Evaporation induced self-assembly of zeolite A micropatterns due

合集下载

有序介孔材料的发展和面临的挑战

有序介孔材料的发展和面临的挑战

有序介孔材料的发展和面临的挑战霍启升吉林大学无机合成与制备化学国家重点实验室,中国吉林长春,邮编:130012E-mail: huoqisheng@摘要简要介绍有序介孔材料的发现和发展历史,讨论合成、结构、应用等方面所面临的挑战。

有序介孔材料有序介孔材料是指孔道规则且有序排列的介孔材料,早在1971年介孔材料的合成工作就已开始,日本的科学家们在1990年之前也已通过层状硅酸盐在表面活性剂存在下转化开始介孔材料合成,1992年Mobil的报导才引起人们的广泛注意,并被认为是介孔材料合成的真正开始。

Mobil 使用表面活性剂作为模板剂,合成了M41S 系列介孔材料,包括MCM-41(六方相)、MCM-48(立方相)和MCM-50(层状结构)。

经过近二十年的全球性科学家的团结努力和辛苦工作,介孔材料的研究工作发展极快,并且成效显著,涉及到合成、结构、性质、应用等各个方面,参与研究的科学家专业分布极其广泛,介孔材料研究是近年来少有的受人瞩目且快速发展的研究领域。

有序介孔材料的优势有序介孔材料的优势在于材料的独特的介孔结构(均一孔道尺寸及形状、高比表面、大孔体积)和合成过程简单,合成可重复,原料价格低廉,容易直接合成各类等级的可控结构,如薄膜、粉末、块体、微球、纤维、纳米级材料、各种微观形貌。

介孔材料的组成容易多样化,易掺杂。

尤其是二氧化硅基材料,表面羟基反应活性高,容易用各种有机基团修饰。

合成化学与结构及性质的研究起初介孔材料的合成化学的研究以介孔二氧化硅材料为主,后来被开展到其它组成。

合成机理的研究也是以二氧化硅体系为主要对象,根据不同的合成条件及体系,主要生成机理包括:从层状结构的转化、无机-有机静电作用、表面活性剂分子堆积参数的主导作用的协同自组装、真正液晶模板。

在上述机理的指导下,介孔材料合成工作迅速展开。

材料组成从硅酸盐系列扩展到非硅酸盐无机系列,后来又到有机-无机杂化材料、有机材料、碳材料。

介孔二氧化钛的制备

介孔二氧化钛的制备

KIT-6模板
Ti(OPr)4+乙醇
6g P123+217g 去离子水 +11.8g 35% HCl在35℃搅
水解(室温)
85 ℃干燥去除乙醇
拌1h后,加入6g丁醇再搅
750 ℃煅烧
拌1h,随后加12.9gTEOS,
TiO2/KIT-6
搅拌24h,在120℃静置24h, 2 M NaOH 搅拌、离心
干燥
烧结
(70 ℃ ) (500 ℃ )
CMS
Chem. Mater. 2007, 19, 937-941
介孔TiO2合成—硬模板法
KRICT-MT具有 良好的热稳定性
Chem. Mater. 2007, 19, 937-941
介孔TiO2合成—硬模板法
Feng等人用钛醇盐和KIT-6合成了介孔锐钛矿TiO2晶体
a.前驱体溶液:430 mg TiCl4, 350 mg H2O和8.0 g乙醇; b.在前驱体中加入PIB85-PEO79共聚(95mg聚合物和3.0g乙醇)
搅拌1h;
c.控制6 mm s-1的固定速度旋涂,同时控制湿度在10-20%,
放置在60度保持12h;
d.把干燥好的样品先加热到300°保温1h,后在450°煅烧1h
典型的EISA法合成介孔二氧化钛薄膜材料步骤
(1)准备含有钛前驱体和有机物模 板的酸性乙醇水溶液
(2)沉淀以获得介孔结构的二氧化 钛混合物薄膜
(3)薄膜受湿度和老化过程的影响, 促进了钛和模板的协作组装从而形 成强健,高度有序的介孔结构
(4)温度在300度以上焙烧使模板彻 底移去从而得到介孔二氧化钛薄膜
纳米管阵列—与二维介孔材料的结构相似
Enhanced Photocleavage of Water Using Titania Nanotube Arrays

燃烧学相关词汇

燃烧学相关词汇

第一章Combustion 燃烧Autoignition自燃、自动点火Flame 火焰Thermochemistry 热化学Nonflame 无焰Molecular transport of mass(and heat)质量(和热)分子输运Premixed flames 预混火焰Chemical kinetics 化学动力学Nonpremixed(diffussion) flames 非预混(扩散)火焰Fluid mechanics 流体力学第二章Extensive property Absolute(or standardized) enthalpy 绝对(标准)焰Intensive property Enthalpy of formation 形成(生成)焰Equation of state 状态方程Sensible enthalpy change 显焰变化Calorific equations of state Standard reference state 标准参考状态Constant-volume specific heats 定容比热Enthalpy of combustion 燃烧焰Constant-pressure specific heats 定压比⅛⅛Enthalpy of reaction 反应焰Mole fraction of species 组份的摩尔分数Heating value 热值Mass fraction of species 组份的质量分数Heat of combustion 燃烧热Mixture molecular weight 混合物分子量Upper or higher heating value 高位热值Partial pressure of the ith species 组分i 的分压Lower heating value 低位热值Latent heat of vaporization 汽化潜热Adiabatic flame temperatures 绝热火焰温度(理论燃烧温度)Enthalpy of vaporization 汽化焙Constant-pressure adiabatic flame temperature 定压绝热火焰温度Clausius-Clapeyron equation Constant-volume adiabatic flame temperature 定容绝热火焰温度Fixed mass 定质量Chemical equilibrium 化学平衡System 系统DissociateLean贫(燃料或空气)Second-law 第二定律Rich富(燃料或空气)Gibbs function吉布斯函数Stoichiometric air-fuel ratio空气-燃料化学当量比Gibbs free energy 吉布斯自由能Equivalence ratio 当量比Gibbs function of formation 吉布斯形成函数Percent stoichiometric air 化学当量空气百分数Standard-state Gibbs function change 标准状态吉布斯函数变化Percent excess air 过量空气百分数Equilibrium constant 平衡常数Conservation of elements 元素守恒Complex systems 复杂系统Principle of Le Chatelier 勒夏特列原理Generalized Newton,s method 广义牛顿方法Equilibrium products of combustion 燃烧平衡产物Major species 主要组份Full equilibrium 全平衡Minor species 次要组份Water-gas equilibrium 水■气平衡Flue gas recirculation 尾气再循环Water-gas shift reaction 水-气转换反应Exhaust gas recirculation 排气再循环Recuperation and regeneration RegeneratorRecuperator Straight chains 直链Alkanes 烷烧类Branched chains 支链Alkenes稀烂类Normal正常体Alkynes块烽类Isomers异构体Cyclanes 环烷煌类Isooctane 异辛烷aromatics 芳香族化合物Octane rating辛烷值Benzene 苯alcohols 洒精类Methanol 甲醇Ethanol 乙醇Propanol 丙醇第三章Mass transfer 传质Species conservation 组份守恒方程Fick's law 费克定律Stefan problem 斯蒂One-dimensional binary diffusion 一维二元扩散Stefan flowMass flux 质量流率Droplet evaporation 液滴蒸发Binary diffusivity 二元扩散系数Evaporation rate 节发率Diffusional flux 扩散流率Transfer number 传梯数Fourier's law of conduction 傅立叶导热定律Droplet mass conservation 液滴质量守恒方程Transport properties 输运特性Evaporation constant 蒸发常数Ordinary diffusion 一般扩散D21awD 平方定律Thermal diffusion(soret) 热扩散Molar flux 摩尔通量Pressure diffusion 压力扩散Mass-average velocity 质量平均速度Molar-average velocity 摩尔平均速度第四章Chemical kinetics 化学动力学Third body 第三物Globiil reaction mechanism 总包反应机理Multistep mechanisms 多步反应机理Global rate coefficient 总包反应速率系数Net production rates 净产生率Reaction order反应级数Stiff system 刚性系统Intermediate species 中间组份Compact notation 紧缩记法Elementary reactions 基元反应Stoichiometric coefficients 化学当量系数Radicals 基元Production rates 产生率Free radicals自由基Rate-of-progress variable 中间过程变量反应率Reaction mechanism 反应机理Steady-state approximation 稳态近似Bimolecular 双分子Chain reactions 链式反应Activation energy 活化能Chain-branching reactions 链式分枝反应Steric factor位阻因素、空间配置因素Chain-initiation reaction 链的激发反应Activated complex 活性复合体Chain-propagating reactions 链的传递反应Arrhenius form阿累尼乌斯形式Chain-terminating reaction 链的中止反应Pre-exponential factor 指前因子Chemical time scales 化学时间尺度Frequency factor 频率因子Partial equilibrium 部分平衡Arrhenius plots 阿累尼乌斯图Partiiil-equilibrium approximation 部分平衡近似Unimolar 单分子Shuffle reaction 正反混合反应Teπnolecular 三分子第五章Heterogeneous reaction 非均相(异相)反应 Thermal mechanism 热力反应机理 Paraffins 石蜡Zeldovich mechanism 谢尔多维奇机理 Alkanes 链燃 Fenimore mechanism费尼摩机理H-atom abstraction H 原子提取 Prompt mechanism 瞬间反应机理 -scission rule 分裂规则 N2O-intermediate mechanism N20 "∣ 间体机理 Global mechanisms总包反应机理 Extended Zeldovich mechanism 扩展的谢尔多维奇机理Quasi-global mechanisms 准总包反应机理 Superequilibrium O 过平衡氧Complex mechanism 复杂反应机理 Nitrogen dioxide 二氧化氮第六章Constant-pressure, Fixed-mass reactor 定压恒质量反应器 Ignition delay 着火延迟 Constant-volume fixed-mass reactor 定容恒质量反应器 Source 源Well-stirred reactor 均匀搅拌反应器Sink 汇Plug-flow reactor 塞状流 Mass conservation 质量守恒方程Initial-value problem 初值问题 x-momentum conservation X-方向动量守恒方程 Thermal explosion热力爆炸Energy conservation 能量守恒方程Induced period 感应期 Species conservation 组份守恒方程219 组分速度219,222正常扩散 总包速度 221热扩散 Soret 效应(热扩散效应) 222 压力扩散 222 强制扩散Ordinary multicomponent diffusion coefficients 222 正常多组分扩散系数Stefan-Maxwell equation 223 Stefan-Maxwell 方程 Thermal diffusion velocity 223 热扩散速度 Thermal diffusion coefficient 223热扩散系数Effective binary diffusion coefficient 227 有效二元扩散系数 Shavb-Zeldovich energy equation 236 Shavb-Zeldovich 能量方程 Lewis number 236 Lewis 数 Unity Le assumption 236Lewis 数为一的假设Conserved scalar 241 守恒标量Chapter 7Species velocity Ordinary diffusion Bulk velocity 220 Thermal diffusion Soret effect 221 Pressure diffusion Forced diffusioncontinuity 269 连续性Boundary value problem 270 边界值问题Chapter 8 Flame 254 deflagration detonation Preheat zone火焰254 254 255 Reaction zone 255 Lewis number, Le Mass conservation Species conservation Energy conservation Eigenvalues 265 爆燃过程 爆燃,爆炸 预热区反应区 262 262 262, 264, 本征值Lewis 数 质量守恒 270 270 组分守恒 能量守恒 Quenching distance 284 flashback Lower limit 284, 294 289 下限 熄火距离 回火,闪回Upper limit 289 上限 Minimum ignition energy 291最小点火能量Liftoff 294 脱火 Attached 295(火焰)附着Chapter 9Potential core 306 entrained 307 Schimidt number, (火焰)隐核 携带 Sc 308, 323 Schimidt 数 Axial momentum conservation 308 轴向动量守恒 similar 309 相似的 Similarity variable Spreading rate 3II Spreading angle 311 Jet half-width 311 smoke 316 烟 309相似变量 喷射率 喷射角 射流半宽 Flame-sheet approximation Mixture fraction 320 Absolute enthalpy 321 318 火焰片近似 混合物分数 绝对焰 Nondimensional equatons 322 无量刚方程 State relationships 324 状态关系式Burke-Shumann 327 Burke-Shumann (人名) Beseel functions 329 Beseel 函数 Roper 329 Roper (人名) Constant-density Solution 329 常密度解法Variable-Density Approximate Solution 330 变密度近似解法Numerical solutions 331 数值解法 Roper ,s correlations 331 Roper 关联Circular port 331 圆口Inverse error function 333 逆误差函数 Slot-burner 333 矩形口燃烧器 Momentum controlled 333 动量控制 Square port 333 方 口 Buoyancy controlled 334 浮力控制Transition regime 335 转援区,过渡区Froude number 335 Froude 数 Fuel type 337 燃料类型Primary aeration338 一次风flashback339回火Oxygen content of oxidizer 339 氧化剂中的氧气含量 Fuel dilution with inert gas 340 以惰性气体稀释燃料Smoke point 345 发烟点 alkanes 346 烷烽 Alkenes 346 烯燃 alkynes 346 块Aliphatic aromatics 346 脂肪族芳香煌 Mathematical description 349 数学描述Structure of CH4-air flame 350甲烷-空气火焰结构Chapter 10Indirect-injection 363 间接喷射 Primary zone 365 一次风区 Secondary zone 365 二次风区 Dilution zone Pattern factor Pressure-fed Pump-fedDroplet-Gas-Phase interface Energy Balance 374 液滴-空气相界面能量平衡 Spalding number 375 Spalding 数 Transfer number 375 输运数 Evaporation constant 376 蒸发常数 Inner region 381 内区Outer region 382 夕卜区 Temperature distribution 384 温度分布Liquid-vapor equilibrium 388 液(体)■气(体)平衡unknown 390 未知数,未知量 Burning rate constant 391 燃烧速率常数 Nusselt Number 396 Nusselt 数 Sherwood number 396 Sherwood 数Direct injection 363 直接喷射 365 366 367 367 稀释区 形状因子 压力喂料泵喂料Variable properties 398 变量特性Supercritical droplet combustion and evaporation 398 超临界液滴燃烧与蒸发Fuel-vapor accumulation 398 燃料蒸发积聚Droplet heating 398 液滴加热Multicomponent fuel 398 多组分燃料Internal recirculation 398 内循环Soot shell 399 碳黑壳Interactions among multiple droplets 399 液滴间相互作用Mathematical problem statememt 401 数学问题描述Gas-phase energy conservation 404 气相能量平衡Gas-phase composition 405 气相成分Droplet momentum conservation 406 液滴动量守恒Chapter 11Renolds number 424 雷诺数Mean quantities 424 平均量Fluctuating quantities 424 脉动量Renolds decomposition 425 雷诺分解方法Intensity 425 强度Relative intensity 425 相对强度eddy 425 漩涡,涡vortex 427 漩涡,涡vorticities 427 涡量,涡量方程scale 427 等级,尺度,尺寸Engulf 428 漩涡、卷吸stir 428 搅动,混合Integral scale 428 积分尺度Taylor microscale 428 泰勒微(观)尺度Kolmogorov microscale 429 Kolmogorov 微(观)尺度Turbulence Reynolds numbers 430 湍流雷诺数Reynolds averaging 435 雷诺平均Turbulent stress 435, 436 湍流应力Closure problem 435 封闭问题Two-dimensional boundary layer 435 二维边界层Turbulent momentum flux 436 湍流动量流量Reynolds stress 436 雷诺应力Eddy viscosity 437 涡粘度Mixing-length Hypothesis 439 混合长假说Viscous sublayer Buffer layer 440 Fully developed 440 Two-equation model k- ∈ model 444 Higher-order model 440 粘性底层缓冲层、过渡层充分发展444 双方程模型Axisymmetric jet 437 轴对称射流k∙∈模型444 高阶模型William-Klimov criterion Damk7hler criterion 458 Damk7hler number 458 Fast-chemistry regime 459 Damk7hler 判据 Damk?hler 数,Da 快速化学反应区旁路通道,旁通 燃烧器瓦 钝体,非流线体472 吹熄速度,脱火速度Turbulent thermal diffusivity 472 湍流热扩散率Swirl induced recirculating flows 473 旋流引起的回流流动Jet-induced recirculating flows 473 射流弓I 起的回流流动 Chapter 13General observations 484 总论 attached 486 附着 liftoff'487 脱附Liftoff distance 487 脱附距离 blowout 487 吹熄Reynolds stress model 444 Direct numerical simulation Large-eddy simulation 445 雷诺应力模型 445直接数值模拟 大涡模拟Chapter 12Industrial gas burners 452 Experimental observations Turbulent flame brush 456 Laminar flamelets 456Three flame regimes 457工业气体燃烧器 456 实验观察 湍流火焰刷层流火焰梢 三种火焰区域 Wrinkled laminar-flame regime 458 褶皱层流火焰区域 Distributed-reaction regime 458 Flamelets-in-eddies regime 458 Regime criteria 458 分区判据 分布反应区域 涡内焰梢区 458 William-Klimov 判据Bypass ports 470 Burner tiles 471Bluff bodies 471 Blowoff velocitySimplified analysis Nonreacting jets Conserved scalars Conservation laws factor 495 因素correlations 497Momentum diameter Radiant fractionLiftoff height 504 configuration 509489 489 491 492 简化分析非反应射流,无反应射流 守恒(标)量 守恒定律关联 497 动量直径501辐射分数 脱附高度 结构Coal-fired boilers 520 燃煤锅炉Heterogeneous reaction 520 非均相反应,异相反应 Homogeneous reaction 520均相反应 Intraparticle diffusion 524 颗粒内部扩散One-film model 524 单膜模型Two-film model 524 双膜模型continuous-film model 524 连续膜模型overall 526 总体的,全部的,全面的Surface kinetics 528, 539表面化学动力学,表面反应动力学 Circuit analogy 529 电路比拟Diffusionally controlled 531 扩散控制 Kinetically controlled 531 动力控制Nearly diffusionally controlled 532 近似扩散控制 closure 540 封闭Particle burning times 542 颗粒燃烧时间Proximate analysis 544工业分析 Ultimate analysis 544 元素分析 solid 545 固体(燃料)Chapter 14Concern 551 考察量,关注点,关注量Combustion-generated 551燃烧产生的 Related species 551 相关量,相应组份Effects of pollutants 551 污染物影响Criteria pollutants 552 标准污染物Hazardous air pollutants 552有害大气污染物Emission index 553 排放指数Emission indices 553 排放指数Corrected concentrations 555 修正浓度Various specific emission measures 558 各种单位排放量 NOx control strategies 562 NOx 控制策略hydrocarbon 568 ½Quench layer 568 熄火层Low excess air 577 低过量空气Staged combustion 577 分级燃烧Temperature reduction 578 温度降低Low-NOx Burners 578 低 NOx 燃烧器Oxy/Gas Combustion 580增氧/气体燃烧 reburn 580 再燃 Catalytic aftertreatment Particulate matter 571 Oxides of nitrogen 573 Simple turbulent jet flames 569 催化后处理微粒物质,颗粒物 氮氧化物573简化湍流射流火焰Selective catalytic reduction 581 选择性催化还原Utility boilers 582 电站锅炉Gas turbine 584 燃气轮机Chapter 15detonation 598 爆燃Shock wave 598 冲击波Normal shock 599 正常冲击deflagration 600 爆燃过程Strong detonations 605 强爆燃Weak detonation 605 弱爆燃Detonation velocity 609 爆燃速度Structure of detonation waves 613 爆燃波结构 其中页码为 An Introduction to Combustion --- Stephen S. Turns (PSU) Diesel engine 584 Oxidizes of sulfur 柴油发动机586 硫氧化物One-dimensional analysis Conservation laws State relationships Combined relations The Rayleigh line 601 602 602 602 600 一维分析守恒定律状态方程复合关系式Rayleigh 线 The Rankine-Hugoniot curve Upper branch 604 上枝Lower branch 604 下枝Upper Chapman-Jouguet point Lower Chapman-Jouguet poin 603 605 605 Rankine-Hugoniot 曲线Chapman-Jouguet 上切点Chapman-Jouguet 下切点。

