recorded during each frequencymeasurement.Fig.3.Experimental diagram showing the cavity in a vacuum chamber with external alignment mirrors.The cavity was placed in the chamber unclamped upon a thin Teflon surface to prevent distortion caused by stress and temperature differences,with re-peatable positioning to ease beam alignment provided by a metal stop.A DFB laser was locked to a cavity mode by injection current modulation by the Pound–Drever–Hall technique.20A fraction of the light was transmitted via fiber to a femtosecond laser comb some 200m away for an optical frequency measurement.7796APPLIED OPTICS ͞Vol.44,No.36͞20December 2005jection current of the DFB diode laser was modulated at28MHz,and we checked the offsets that were due to intensity noise and rf pickup by moving the system cables and then measuring the absolute laser fre-quency.All offset related frequency changes were less thanϮ100kHz,equivalent to⌬͞Յ5ϫ10Ϫ10. Optical alignment is another factor that can affect the test laser’s frequency relative to the cavity-mode center.The spatial coupling to the cavity mode was excellent because of the use of single-modefiber be-fore the cavity,with more than97%of the laser power coupled to the fundamental mode.As small align-ment changes occur as a result of mechanical drift of the input mirrors,we expect slight changes of the residual transverse mode amplitudes.If one of the modulation sidebands is perturbed by such changes of a nearby transverse mode,the resultant imbalance will act to shift the laser slightly from line center. We checked the possible magnitude of such a misalignment-induced frequency offsets by purposely misaligning the input beam.While the input beam was locked to a fundamental mode,we caused a grossmisalignment that reduced the mode amplitude in half while it increased the coupling to many trans-verse modes.The optical frequency shifted by300 kHz,equivalent to⌬͞Յ1.5ϫ10Ϫ9.The actual alignment-induced errors during our frequency mea-surements were certainly much less,as the power output of the cavity was monitored during measure-ments to ensure that it was always at the nominal level.We also checked for an optical power dependence of the mode frequency,which could be due,for instance, to absorption in the dielectric coatings.As the circu-lating power was adjusted in steps from11to57mW, no trend was observed in the measured frequency to the resolution limit of our present method of fre-quency measurement,Ϯ10kHz,equivalent to⌬͞Յ1.5ϫ10Ϫ11.B.Frequency-Comb IssuesWe turn now to the measurement of the test-laser frequency with thefiber-laser based frequency comb. Several milliwatts of light from the DFB test laser was split by afiber coupler and transmitted200m via single-modefiber to afiber-based femtosecond laser.22The femtosecond laser had a repetition rate of approximately50MHz that was locked to a labora-tory synthesizer referenced to one of the hydrogen masers of the National Institute of Standards and Technology time scale.23We give only a cursory ex-planation of the femtosecond comb laser measure-ments here,as the techniques have been well established.24The frequency comb output was mixed with the DFB power in afiber coupler andfiltered by a grating spectrometer͑bandwidth,ϳ1nm FWHM͒. The signal-to-noise ratio of the resultant beat note was limited by noise on the frequency comb,not by the available power from the DFB laser(which in fact was attenuated to prevent detector saturation).The feedback loop that was locking the DFB laser to the cavity mode had a bandwidth of approximately 200kHz,limited by a slow response time internal to the laser package.Consequently there was little nar-rowing of the emission spectrum,and we observed beat notes approximately1.9MHz wide,as shown in Fig.4.The contribution to the observed width from the comb mode is relatively small,as the synthesizer noise-limited jitter of the comb mode(mode index, Nϳ4ϫ106;see below)was less than500kHz.The DFB laser frequency is obtained from the rf beat note ͑f BEAT͒throughDFBϭNf REPϮf CEOϮf BEAT.(2)Here N is the femtosecond comb mode number,f REP is the known femtosecond laser repetition rate,and f CEO is the carrier-envelope offset frequency that is locked to a synthesizer.One can easily determine the signs of f BEAT and f CEO by slightly shifting the repetition rate and the offset frequency and observing the re-sultant frequency shift of the beat note.We are thus left with unambiguously determining mode index number N.We determined index N by comparing the possible discrete DFB frequencies predicted by Eq.