Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing CAR Using SBS and AAPC
CD19单克隆抗体使用说明
IHC image of CSB-MA004888A0m diluted at 1:100 and staining in paraffin-embedded human tonsil tissue performed on a Leica BondTM system. After dewaxing and hydration, antigen retrieval was mediated by high pressure in a citrate buffer (pH 6.0). Section was blocked with 10% normal goat serum 30min at RT. Then primary antibody (1% BSA) was incubated at 4°C overnight. The primary is detected by a biotinylated secondary antibody and visualized using an HRP conjugated SP system.
P15391
Recombinant Human CD19 protein (20-291AA)
Mouse
Human
ELISA, WB, IHC, IF, FC; Recommended dilution: WB:1:2000-1:80000, IHC:1:50-1:200, IF:1:50-1:200 Assembles with the antigen receptor of B-lymphocytes in order to decrease the threshold for antigen receptor-dependent stimulation. Liquid
新时代药业 cd19结构
新时代药业 cd19结构
CD19是一种细胞表面抗原,属于免疫球蛋白超家族的成员。
它
主要表达在B细胞的表面,是B细胞的标志性分子之一。
CD19分子
由多个外显子编码,包括一个信号肽序列、一个胞外区域、一个跨
膜区域和一个胞内区域。
CD19的结构包括一个细胞外N端、一个细
胞内C端和一个跨膜结构。
CD19的细胞外区域包括多个糖基化位点,这些位点可能参与CD19的细胞黏附和信号传导。
CD19的细胞内区
域包括多个磷酸化位点,这些位点与CD19介导的信号传导有关。
在新时代药业方面,CD19结构可能与该公司的药物研发和生产
相关。
例如,针对CD19的靶向治疗药物可能会利用对CD19结构的
深入了解,设计出更有效的药物分子结构。
此外,CD19作为肿瘤治
疗的靶点,在CAR-T细胞疗法中也被广泛应用。
对CD19结构的研究
有助于更好地理解CAR-T细胞疗法的作用机制,从而提高治疗效果。
除此之外,CD19结构的了解也对于研究免疫系统功能、自身免
疫性疾病的发病机制等方面具有重要意义。
对CD19结构的深入研究
有助于揭示免疫系统中B细胞的活化、增殖和分化过程,为相关疾
病的治疗提供新的思路和方法。
总的来说,对CD19结构的全面了解对于药物研发、肿瘤治疗和免疫系统研究等领域具有重要意义,有助于推动医药领域的科学进步和临床治疗的发展。
纽储非妇产科
低浓度的纯次氯酸伤口清洁敷料——纽储非面世。
这是世上首个也是目前唯一一个利用复杂工艺将低浓度的纯次氯酸应用于临床治疗 上的创新产品。
纽储非® :理想的伤口清洁产品
[1] SAM DUKAN,et al. Hypochlorous Acid Stress in Escherichia coli: Resistance, DNA Damage, and Comparison with Hydrogen Peroxide Stress. 1996;178(21):6145-6150
首次证实人体先天免疫中产生次氯酸(HOCl)杀菌。 John E. Harrison [1]在白细胞氧化爆发过程中证明次氯酸存在,并证明次氯酸 有着明显的杀菌作用。
次氯酸的杀菌机理得到进一步揭示。 Thomas EL[2]发现次氯酸(HOCl)通过损坏细菌DNA、蛋白(硫醇、硫醚和氨 基)、酶失活作用,包括切割肽键和氧化细菌成分巯基。
同时人体细胞中存在一种天然的 非必需氨基酸-牛磺酸,作为次 氯酸的清道夫,防止附带损害。
次氯酸盐: 控制1841年维也纳产褥热
塞麦尔韦斯 (Semmel-Weiss,1818~1865),现代医院流行病学之父 在19世纪中叶,时任奥地利维也纳大学附属医学院的产科医师塞麦尔韦斯注意 到,由医师负责的产科病房产褥热的发生率比助产士负责的病房高9倍,前者 的病死率高达10%以上,经过调查,该感染是通过医生的手扩散的,是由于做 过尸体解剖的医师未经洗手消毒,就去处理产科患者造成的。通过实行严格的 漂白粉液洗手措施后,产褥热的传播得到了明显的控制,病死率减少到1.0% 以下。他应用系统的流行病学调查方法,控制了该医院产褥热的流行爆发。
重组人CD3-CD19双特异性抗体