二氧化硅介孔膜的制备和应用

二氧化硅介孔膜的制备和应用

二氧化硅介孔膜的制备和应用杨博;李小飞;楼燕燕;胡鹏飞【摘要】综述了二氧化硅介孔薄膜合成的研究进展,重点阐述了以表面活性剂胶束为模板制备二氧化硅介孔薄膜的方法,其中,两相界面外延生长和溶剂蒸发诱导自组装已成为该方法的成功工艺.此外,文章就介孔二氧化硅薄膜在一些领域的应用做了简要陈述,包括在纳米粒子膜反应器、微电子及光电传感器领域等.【期刊名称】《广州化工》【年(卷),期】2013(041)012【总页数】3页(P29-31)【关键词】二氧化硅薄膜;介孔;表面活性剂【作者】杨博;李小飞;楼燕燕;胡鹏飞【作者单位】新疆维吾尔自治区产品质量监督检验研究院,新疆乌鲁木齐830011;新疆维吾尔自治区产品质量监督检验研究院,新疆乌鲁木齐830011;上海大学微结构重点实验室,上海200444;上海大学微结构重点实验室,上海200444【正文语种】中文【中图分类】O613.72长期以来,多孔性材料因具有较大的比表面积和高吸附量一直被用作高效吸附剂和分离介质、阻隔材料、结构材料、催化剂载体等。

随着纳米科学与技术的发展,三维高度有序的多孔性材料在新型催化剂、电极材料、生物医用等领域的研究中倍受关注。

具有里程碑意义的是,1992年,美国Mobil 公司的Beck 等[1]合成了具有均匀孔道结构和狭窄孔径分布的新型介孔(Mesoporous)分子筛材料,拉开了介孔材料的合成、特性表征、应用研究的序幕。

据国际纯粹和应用化学联合会(IUPAC)对无机孔性材料的分类,把孔径位于2~50 nm 间的固体定义为介孔材料。

根据孔在空间的分布特征,介孔固体可分为有序和无序两种,前者的孔在空间呈规则排列,后者的孔呈无规则分布。

有序介孔固体孔型可分为三类:平行排列的层状孔(一维)、定向排列的柱状孔(二维)、三维规则排列的多面体孔(三维相互连通),而无序介孔固体的孔型形状复杂、不规则且互相连通。

以MCM-41 为代表的介孔固体材料,虽然在催化与吸附方面具有重要的应用前景,但由于材料是粉末颗粒状的,限制了其催化、分离的使用范围和效率。

溶胶-凝胶法制粉

溶胶-凝胶法制粉
五、粉末类型及其特性
主要应用于制备粉末薄膜、薄膜块体纤维粉末、薄膜粉末纤维。 采用溶胶-凝胶合成法,将所需成分的前驱物配制成混合溶液,经凝胶化、热处理后, 一般都能获得性能指标较好的粉末。 凝胶中含有大量液相或气孔,在热处理过程中不易使粉末颗粒产生严重团聚,同时 此法易在制备过程中控制粉末颗粒度。 溶胶凝胶制备的陶瓷粉体具有以下特点: a) 具有制备工艺简单、无需昂贵的设备 b) 大大增加多元组分体系化学均匀性 c) 反应过程易控制,可以调控凝胶的微观结构 d) 材料可掺杂范围宽,化学计量准,易于 改性 e) 产物纯度高等
2.3、缩聚反应 :按其所脱去分子种类 ,可分为两类 a) 失水缩聚
−M −OH +HO−M−=−M −O−M −+H2O
b) 失醇缩聚
−M −OR+HO−M− = −M −O−M −+ROH
反应生成物是各种尺寸和结构的溶胶粒子。
二、设备
3
三、工艺过程
Sol-Gel 法的工艺过程如图 1 所示
图 1 Sol-Gel 法的工艺过程 溶胶-凝胶法的化学过程根据原料不同可以分为有机工艺和无机工艺,根据溶胶-凝 胶过程的不同可以分为胶体型 Sol-Gel 过程、无机聚合物型 Sol-Gel 过程和络合物型 Sol-Gel 过程,这些溶胶-凝胶过程的特征见表 1。
成的密集粒子
无机聚合物 前驱体水解和 1、由前驱体得到的无机聚合 主要是金属烃 薄膜

聚合
物构成的凝胶网络
氧化物
块体
2、刚形成的凝胶体积与前驱
纤维
体溶液体积完全一样
粉末
3、证明凝胶形成的参数-凝
胶时间随着过程中的其它参
数变化而变化
ቤተ መጻሕፍቲ ባይዱ

配位聚合

配位聚合
较多支链,密度较低,因此称为高压聚乙烯或低密度聚 乙烯。
1
1953年,德国人 K. Ziegler 采用TiCl4-Al(C2H5)3为引 发剂,在低温(60 ~90 ℃ )和低压(0.2 ~1.5MPa)条 件下实现了乙烯的聚合。分子链中支链较少,结晶度较 高,密度达0.94~0.96。因此称为低压聚乙烯或高密度聚 乙烯。 1954年,意大利人 G. Natta 采用TiCl3-Al(C2H5)3为引 发剂,实现了丙烯的聚合,产物具有高度的等规度,熔 点达175 ℃。 TiCl4-Al(C2H5)3称为Ziegler引发剂, TiCl3-Al(C2H5)3 称为Natta引发剂,合称为Ziegler-Natta引发剂。
Hierarchical spiral morphologies of H-PA film. Parts (a) and (b) show scanning electron microscope (SEM) photographs of multidomain spiral morphology and left-handed screwed bundles of fibrils in a domain, respectively.
配位聚合
1.引言
乙烯和丙烯都是热力学聚合倾向很大的
单体,但很长一段时期未能聚合得到高分子 量聚合物,主要是未找到合适引发剂和聚合条件。 1938~1939年间,英国ICI公司用氧为引发剂,在高 温(180 ~200℃)和高压(150 ~300MPa)条件下聚合
得到聚乙烯,其聚合为自由基机理。产物分子链中带有
AFM images of supramolecular assembling structures formed by natural evaporation of the solutions of PA derivatives