(2)with a seven-digit commercial wavelength meter reading of the DFB light.Such a procedure would be straight-forward with a much larger femtosecond comb repe-tition rate but problematic here,as the absolute accuracy of the wavelength meter was specified at Ϯ40MHz͑2͒at1.48m.To solve this problem we calibrated the wavelength meter to the last digit (Ϯ13MHz)by measuring a nearby frequency that was well known.The reference was a1.56m laser that was frequency doubled and locked to a rubidium transition at780nm.25We avoided alignment issues by calibrating and using the wavelength meter with a single-modefiber patch cable permanently attached to theinput.Fig.4.Typical rf heterodyne beat note between the laser(locked to a cavity mode in vacuum)and a femtosecond laser comb mode. The spectrum analyzer averaged300readings(100kHz resolution bandwidth)in approximately6s.Wefitted the center portion of the beat note to a Lorentzian curve to extract the line center.The repeatability of this process wasϮ10kHz,equivalent to⌬/Յ1.5ϫ10Ϫ11.20December2005͞Vol.44,No.36͞APPLIED OPTICS77974.Frequency and Wavelength MeasurementsWe tracked the(vacuum)frequency of one particularmode of the prototype wavelength reference for manymonths.During this time there was no temperaturecontrol,the cavity was often removed from the vac-uum chamber,and onfive occasions mirror cleaningswere performed.Zerodur is well known to have ther-mally induced mechanical hysteresis,26and the tem-perature excursions could have been as much as Ϯ5°C.(The temperature was not monitored con-stantly but only during measurements.)Thefirstmeasurement was made approximately nine monthsafter the mirrors were optically contacted to thespacer.Sometimes measurements were performed onalmost a daily basis;at other times there were weeksbetween measurements,notably during a time inNovember–December2004when the frequency comb was unavailable.For all frequency measurements the cavity was in a chamber with only moderate vac-uum requirements(pressure,Յ0.1Pa).The index of air atϳ105Pa is of the order of nϪ1Ϸ2ϫ10Ϫ4so calculating the mode wavelength from a frequency measurement performed at0.1Pa results in a wave-length error of no more than⌬͞Յ2ϫ10Ϫ10.We arbitrarily chose a TEM00mode to measure and easily returned to the same mode at1479.4153nm for each measurement by using the wavelength meter,although the solid-state DFB laser was re-peatable enough that the mode determination could also be accomplished by use of diode temperature and current.In terms of the diode parameters, the1.19GHz͑0.0087nm͒free-spectral-range cavity modes were separated by2mA and0.45°C.In prac-tice,when a less-repeatable tunable laser such as an extended-cavity diode laser is used,the proper mode can be determined with an auxiliary cavity,as men-tioned above.Preliminary optical frequency measurements were taken in an effort to map out the behavior of the mode center frequency with temperature.Heating tape and a cooling water jacket were installed on the outside of the vacuum chamber to change the cavity tempera-ture,primarily by radiative means(the cavity was placed on a1mm thick Teflon sheet on an aluminum surface in the center of the chamber).In this manner we could adjust the cavity temperature in the range 18Ϫ28°C.However,we found that mode frequency measurements while the cavity temperature was ramped were much less repeatable than when the temperature was held constant for an extended pe-riod of several hours.Unless the cavity is isothermal the average temperature reading of the six sensors does not uniquely correspond to the temperature dis-tribution of the cavity structure,nor to the mode path length.In general,monitoring the effective temp-erature and subsequent expansion of a very low-thermal-conductivity structure by point temperature sensors is difficult because localized heating or cool-ing between sensors is not detected.All the optical frequency measurements made after 30June2004are shown in Fig.5.To analyze the predictability of the wavelength reference we have normalized the data with respect to temperature and time.We assume that the two processes are indepen-dent,i.e.,that the coefficient of thermal expansion is time invariant and the aging rate is(tofirst order) independent of temperature.In fact,the aging rate probably is temperature dependent;however,as the data are all withinϮ5°C of room temperature,the assumption remains reasonable.Thefit parameters (temperature and aging)were iterated to minimize the standard deviation of the entire corrected data set.We normalize the data with respect to temperature by choosing a second-order expansion about an arbi-trary temperature T0:TempCorrϭMeas͓1ϩ␣͑TϪT0͒ϩ͑TϪT0͒2͔.(3) We have found empirically that␣ϭ42.2ϫ10Ϫ9 andϭϪ0.5ϫ10Ϫ9fit the data the best with T0ϭ23°C.The cavity’s linear coefficient of expansion ͑␣͒is slightly larger than the specified maximum for the bulk Zerodur material͑␣ՅϮ30ϫ10Ϫ9͒.The measurements are shown in Fig.6normalized byEq.Fig.6.Data from Fig.5corrected for the cavity’s temperature by use of Eq.(3).The apparent logarithmic behavor is due to aging, and the data scatter is likely due to a poor approximation of the effective temperature of the optical path by the six point sensors, and also to thermal hysteresis of the Zerodur.The solid curve is an exponentialfit to the data.The slope at day240has slowed down to7.5kHz͞day,or⌬͞ϭϩ1.35ϫ10Ϫ8͞year.Fig.5.This plot of all the frequency measurements performed versus time makes little intuitive sense,as there was no temper-ature control and,at least atfirst,there was rapid aging.7798APPLIED OPTICS͞Vol.44,No.36͞20December2005。
波动光学(Wave Optics)共21页
波动光学(Wave Optics)
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
第3讲波动光学(2)反射折射
y z x
qi qr
qt
Bt
Er
ni
Note that Hecht uses a different notation for the reflected field, which is confusing! Ours is better! 钟书上的框架和 我们的有差别!