AMMS TM人源化抗人CD3/CD19双特异性抗体说明书产品名称通用名称:人源化抗人CD3/CD19双特异性抗体英文名称:Humanized anti-human CD3/CD19 bispecific antibody适用范围AMMS TM CD3/CD19 BsAb是一种双特异性T细胞连接蛋白,这种蛋白可以连接T细胞和癌细胞,令T细胞可以选择性地接近癌细胞而达到特异性杀伤的治疗效果。
AMMS TM CD3/CD19 BiMab不仅是简单地把T细胞与肿瘤细胞相结合,还通过与T细胞表面CD3受体相结合形成复合物,进一步激活T细胞信号通路,使T细胞表达CD69、CD25,上调细胞黏附分子(CD2)、短暂释放炎症因子,令T细胞活化,并促使T细胞增殖。
功能参数参考文献1、Mølhøj, M; Crommer, S; Brischwein, K; Rau, D; Sriskandarajah, M; Hoffmann, P; Kufer, P; Hofmeister,R; Baeuerle, PA (March 2007). "CD19-/CD3-bispecific antibody of the BiTE class is far superior totandem diabody with respect to redirected tumor cell lysis". Molecular Immunology 44 (8): 1935–43.doi:10.1016/j.molimm.2006.09.032. PMID 17083975.2、Amgen (30 October 2012). Background Information for the Pediatric Subcommittee of the OncologicDrugs Advisory Committee Meeting 04 December 2012 (PDF) (PDF). Food and Drug Administration.Blinatumomab (AMG 103).3、Amgen Receives FDA Breakthrough Therapy Designation For Investigational BiTE® AntibodyBlinatumomab In Acute Lymphoblastic Leukemia" (Press release). Amgen. 1 July 2014.。
靶向CD19的脐带血衍生CAR-NK细胞有望治疗多种B细胞恶性肿瘤
靶向CD19的脐带血衍生CAR-NK细胞有望治疗多种B细胞
恶性肿瘤
佚名
【期刊名称】《生物医学工程与临床》
【年(卷),期】2024(28)2
【摘要】据Marin D[Nat Med,2024 Jane 18. doi:10.1038/s41591-023-02785-8.]报道,美国德克萨斯大学MD安德森癌症中心的研究人员报道一项Ⅰ/Ⅱ期临床试验,37例复发性或难治性B细胞恶性肿瘤患者接受靶向CD19的脐带血衍生嵌合抗原受体(CAR)自然杀伤(NK)细胞疗法,结果显示在治疗100 d后的总反应率为48.6%,1年无进展生存率和总生存率分别为32%和68%。
该临床试验报道了极佳的安全性,没有出现严重的细胞因子释放综合征、神经毒性或移植物抗宿主疾病。
【总页数】1页(P179-179)
【正文语种】中文
【中图分类】R73
【相关文献】
1.脐带血干细胞有望治疗心力衰竭
2.CD19靶向CAR T细胞于亲缘半相合干细胞移植前后2次挽救治疗复发Ph+B-ALL 1例并文献复习
3.CD19靶向的嵌合抗原受体T细胞治疗急性B淋巴细胞白血病伴髓外复发患者的疗效和安全性
4.CD19靶向CAR-T治疗复发/难治性弥漫大B细胞淋巴瘤疗效和安全性的Meta分析
5.靶向CD19嵌合抗原受体T细胞(C-CAR011)治疗复发难治B细胞非霍奇金淋巴瘤
因版权原因,仅展示原文概要,查看原文内容请购买。
cd19 car 原理
cd19 car 原理
CD19 CAR原理指的是通过将嵌合抗原受体(Chimeric Antigen Receptor,CAR)引入人体的CD19阳性癌细胞,从而增强免疫细胞对这些癌细胞的识别和杀伤能力。
CD19是一种抗原,广泛存在于B淋巴细胞的表面。
某些类型的B细胞恶性肿瘤,如急性淋巴细胞白血病(Acute Lymphoblastic Leukemia,ALL)和非霍奇金淋巴瘤(Non-Hodgkin's Lymphoma,NHL),都具有CD19的表达。
使用CD19 CAR治疗CD19阳性癌细胞,成为一种新的免疫治疗策略。
CD19 CAR是由两个主要组成部分组成:外部的单链抗体(scFv)和内部信号转导域。
scFv是一种人工合成的抗体,它能够特异性地识别并结合CD19表面抗原。
信号转导域通常包括一个T细胞受体激活区(T-cell receptor activation domain,例如CD3ζ)和共刺激分子域(例如CD28或4-1BB)。
将这些组件整合到一个分子中,形成CD19 CAR。
当CD19 CAR与CD19阳性癌细胞结合后,激活信号将通过内部的信号转导域传递给T细胞。