【2015年全国高分子学术论文报告会论文摘要集】主题O 中美高分子科学与工程前沿论坛

【2015年全国高分子学术论文报告会论文摘要集】主题O 中美高分子科学与工程前沿论坛

Molecular Structure vs. Processing: Relationships that Govern Electronic Polymer PerformanceDalsu Choi1, Gang Wang1, Cornelia Rosu2, Nabil Kleinhenz3, Ping-Hsun Chu1, Jung Ok Park2, Paul S. Russo2, Mohan Srinivasarao2, and Elsa Reichmanis1,2,31School of Chemical and Biomolecular Engineering, Georgia Institute of Technology,Atlanta, GA2School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta,GA3School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA Phone: +1-404-894-0316, Fax :+1-404-894-2866, *E-mail:ereichmanis@Printed, flexible electronics are potential low cost alternatives for devices in a range of industries such as health care, security,and energy. Device performance depends critically on semiconducting polymer structure; but importantly, electronic characteristics are closely tied to process parameters which govern alignment at the nano- through macro-scales. Significant structure-process-property relationships facilitating enhancement of long-range order will be described. For instance, poly-(3-hexylthiophene) (P3HT) exhibits alyotropic liquid crystalline phase during solvent-evaporation induced self-assembly. In-situ polarized Raman spectroscopy and concurrent drain current measurements suggest that P3HT undergoes a series of phase transitions ranging from isotropic, to liquid crystalline to ultimately, polycrystalline solid. Further, aggregation and orientation of the polymer in solution can be facilitated by a number of techniques that will be described. The insights obtained through these studies may allow for simple, controllable, and cost-effective methodologies for achieving high performance in plastic electronic and photovoltaic devices.Functional Materials Development Based on PDI and NDI:Supramolecular Chemistry DesignsKang Cai, Jiajun Xie, Yikun Guo, Qifan Yan, Chenhao Zhang and Dahui ZhaoKey Laboratory of Polymer Chemistry and Physics of MOE, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, PekingUniversityPhone: +86-10-62753973, Fax :+86-10-62753973, *E-mail: dhzhao@Naphthalene- and perylenediimide (NDI& PDI) featuring low LUMO levels are attractive substrates for developing electron-transporting semiconductors and electron acceptors applicable to OFET and OSC. Additionally, we’ve also used NDI to create highly ordered J-aggregates manifesting near-infrared (NIR) light-absorbing and emitting properties. In this presentation, our recent research progress regarding synthesizing and studying novel PDI- and NDI-based functional systems will be introduced.The strongly electron-pulling ability of the dicarboximide groups rendersmost of their derivativesto exhibit low LUMO levels,suitable for developing n-type semiconductors.We have prepared a number of PDI and NDI-based materials with high electron-transporting performance in solution-processed OFET devices. A particular molecule comprising of two NDI units fused with diaminonaphthalene moiety exhibits optimal electron mobility up to 1 cm2 V-1 s-1 under ambient conditions. We’ve also harnessed NDI as a valuable building block for developing NIR optical materials. The absorption maximum of a newly developed NDI-diaminonaphthalene adduct reached about 1100 nm, while leaving a nearly transparent window in the visible range. Compared to molecular structures inherently possessing NIR optical activities, creating J-aggregates that absorb and emit NIR light is an even more promising approach. We’ve recently carried out a systematic structural exploration to develop structurally diversified NIR J-aggregates and gained more in-depth insight into the supramolecular details of the J-aggregated structures.Bimodal Comb Block Polyolefins from Serial ReactorsAndy H. Tsou, Carlos R. Lopez-Barron, Peijun Jiang, and Donna J. Crowther Global Chemical Research, ExxonMobil Chemical Company, Baytown, Texas, USA By employing solution serial reactors along with judicious choices of organometallic catalysts, bimodal comb block copolyolefins can be produced with bimodalities in molecular weight, in branching, and in composition distributions. A low molecular weight (MW) vinyl terminated polyolefin prepared in the first reactor along with its catalyst and unreacted olefin monomer was fed directly into the second reactor without purification and catalyst termination. A second olefin monomer and a second catalyst capable of incorporating macromers and of producing high MW were then added in the second reactor leading to the synthesis of bimodal comb block polyolefins. These comb block copolyolefins contain low MW linear polyolefins of mixed compositions and high MW comb branched polyolefins of a constant composition.Various bimodal PE-sb-aPP, or polyethylene-(side block)-atactic polypropylene, was thus prepared with propylene being the first-reactor monomer and ethylene being the second-reactor monomer with varying aPP comb arm MW, backbone MW, and comb arm number. Their bimodalities were confirmed by GPC-4D (Gel Permeation Chromatography-4 Detectors) and by extraction C13 NMR (Carbon 13 Nuclear Magnetic Resonance). The presence of these low MW linear polypropylene and poly(propylene-r-ethylene) may prevent the micelle formation of the high MW comb block PE-sb-aPP as evident by the devoid of micelles, as examined by bimodal AFM (atomic force microscopy), when the bimodal PE-sb-aPP was added into HDPE (high density polyethylene), iPP (isotactic polypropylene), and blends of HDPE and iPP. Without the micelle formation, the high MW PE-sb-aPP can be intimately entangled with HDPE and with iPP delivering extensional flow hardening, as measured by SER (Sentmanat Extensional Rheometer) rheometer, when the bimodal PE-sb-aPP was added at 5% or less.In addition to enhancing processabiity of PE, iPP, and PE/iPP blends, it was found that this bimodal PE-sb-aPP can compatibilize the immiscible blends of HDPE and iPP. As revealed by SEM (Scanning Electron Microscopy), domain sizes are significantly reduced in blends with HDPE dispersion, iPP dispersion, and HDPE and iPP co-continuous morphologies. Although the lack-of-material-contrast preventing the detection of PE-sb-aPP at the PE/PP interfaces, diffused interfaces were apparent in bimodal AFM micrographs at high magnifications of all PE and PP blends when the bimodal PE-sb-aPP was added. Both the domain size reductions and the diffused interfaces suggest compatibilized blends in the presence of PE-sb-aPP. The importance of this low MW linear mixed-composition polyolefin in bimodal comb block polyolefin to prevent the micelle formation of the comb block needs to be verified through the synthesis of a comparable example of a pure PE-sb-aPP using a single reactor in two steps with purification and separation after each step.Novel Polymer Based N-doped Carbon Materials andApplicationsJinliangQiaoSINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, ChinaE-mail:qiaojl.bjhy@Chemical industry has made irreplaceable contributions to the world, but has also caused negative impacts on our environment and consumed a huge amount of resources and energy. Catalyst, as the soul of chemical industry, plays a key role in reducing these negative effects for chemical industry. It is well recognized that environmentalpollution,and consumption of resources and energy can be reduced significantly by improving the catalyst selectivity to minimize side reactions. It is well known that 90% of chemical reactions in chemical industry are based on heterogeneous catalytic processes, and the majority of the industrial catalysts are supported catalysts. While Al2O3 and SiO2 are the two major catalyst supports, they both have faint acidity, which often lead to side reactions. Without a revolutionary change in the catalyst support, the side reactions would be difficult to significantly reduce or even eliminate.In this talk, newly developed N-doped Carbon Materials as catalyst for green chemistry will be introduced. The model catalyst with sesame-ball-like PA6 supported catalyst possesses both the high catalytic activity and the excellentprocessibility and recyclability.The alkalescent polyamide 6 supported Raney Ni catalyst can reduce or even eliminate side reactions caused by the acidity of traditional catalyst supports. Clean preparation of n-butanol and isopropanol could be achievedby using PA6 supported Raney Ni catalyst. The commercial N-doped Carbon/Raney catalyst from polymer/ Raney Ni composites could be applied in manychemicalreactiona, such as hydrogenation reaction of n-butyraldehyde, refining reaction of ethylene glycol, and methanation reaction of carbon monoxide.In this talk, a novel carbon microspheres composed of N-doped hollow carbon nanospheres prepared by a newly developed three-step method will be also introduced. Poly(styrene-co-butyl acrylate)/polypyrrole (PSBA/PPy) latex particles with core-shell structure were synthesized firstly by the chemical oxidative polymerization of pyrrole in poly(styrene-co-butyl acrylate) (PSBA) emulsion and then PSBA/PPy core-shell latex was dried by spray drying process. Finally, the dried PSBA/PPy particles were pyrolyzed under nitrogen atmosphere at 500-800 °C without activation process. It was found that nitrogen content could reach to 7.62 wt% and large amount of micro-,meso- and macro-pores existed in this kind of carbon microsphere. In addition to be used for catalyst supports, the newly developed N-doped carbon material also can be applied in CO2 capture. It is found that the CO2 adsorption capacity of the new N-doped carbonmaterial could be 1.21 mmol/g even though at temperature of 50 °C.References(1) Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Peng, Hui; Dai, Wei; Qiao, Jinliang, Catalysis Science & Technology (2014), 4(8), 2499-2503.Harnessing Transport through Structured Polymeric Matrices: New Materials for Lithium Batteries, Sensors and Sustainable,Energy-Efficient BuildingsSergio Granados-FocilGustaf H. Carlson School of Chemistry and Biochemistry,Clark University. 950 Main street Worcester, MA 01610Email: sgranadosfocil@Tel: (508) 793-7375, Fax: (508) 793-8861Many applications demand materials with a complex combination of properties, such as the efficient selective transport of chemical species, light or heat, along with the ability to tune their mechanical properties. This talk will describe the rational design of well-defined polymeric structures and their useto generate mechanically robust, ion conductive, matrices with transport properties comparable to those of liquid electrolytes. The use of similar polymer design principles to produce nanoparticle synthesis templates for photovoltaic applications, to develop ultra-high sensitivity ion-selective electrodes and to synthesize heat-storing materials for temperature regulation in buildings will also be described.Smart Fibers for Color and Shape ChangesHuisheng PengState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University,Shanghai 200438, China;penghs@A variety of composite smart fibers based on carbon nanotube and polymer has been developed to change colors and make mechanical actuations that can be tuned by varying the aligned structure inside. The chromatic transitions and mechanical actuations can be repeated for hundreds of thousands of cycles without obvious fatigue.Molecular Modeling of the Mechanical Behavior of aSemicrystalline PolymerJun Mo Kim, Sanghun Lee, Vaibhaw Kumar, and Gregory C. Rutledge Department of Chemical Engineering, Massachusetts Institute of Technology,Cambridge, MA 02139, USASemicrystalline polymers constitute the majority of plastics in production worldwide. They include not only the commodity plastics like polyethylene and polypropylene, but also high performance polymers like Kevlar, functional polymers like polyaniline, and natural polymers like cellulose and silk. These materials are remarkable foremost for their mechanical properties, often in combination with other functional properties. Nevertheless, despite decades of study and application, it remains a challenge to understand how these complex, heterogeneous materials deform at the atomistic level. To address this gap, we have developed a lamellar stackmodel of semicrystalline polymers that accounts for all of the fine details of intramolecular connectivity and intermolecular packing that must occur within the interphase between crystalline and amorphous domains. In this talk, we discuss the response of semicrystalline polyethylene to large strain deformation using nonequilibriummolecular dynamics.We examine the mechanisms by which this semicrystalline polymer responds to large strain deformation in extension, compression and shear, at different rates of deformation. Consistent with the complex, seemingly contradictory conclusions drawn from experimental observations, a number of different mechanisms are observed, the importance of which varies with the mode of deformation, extent of strain, and strain rate. Both the crystalline and noncrystalline domains play important roles in the overall response. The concept of “bridging entanglements” is introduced to explain the hardening behavior observed at intermediate strains, just prior to yielding. In extension, plastic flow is shown to occur through a series of crystallographic reconstruction events.Molecular Simulations of Strain-induced PolymerCrystallizationYijing Nie, Liyun Zha, Miaomiao Zhang, Yang Zhou, Huanhuan Gao and Wenbing Hu School of Chemistry and Chemical Engineering, State Key Lab of CoordinationChemistry, Nanjing University, Nanjing, ChinaPhone: +86-25-8968-6443, Fax :+86-25-8337-7761, *E-mail: wbhu@Strain-induced polymer crystallization widely exist in plastic molding, fiber spinning and rubber strain-hardening. It is a key process of structure formation and thus determines the performance of fundamental semi-crystalline polymer materials. We performed dynamic Monte Carlo simulations of bulk polymer crystallization induced by homogeneous stretching at constant strain rates and at high temperatures. We found that combining Flory’s theory on strain-induced uprising of melting point with his theory on solution or copolymer depression of melting point fits well to our simulation results of onset strains. We observed the transition of crystal nucleation from intramolecular to intermolecular modes upon raising temperatures. We also observed hierarchical trends of chain folding upon nucleation, crystal growth and post-stretching, revealing the shish-kebab nature of oriented polymer crystallization. Furthermore, variations of chain lengths and free guest chains were considered as the important factors in real polymer systems.Ordered Phases of Chiral Block Copolymer Melts:Mesochiral Morphologies via Self-AssemblyGregory M. GrasonDepartment of Polymer Science and Engineering, University of Massachusetts Amherst,USAChirality transfer from molecule to assembly is a ubiquitous process, occurring in every class of self-assembling materials, from liquid crystals to biological matter. While block copolymers are well-known for their assembly into a rich spectrum of periodically ordered mesophases, the understanding how molecular chirality in one or more block influences the mirror symmetry (or lack thereof) of assembly at the mesoscale is only beginning to come into focus. In this talk, I will present recent advances in the theory of chirality transfer in block copolymer melt assembly based on a new “orientational self-consistent field” (oSCF) framework. Unlike standard approaches to block copolymer thermodynamics, which describe only density-dependence thermodynamics of inhomogeneous melts, the oSCF framework describes the free energy coupling of microphase segregation to the complex patterns of chain segment orientation within the domains. Based on a model where chiral block segments have a preference for a handed cholesteric twisting within the self-assembled structure, we calculate the phase diagram of diblocks possessing a single chiral block. Specifically, we show that the so-called H* phase of helical cylindrical domains, observed experimentally for poly-(L or D)lactide based diblocks, is an equilibrium phase, and the determine its range of thermodynamic stability. Based on the complex pattern of segment twist in the H* phase, we propose a heuristic model to capture and rationalize the apparent critical degree of chirality needed to stabilize chirality transfer to mesodomain symmetry. An emerging conceptual picture of the mechanism of chirality transfer in block copolymer melts provokes numerous questions regarding the influence of block chirality and the possibilities for new mesochiral morphologies in yet unexplored regions of the chiral block copolymer parameter space.OI-10Tensile Deformation of Semi-crystalline PolymersYing Lu, Yaotao Wang, Ran Chen, Zhiyong Jiang and Yongfeng Men State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute ofApplied Chemistry, Chinese Academy of Science, Renmin Str. 5625, 130022ChangchunPhone: +86-431-8526-2907, Fax :+86-431-8526-2954, *E-mail: men@Semi-crystalline polymers, such as polyolefins, occupy the majority of polymeric materials that are used as structural materials. It is therefore crucial to understand the underlying structural evolution mechanism when a semi-crystalline polymer is deformed mechanically. Upon tensile stretching up to ultimate macroscopic failure, several structural transitions are involved. In this talk, we report experimental observations of such transitions such as fibrillation, cavitation and failure at lamellar and molecular scales. Despite the complicated semi-crystalline structures, all observed results could be very well understood by considering a structural model of interpenetrated networks of hard crystalline skeleton and soft entangled amorphous network in the system.1 Fibrillation is proven to be a melting and recrystallization process due to highly stretched entangled amorphous network that generated enough stress over the critical destruction stress for crystalline blocks.2,3 Cavitation at small deformations occurs due to the failure of strong crystalline skeleton.4,5 Ultimate failure starts from a generation of micro-cavities in highly stretched fibrillar structure due to tie chain breaking followed by disentanglements.6Acknowledgement: This work is supported by the National Natural Science Foundation of China (21134006).References[1] Y. Men, J. Rieger, G. Strobl, Phys. Rev. Lett.2003, 91, 095502.[2] Z. Jiang, L. Fu, Y. Sun, X. Li, Y. Men Macromolecules2011, 44, 7065.[3] Y. Wang, Z. Jiang, Z. Wu, Y. Men Macromolecules2013, 46, 518.[4] Y. Men, J. Rieger, J. Homeyer, Macromolecules2004, 37, 9481.[5] Y. Wang, Z. Jiang, L. Fu, Y. Lu, Y Men, PLoS ONE, 2014, 9(5), e97234.[6] Y. Lu, Y. Wang, R. Chen, J. Zhao, Z. Jiang, Y. Men Macromolecules,2015,48, 5799.Biomaterials Processed via Hot Melt Extrusion: FromMolecular Modifications to Macroscale PropertiesJonathan K. PokorskiCase Western Reserve University, Department of Macromolecular Science andEngineering, Cleveland OH, 44106jon.pokorski@Recently, there has been an explosion in biomaterials research, in which polymeric materials are firmly entrenched as the basic components of these functional materials. Such systems can include 3D-printed scaffolds, hydrogels, and nanofibers, amongst others. However, a significant hurdle within this field is the ability to fabricate these materials in high-throughput. Two projects will be described that range from the macro-scale to the molecular scale detailing bio-functional fibrous patches and the simple polymer modification of proteins for use in extruded blends. (1) A new type of nano-fibrous polymeric system is described, in which chemical modifications can be easily implemented photochemically to introduce new functionalities. Our process begins by using a co-extrusion and multiplication method, to yield poly( -caprolactone) (PCL) nanofibers in exceptionally high throughput (~1.5 kg/hr). Once the fibrous mat is processed, the fibers can be photochemically modified to yield new functional groups on the fiber surface. Photochemistry also allows the patterning of chemical gradients onto the surfaces, through the use of simple photomasks. On the surface of the PCL fibers, we have attached numerous substrates, such as small molecules, peptides, and proteins. Subsequent cell-based studies have shown that, following immobilization, peptides are available to provide biochemical cues to promote cellular phenomena, as well as topographical cues within aligned fibers. (2) Biopharmaceuticals are the main growth area of US R&D in pharmaceutical companies. However, a problem exists in the delivery of these molecules, owing to decreased in vivo stability, problems encountered during formulation, and the need for patient compliance during treatment, which usually entails repeated injections. As these biopharmaceuticals are rapidly being approved, new methods must be developed for pharmaceutical formulation, which are high throughput. In this portion of the talk, polymer conjugation to proteins will be discussed as a means to stabilize proteins in the melt state. Polymer stabilization allows for the extrusion of protein:polymer blends with enhanced activity and improved dispersion in the melt.Design and Development of Functional Biodegradable Polycarbonates and Polypeptides forEmerging BiomedicalApplicationsChao Deng, FenghuaMeng, Ru Cheng, Jian Zhang, and Zhiyuan Zhong Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.E-mail: zyzhong@The ever growing biomedical technology such as regenerative medicine and controlled drug release intimately relies on the development of advanced functional biomaterials, among which aliphatic polycarbonates and polypeptides due to their excellent biocompatibility and biodegradability have received the most attention. In the past years, various types of functional polycarbonates and polypeptides have been designed and prepared. The synthesis of these functional polymers, however, usually involves multi-steps and protection/deprotection procedure, which results in low overall yields, partial polymer degradation, and/or contamination with toxic catalysts. In our group, we have designed several novel types of functional cyclic carbonate and α-amino acid N-carboxyanhydride (NCA) monomers, in which functional groups are compatible with polymerization reactions and more importantly can be directly used for post-polymerization modification. We have shown that these functional polymers can be applied for the facile construction of advanced drug delivery systems.。