Et
kt
nt
Note that reflected magnetic field must point into the screen to the achieve E B k . The x means ―into the screen.‖
reflectanceairtoglassinterface空气玻璃界面的反射率noteperpendicularpolarizationincidenceangle306090parallelpolarizationincidenceangle306090垂直偏振平行偏振角度越大反射率越大掠入射brewsteranglereflectanceglasstoairinterface玻璃空气界面的反射率全内反射noteperpendicularpolarizationincidenceangle306090parallelpolarizationincidenceangle306090normalincidence垂直入射的情况whenairglassinterfacesamewhicheverdirectionlighttravelsfromairfromglass4hasbigimplicationsphotographylenses
第三章 波动光学(续)菲涅尔反射和折射公式
Fresnel„s Equations for Reflection and Refraction 参照书上第三章内容
光电英语词汇(F2)
光电英语词汇(F2)flexible lamp cord 灯用软线flexible membrane 挠性膜片flexible metallic conduct 金属蛇管,金属软管flexible mirror 活动反射镜flexible pipe 挠性导管,蛇管,软管flexible rule 卷尺flexible shaft 挠性轴flexible tube 挠性导管,蛇管,轴管flexible waveguide 柔性波导,可弯曲波导flexible-lens gastroscope 活动透镜胃镜flexible| hollow waveguide 挠性空腔波导管flexion 弯曲flexural distortion 弯曲畸变flexural wave 屈曲波flexure 弯曲闪变flgorgen 荧光团flick photometer 闪变分光光度计flicker 闪变光束flicker effect 闪变熔接flicker fusion 闪光灯flicker noise 闪变光度计flicker-beam 闪变效应flickering lamp 闪变噪声flickerphotometry 闪变光度测定flickspectrophotometer (1)火石(2)火石玻璃flight path deviation indicator 航道偏远指示器flint 火石玻璃flint glass 倒装片法flip chip 弹动片flip-chip (1)触发器(2)双稳态多谐振荡器flip-flop 触发性电路flip-flop circuit 勫动转镜flip-flop multivibrator 双稳态触发器flip-flop register 触发器寄存器float (1)浮子(2)浮体(3)浮标floatage 浮力floater 浮子,飘浮物floating (1)浮动(2)浮置的floating action 浮动作用floating beacon 浮标floating gata avalancheinjection (famos)浮动闸极崩溃注入型mos floating point 浮点floating reticle 浮标线片floating system lens 浮动系统透镜floating zenith telescope 浮动天顶仪flood gun 浸没电子枪floodlight 散光灯,泛光灯floodlighting 散光照明,泛光照明floodlubrication 浸入润滑floor (1)地板,地面(2)底面,台面floor light 落地灯floor plan 平面布置图floor plate (1)地板(2)基板,底板floor sheet 踏板flop-over (1)触发器(2)图像跳动floppy disk 软性磁碟flourescent transition 荧火跃迁flourescent x-ray spectrographic analysis 荧火x射线光谱分析flow (1)流动(2)流量flow birefringence 流动双折射flow camera 流动照相机flow diagram 流程图,操作程序图,程序框图flow of information 信息流flow rate (1)流速(2)移动比flow sheet 流程表flowchart 流程图flowimeter 流量计flowing copper vapor laser 流动铜蒸汽激光器flowing gas co2 laser 流动二氧化碳激光器flowmeter 流速计flown glass 熔融玻璃flrorapatite laser (fap laser)氟磷铎激光器fluctuating light beam 起伏光束fluctuating medium 起伏媒质fluctuation (1)起伏,波动,脉动(2)升降,涨落fluctuation nnoise level 起伏噪声电平fluctuation noise 起伏噪声fluctuation of density 密度起伏fluctuation spectroscopy (flusy)起伏光谱学fluence 能量密度fluid (1)流体(2)射流fluid amplifier (1)流体放大器(2)射流放大器fluid damping 流体阻尼fluid logical element 射流逻辑元件fluid state laser 流体激光器,液体激光器fluid-dyanamics 流体动力学fluid-ring pump 环流亨fluide-free (1)无流体的(2)无工作液的fluidic (1)流体的(2)射流的fluidic control 射流控制fluidic device 射流器件fluidic element 射流元件fluidics 流控技术,射流技术fluidity 流动性,液性,流度fluidization 流动化,流体化fluidmeter 流度计fluo-germanate glass 氟锗酸玻璃fluoborate glass 氟硼酸玻璃fluophosphate 气磷酸玻璃fluor crown 氟冕玻璃fluor crown glass 含氟冕牌玻璃fluorapatite 氟磷酸铎,氟磷灰石fluorchrome 萤光色剂fluorescein 荧元素fluorescence 荧火fluorescence branching ratio 荧光分支比fluorescence chromatography 荧光色谱fluorescence conversion efficiency 荧光转换效率fluorescence decay system 萤光衰变装置fluorescence life time 营光寿命fluorescence linwidth 营光线宽fluorescence microscope 营光显微镜fluorescence microscopes 萤光显微镜fluorescence microscopy 荧光显微镜fluorescence polarization microscope 荧光偏振显微镜fluorescence quenching 萤光淬灭fluorescence spectroscopy 萤光光谱学fluorescence spectrum 荧光光谱fluorescence yield 荧光产额fluorescent characteristic 荧光特性fluorescent emission crystals 萤光放射晶体fluorescent lamp 荧光灯fluorescent layer 荧光层fluorescent light (1)荧光(2)荧光灯fluorescent light source 烛光光源fluorescent line 荧火谱线fluorescent microscope 萤光显微镜fluorescent paint 荧火涂料fluorescent pumping 荧光抽运fluorescent quenching 荧光猝减fluorescent radiation 荧光辐射fluorescent scattering 荧光散射fluorescent screen 荧火屏fluorescent screens 萤光板fluorescent whitening agents 萤光洁白剂fluorescnet 荧火的fluorescope 荧光镜fluorescopy 荧化学fluoride 氟化物fluoride film 氟化学薄膜fluoride glass 氟化物玻璃fluoride lens 氟透镜fluorimeter 荧光计fluorimetric 荧光测定的fluorimetry 荧光测定法fluorinated 氟化的fluorinated alohol 氟化醇fluorinated ethylene propylene (fep)氟化乙丙烯fluorine (f)氟fluorite 萤石,氟石fluorite lens 萤石透镜fluorite