超分子及自组装超分子聚合物

超分子及自组装超分子聚合物
naturecommunications2014xrdx射线晶体衍射固态结构红外光谱和x射线光电子能谱分子结构sem和tem排列取向空间构象nmr分子结构和动力学特征超分子化学环境化学信息科学材料科学物理学生命科学分子信息化学信息储存分子识别分子水平结构特征修正传输处理水凝胶外壳涂料制备生物载药胶束佚名
1894年荷兰 科学家Emil Fischer提出 了我们熟知 的“锁钥模 型”
1967年杜邦 公司的C.J. Pederson首 次报道了二 苯并18-冠-6
1987 年 J. M. Lehn 教授首 先提出来的,关于这一概 念的解释是“基于共价键 存在着分子化学领域,基 于分子组装体和分子间键 存在着超分子化学
Shen Z, Jiang Y, Wang T, et al. Symmetry Breaking in the Supramolecular Gels of an Achiral Gelator Exclusively Driven by π–π Stacking*J+. Journal of the American Chemical Society, 2015, 137(51): 16109-16115.
超 分 子 配 合 物
Toshimitsu F, Nakashima N. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry[J]. Nature communications, 2014, 5.
π−π stacking
可生物降解 的二硫键 喜树碱

fluent名词翻译

fluent名词翻译

abort 异常中断, 中途失败, 夭折, 流产, 发育不全,中止计划[任务] accidentally 偶然地, 意外地accretion 增长activation energy 活化能active center 活性中心addition 增加adjacent 相邻的aerosol浮质(气体中的悬浮微粒,如烟,雾等), [化]气溶胶, 气雾剂, 烟雾剂ambient 周围的, 周围环境amines 胺amplitude 广阔, 丰富, 振幅, 物理学名词annular 环流的algebraic stress model(ASM) 代数应力模型algorithm 算法align 排列,使结盟, 使成一行alternately 轮流地analogy 模拟,效仿analytical solution 分析解anisotropic 各向异性的anthracite 无烟煤apparent 显然的, 外观上的,近似的approximation 近似arsenic 砷酸盐assembly 装配associate 联合,联系assume 假设assumption 假设atomization 油雾axial 轴向的battlement 城垛式biography 经历bituminous coal 烟煤blow-off water 排污水blowing devices 鼓风(吹风)装置body force 体积力boiler plant 锅炉装置(车间)Boltzmain 玻耳兹曼Brownian rotation 布朗转动bulk 庞大的bulk density 堆积密度burner assembly 燃烧器组件burnout 燃尽capability 性能,(实际)能力,容量,接受力carbon monoxide COcarbonate 碳酸盐carry-over loss 飞灰损失Cartesian 迪卡尔坐标的casing 箱,壳,套catalisis 催化channeled 有沟的,有缝的char 焦炭、炭circulation circuit 循环回路circumferential velocity 圆周速度clinkering 熔渣clipped 截尾的clipped Gaussian distribution 截尾高斯分布closure (模型的)封闭cloud of particles 颗粒云cluster 颗粒团coal off-gas 煤的挥发气体coarse 粗糙的coarse grid 疏网格,粗网格coaxial 同轴的coefficient of restitution 回弹系数;恢复系数coke 碳collision 碰撞competence 能力competing process 同时发生影响的competing-reactions submodel 平行反应子模型component 部分分量composition 成分cone shape 圆锥体形状configuration 布置,构造confined flames 有界燃烧confirmation 证实, 确认, 批准conservation 守恒不灭conservation equation 守恒方程conserved scalars 守恒量considerably 相当地consume 消耗contact angle 接触角contamination 污染contingency 偶然, 可能性, 意外事故, 可能发生的附带事件continuum 连续体converged 收敛的conveyer 输运机convolve 卷cooling wall 水冷壁correlation 关联(式)correlation function 相关函数corrosion 腐蚀,锈coupling 联结, 接合, 耦合crack 裂缝,裂纹creep up (水)渗上来,蠕升critical 临界critically 精密地cross-correlation 互关联cumulative 累积的curtain wall 护墙,幕墙curve 曲线custom 习惯, 风俗, <动词单用>海关, (封建制度下)定期服劳役, 缴纳租税, 自定义, <偶用作>关税v.定制, 承接定做活的cyano 氰(基),深蓝,青色cyclone 旋风子,旋风,旋风筒cyclone separator 旋风分离器[除尘器]cylindrical 柱坐标的cylindrical coordinate 柱坐标dead zones 死区decompose 分解decouple 解藕的defy 使成为不可能demography 统计deposition 沉积derivative with respect to 对…的导数derivation 引出, 来历, 出处, (语言)语源, 词源design cycle 设计流程desposit 积灰,结垢deterministic approach 确定轨道模型deterministic 宿命的deviation 偏差devoid 缺乏devolatilization 析出挥发分,液化作用diffusion 扩散diffusivity 扩散系数digonal 二角(的), 对角的,二维的dilute 稀的diminish 减少direct numerical simulation 直接模拟discharge 释放discrete 离散的discrete phase 分散相, 不连续相discretization [数]离散化deselect 取消选定dispersion 弥散dissector 扩流锥dissociate thermally 热分解dissociation 分裂dissipation 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮distribution of air 布风divide 除以dot line 虚线drag coefficient 牵引系数,阻力系数drag and drop 拖放drag force 曳力drift velocity 漂移速度driving force 驱[传, 主]动力droplet 液滴drum 锅筒dry-bottom-furnace 固态排渣炉dry-bottom 冷灰斗,固态排渣duct 管dump 渣坑dust-air mixture 一次风EBU---Eddy break up 漩涡破碎模型eddy 涡旋effluent 废气,流出物elastic 弹性的electro-staic precipitators 静电除尘器emanate 散发, 发出, 发源,[罕]发散, 放射embrasure 喷口,枪眼emissivity [物]发射率empirical 经验的endothermic reaction 吸热反应enhance 增,涨enlarge 扩大ensemble 组,群,全体enthalpy 焓entity 实体entrain 携带,夹带entrained-bed 携带床equilibrate 保持平衡equilibrium 化学平衡ESCIMO-----Engulfment(卷吞)Stretching(拉伸)Coherence(粘附)Interdiffusion-interaction(相互扩散和化学反应)Moving-observer(运动观察者)exhaust 用尽, 耗尽, 抽完, 使精疲力尽排气排气装置用不完的, 不会枯竭的exit 出口,排气管exothermic reaction 放热反应expenditure 支出,经费expertise 经验explicitly 明白地, 明确地extinction 熄灭的extract 抽出,提取evaluation 评价,估计,赋值evaporation 蒸发(作用)Eulerian approach 欧拉法facilitate 推动,促进factor 把…分解fast chemistry 快速化学反应fate 天数, 命运, 运气,注定, 送命,最终结果feasible 可行的,可能的feed pump 给水泵feedstock 填料fine grid 密网格,细网格finite difference approximation 有限差分法flamelet 小火焰单元flame stability 火焰稳定性flow pattern 流型fluctuating velocity 脉动速度fluctuation 脉动,波动flue 烟道(气)flue duck 烟道fluoride 氟化物fold 夹层块forced-and-induced draft fan 鼓引风机forestall 防止fouling 沾污fraction 碎片部分,百分比fragmentation 破碎fuel-lean flamefuel-rich regions 富燃料区,浓燃料区fuse 熔化,熔融gas duct 烟道gas-tight 烟气密封gasification 气化(作用)gasifier 气化器generalized model 通用模型Gibbs function Method 吉布斯函数法Gordon 戈登governing equation 控制方程gradient 梯度graphics 图gross efficiency 总效率hazard 危险header 联箱helically 螺旋形地heterogeneous 异相的heat flux 热流(密度)heat regeneration 再热器heat retention coeff 保热系数histogram 柱状图homogeneous 同相的、均相的hopper 漏斗horizontally 卧式的,水平的hydrodynamic drag 流体动力阻力hydrostatic pressure 静压hypothesis 假设humidity 湿气,湿度,水分含量identical 同一的,完全相同的ignition 着火illustrate 图解,插图in common with 和…一样in excess of 超过, 较...为多in recognition of 承认…而,按照in terms of 根据, 按照, 用...的话, 在...方面incandescent 白炽的,光亮的inception 起初induced-draft fan 强制引风机inert 无活动的, 惰性的, 迟钝的inert atmosphere 惰性气氛inertia 惯性, 惯量inflammability 可燃性injection 引入,吸引inleakage 漏风量inlet 入口inlet vent 入烟口instantaneous reaction rate 瞬时反应速率instantaneous velocity 瞬时速度instruction 指示, 用法说明(书), 教育, 指导, 指令intake fan 进气风扇integral time 积分时间integration 积分interface 接触面intermediate 中间的,介质intermediate species 中间组分intermittency model of turbulence 湍流间歇模型intermixing 混合intersect 横断,相交interval 间隔intrinsic 内在的inverse proportion 反比irreverse 不可逆的irreversible 不可逆的,单向的isothermal 等温的, 等温线的,等温线isotropic 各向同性的joint 连接justify 认为Kelvin 绝对温度,开氏温度kinematic viscosity 动粘滞率, 动粘度kinetics 动力学Lagrangian approach 拉格朗日法laminarization 层流化的Laminar 层流Laminar Flamelet Concept 层流小火焰概念large-eddy simulation (LES) 大涡模拟leak 泄漏length scale 湍流长度尺度liberate 释放lifetime 持续时间,(使用)寿命,使用期literature 文学(作品), 文艺, 著作, 文献lining 炉衬localized 狭小的logarithm [数] 对数Low Reynolds Number Modeling Method 低雷诺数模型macropore 大孔隙(直径大于1000埃的孔隙) manipulation 处理, 操作, 操纵, 被操纵mass action 质量作用mass flowrate 质量流率Mcbride 麦克布利德mean free paths 平均自由行程mean velocity 平均速度meaningful 意味深长的,有意义的medium 均匀介质mercury porosimetery 水银测孔计, 水银孔率计mill 磨碎,碾碎mineral matter 矿物质mixture fraction 混合分数modal 众数的,形式的, 样式的, 形态上的, 情态的, 语气的[计](对话框等)模式的modulus 系数, 模数moisture 水分,潮湿度molar 质量的, [化][物]摩尔的moment 力矩,矩,动差momentum 动量momentum transfer 动量传递monobloc 单元机组monobloc units 单组mortar 泥灰浆mount 安装,衬底Monte Carlo methods 蒙特卡罗法multiflux radiation model 多(4/6)通量模型multivariate [统][数]多变量的,多元的negative 负Newton-Rephson 牛顿—雷夫森nitric oxide NO2node 节点non-linear 非线性的numerical control 数字控制numerical simulation 数值模拟table look-up scheme 查表法tabulate 列表tangential 切向的tangentially 切线tilting 摆动the heat power of furnace 热负荷the state-of-the-art 现状thermal effect 反应热thermodynamic 热力学thermophoresis 热迁移,热泳threshold 开始, 开端, 极限tortuosity 扭转, 曲折, 弯曲toxic 有毒的,毒的trajectory 轨迹,弹道tracer 追踪者, 描图者, (铁笔等)绘图工具translatory 平移的transport coefficients 输运系数transverse 横向,横线triatomic 三原子的turbulence intensity 湍流强度turbulent 湍流turbulent burner 旋流燃烧器turbulization 涡流turnaround 完成two-scroll burner 双涡流燃烧器unimodal [统](频率曲线或分布)单峰的,(现象或性质) 用单峰分布描述的validate 使…证实validation 验证vaporization 汽化Variable 变量variance 方差variant 不同的,变量variation 变更, 变化, 变异, 变种, [音]变奏, 变调vertical 垂直的virtual mass 虚质量viscosity 粘度visualization 可视化volatile 易挥发性的volume fraction 体积分数, 体积分率, 容积率volume heat 容积热vortex burner 旋流式燃烧器vorticity 旋量wall-function method 壁面函数法water equivalent 水当量weighting factor 权重因数unity (数学)一uniform 不均匀unrealistic 不切实际的, 不现实的Zeldovich 氮的氧化成一氧化氮的过程zero mean 零平均值zone method 区域法。

酪蛋白-葡萄糖-PGG纳米复合物的制备及其延缓线虫衰老能力的研究

酪蛋白-葡萄糖-PGG纳米复合物的制备及其延缓线虫衰老能力的研究

酪蛋白-葡萄糖-PGG纳米复合物的制备及其延缓线虫衰老能力的研究陈运娇1,2,李伟1,2,陈洪璋1,黄庆荣3,曹庸1,2(1.华南农业大学食品学院,广东广州 510642)(2.广东省天然活性物工程技术研究中心,广东广州 510642)(3.美国罗特格斯大学,美国新泽西 08901)摘要:本文采用凝胶电泳、红外光谱和荧光光谱研究酪蛋白与葡萄糖美拉德接枝物的相互作用方式,接着用溶剂蒸发法制备酪蛋白-葡萄糖-PGG(1,2,3,4,6-O-五没食子酰葡萄糖)纳米复合物,以期提高PGG的水溶性及延缓秀丽隐杆线虫衰老能力。