objective 萤石物镜fluormetric 荧光的fluorochrome 荧色物fluorodensitometry 荧光密度测定fluoroghosphate glass 含磷萤光玻璃fluorographic camera 萤光相照相机fluorographic lens 萤光相透镜fluorography 荧光图照相术fluorometer 荧光计fluorometry 荧光测定术fluorophototmeter 荧光光度计fluoroscope 荧光镜fluoroscopic image intensifier 萤光镜像增强器fluoroscopy 萤光学fluorscopy (1)荧光学(2)荧光检测fluorsosilicate crown glass 氟硅冕玻璃fluorspar 萤石fluosilicate titanium 氟硅酸钛玻璃flush bolt 埋头螺栓flute 槽,沟纹fluted 有沟槽的fluted spectrum 多段光谱fluting 开槽,切槽flutter 颤动,脉动flux (1)通量(2)能流flux concentration 通量浓度flux density 通量密度flux of light method 光通量法,光束法flux of radiation 辐射通量flux refraction 磁通折射flux rise time 通量激增时间flux-grown 熔融生长的flux-grown ruby 熔融生长的红宝石fluxmeter (1)辐射通量计(2)磁通计fly eye lens plate 复眼微透镜板fly spot scanning 飞点扫描法,光点扫描法fly's -eye lens 蝇眼透镜,复眼透镜fly's eye 蝇眼,复眼fly-by-night 夜般fly-over junction 立体交叉fly-past 跨度flyback 回扫flyback pulse 回扫脉冲flying 飞行flying micrometer 快速测微计flying spot 飞点flying spot microscope 飞点显微镜flying spot recorder 飞点记录器flying spot scanner 飞行扫描器flying spot scannign 飞点扫描法flying spot store 飞点扫描存储flying spot television microscope 飞点扫描电视显微镜flying spot tube 飞点扫描管flying spot tube character generator 飞点扫描管字符发生器flying-spot 飞点,浮动光点flywheel 飞轮fm demodulation 调频检波fm laser 调频激光器fm reticle 调频调制盘fm signal 调频信号fm signal generator 调频信号发生器fm-cw laser ranging 调频连续波测距foam 泡沫foam glass 泡沬玻璃foam metal 泡沬金属foam rubber 泡沬橡胶foamed 泡沫状的foamed material 泡沫材料foamed plastics 泡沫塑料foamed polyethylene insulation 泡沫聚乙烯隔离层foaming agent 泡沫剂focal 焦点的focal area 焦斑面积,焦后focal chord 焦弦focal circle 焦圈focal collimator 测焦距准直仪focal cusp 焦会线focal depth 焦深focal distance 焦距focal eikonal 焦点程函focal isolation 焦点隔离法focal length 焦距focal line 焦线focal plane 焦面focal plane filter 焦面滤光片focal plane shift 焦面位移focal plane shutter 焦面快门focal plates, reticles 焦点板,标线片focal point 焦点focal power 焦度focal ratio 焦比focal sphere 焦球focal spot 焦斑focal surface 焦面focal zone 聚焦带focalization 调焦,焦距调整focalizer 调焦器focculation 絮凝focimeter 焦距计foco-collimator 测无距准且光管focoid 虚圆点focometer 焦距计focometers 焦距仪focometry 测焦距术focon 焦正仪focus 焦点focus control 焦点调整focus drum 聚焦筒focus for infinity 无限远聚焦focus glass 聚焦玻璃focus grid 聚焦栅focus lamp 聚焦镜focus mask 聚焦栅focus plate 聚焦板focus point 聚集点focus range 聚焦范围focus ring 调焦环focus shift 焦点位移focus-out 散焦focused (focussed)聚焦的focused beam 聚焦光束focused condition 聚焦条件focused energy weapon 聚焦能量武器focused gaussian laser beam 聚焦高斯激光束focused image hologram 聚焦全息图focused laser dopler velocimeter 聚焦激光多普勒测速计focused laser scattering 聚焦雷射散射focuser (1)焦距放大镜(2)聚焦装置focusing (1)调焦(2)聚焦focusing action 调焦作用focusing adjusment 调焦装置focusing aid 聚焦装置focusing amode 聚焦阳极focusing apparatus 聚焦装置focusing camera 聚焦照相机focusing circle 聚焦圈focusing ciriterion 聚焦准数focusing coil 聚焦线focusing condition 聚焦条件focusing control 聚焦控制focusing cup 聚焦杯focusing current 聚焦电流focusing device 调焦器件,聚焦装置focusing diffratometer 聚焦衍射计focusing electrode 聚焦电极focusing factor 聚焦系数focusing foil 聚焦箔focusing geometry 聚焦几何形状focusing glass 聚焦玻璃focusing knob 调焦旋钮focusing lens 聚焦透镜focusing magnetic field 聚焦磁场focusing mechanism (1)调焦(2)机构(3)对光装置focusing method 聚焦法focusing mount 聚焦架focusing noaode 聚焦阳极focusing optices 聚焦光学器件focusing range 调焦范围focusing reflector 聚焦反射器focusing ring 调焦圈focusing scale 调焦刻度focusing screen 调焦屏focusing soller-slit system 苏莱尔调焦狄缝系统focusing spectrometer 聚焦分光计focusing spindle 调焦主轴focusing stop 调焦光圈focusing system 聚焦系统focusing telescope 调焦望远镜focusing telescope objective 调焦望远镜物镜fog (1)雾(2)灰雾(3)翳影fog density 灰雾度fog penetrating viewing system 云雾透过观察系统fog resistant gloass 抗雾玻璃fog restrainer 灰雾抑制剂fogged 灰雾化,跑光的foggy environment 雾天环境foil 箔fokker-plank equation 福克-普朗克方程fold 摺fold-over (1)折叠(2)叠像,叠影folded cavity 折罍式腔folded filter 折叠滤光器folded laser 折叠激光器folded lobe large optical cavity 折叠瓣大型光学共振腔folded path zoom lens 折叠光路连续变焦透镜,折径可变焦距透镜folded stereoscopic viewer 折叠式立体镜folded three-mirror cavity 折叠式三反射镜腔folding camera 折叠式摄影机folding mirror 折叠式反射镜folding rule 折尺follow focus attachment 跟随调焦装置follow scanner 跟踪扫描器follow shot 跟踪摄影follow-up (1)跟踪(2)随动系统follower (1)从动轮(2)跟随器following error 随动误差following range 跟踪范围following rate 跟踪速率followup device 随动装置followup system 随动系统foot (1)底座(2)镜头(3)英尺foot screw 地脚螺钉foot switch 脚踏开关foot-candela 英尺-堪拉foot-candle 英尺-烛光foot-lambert 英尺-朗伯foot-pound-second 英尺-磅-秒footage 英尺数footboard 踏板footcandle 烛光footlambert 尺朗伯footlight 舞台前灯,脚灯footplate 踏板footprint 足迹footstock 顶座,尾架,尾座for-and-aft axis 前後轴,立轴,纵轴forbidden band 禁带forbidden decay 禁戒衷减forbidden emission 禁戒发射forbidden gap energy 禁隙能forbidden line 禁线forbidden resonator region 共振腔禁区forbidden transition 禁戒跃迁forbiddenness 禁戒性forbiddenness of a transition 跃迁禁戒forbush decrease 富布希递灭force (1)力,势(2)强迫,强制force of restraint 约束力forced air cooling 强迫风冷forced air cooling tube 强迫风冷管forced convection 强迫对流forced draft (forced draught)强制通风forced feed (1)强制送进(2)压力供油forced flexural wave 强迫弯曲波forced frequency 受激振荡频率forced life test 强制寿命试验forced mode locking 强制锁模forced oil self cooling 强制油自冷forced synchronizing 强制同步forced thermal scattering 强制热散射forced transition 受迫跃迁forced-dipole transition 受迫偶极子跃极forcedoscillatino 强迫振荡forceps 镊子,钳子forceps screw 紧固螺钉fore arm (1)前臂(2)前支架fore axis 前轴fore line value 前级管导阀fore pressure 前压强fore-and-aft level 纵向水准器fore-optics system 输入光学系统forebody 前部forecasting technique 预报技术forecooler 预冷器foreground 前景foreign atom 杂质原子foreign body 杂质体forensic photography 法医摄影forepump 前置泵,预抽亨forepump value 前置泵阀forepumping 前级抽气forescatter 前向散射器forescattering 前向散射forestage 前级的forevacuum 预真空forevacuum subassembly 预真空组件fork (1)叉,叉状物(2)音叉form (1)形式(2)形态formaldehyde 甲醛formalin 甲醛溶液,福尔马林formant 共振峰format (1)格式,形式(2)幅度formation of image 成像former 成形器formfactor 形成因数forming 成形器formula (1)公式(2)配方formulation 列式,表达formvar 聚醋酸甲基乙烯脂fornixscope 穹窿镜fortran 福传fortran (formula-transformation)公式变换fortran (formula-translator)公乡翻程序语言foru-wave sum-mixing 四波求和混频forvacuum vessel 预真空容器forward azimuth 正向方位角forward current 顺向电流forward looking infrared (flir)前视红外仪forward looking infrared sensor 前视红外传感器forward looking infrared system 前视红外系统forward looking laser radar 前视激光雷达forward looking laser sensor 前视激光传感器forward nodal point 前节点forward power 正向功率forward reflection 前向反射forward scattering 前向散射forward voltage 正向电压forward wave 正向波forward-bisas 正方偏压forward-scattering angle 前向散射角foster-seeley circuit 浮士特席利电路fot fiber optical transceiver 光纤收发器fotoceram 光敏玻璃陶瓷foucanlt grating 傅科光栅foucault chart 傅科图案,分辨率板foucault knife-edge test 傅科刀口检验法foucault prism 傅科棱镜foucault rotating mirror 富可旋转面镜foucault test 傅科检验法fouier integers 傅立叶整数foundamental mode 基谐方式foundation bolt 地脚螺栓founhofer hologram 夫琅和费全息图four channel multiband camera 四通道多光谱带照相机four element infrared objective 四维元红外物four ier spectroscopy 傅里叶光谱学four-component objective 四组元物镜four-dimensional holographic recording 四维全息记录four-layer diode modulator 四层二极管调制器four-lens zoom system 四透镜变焦系统four-level emitter 四能级放射体four-level fluoresent crystal 四能级荧光晶体four-level fluoresent solid 四能级荧光固体four-level generator 四能级振荡器four-level laser 四能级激光器four-level laser rod 四能级激光棒four-level laser system 四能级系统four-quad solid-state sensor 四象限固态传感器four-screw leveling head 四螺钉安平头four-terminal network 四端网络four-terminal-network 四端网路fourier analysis 傅立叶分析fourier analysis intow dimensions 二维傅叶分析fourier analyzer 傅里叶分析器fourier coefficient 传里叶系数fourier formalism 傅里叶形式fourier hologram 傅里叶全息图fourier image technique 傅里叶成像技术fourier images 傅立叶像fourier integral 傅里叶积分fourier inversion 傅里叶逆变换fourier lenses 傅利叶透镜fourier optics 傅里叶光学fourier projection 傅里叶投影fourier recombination 傅里叶重组fourier series 傅里叶级数fourier synthesis 傅里叶综合fourier transform 傅立叶变换fourier transform hologram 傅里叶变换全息图fourier transform interferomether spectrometer 傅里叶变换干涉分光计fourier transform lens 傅里叶变换透镜fourier transform operator 傅里叶变换算符fourier transform spectrometer 傅立叶变换方分光计fourier transform spectromether 傅里叶变换对fourier transform spectroscopy 傅里叶变换光谱仪fourier transformation 傅里叶变换fourier variable 傅里叶变量fourier wave 傅里叶波fourier-analysis method 傅里叶分析法fourier-bessel transform 傅里叶-贝塞耳变换式fourier-mellin transform 傅里叶-梅林变换式fourier-potical imaging system 傅里叶光学成像系统fourstage cascade image intensifier 四级串联像增强器fovea 凹fovea acuity 视觉锐度fovea centralis 中央凹foveal vision 凹视foxed 生褐斑的foxy 亦褐色的,有褐斑的fraction (1)分数(2)部分fraction division 小数fraction order 分数阶fraction scannign 局部授描fractional distortion 部分畸变fractional error 部分误差fractional fringes 分条纹fracture (1)破裂(2)断裂面fragility 