结果表明,生成的接枝物分子量大于116 ku。

糖末端的羰基与蛋白的氨基以化学共价键相连,酪蛋白中引入的糖分子具有D-吡喃葡萄糖环结构。

PGG与酪蛋白或酪蛋白-葡萄糖作用力主要为疏水力。

PGG与酪蛋白-葡萄糖接枝共聚物在疏水力诱导下协同组装得到酪蛋白-葡萄糖-PGG纳米复合物,纳米粒子包埋率为62.27%,粒径为265 nm。

该纳米粒子外观呈淡黄色。

当浓度为10 mg/mL时,该纳米粒子在水中溶解度较好。

酪蛋白-葡萄糖-PGG纳米复合物组线虫平均寿命比PGG组延长了13.00%,因此酪蛋白-葡萄糖接枝共聚物的包埋能有效增强PGG的延缓线虫衰老能力。

关键词:1,2,3,4,6-O-五没食子酰葡萄糖;美拉德反应;纳米复合物;秀丽隐杆线虫文章篇号:1673-9078(2016)8-21-27 DOI: 10.13982/j.mfst.1673-9078.2016.8.004 Preparation and Anti-aging Effect of Casein-g-glucose-PGGNanocomplexesCHEN Yun-jiao1,2, LI Wei1,2, CHEN Hong-zhang1,HUANG Qing-rong3,CAO Yong1,2(1.College of Food Science, South China Agricultural University, Guangzhou 510642, China)(2.Guangdong Province Engineering Research Center for Bioactive Natural Products, Guangzhou 510642, China)(3.Rutgers university, New Jersey 08901, USA)Abstract: A casein and glucose copolymer was prepared by Maillard reaction and its properties investigated by gel electrophoresis, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Casein-g-glucose-PGG nanocomplexes were prepared using the solvent evaporation method to improve the water solubility and anti-aging effects of PGG in Caenorhabditis elegans. The results showed that the molecular weight of the conjugate product (casein-g-glucose) was larger than 11 ku. The reducing end of the glucose was covalently linked with the amino group of the protein, and the sugar molecule introduced into the casein had a d-glucopyranose ring structure. The binding force between PGG and casein, or casein-g-glucose, was mainly hydrophobic interaction, which induced the self-assembly of PGG and casein-g-glucose to form casein-g-glucose-PGG nanocomplexes. The encapsulation efficiency of the nanocomplex reached up to 62.27%, the particle size of the nanocomplexes was 265 nm, and the nanocomplexes were light-yellow powders. Nanocomplexes showed good solubility in water at a concentration of 10 mg / mL. Compared with PGG treatment, treatment with the nanocomplexes could significantly extend the mean worm lifespan by 13.00%. In conclusion, the nanocomplex can effectively increase the anti-aging effect of PGG in C. elegans.Key words: pentagalloyl glucose; Maillard reaction; nanocomplex; Caenorhabditis elegans收稿日期:2016-06-25基金项目:广东省自然科学基金博士启动项目(2015A030310118);广东省教育厅科研项目(平台)(2013gjhz0003);广东省自然科学基金自由申请项目(2016A030313394)作者简介:陈运娇(1984-),女,博士,讲师,主要从事天然活性物质抗氧化、抗衰老方面研究通讯作者:曹庸(1966-),男,博士,教授,主要从事天然活性物质提取、分离、鉴定及活性评价211,2,3,4,6-O-五没食子酰葡萄糖(PGG )是一种天然的单宁多酚类化合物,具有抗癌活性、抗氧化、抗炎症、抗过敏、抗病毒和抗菌及延缓线虫衰老等多种生物学活性[1,2]。

介孔材料

介孔材料

介孔材料及制备方法1、引言介孔材料(mesoporous materials )是20世纪发展起来的新型材料,其孔径一般在1.5—50nm 。

介孔材料由于其独特的孔状有序结构、大的比表面积和大的孔体积使其在催化、传感器、分离技术等各个领域都有很好的应用前景。

1992年Mobil 公司的Beck 等以季铵盐阳离子表面活性剂形成的溶致液晶作“软模板”,通过水热反应合成了高度有序的介孔硅(1.5-10nm )分子筛MCM-41,其形成过程如图1所示。

并把它们研究小组的成果发表在了国际著名杂志Nature 上,从此拉开了了利用“模板”法合成介孔材料的序幕。

至今已经制备了不同结构的介孔材料包括二维六方结构(空间群为p 6mm )、三维六方结构(空间群为P 63/mmc )、三维立方结构(空间群为m Pm 3,n Pm 3,m Fd 3,m Fm 3,m 3Im )和双连续立方结构(空间群为d Ia 3)等;材料的化学成分主要有硅、碳、聚合物、金属氧化物、金属硫化物、金属氮化物和金属等[1]。

图1 MCM-41的两种形成机理2、制备方法目前主要有表面活性剂和前躯体的协同作用自组织(Cooperative Self-Assembly )和液晶模板(Liquid-Crystal )两种“软模板”方法用于介孔材料的制备,最近又发展了纳米铸造(nanocasting )“硬模板”技术用于金属氧化物和氮化物等介孔材料的制备[5,6]。

2.1 表面活性剂一般用于介孔材料制备的表面活性剂有阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂。

阳离子表面活性剂主要使用的有C n H 2n+1N(CH 3)3(n=8-22)包括经常使用的十六烷基三甲基溴化铵(CTAB ),Gemini surfactants, bolaform surfactants, multiheadgroup surfactants 和最近发展起来的fluorinated surfactants 。

一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn

一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第3期·1014·化 工 进展一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al 2O 3催化剂及其蒽醌加氢性能严润华1,蔡卫权1,2,卓俊琳1,王昕1,李旻哲1(1武汉理工大学化学化工与生命科学学院,湖北 武汉 430070;2广州大学化学化工学院,广东 广州 510006) 摘要:分别采用一锅溶剂蒸发诱导自组装法和等体积浸渍法制备了Ba-、Zn-助剂体相分布和表相分布的0.4%Pd-2.5%Ba-3.0%Zn/γ-Al 2O 3催化剂,并将其用于催化蒽醌加氢制氢蒽醌反应。

采用XRD 、TEM 、SEM 、EDS 、N 2吸附-脱附、XPS 和高效液相色谱等表征与测试手段,对比研究了上述助剂引入及其分布方式对催化剂微结构和催化性能的影响。

结果表明:添加Ba-、Zn-助剂后催化剂的最高氢化效率和氢化稳定性均有提高;Ba-、Zn-助剂由常规的表相分布变为体相分布后,催化剂的稳定性进一步提高,而氢化效率和蒽醌循环回收率基本相当。

和常规助剂表相分布催化剂的制备过程相比,制备助剂体相分布的催化剂时,Ba-、Zn-在制备载体前体时一步引入,省去了分步浸渍助剂前体盐和后续的干燥、焙烧等过程,因而制备工艺大大简化、能耗大幅度降低、制备效率显著提高。

关键词:加氢;2-乙基蒽醌;Pd-Ba-Zn/γ-Al 2O 3催化剂;助剂表相分布;助剂体相分布中图分类号:TQ426.94 文献标志码:A 文章编号:1000–6613(2018)03–1014–07 DOI :10.16085/j.issn.1000-6613.2017-1035One-pot solvent evaporation induced self-assembly synthesis ofPd-Ba-Zn/γ-Al 2O 3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinoneYAN Runhua 1,CAI Weiquan 1,2,ZHUO Junlin 1,WANG Xin 1,LI Minzhe 1(1School of Chemistry ,Chemical Engineering and Life Sciences ,Wuhan University of Technology ,Wuhan 430070,Hubei ,China; 2School of Chemistry and Chemical Engineering ,Guangzhou University ,Guangzhou 510006,Guangdong ,China )Abstract : Two 0.4%Pd-2.5%Ba-3.0%Zn/γ-Al 2O 3 catalysts with homogeneous distribution and surface distribution of Ba- and Zn- promoters were prepared via one-pot solvent evaporation induced self-assembly method and incipient-wetness impregnation method ,respectively. The catalysts were evaluated in anthraquinone hydrogenation reaction for preparing hydroanthraquinone. Effects of the introduction of the two promoters and their distribution methods on the microstructures and catalytic performance of the catalysts were comparatively studied by XRD ,TEM ,SEM ,EDS ,N 2 adsorption-desorption ,XPS and high performance liquid chromatography. The results showed that ,both of the maximum hydrogenation efficiency and stability of the catalysts increase after introducingthe promoters. When distribution of the promoters was changed from surface distribution to homogeneous distribution ,the stability of the catalyst is further improved ,but its hydrogenation博士,教授,主要从事清洁工艺和材料化工领域的研究。

合成Imogolite纳米管的挥发诱导自组装

合成Imogolite纳米管的挥发诱导自组装

第46卷第10期2018年5月广 州 化 工Guangzhou Chemical IndustryVol.46No.10May.2018合成Imogolite 纳米管的挥发诱导自组装张茜茜,赵晓虹,施连旭(东北林业大学化学化工系,黑龙江 哈尔滨 150040)摘 要:利用溶液液滴挥发研究了合成Imogolite 纳米管的自组装行为,并利用透射电镜和电子衍射等手段研究了挥发干燥斑的结构㊂纳米管的聚集行为受溶液的浓度㊁pH 值及离子强度的影响㊂提出自组装过程的驱动机制可能包括液滴的毛细管流动和表面效应以及湿度性质㊂关键词:imogolite 纳米管;挥发诱导;自主装 中图分类号:O647.2  文献标志码:A 文章编号:1001-9677(2018)10-0042-03作者简介:赵晓虹(1966-),女,博士,副教授,主要从高分子合成及性质研究㊂Evaporation-induced Self-organizations of Synthetic Imogolite NanotubesZHANG Qian -qian ,ZHAO Xiao -hong ,SHI Lian -xu(Department of Chemistry and Chemical Engineering,Northeast Forestry University,Heilongjiang Harbin 150040,China)Abstract :Synthetic imogolite nanotubes were found to self -assemble when a droplet of the aqueous solution was dried in ambient.The resulting deposit structures were investigated by transmission electron microscopy and electron diffraction.The aggregation behavior of nanotubes was dependent on the solution concentration,pH and ionic strength.The mechanism driving the assembly process was proposed,which may involve capillary flow and surface effects and wetting properties of the droplet.Key words :imogolite nanotubes;evaporation-induction;self-organization挥发诱导溶质自组装通过溶液不可逆挥发使纳米尺度的溶质在基质上自组装成独特㊁有序的复合结构,是一种能够在特定基质上使纳米材料形成各种沉积花样的简单方法,在诸如DNA /RNA 微阵列,蛋白质结晶,纳米刻蚀等生物及工业领域中具有广阔的潜在应用价值,因而对其机理的研究得到了相当多的关注[1-3]㊂对于悬浮纳米粒子体系,有研究报道胶体纳米微球的液滴挥发诱导自组装形成环形斑[4-6]㊂Deegan 等最先解释了环形聚集是湿度㊁毛细管流动㊁表面张力与挥发驱动的对流作用之间的相互作用结果[6-8]㊂然而,由于纳米微球间的各项同性相互作用,使得纳米粒子的聚集行为难以反映出挥发过程中动态流体流动的详细信息㊂碳纳米管(CNTs)是一种典型的一维结构,粒子间存在各向异性,其液滴挥发自组装行为的研究已有报道[3,9-10],然而由于其较差的溶解性,需要借助表面活性剂或表面修饰的方法来形成稳定分散的碳纳米管溶液㊂然而,表面活性剂的添加引入了额外的影响因素,影响聚集形态及其形成机制㊂因此,具有水溶性的一维纳米材料是研究溶液微滴挥发自组装的理想模型㊂Imogolite 是天然形成的单壁纳米管状结构的硅铝酸盐,也可以从溶液中人工合成,合成的Imogolite 与天然矿石性质相似㊂Imogolite 纳米管内径和外径约1nm 和2nm,长度可达微米,其化学组成为(OH )3Al 2O 3SiOH,其中SiOH 分布在Imogolite 纳米管的内壁,AlOH 位于管外壁表面㊂由于在管壁和管边缘分布着OH 基团,使得Imogolite 纳米管具有亲水性,而且,较高的零电点使得Imogolite 纳米管在较宽的pH 值内,都具有很好的水溶液分散稳定性㊂Imogolite 纳米管的各项异性结构及表面性质成为研究一维纳米材料溶液挥发自组装行为的理想模型㊂在此,我们利用透射电镜(TEM)㊁电子衍射(ED)㊁原子力显微镜(AFM)等手段研究了合成Imogolite 纳米管在不同条件下的挥发诱导自组装行为,探索其形成机制㊂1 实 验1.1 仪器与试剂JEOL 1011透射电子显微镜(TEM),工作电压为100kV,相机长度以金标准样品校正;Seiko SPA300HV /SPI3800N 原子力显微镜(AFM)显微镜,室温操作㊂所用试剂均为分析纯级,来源于商业购买,未进行进一步纯化,所有用水均为二次去离子水(18.2MΩ㊃cm)㊂1.2 实验方法Imogolite 的合成使用Farmer 等[11]的方法,最后的样品溶液使用去离子水透析去除未反应的硅酸㊁铝单体及氯化钠㊂液滴干燥过程在碳膜方华(Former)铜网上室温条进行,干燥斑的直径在0.5~1.0μm 范围㊂2 结果与讨论第46卷第10期张茜茜,等:合成Imogolite 纳米管的挥发诱导自组装43 2.1 溶液浓度Imogolite 纳米管液滴在干燥过程中的自组装行为受溶液的浓度影响㊂液滴挥发而形成的环形干燥斑划分成如图1所示的几个不同区域㊂图1 Imogolite 液滴挥发形成的环形干燥斑的不同区域示意图,a㊁b㊁c㊁d 分别表示干燥斑的不同区域Fig.1 Schematic illustration of a ring deposit formed by droplet evaporation of imogolite solution,Symbol a,b,c,d representdifferent regions in the deposit,respectively 将Imogolite 纳米管的稀溶液(0.01mg /mL)滴到镀有无定形碳膜的方华(Formvar)铜网上并在空气中挥发,纳米管在干燥斑的不同环形区域内形成不同取向的的有序结构㊂在中心区域(图1中的a 区域),Imogolite 纳米管束为横向排列并在各个方向扭曲在一起(图1a)㊂在图1所示的b 区域内,大量的Imogolite 纳米管束的排列方向与环形径向方向平行(图2b 中箭头A),也存在一些纳米管束偏离径向方向而扭向环形外侧(图2b 中箭头B)㊂b 区域的Imogolite 纳米管束选区电子衍射图(图2c)揭示了Imogolite 纳米管的堆积及取向㊂根据Barrett 等的Imogolite 纳米管堆积模型[12],衍射图中锐利的(100)㊁(110)和(210)衍射点表明Imogolite 纳米管为六方堆积结构,清晰的(002)㊁(004)和(006)衍射弧,进一步证实Imogolite 纳米管的取向排列㊂图2 环形干燥斑中心区域(图1中的a 区域)的明场电子显微镜照片(a);环形干燥斑中间区域(图1中的b 区域)取向imogolite 管束的明场电子显微镜照片(b);选区电子衍射(c)Fig.2 BF electron micrograph in the central region of a ring deposit (region a in Figure 1)(a);BF electron micrograph of orientated imogolite tube bundles in the intermediate region of a ring deposit (region b in Figure 1)(b);SAED pattern of orientated imogolite tube bundlesin the intermediate region (region b in Figure 1)of a ring deposit(c)图3a 为靠近环形干燥斑内边缘区域(图1所示的c 区域)的TEM 照片㊂比较图3a 和图2a 可知,Imogolite 纳米管束沿着环周边有序排列(箭头A 所示),在过渡区域也能看到一些排列不够规整的纳米管束(箭头B 所示)㊂图3b 为干燥斑外边缘(图所示的d 区域)的TEM 照片和选区电子衍射衍射(SAED)㊂在此区域,Imogolite 纳米管束沿着环形边缘表现出如箭头所示的两种取向,大部分管束与环边取向平行,而少部分管束沿着环的径向分布,且有些管束被留到了环外㊂两种不同取向管束的选区电子衍射表明,液滴干燥过程中去湿及环形斑的形成在液滴干燥自组装过程中起着重要作用㊂由于纳米管间的各项异性作用,纳米管倾向沿液体流动方向排列㊂当液滴在碳膜铜网上挥发过程中,去湿过程导致液滴的向内收缩,因此,向内去湿流动使Imogolite 管束形成取向排列㊂在挥发干燥初期,液滴和基底间接触线的几何限制,诱发外向的毛细管流动,使管束排列取向与液滴环边方向平行㊂而在液滴去湿过程中,毛细管流动会导致Imogolite 纳米管束向液滴顶部聚集,使其沿液滴的径向方向进行排列㊂因此,在干燥斑内部区域,纳米管束几乎为径向排列,而在干燥斑环边缘,纳米管束排列成沿环周的取向,并存在两者的交叠区域㊂由于水的高表面张力,Imogolite 纳米管采用六方堆积以降低了干燥过程中的表面能㊂图3 环形干燥斑内边缘(图1中的c 区域)的明场电子显微镜照片(a);环形干燥斑外边缘(图1中的d 区域)的明场电子显微镜照片及选区电子衍射(b)Fig.3 BF electron micrograph in the area close to inner edge of the ring deposit (region c in Fig.1)(a);BF electron micrograph andcorresponding SAED pattern of the outer edge of the ringdeposit (region d in Fig.1)(b)为进一步证实流体流动及表面效应对Imogolite 纳米管取向排列的作用,在50℃下,将硅片浸入到Imogolite 溶液(0.01mg /mL)中(图4a),结果大量的取向Imogolite 被获得㊂由于硅片基底的亲水性,在溶液面与基质接触线上溶液连续挥发下降,纳米管束在硅片上以垂直接触线方向不断沉积㊂通过硅片上Imogolite 纳米管的AFM 观察(图4b),可以证实这种排列㊂若将基质完全浸入到溶液内时,取向纳米管则会在整个基底进行沉积并均匀分布㊂Imogolite 的规整排列归因于垂直于溶液与亲水性基质交界面的表面张力㊂图4 硅片上的溶剂诱导挥发示意图(a);硅片基底上取向imogolite 的AFM(b)Fig.4 Schematic illustration of meniscus deposit method(a);Highly oriented imogolite deposited onto silicon wafersubstrate using meniscus deposit method monitored by AFM(b)44 广 州 化 工2018年5月当使用高浓度的Imogolite 溶液(0.05mg /mL)进行液滴挥发时,形成的环形干燥斑在中心区域出现部分有序纳米管束,而在边缘的纳米管束排列情况与图2相似㊂然而,当使用浓度为0.5mg /mL Imogolite 溶液进行液滴挥发时,Imogolite 纳米管在干燥斑中心区域形成了稠密的网络结构㊂在这样高浓度的Imogolite 溶液条件下,从明场电子显微镜图中,很难辨清单根Imogolite 纳米管(图5a)㊂但衍射环(图5a 内的插图)可以说明Imogolite 纳米管在基质上随机聚集㊂当液滴在真空条件下快速挥发,通过明场电子显微镜图片(图5b)及相应的选区电子衍射图(图5b 内的插图)可以看出,Imogolite 纳米管束为横向堆积,在中心区域有部分有序的取向管束,弧形的选区电子衍射图可以进一步说明这种排列㊂这些结果表明,尽管高浓度的纳米管具有强烈的缠结倾向,但溶液的快速挥发干燥增强了流体流动,使Imogolite 纳米管能够有序自主装㊂图5 0.5mg /mL 的imogolite 液滴干燥后的明场电子显微镜照片及选区电子衍射(a);0.5mg /mL 的imogolite 液滴在真空下快速干燥干燥后的明场电子显微镜照片及选区电子衍射(b)Fig.5 BF electron micrograph and corresponding SAED pattern of the imogolite tube bundles in the central region of a deposit formed by droplet evaporation of imogolite solution with high concentration (0.5mg/mL)(a);BF electron micrograph and corresponding SAED pattern of the imogolite tube bundles in the central region of a ring deposit formed by rapidly evaporation of imogolite droplet (0.5mg /mL)in vacuum(b)2.2 离子强度和pH值图6 Imogolite 液滴干燥斑的明场电子显微镜照片Fig.6 BF electron micrograph of the interior region of a ring depositformed by drying a droplet of imogolit solution在确保管束不发生凝聚条件下,少量NaCl 加入到Imogolite溶液中,用以增强溶液的离子强度,使液滴挥发干燥过程中,纳米管的自组装需要响应由此而增加的表面张力㊂结果发现,纳米管形成了不规整且中空的缠结网络结构(图6a)㊂由于Imogolite 的独特结构,其纳米管的表面性质强烈依赖pH 值㊂在酸性或中性溶液中,纳米管均形成了有序的取向排列,没有明显不同㊂这表明,在酸性条件下,正电性的纳米管之间的静电斥力作用与液滴干燥过程中的流体流动作用无关,纳米管在形成环形干燥斑过程中仍然沿流动方向进行自组装㊂然而,通过加入NaOH 使pH 值升高到7.5时,纳米管形成了随机分布的网络结构,且有部分聚集成簇(图6b)㊂3 结 论对单壁Imogolite 纳米管在碳膜铜网上的液滴挥发自组装行为的研究表明,溶液浓度对纳米管的有序排列起关键性作用㊂在空气氛下Imogolite 稀溶液的微液滴干燥斑的不同区域形成了多种取向,其自组装驱动的机理可能包含毛细管流动和表面效应以及微滴的湿度性质的相互作用,在低浓度下对Imogolite 纳米管取向的观察证明了环形干燥斑的形成机理㊂此外,纳米管的聚集行为也受到溶液的pH 值和离子强度的影响㊂参考文献[1] Ma H,Hao J.Ordered patterns and structures via interfacial self -assembly:superlattices,honeycomb structures and coffee rings [J].Chem.Soc.Rev.,2011,40:5457-5471.[2] Kang S H,Hwang W S,Lin Z,et al.A Robust Highly Aligned DNANanowire Array -Enabled Lithography for Graphene Nanoribbon Transistors[J].Nano Lett.,2015,15:7913-7920.[3] Thorkelssona K,Baia P,Xu T.Self -assembly and applications ofanisotropic nanomaterials:A review[J].Nano Today.,2015,10:48-66.[4] Sommer A P.Limits of the Impact of Gravity on Self -OrganizingNanospheres[J].J.Phys.Chem.B,2004,108:8096-8098.[5] Antonietti M,Hartmann J,Neese M,et al.Highly Ordered Size -Dispersive Packings of Polydisperse Microgel Spheres[J].Langmuir,2000,16:7634-7639.[6] Deegan R D,Bakajin O,Dupont T F,et al.Capillary flow as the causeof ring stains from dried liquid drops[J].Nature,1997,389:827-829.[7] Deegan R D.Pattern formation in drying drops[J].Phys.Rev.E.,2000,61:475-485.[8] Deegan R D,Bakajin O,Dupont T F,et al.Contact line deposits in anevaporating drop[J].Phys.Rev.E,2000,62:756-765.[9] Duggal R,Hussain F,Pasquali M.Self-Assembly of Single-WalledCarbon Nanotubes into a Sheet by Drop Drying [J].Adv.Mater.,2006,18:29-34.[10]Shimoda H,Oh S J,Geng H Z,et al.Self -Assembly of CarbonNanotubes[J].Adv.Mater.,2002,14:899-901.[11]Farmer V C,Fraser A R,Tait J M.Synthesis of imogolite:a tubularaluminium silicate polymer[J]m.,1977,13:462-463.[12]Kang S H,Wu N,Grinthal A,et al.Meniscus Lithography:Evaporation -Induced Self -Organization of Pillar Arrays into Moire Patterns[J].Phys.Rev.Lett.,2011,107:177802.。

Methods of Flavor Encapsulation and Matrix-Assist

Methods of  Flavor Encapsulation and Matrix-Assist

专利名称:Methods of Flavor Encapsulation and Matrix-Assisted Concentration of Aqueous Foodsand Products Produced Therefrom发明人:Eapen George,Peter S Given, JR.,Julie Anne Grover,Lia Guardiola,Graciela Wild Padua,YiWang申请号:US13085088申请日:20110412公开号:US20110189353A1公开日:20110804专利内容由知识产权出版社提供摘要:Flavor encapsulation is generally performed by mixing flavor with a prolamin solution and drying the mixture into powdered forms of encapsulated flavor. In one embodiment, flavor and zein are separately dispersed in an alcohol-water mixture of appropriate ratio prior to mixing. In another embodiment, an aqueous food comprising bioactive components is mixed with the prolamin solution, thereby initiating precipitation of the prolamin and concentration of the bioactive components in said aqueous food. Resulting powdered forms of encapsulated flavor comprise the bioactive components from the aqueous food. In another embodiment, a two-phase drying process may be employed comprising removal of alcohol for evaporation-induced-self-assembly of zein microstructures, followed by removal of remaining water to produce said powdered form.申请人:Eapen George,Peter S Given, JR.,Julie Anne Grover,Lia Guardiola,Graciela Wild Padua,Yi Wang地址:Frisco TX US,Ridgefield CT US,Plano TX US,Urbana IL US,Champaign IL US,Urbana IL US国籍:US,US,US,US,US,US更多信息请下载全文后查看。

受猪笼草启发的多孔微腔低冰黏附防除冰表面

受猪笼草启发的多孔微腔低冰黏附防除冰表面

第52卷第10期表面技术2023年10月SURFACE TECHNOLOGY·313·受猪笼草启发的多孔微腔低冰黏附防除冰表面向科峰,尹欢,宋岳干*,杨益,李国强,赖林(西南科技大学 制造科学与工程学院,四川 绵阳 621010)摘要:目的提高光滑液体注入表面(SLIPS)的防/除冰耐用性。

方法将镍箔完全浸没在无水乙醇中,使用飞秒激光照射无水乙醇环境中的镍箔表面诱导出立体多孔纳米微腔阵列结构,并使用氟硅烷改性增加表面对硅油的亲和力,最后用50 cSt的硅油旋涂在改性后的表面上。

通过扫描电镜和光学显微镜对立体多孔纳米微腔结构进行形貌分析,并通过延缓结冰试验、冰黏附强度测试和高温蒸发试验,分别评价该SLIPS的延缓结冰性能、冰黏附强度和防除冰耐用性。

结果在立体多孔纳米微腔结构的毛细作用下,具有亲油憎水性的立体多孔纳米微腔表面上的蒸馏水滴也会被钉扎。

相比非结构化表面,该SLIPS将延缓结冰时间提升了2.8倍,同时,在低温高湿度环境中,实现了冷凝水的自去除。

在80 ℃高温环境下的蒸发10 min后进行结冰/除冰操作,10个周期后,该SLIPS的接触角(θCA)为110°,滑动角(θSA)为8.5°,以及冰黏附强度参数(τice)为3.6 kPa。

结论利用飞秒激光加工无水乙醇环境中的镍箔表面生成的立体纳米多孔微腔阵列结构能够减少SLIPS表面的润滑剂损失,可有效提高防除冰SLIPS的耐用性。

关键词:仿生;飞秒激光直写;纳米微腔结构;SLIPS;低冰黏附;防冰;除冰中图分类号:TG174 文献标识码:A 文章编号:1001-3660(2023)10-0313-08DOI:10.16490/ki.issn.1001-3660.2023.10.027Low Ice Adhesion Deicing/Anti-icing Surface of PorousMicrocavity Inspired by NepenthesXIANG Ke-feng, YIN Huan, SONG Yue-gan*, YANG Yi, LI Guo-qiang, LAI Lin(School of Manufacturing Science and Engineering, Southwest University of Science andTechnology, Sichuan Mianyang 621010, China)ABSTRACT: Ice accretion on solid surfaces is a common phenomenon in winter, which brings a lot of inconvenience to daily life and even causes serious disasters. At first, the superhydrophobic surface is considered as an ideal anti-icing surface for its micro/nano-textured structure and low surface tension. Air cushion formed between droplets and the surface leads to the decrease of contact area which contributes to delayed icing. In a high humidity environment, however, the droplets can easily intrude into the micro-nano structures, resulting in interlock. The ice is more difficult to remove. Fortunately, slippery liquid-infused surface (SLIPS) with lubricating fluids to fill micro-nanostructures inspired by nepenthes can be applied in anti-icing for its low friction force. With lubricating fluid with a high freezing point as the medium, the ice can be easily removed even in an ultra-low temperature and high humidity environment. However, lubricant losses are inevitable during the收稿日期:2023-01-06;修订日期:2023-08-25Received:2023-01-06;Revised:2023-08-25基金项目:结冰与防除冰重点实验室开放基金(IADL20210408)Fund:Supported by Open Fund of Key Laboratory of Icing and Anti/De-icing (IADL20210408)引文格式:向科峰, 尹欢, 宋岳干, 等. 受猪笼草启发的多孔微腔低冰黏附防除冰表面[J]. 表面技术, 2023, 52(10): 313-320.XIANG Ke-feng, YIN Huan, SONG Yue-gan, et al. Low Ice Adhesion Deicing/Anti-icing Surface of Porous Microcavity Inspired by Nepenthes [J]. Surface Technology, 2023, 52(10): 313-320.*通信作者(Corresponding author)·314·表面技术 2023年10月icing/deicing cycles, resulting in a great durability reduction and a significant drop of the anti-deicing performance. Therefore, how to reduce the loss of lubricating fluid and improve the durability of SLIPS has become a major challenge. To improve the anti-icing/deicing durability of slippery liquid-infused surfaces (SLIPS), the stereo porous nano-microcavity array was presented under the inspiration of the slippery liquid-infused surface of nepenthes. The stereo porous nano-microcavity array was fabricated by a femtosecond laser to irradiate the nickel foil surface immersed absolutely in ethanol. Then, C16F17H19O3Si was used to modify the surface to increase the affinity of the surface to silicone oil. Finally, 50 cSt silicone oil was used to spin-coat on the modified surface, obtaining the stereo porous nano-microcavity SLIPS. The morphologies of the stereo porous nano-microcavity structure were analyzed by scanning electron microscope (SEM) and optical microscope (OM). The anti-icing/deicing performance, ice adhesion and durability of the SLIPS were evaluated through the icing delay test, ice adhesion test and high-temperature evaporation test, respectively. Due to the capillary action of the stereo porous nano-microcavity structure, the distilled water droplets on the surface of the stereo porous nano-microcavity with lipophilicity and hydrophobicity could be pinned. It indicated that the stereo porous nano-microcavity structure could perfectly lock the lubricating fluid to improve the durability of SLIPS. Compared with the unstructured surface, the icing delay test showed that the SLIPS delayed the icing time by 2.8 times. Furthermore, the supercooled droplet was affected by condensed water in a low temperature and high humidity environment to realize the self-driving of condensed water. The SLIPS was put in a high temperature environment of 80 ℃for ten minutes, then followed with the icing/deicing cycle experiment. After 10 cycles, the contact angle was 110°, the sliding angle was 8.5°, and ice adhesion was 3.6 kPa. The stereo porous nano-microcavity array structure is induced on the surface of nickel foil by femtosecond laser scanning nickel foil immersed in ethanol. It can reduce the loss of lubricant on the SLIPS surface and effectively improve the ice durability of SLIPS. Excellent durability and low ice adhesion make this SLIPS have the potential to be applied in various anti-icing/deicing fields.KEY WORDS: bionics; femtosecond laser direct writing; nano-microcavity structure; SLIPS; low ice adhesion; anti-icing;deicing霜冻是自然界中普遍存在且常给人类社会造成巨大危害的自然现象,充分掌握和揭示固体表面积冰现象的机理是近代社会面临的巨大挑战[1-3]。