脆性fragment 碎片frame (1)框架(2)帧frame camera 分幅照相机frame counter 帧计数器frame finder 取景器,取景框frame frequency 画面频率frame grabber 画面攫取机frame level 框式水准仪frame photography 分幅照相术,分幅摄影术frame processing 框处理frame rate 帧速framer 框相器framer per second 每秒框数framework 框架,骨架framing camera 分辐照相机framing lens 分辐透镜framing photography 分辐照相术,分幅摄影术francium (fr)钫franck-condon overlap factor 夫兰克-康登重叠因数franck-condon potential 夫兰克-康登势能曲线franck-condon principle 夫兰克-康登原理francon interfreence ocular 弗朗松干涉目镜franz-keldysh effect 夫兰兹-凯耳什效应fraunhofer approximation 夫琅和费近似fraunhofer condition 夫琅和费条件fraunhofer diffraction pattern 夫朗和斐绕射模fraunhofer doublet 夫琅和费双线fraunhofer hologram 夫朗和斐全像图fraunhofer lines 夫琅和费谱线fredholm integral 夫利荷门积分free air thermometer 大气温度计free aperture 自由孔径free arm 自由悬臂free electron 自由电子free electron lasers 自由电子雷射free field 目由场free filter range (ffr)自由场波范围free fit 自由范合free frequency 自然频率free jet 自由喷流free path 自由程free radical 游离基free radicals 自由基free running (1)由自振荡(2)空转free space 自由空间free-abrasive machining 免添粉加工free-bond transition 自由-速缚跃迁free-burngng flame laser 自由点火激光器free-carrier absorption 无载波吸收free-carrier photoconductivity 无载子光电导性free-electron laser 自由电子激光器free-free transition 自由-自由跃迁free-induction decay 自由感应衷变free-running laser 自由振荡激光器free-standing microdisk target 无支撑微盘靶freecarrier 目由载流子freecarrier absorption 自由载流子吸收freedom 自由度freezer 致冷器,冷却器freezing point 凝固点,冷凝点freezing-in 凝入fremodyne 调频接收器freon 氟利昂frepuency-sensitive signal 频率灵敏信号frequceny analysis 频谱分析frequecny demultiplier 分频器frequecny deviation 频率偏移frequecny divison multiplexing 频分割多路传输frequecny domain analysis 频域分析frequecny-dencoded focused image hologram 频率编码聚焦全息图frequencfy-dependent behavior 频率相关特性frequency 频率frequency band 频带frequency changer 变频器frequency characteristic 频率特性frequency conversion effect 变频效应frequency converter 变频器frequency demodulation 频率解调frequency deviation mether 频偏计frequency discriminating optical chopper 鉴频光学调制器frequency discriminator 频率监别电路,监频器frequency domain 频域frequency domain synthesis 频域综合frequency doubler 倍频器frequency doubling 倍频frequency drift 频率漂移frequency hysteresis 频率滞後frequency locking 锁频frequency meter 频率计frequency mixing 混频frequency modulation 频率调制,调频frequency modulation index 频率调变指数frequency modulation laser 调频激光器frequency modulation mode locking 调频锁模frequency modulation reticle 调频盘,频率调制盘frequency modulation type altimeter 调频式测高计frequency multiplexing 频率多路传输frequency multiplication 倍频frequency multiplier 倍频器frequency of okperation 工作频率frequency primary standard 频率基准frequency pulling 频率牵引frequency pulling effect 频率牵引效应frequency pushing and frequency pulling 频率推挽frequency response 频率响应frequency shift 频移frequency space 频率空间frequency spectrograph 频谱仪frequency splitting 分频frequency stabilization 稳频frequency stabilization of laser 激光稳频frequency stabilized carbon dioxide laser 稳频二氧化碳激光器frequency stabilized he-ne laser 稳频氦氖激光器frequency stabilized laser 稳频激光器frequency stabilized lasers 稳频雷射frequency stabilizing system 稳频系统frequency stabliltiy 频率稳定性frequency summing 加频frequency sweeping 频率扫描frequency transfer function 频率传输函数frequency up-convrsion 频率上转换frequency-controlled laser 频率控制激光器frequency-dependent delectric constant 频率相关介电常数frequency-division multiplex (fdm)分频多工器frequency-doubled 倍频的frequency-modulation (fm)频率调制,调频frequency-offset-lock 偏频锁定frequency-plane mask 频面掩模片frequency-sweep generator 扫描振荡器frequnecy spectrum 频谱frermi 费密frescanar (frequency scanning radar)频率扫描雷达freshly-deposited aluminum 新镀铝fresnel 菲涅耳fresnel annular zone objective 菲涅耳环带物镜fresnel approximation 菲涅耳近似fresnel biprism 菲涅耳双棱镜fresnel diffractino 菲涅耳衍射fresnel diffraction 夫瑞奈绕射fresnel drag 菲涅耳牵引fresnel formula 菲涅耳公式fresnel fringe 夫瑞奈条纹fresnel hologram 菲涅耳全息图fresnel integrals 菲涅耳积分fresnel knife-edge test 菲涅耳刀口试验fresnel lens 菲涅耳透镜fresnel lenses 菲涅尔透镜fresnel loss 夫瑞奈损失fresnel mirrors 夫瑞奈面镜fresnel number 菲涅耳数fresnel reflectino 菲涅耳反射fresnel reflection 夫瑞奈反射fresnel reflection loss 夫瑞奈反射损失fresnel reflection method 夫瑞奈反射方法fresnel rhombus 菲涅耳菱形棱镜fresnel zone 菲涅耳波带fresnel zone plate 菲涅耳带片fresnel's biprism 菲涅耳双棱镜fresnel's diffraction 菲涅耳衍射fresnel's equation 菲涅耳方程式fresnel's zone contstruction 菲涅耳波带法fresnel-arago law 菲涅耳-阿喇戈定律fresnel-kirchhoff diffraction formula 菲涅耳-基尔霍夫衍射公式fresnel-kirchhoff intergral 菲涅耳-基尔霍夫积分fresnel-kirchhoff theory 菲涅耳-基尔霍夫理论fresuel-transform holograms 菲涅耳变换全息图像friability 易碎性friction (1)摩擦(2)摩擦力friction coupling 摩擦联轴节frill (1)皱边(2)皱纹fring location 条纹定位fring order 条纹级次fringe (1)条纹(2)边缘,镶边fringe analysis 条纹分析fringe contrast 条纹反差,条纹衬度fringe counter 条纹计数器fringe counting interferometer 条纹计数干涉仪fringe follower 条纹读出器fringe intensity 条纹强度fringe interpolation 条纹内插法fringe interpretation 条纹译码fringe item 条纹件fringe sharpness 条纹锐fringe spacing 条纹间隔fringe stability 条纹稳定性fringe visiblity 条纹可见度fringes of equal chromic order 等色级条纹fringes of equal inclinatino 等倾条纹fringes of superposition 重叠条纹fringing flux 边缘通量front aperture 前孔径front cell focusing 前格聚焦front delevation 正视图,前视图front diaphragm 前遮光板front end amplifier 前置放大器front face 正面front focal length 前焦front focal plane 前焦平面front focus 前焦点front illumination 正面照明front index plate 正面分度盘front lens 前透镜调焦front lesn mount 前透镜框front light (1)正面光(2)前灯front operating aperture 前工作孔径front operationaperture 前作业孔径front panel 面板front sight 照准框front surface 前表面front surface mirror 前表面镜front vertex focal distance 前顶焦距front vertex focal distance (fvd)前顶点焦距front vertex power 前镜顶屈光度front view 前视图,正视图front-cell focusing 前透镜调焦front-focometer 前焦距计front-reflection 前反射front-silvered mirror 前表面镀银反射镜frontiers 尖端科学frosted bulb 磨砂灯泡frosted glass 毛玻璃frosted screen 毛玻璃屏frounhofer grating 夫琅和费光栅frozedn stress 冻结应力frozen fringe 冻结条纹frustrated total reflection 受抑全反射frustrated total reflection filter 受抑全反射滤光器fryer 彩色摄影照明器fuchsin 品红,洋红fuel 燃料fulcrum 支点,支轴full adder 全加法器full aperture 全孔径,全口径full aperture signal pin 最大光圈指示针full curve 实曲线full duration half maximum (fdhm)全辐射体full electronic shutter 全电子快门full line 实线full radiator 全辐射体full resolution pricture 高分辨图像full scale alue 满刻度值full scale deflection 满刻度偏转full scale reading 满刻度读数full sensitivity contrast 全灵敏度衬比full shot 全景full stripe 全带full view 全视图,全景full view hologram 全景全息图full wave compensator 全波补偿full wave rectifier 全波整流full width at half maximum 半极大处全宽度full width half maximum (fwhm)半极大处之全宽度full-automatic 全自动的full-colour holography 全色全息术full-colour image 全色图像full-duration (1)全部持续时间(2)全宽度full-size 全尺寸的,最大尺寸,原尺寸full-wave 全波full-wave compensator 全波补偿器full-wave plate 全波片full-wave rectification 全波整流fully automatic 全自动的fully automatic diaphragm 全自动光阑fully coated photo lens 全镀膜照相镜头fully refelecting surface 全反射面function (1)作用,功能(2)函数function block 功能块function with circular symmetry 圆对称函数functional ceramics 功能陶瓷functional diagram 功能图functional element 功能元件fundalmental series 基线系fundamental (1)基本的(2)原理,基础fundamental axial mode 基轴模fundamental frequency 基频fundamental function 基本功能fundamental method of measurement 基本测量法fundamental mode 基模fundamental relaxation 基本弛豫fundamental transition 基本跃迁fundamental transverse mode 基横模fundamental unit 基本单位fundamental wave 基波fundus camera 眼底照相机fundus oculi 眼底fungus 微菌furnace (1)炉(2)反应堆furnace spectrum 炉光谱fus (=fuze)(1)熔丝,保险丝(2)熔断器(3)引信fuse 保险丝fuse wire 熔丝,保险丝fused alumina 熔成氧化铝磨料fused arrays of fibers 光纤熔凝阵列fused bifocal 熔合双焦点透镜fused quartz 熔成石英fused silica glass 石英镜片fused silical cavity 熔成氧化硅共振腔fused silioa substrate 熔成氧化硅基质fuselagge 壳体,机身fusibility (1)熔性(2)熔度fusible point 熔点fusing 熔碍fusion (1)熔解(2)熔接(3)聚变fusion and stereoscopic target 视觉融合及立体镜之目标物fusion diagonstics 熔接诊断学fusion frequency 熔接频率fusion splice 熔接fusion target 聚变靶fusion target plasmas 聚变靶等离子体fusionfacility 聚变装置fuze (1)熔丝,保险丝(2)熔断器(3)引信fuze beam incidence 引信光束入射fuze discrimination 引信鉴别fuzzines 不清晰,模糊fx screw 固定螺钉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Superposition of Waves(波的叠加)
Consider two waves, derived from the same source, but characterized by phase difference Φ. They may be written as
For convenience, we allow them to have the same amplitude. If the waves are superposed, the resultant electric field is
If we multiply both numerator and denominator by b, and define β=kbsinθ/2, we may write
More-proper analysis, based on electromagnetic theory and a twodimensional formulation would include an additional factor of iλ in the expression for E(θ), but the important part is the variable sinβ/β.