蒸发诱导自组装技术

蒸发诱导自组装技术

蒸发诱导自组装(Evaporation-Induced Self-Assembly,简称EISA)技术是一种常用的纳米材料组装方法,用于制备具有有序结构的纳米材料薄膜或多孔材料。

该技术的基本原理是通过溶剂的蒸发过程来驱动纳米颗粒或分子的自组装。

具体步骤如下:
制备溶液:将所需的纳米颗粒或分子以适量的溶剂中进行溶解或分散,形成溶液。

涂覆基底:将溶液均匀涂覆在特定基底上,可以是玻璃片、硅片等。

蒸发过程:将涂覆的样品放置在合适的环境中,其中溶剂开始逐渐蒸发。

随着溶剂的蒸发,溶液中的纳米颗粒或分子开始逐渐聚集并自组装成有序的结构。

自组装形貌控制:通过调节蒸发速度、温度、溶液浓度等参数,可以控制自组装过程中纳米颗粒或分子的排列方式和结构特征。

这可以实现多种不同的形貌,如单层薄膜、多层堆积薄膜、多孔材料等。

固化步骤:完成自组装后,可以采用适当的方法固化纳米颗粒或分子的排列结构,例如烘干、光照、热处理等,以增强材料的稳定性和结构性能。

蒸发诱导自组装技术具有简单、低成本、可扩展性强等优点,广泛应用于纳米材料、光电器件、传感器、催化剂等领域。

磷酸铁锂正极材料的研究现状

磷酸铁锂正极材料的研究现状
系,位于 pnma 空间群,单位细胞参数 a、b、c 依次为 0.496、1.033、0.601 nm。图 1 显示了 LiFePO4 单元中 的 O 原子堆成六边形结构、Fe 原子和 Li 原子分别 位于 O 原子六边形结构的中间位置,形成 FeO6 和 LiO6 正八面体。P 原子在 a 轴上以交替分层排列的 方式占据由 O 原子形成的 PO4 四面体,由于其具有 强的 P-O 共价键形成的离域三维立体化学键使得 材料具有较强的动力学和热力学性能,直接表现为 LiFePO4 电池安全性高、循环寿命长的特点。正八 面体 FeO6 在 b-c 平面与相邻的 FeO6 的共同顶点相 连 , 导 致 材 料 导 电 率 低 。 其 次 , 在 Li 原 子 排 列 的 c 轴上也存在一个 PO4 四面体,从而极大地阻碍了 Li+在 c 轴上的迁移。根据大量实验和理论计算得
44
有色金属材料与工程
2021 年 第 42 卷
网络为主的多层多孔结构。这种结构既保证了 Li+丰富的扩散途径,又保证了电子的快速转移。此 外,在充放电过程中,高比表面积 (367 m2/g) 提供了 双层电容过程,并且还保护 LiFePO4 免受强电流攻 击,特别是在高电流密度下。图 5 显示了 LiFePO4/ 活性炭/石墨烯复合材料在 100.0 充放电倍率下表 现出 166.0 mA·h/g 的高放电比容量,且在 3 000 次 循环后的容量保持率为 82.0%,证实了其良好的循 环稳定性和广阔的应用前景。
关键词:锂离子电池;磷酸铁锂;正极材料;改性研究
中图分类号:TB 152
文献标志码:A
Research Status of Lithium Iron Phosphate Cathode Materials

自组装纳米阵列SERS基底的发展及应用进展

自组装纳米阵列SERS基底的发展及应用进展

自组装纳米阵列SERS基底的发展及应用进展刘建楠;徐维平;李帆;胡小燕;徐婷娟【摘要】表面增强拉曼散射(SERS)的谱峰窄以及分子指纹特性使其在分析化学、环境检测、生物医药及食品安全等领域具有广泛应用.而稳定、均一、重复性好的SERS活性基底的制备至关重要.自组装法可制备出均一、稳定、高度有序、可控的纳米阵列,提高SERS检测的重现性和灵敏度.本文对自组装纳米阵列技术制备SERS 活性基底及SERS的应用进行了综述.%Surface-enhanced Raman Scattering (SERS), due to the characteristics of narrow spectrum and molecular fingerprinting,has been widely used in analytical chemistry, environment, biomedicine, food safety and other fields. It is crucial to prepare a stable, uniform and reproducible SERS-active substrate. Self-assembly method can prepare uniform,stable, highly ordered, controlled nano-arrays, thereby increasing the repeatability and sensitivity of SERS detection. The SERS substrate self-assembled technology and its application were reviewed.【期刊名称】《广州化工》【年(卷),期】2018(046)004【总页数】3页(P1-3)【关键词】表面增强拉曼散射(SERS);纳米材料;自组装;癌症检测【作者】刘建楠;徐维平;李帆;胡小燕;徐婷娟【作者单位】安徽中医药大学,安徽合肥 230038;安徽中医药大学,安徽合肥230038;安徽省立医院,安徽合肥 230001;安徽中医药大学,安徽合肥 230038;安徽中医药大学,安徽合肥 230038;安徽省立医院,安徽合肥 230001【正文语种】中文【中图分类】R9451928年,印度科学家C.V.拉曼(Raman)发现了一种散射光谱,即拉曼光谱(Raman spectra)。

蒸发诱导纳米粒子自组装薄膜制备工艺

蒸发诱导纳米粒子自组装薄膜制备工艺

蒸发诱导纳米粒子自组装薄膜制备工艺黎相孟;祝锡晶;魏慧芬;崔学良;冯昕宇【摘要】为了获得高质量的单层纳米粒子薄膜,提出一种移动盖板约束下的蒸发诱导纳米粒子自组装工艺方法;研究了纳米粒子悬浮液浓度、基材温度、间隙高度和盖板速度等工艺要素对二氧化硅纳米粒子薄膜结构成形形貌的影响规律.结果表明,在适当的悬浮液浓度、基材温度和盖板移动速度等条件下,可以获得高质量的致密单层二氧化硅纳米粒子薄膜,典型的优化工艺参数为:纳米粒子悬浮液浓度5 g·L-1,间隙高度1 mm,盖板移动速率110μm·s-1,以及温度30℃.【期刊名称】《科学技术与工程》【年(卷),期】2019(019)005【总页数】7页(P129-135)【关键词】二氧化硅纳米粒子;薄膜;蒸发诱导自组;装几何约束【作者】黎相孟;祝锡晶;魏慧芬;崔学良;冯昕宇【作者单位】中北大学机械工程学院,,太原 030051;中北大学机械工程学院,,太原030051;中北大学仪器与电子学院,太原 030051;中北大学机械工程学院,,太原030051;中北大学机械工程学院,,太原 030051【正文语种】中文【中图分类】TH162纳米材料在复合增强材料、生物技术、能源储存等方面有着广泛的应用[1—3]。

得益于其高效率、低成本制造等方面的优势,大面积纳米粒子薄膜结构在开发太阳能电池和有机发光二极管等高性能光电器件应用领域拥有很广阔的市场[4—8]。

其中,纳米粒子薄膜作为构筑大面积微纳米结构单元,能够实现光学减反射和增透的效果[9—13]。

利用纳米粒子悬浮液的蒸发自组装制备连续致密薄膜结构是实现良好的光学性能的前提。

目前已报道研究中有许多制备纳米粒子薄膜的方法,例如旋涂法[14]、滴加法[15]、Langmuir Blodgett (LB)膜提拉法等[16]。

其中,旋涂法的效率较高,在数分钟甚至更短时间内可以实现硅晶圆级的纳米粒子薄膜结构,但难以获得高质量的致密单层薄膜。

【安全】安全工程专业外语翻译

【安全】安全工程专业外语翻译

【关键字】安全The major contributors in component technology have been the semi-conductor components.(译为“起主要作用” ,不译“主要贡献者”。

)There are three steps which must be taken before we graduate from the integrated circuit technology.(译为“完全掌握”,不译“毕业于”。

)The purpose of a driller is to holes.(译为“钻孔”)A single-point cutting tool is used to cut threads on engine lathes.(译为“车”)The major contributors in component technology have been the semi-conductor components.(译为“起主要作用” ,不译“主要贡献者”。

)There are three steps which must be taken before we graduate from the integrated circuit technology.(译为“完全掌握”,不译“毕业于”。

)The iron ore used to make steel comes from open-pit and underground mines.(译为“炼钢”,不译“制造刚”。