The total field at P is the sum of the fields due to individual elements. If the dimension of the slit is b and its center, s=0, this is just the integral where constant terms have been removed from the integral. The integrand is of the form exp(a·s), so the integral is easily evaluated
惠更斯原则:传输波前上每一点(或说无限小一个区 域)会辐射出一个子球面波。这些子球面波传输一小 段距离(实际上是无限小一段距离)后会合成一个" 新的"波前。这个新的波前其实代表的是原波前传播 一小段距离后的位置。
More specifically, Huygen's construction is shown above. The wavefront in this case is a part of a plane wave which has just been allowed to pass through an aperture. The spherical wavelets combine to produce a wavefront lying along their common tangent. The new wavefront is nearly plane and nearly identical with the original wavefront. At the edges, however, it develops some curvature owing to the radiation of the end points away from the axis. Succeeding wavefronts take on more and more curvature, as shown, and eventually the wavefront becomes spherical. We then speak of a diverging wave diffracted by an aperture.
第四章 波动光学
Wave Optics
Wave Optics
4.1 Electromagnetic Waves & Complex Expression Light is a transverse, electromagnetic wave characterized by timevarying electric and magnetic fields. The fields propagate hand in hand; it is usually sufficient to consider either one and ignore the other. It is conventional to retain the electric field, largely because its interaction with matter is in most cases far stronger than that of the magnetic field. It is not generally necessary to retain the vector nature of the field unless polarization effects are specifically known to be important. Thus, we will generally be able to describe light with the scalar equation in complex form,
引起:
Bring about; Give rise to; Cause; Arouse; Stir up; Lead to
4.2.1 Single-Slit Diffraction
The single-slit diffraction is shown in one dimension in Fig. 1. We appeal to Huygen's construction and assume that each element ds of the slit radiates a spherical wavelet. The observing screen is located a distance L away from the aperture, and we seek the intensity of the light diffracted at angle θ to the axis. The center of the aperture is located a distance r from the observation point P. The optical path difference (OPD) between the paths from θ and from the element ds (at s) is s·sinθ, in Fraunhofer approximation. The electric field at P arising from the element is We obtain the r in the denominator by realizing that the element is essentially a point source. We cannot drop it from the phase term k(r+ s·sinθ) because very small changes of s·sinθ cause pronounced changes of the phase of the wave relative to that of another wave.
It is well known that the intensity electromagnetic wave in vacuum is the production of the electric field amplitude and its complex conjugation. We may immediately write
where A is the amplitude, k is the wave vector, ω is the angular frequency and Φ is the phase of light field, respectively.
4.2 Diffraction
Huygen's Principle: each point (or infinitesimal area) on a propagating wavefront itself radiates a small spherical wavelet .The wavelets propagate a short (really, infinitesimal) distance, and their resultant gives rise to a "new" wavefront. The new wavefront represents merely the position of the original wavefront after it has propagated a short distance.
上图是惠更斯原理的一个具体(例子):一束平面波入 射到一个小孔上,未达小孔时(子波的)波前是平面波的一 部分,即(各点的)子球面波相叠加后产生了一个位于其共 有切线上的(总)波前。而在(孔)边缘处(总波前)出现 了一点弯曲,其由远离光轴的(子波)辐射引起。而如图所 示,之后总波前会越来越弯曲,最终变成球面波。我们称这 种波经过小孔而发散的现象为衍射。
If the viewing screen is the focal plane of a lens, then the first minimum is located a distance
from the center of the pattern, which extends in the direction perpendicular to the edges of the aperture. Over 80% of the diffracted light falls within 2λf'/b of the center of the pattern, and the first secondary maximum is about 5% as intense as the principal maximum. Similar analysis can be carried out with a circular aperture in twodimensions. The result is similar, except that the pattern is a disk, known as the Airy disk, with radius defined by the first zero as