)An insulator offers a very high resistance to the passage through which electric current goes.(译为“很大阻力”,不译“高阻力”)Mater can be changed into energy, and energy into mater.物质可以转换为能,能也可以转化为物质。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Evaporation induced self-assembly of zeolite A micropatterns dueto the stick –slip dynamics of contact lineU ğursoy Olgun ⁎,Vahdettin SevínçDepartment of Chemistry,Faculty of Arts and Sciences,Sakarya University,Esentepe,Sakarya,54187,TurkeyReceived 15March 2007;received in revised form 17July 2007;accepted 23July 2007Available online 3August 2007AbstractIn this study,a new surfactant –solvent system was described for the preparation of periodic stripe patterns of zeolite A on solid substrates.The evaporation induced self-assembly of zeolite A particles was due to the stick –slip dynamics of the three-phase contact line of the colloid solutions in acetone containing 10%(v/v)poly(dimethylsiloxane)(PDMS)fluid (2cst.).In order to investigate the possible effects of particle size and the particle concentration on the stick –slip dynamics,three types of zeolite A samples with different particle sizes (zeolite A-I:250–500nm,zeolite A-II:100–250nm and zeolite A-III:0–100nm)were utilized to prepare 0.007–0.06%(w/v)colloidal dispersions.Zeolite A micropatterns were self-assembled on the surface of glass,high density polyethylene (HDPE)and poly(tetrafluoroethylene)(PTFE)substrates,which were placed vertically inside the colloid solutions and held against the wall of the cylindrical vial during the evaporation of acetone.The stripe patterns of zeolite A particles were analyzed with field emission scanning electron microscope (FE-SEM)and optical microscope.The widths of microstripes and the distance between the stripes were found as 2–20μm and 40–60μm respectively depending on the particle concentration.By using the stick –slip dynamics of colloids,the linear micropatterns of zeolite A nanocrystals were prepared with low cost and low energy.©2007Elsevier B.V .All rights reserved.Keywords:Self-assembly;Stick –slip dynamics;Zeolite A;Micropattern;Nanoparticle1.IntroductionOver the last decade,considerable efforts have been directed toward the preparation of functional zeolite nanoparticles be-cause of their potential applications in membranes,catalytic coating reactors,chemical sensors and biomedical materials.Furthermore,the use of zeolite micropatterns for biological applications [1],the incorporation of zeolites in microchemical systems [2]and the fabrication of zeolite-based microreactors [3]found growing interest.Micropatterning of oriented zeolite monolayers on glass by covalent linkage [4]and patterning of continuous zeolite films on glass by direct dipping in synthesis gel [5]have been studied.Extensive studies are being conducted on micropatterning of colloidal nanoparticles.Micropatterns made of ceramic powders have been prepared from colloidal suspensions using self-as-sembled monolayers (SAM)on gold and silicon wafer substrates[6].It was reported that the aqueous colloidal dispersions of aluminum oxide and tin oxide adhered only to the hydrophilic micropatterns whereas they repelled from the hydrophobic areas in a simple dip coating process.The maximum resolution of ceramic micropatterns was in the order of 5μm.In another study,photolithographed self-assembled monolayers of (3-mercapto-propyl)-trimethoxysilane were utilized in the fabrication of col-loidal gold micropatterns on SiO 2-coated Si substrates [7].It was pointed out that this approach could be applicable to the assembly of microelectronic circuits and microbiosensors.To demonstrate the potential application areas,some ex-amples of other micropatterning techniques are also reviewed below.For instance,the fabrication of TiO 2micro-patterns on Si wafers was demonstrated using laser direct writing and post-annealing [8].A nickel micropattern with a 9μm line width and 12μm line intervals was obtained on an insulating board via anodizing aluminum,laser irradiation,nickel electroplating,insulating board attachment and aluminum substrate dissolution [9].Chemical etching was used to pattern tin oxide film on silicon substrate up to 5μm width for the fabrication of two-Available online at Powder Technology 183(2008)207–212/locate/powtec⁎Corresponding author.Tel.:+902642956060;fax:+902642955950.E-mail address:ugursoyolgun@ (U.Olgun).0032-5910/$-see front matter ©2007Elsevier B.V .All rights reserved.doi:10.1016/j.powtec.2007.07.028dimensional micro-gas sensor array[10].Micropatterns with sizes of10–100μm were created in poly(dimethylsiloxane) using laminar flows of liquids in capillaries[11].Application of micropatterning techniques to the fabrication of scaffolds spe-cifically designed to support chondrogenesis was studied[12]. It was demonstrated that the surface-patterned scaffolds pro-mote adhesion,restrict spreading and maintain key aspects of the chondrogenic phenotype.Although the importance of zeolites in micro-and nano-scale systems has been demonstrated in the literature,a limited number of studies have been performed about the formation of zeolite micropatterns directly from the solution phase.Here,in our study,in the light of recent developments in colloid science, the spontaneous deposition of zeolite A micropatterns from the colloidal dispersions of nanoparticles in10%(v/v)PDMS–ac-etone system was demonstrated without using any pretreatment of substrate surface.Micropatterning of zeolite nanocrystals on the surface of substrate was due to the stick–slip dynamics of contact line of PDMS–acetone system during the evaporation process.In a similar procedure,the formation of ZSM-5zeolite films from nanosuspensions has been investigated by using high polarity solvents,such as water and formaldehyde[13]. However,the direct micropattern formation and the stick–slip dynamics have not been reported previously for any other col-loidal zeolite–solvent system.2.Experimental2.1.Preparation of nanosized zeolite A samplesZeolite A-I(250–500nm)was prepared from commercial zeolite A powder(Ege Kimya)by means of grinding in poly (dimethylsiloxane)(PDMS,2cst)(ABCR Inc.).The other zeolite A nanopowders,zeolite A-II(100–250nm)and zeolite A-III(0–100nm),were prepared by using the hydrothermal crystallization method.Sodium aluminate solution was pre-pared by using Al foil(1.2753g),anhydrous NaOH(Aldrich) (4.1497g)and deionized water(35.1768g).Sodium sili-cate solution was prepared from Na2SiO3(d=1.37kg/L, Na2O=7.5–8.5%,SiO2=25.5–26.5%)(Merck)(7.0593g),an-hydrous NaOH(1.5034g)and deionized water(66.7350g). Filtered clear solutions were used immediately after preparation.The hydrothermal crystallization experiments were carried out in a polypropylene vessel(250mL),which was placed in a temperature controlled oven kept at75°C.Sodium aluminate solution was heated up to75°C under stirring and then the sodium silicate solution was added gradually within10min. About3mL0.26%(w/v)seed solution of commercial zeolite A was added after30min of mixing.Zeolite crystals were allowed to grow for5h.In order to terminate the growth process,a part of reaction mixture(50mL)was removed from the reaction vessel and filtered.Produced zeolite A-III(0–100nm)powder was washed with excess amount of water and dried at110°C for 4h.Another part of synthesis mixture(10mL)were removed from the crystallization vessel and placed in a tightly closed polypropylene bottle and kept at75°C for14h.At the end of crystallization,prepared zeolite A-II(100–250nm)powder was also washed with excess amount of deionized water and dried at 110°C for4h.The purity of zeolite A nanopowders,zeolite A-I (250–500nm),zeolite A-II(100–250nm)and zeolite A-III(0–100nm)were analyzed by x-ray diffraction technique.2.2.Preparation of zeolite A colloidsZeolite A nanopowders(about0.02g)were dispersed in liquid PDMS(2mL)and stirred for10min before the addition of acetone(Merck)(10mL).Grinding of powder samples in PDMS was also performed for better dispersion.Colloid solutions were decanted with the aim of separating possibly agglomerated and large particles,which were settled to the bottom of the beaker.In order to prepare different concentrations of colloids,some part of colloid solution(5mL)was taken in each step and diluted to the half concentration by adding proper amount of acetone(5mL). The particle concentrations of zeolite A colloid solutions were also determined from the measurement of turbidity at420nm. The calibration graph of turbidity for each zeolite sample was generated using the turbidity measurements of the colloids of known particle concentrations.2.3.Preparation of zeolite A micropatternsThe preparation of periodic stripe micropatterns of zeolite A was carried out as shown in Fig.1by using the evaporation-induced self-assembly process.Glass micro slides(26×76mm2) (Iso Lab.)were used as the substrates and they were placed in polyethylene vials(R=30mm,h=50mm)containing the col-loid solutions of zeolite A powders(5mL)and hold against to the wall of the container.The linear micropatterns of zeolite A nanocrystals were allowed to self-assemble on glass substrates for1h during the evaporation of acetone at20°C(the rate of acetone evaporation:6.9mg/min).The self-assembly of zeolite A-III(0–100nm)nanoparticles on the surface of glass(Iso Lab),HDPE and PTFE(Penn Fibre,Ft-Washington,PA,U.S.) substrates was also performed at25°C for1h(the rate of acetone evaporation:9.2mg/min)and at50°C for15min(the rate of acetone evaporation:31.6mg/min).The substrates were dipped into3mL colloid solution of zeolite A-III in a glass vial (R=20mm,h=28mm,5mL)and the formation of micro-patterns wasobserved.Fig.1.Evaporation induced self-assembly of zeolite A stripe patterns from colloids.208U.Olgun,V.Sevínç/Powder Technology183(2008)207–2122.4.CharacterizationPrepared zeolite samples were characterized as pure zeolite A by using the X-ray powder diffraction patterns obtained from X-ray diffractometer (Shimadzu XRD-6000).Turbidity mea-surements were performed at 420nm by UV –visible spectro-photometer (Shimadzu UV-2401PC)in order to estimate the concentrations of zeolite A particles in colloid solutions during the self-assembly process.The surface characterizations of self-assembled micropat-terns were carried out using field emission scanning electron microscope (FE-SEM)(JEOL JSM-6335F)and optic micro-scopes (Olympus and Motic).FE-SEM images were obtained after Au spray coating of zeolite A samples by using a sputter coater (Edwards S150B).Contact angle measurements were carried out by using the microscope setup with online camera attachment connected to the computer.3.Results and discussion3.1.Self-assembly of zeolite A micropatternsThe preparation of zeolite A stripe patterns was performed as shown in Fig.1.As acetone evaporated from the solutions,zeolite A micropatterns were self-assembled on the surface of glass substrates,which were placed vertically inside the colloids of 0.06–0.007%(w/v)zeolite A.The self-assembly process was allowed to take place for 1h and the substrates were removed from the colloid solutions.The images of prepared micro-patterns were analyzed by scanning electron microscope.The uniform stripe micropatterns of zeolite A-I,zeolite A-II and zeolite A-III are demonstrated in Fig.2.3.2.Effects of particle size and concentrationSelf-assembled stripe micropatterns of zeolite A-I,zeolite A-II and zeolite A-III are shown in Fig.2.The surface mor-phologies of stripes are also exhibited in Fig.2for different size zeolite A particles.The formation of zeolite A stripes was studied at various particle concentrations for different size zeolite A samples.Optical microscopy images of micropatterns prepared from 0.06,0.03and 0.015%(w/v)zeolite A-I colloid solutions are demonstrated in Fig.3(a –c).Decrease in particle concentration resulted in greater number of self-assembled stripes with smaller distances between them.Micropattern formation was not observed at very low particle concentrations of 0.007%(w/v)zeolite A-I.The experimental results demonstrated that 0.06%(w/v)zeolite A-I,0.03%(w/v)zeolite A-II and 0.007%(w/v)zeolite A-III are suitable to prepare 15stripes of zeolite A on glass substrates under these experimental conditions after 1h.Reducing the particle concentration of zeolite A-I from about 0.06%(w/v)to 0.015%(w/v),the number of stripes was almost doubled.3.3.Effects of substrate and temperatureThe formation of microstripes of zeolite A-III particles on the surface of glass,HDPE and PTFE substrates was investigated at 25°C and at 50°C.The microscope images of microstripes prepared at 25°C are demonstrated in Fig.3d for glass,in Fig.3e for HDPE and in Fig.3f for PTFE.The uniform widths of stripes were reduced significantly on HDPE and PTFE surface compared to the glass surface.The distance between the stripes was increased in the case of PTFE surface.As the critical surface tension of substrate reduced from 31dyn/cm forHDPEFig.2.Self-assembled stripe patterns of a)zeolite A-I,b)zeolite A-II and c)zeolite A-III on glass substrates.Surface microstructures of stripes demonstrating d)zeolite A-(I),e)zeolite A-II and f)zeolite A-III particles.209U.Olgun,V .Sevínç/Powder Technology 183(2008)207–212to 18dyn/cm for PTFE,the immobilization of nano zeolite A particles at contact line was decreased.The contact angle values of 10%(v/v)PDMS –acetone solutions were measured as 21°for glass,20°for HDPE and 30°for PTFE.Contact angle values were reduced about 5–7°during the deposition of zeolite A particles from colloid solutions.The images of microstripes prepared at 50°C are shown in Fig.3g for glass,in Fig.3h for HDPE and in Fig.3i for PTFE.In general,the increase in temperature resulted in large increases in stripe widths.3.4.Zeolite microgrid preparationIn order to construct more complex micropatterns of zeolite A,such as the grid microstructure,we have attempted to coat a second layer of micropattern on top of first stripe pattern in crossing direction.Thus,the glass substrate was rotated 90°during the self-assembly of second layer of micropattern.The microgrid pattern of zeolite A-II was produced as seen in Fig.4by using this two-step self-assembly process.The width of zeolite A stripes was about 20μm and the empty distance between the stripes was about 60–80μm.It was also interesting to note that the second step of micropatterning had no de-forming effect on the first layer of zeolite A stripes.3.5.Stick –slip dynamics of contact lineThe mechanism of self-assembly of stripes from colloids was explained with the proposed steps of stick –slip dynamics of three-phase contact line as drawn in Fig.1.It was observed that the contact line on the substrate surface repeatedly jumped to a new position where the nanoparticles started to form the next stripe.It was proposed that the wetting of both thesubstrateFig.3.Micropatterns of zeolite A-I prepared on glass substrates from a)0.06%(w/v),b)0.03%(w/v)and c)0.015%(w/v)colloid solutions.Micropatterns of zeolite A-III prepared on d)glass,e)HDPE and f)PTFE substrates at 25°C from 0.03%(w/v)colloid solutions.Micropatterns of zeolite A-III prepared on g)glass,h)HDPE and i)PTFE substrates at 50°C from 0.03%(w/v)colloid solutions.210U.Olgun,V .Sevínç/Powder Technology 183(2008)207–212surface and the self-assembled stripe became energetically unfavorable after a specific time due to the reduced contact angle,and therefore,the contact line jumped to its new equi-librium position.The changes in the nature of zeolite A powders and the particle size had significant effects on the self-assembly of zeolite A particles.However,all of the zeolite A particles exhibited similar patterning behavior during the contact line dynamics possibly because of the adsorption of PDMS chains to the particle surfaces in colloid solutions.It was concluded that the wetting of self-assembled stripe becomes energetically unfavorable at some point due to the experimental observation of the contraction of solution into the center.Furthermore,the instant drop of fluid level from a low contact angle point to an equilibrium point requires an increase in contact angle simply because of the mass transfer of solvent from wall surface to the center.The entrapment of solvent molecules and the PDMS polymer chains between the deposited particles was evidenced from the observed regular defects on the surface of stripes of very fine zeolite A-III particles (Fig.2f).Considering the low surface free energy of PDMS,it is pre-dicted that the formation of a thin layer of PDMS as deposited together with the particles along the contact line destabilizes the wetting of substrate surface by an acetone rich solvent.There-fore,the adhesive failure between deposited stripe and the colloid solution was observed at this critical point.The stick –slip dynamics was also sensitive to the concen-tration of zeolite A particles in colloid solutions.The stripe patterns resulting from the stick –slip dynamics are shown in Fig.3(a –c)for 0.06,0.03and 0.015%(w/v)colloidal disper-sions of zeolite A-I.Decrease in zeolite A particle concentra-tion increased the number of stripes and reduced the empty distance between the stripes.In other words,the time interval spent between the consecutive slips (or the jumps)of the solution on the substrate surface was increased linearly as a function of zeolite A-I particle concentration in the range of 0.015–0.06%(w/v).Therefore,it was concluded that the number of stick –slip positions of contact line was reduced for a given period of time at higher concentrations of zeolite A particles.The results shown in Fig.3(d –f)indicated that the decrease in the critical surface tension of substrate from 31dyn/cm for HDPE to 18dyn/cm for PTFE,the width of stripes were reduced significantly,while the distance between the slip points was increased.The increase in temperature during the stick –slip dynamics led to increase in stripe widths as seen in Fig.3(g –i).The increase of PDMS%from 10%to 20%and 40%resulted in a gradual increase in the stripe widths of zeolite A-III particles on glass surface.Therefore,it was concluded that the PDMS chains increased the accumulation of nanoparticles from so-lution to the three-phase contact line and it helped their im-mobilization on the surface of substrate.The other advantages of using PDMS were identified as the stabilization of colloids and the formation of smooth three phase contact line.4.ConclusionIn this study,it was demonstrated that the formation of periodic stripe patterns of zeolite A was due to the stick –slip dynamics of the contact line of colloidal solutions of zeolite A particles in PDMS –acetone system.The patterning process is simple compared to the previous techniques in the field and does not require any external energy,molded patterns or photo mask for micropattern formation.Although,we have used a hydrophilic zeolite A particles,the nanoparticles does not need to be hydrophilic and the patterns of hydrophobic zeolites were also produced.As shown in Fig.2,the micropatterns of zeolite A-II particles had better surface coverage without any defects on the stripe surface.Thus,the optimum particle size of zeolite A to achieve the best micro stripe quality was predicted as 100–250nm.Also,the optimum particle concentration was de-termined as 0.015–0.06%(w/v)for these zeolite samples.It was also concluded that the stick –slip dynamics of contact line was slow at higher concentrations of zeolite A particles.PDMS provided a stable environment for the particles with its low viscosity,low surface tension and good wetting pro-perties.However,the key role of PDMS was to induce the formation of the stick –slip dynamics of the contact line in its dilute solutions in acetone.The pattern formation from dilute polymer solutions [14]and the evaporation induced deposition of Ag nanowires at the solvent –substrate contact line due to the stick –slip motion [15]have been reported recently.In this study,however,we have utilized liquid PDMS to stabilize zeolite A nanoparticles in solution and self-assembled them into micro-stripe patterns due to the stick –slip motion of contact line.The process of contact line dynamics is suitable to produce two-dimensional micropatterns of nanoparticles with a broad range of periodicity.Processing of nanoparticles to form predictable bulk structures has a great technological importance and we hope that the understanding of this versatile patterning pro-cedure may lead to the development of new nano-scale patterning methods.AcknowledgementThis work was supported by Sakarya University under Project No.BAPK2004-2.Fig. 4.Zeolite A-II microgrid structure produced by using two-step self-assembly process (glass substrate was rotated 90°in the second step)and imaged in transmission (left)and reflection (right)modes.211U.Olgun,V .Sevínç/Powder Technology 183(2008)207–212References[1]W.Sun,m,L.W.Wong,K.L.Yeung,mun.(2005)4911.[2]J.L.H.Chau,Y.S.S.Wan,A.Gavriilidis,K.L.Yeung,Chem.Eng.88(2002)187.[3]Y.S.S.Wan,J.L.H.Chau, A.Gavriilidis,K.L.Yeung,MicroporousMesoporous Mater.42(2001)157.[4]K.Ha,Y.J.Lee,D.Y.Jung,J.H.Lee,K.B.Yoon,Adv.Mater.12(2000)1614.[5]K.Ha,Y.J.Lee,Y.S.Chun,Y.S.Park,G.S.Lee,K.B.Yoon,Adv.Mater.13(2001)594.[6]M.Heule,U.P.Schönholzer,L.J.Gauckler,J.Euro.Ceram.Soc.24(2004)2733.[7]J.F.Liu,L.G.Zhang,N.Gu,J.Y.Ren,Y.P.Wu,Z.H.Lu,P.S.Mao,D.Y.Chen,Thin Solid Films176(1998)327.[8]K.Kordás,A.E.Pap,S.Leppävuori,Surf.Coat.Technol.176(2003)84.[9]T.Kikuchi,M.Sakairi,H.Takahashi,Y.Abe,N.Katayama,Surf.Coat.Technol.199(2003)169.[10]W.Y.Chung,J.W.Lim,Curr.Appl.Phys.3(2003)413.[11]S.Takayama,E.Ostuni,X.Qian,J.C.McDonald,X.Jiang,P.LeDuc,M.H.Wu,D.E.Ingber,G.M.Whitesides,Adv.Mater.13(2001)570.[12]E.F.Petersen,R.G.S.Spencer,E.W.McFarland,Biotech.Bioeng.78(2002)802.[13]K.T.Jung,Y.G.Shul,J.Membr.Sci.191(2001)189.[14]H.Yabu,M.Shimomura,Adv.Funct.Mater.15(2005)575.[15]J.Huang,R.Fan,S.Connor,P.Yang,Angew.Chem.Int.Ed.46(2007)2414.212U.Olgun,V.Sevínç/Powder Technology183(2008)207–212。

相关文档
最新文档