这一激活信号触发T细胞的杀伤功能,激活相关的细胞毒性分子,如穿孔酶和炎症介质,从而导致癌细胞的破坏和死亡。
CD19 CAR免疫细胞治疗(CAR-T细胞疗法)目前已被应用于一些临床试验中,并显示出显著的疗效。
然而,CD19 CAR 治疗也面临一些挑战,包括治疗相关的毒性和持久的抗原表达
导致的复发。
因此,研究人员正在不断改进CAR-T细胞的设计和应用,以提高安全性和疗效。
抗cd19单克隆抗体及其制备方法与应用
抗cd19单克隆抗体及其制备方法与应用抗CD19单克隆抗体及其制备方法与应用导言抗CD19单克隆抗体是一种生物医学领域中重要的药物,它被广泛应用于白血病、淋巴瘤等血液系统恶性肿瘤的治疗。
本文将以从简到繁、由浅入深的方式,探讨抗CD19单克隆抗体的制备方法和应用,并对其意义进行深入的阐述。
1. 抗CD19单克隆抗体的概念及意义1.1 CD19及其在肿瘤中的表达CD19是一种胞内成熟B细胞特异性膜表达抗原,广泛存在于人体的B淋巴细胞表面。
CD19的过表达与多种恶性肿瘤的形成和发展相关,因此成为药物研发领域的重点关注对象。
1.2 抗CD19单克隆抗体的定义和作用机制抗CD19单克隆抗体是针对CD19抗原的高亲和力和特异性单克隆抗体。
其作用机制主要包括直接抗肿瘤细胞杀伤、细胞依赖性细胞毒性和抗体依赖性细胞吞噬等。
由于其选择性作用于CD19阳性的恶性肿瘤细胞,抗CD19单克隆抗体被广泛应用于白血病、淋巴瘤等血液系统恶性肿瘤的治疗,并展现了显著的临床疗效。
2. 抗CD19单克隆抗体的制备方法2.1 免疫原的选择和制备制备抗CD19单克隆抗体的第一步是选择合适的免疫原。
在这里,我们选择具有高亲和力和特异性的CD19蛋白作为免疫原。
该蛋白可以通过表达系统的构建和纯化获得。
2.2 动物模型的制备在制备抗CD19单克隆抗体的过程中,需要将免疫原注射到合适的动物模型中,以激发其免疫系统产生特异性抗体。
常见的动物模型包括小鼠、大鼠和兔子等。
2.3 单克隆抗体的制备和筛选将免疫小鼠的脾细胞与癌细胞融合,形成杂交瘤细胞。
利用杂交瘤细胞进行单克隆抗体的产生和筛选。
对单克隆抗体的产生和筛选过程要求严格,以确保单克隆抗体的特异性和亲和力。
3. 抗CD19单克隆抗体的应用3.1 白血病和淋巴瘤的治疗抗CD19单克隆抗体在白血病和淋巴瘤的治疗中表现出非常显著的疗效。
它可以选择性地杀伤CD19阳性的恶性肿瘤细胞,同时保留正常细胞的功能,减少了传统放化疗给患者带来的副作用。
FDA批准Kite新工艺CD19CAR-T疗法上市!制备成功率96%
FDA批准Kite新工艺CD19CAR-T疗法上市!制备成功率96%7月24日,吉利德子公司Kite宣布FDA加速批准Tecartus(brexucabtagene autoleucel, KTE-X19)上市,用于治疗成人复发或难治性套细胞淋巴瘤(MCL)。
套细胞淋巴瘤(MCL)属于70余种非霍奇金淋巴瘤亚型中的一种,发病比例占NHL的6%-7%。
根据CA杂志权威数据,全球2018年NHL新发病例超50万例,所以MCL算是发病人数相对较多的一种淋巴瘤亚型。
由于套细胞淋巴瘤中位发病年龄在60岁以上,且多数患者在诊断时已处于病程的III期或IV期,使得多数患者不适宜、不愿甚至放弃全身放疗、干细胞移植等疗法。
MCL患者接受初始治疗后如果复发,疾病的侵袭性极强,容易快速进展。
Tecartus(KTE-X19)是吉利德/Kite采用新生产工艺开发的CD19 CAR-T疗法,与其之前获批上市的Yescarta(KTE-C19)具有相同的CAR结构,但是在生产制备过程中,KT-X19 筛选掉了CD19+肿瘤细胞,以减少CAR-T细胞的过早激活和耗尽,提高生产成功率。
Tecartus由Kite制药位于加利福尼亚州El Segundo的工厂生产,在ZUMA-2研究中的生产制备成功率达到了96%,CAR-T细胞的中位生产制备时间(从分离白细胞到回输)为15天。
对于重症和疾病快速进展风险较高的晚期患者而言,CAR-T细胞的制备速度非常关键。
Tecartus凭借ZUMA-2研究的结果被FDA授予治疗MCL的突破性疗法资格和优先审评资格,也是目前首个和唯一一个获批治疗MCL 的CAR-T疗法。
Tecartus也获得了EMA授予的治疗复发难治MCL的优先开发药物(PRIME)资格认定,目前处于审批之中。
关键II期ZUMA-2研究目前仍在进行之中。
这项单臂、开放标签试验共入组了74例既往接受过含蒽环类药物或苯达莫司汀化疗方案、CD20抗体药物和BTK抑制剂(伊布替尼或阿卡替尼)的复发难治性成人MCL患者,主要终点是IRRC评估的客观应答率(ORR)。
BD公司CD25,CD69,CD19 流式检测试剂盒说明书
BD Pharmingen™Technical Data SheetMouse B Lymphocyte Activation Antibody Cocktail, with IsotypeControl; PE-Cy™7 CD25, PE CD69, & FITC CD19Product InformationMaterial Number:558064Size: 100 testsReactivity:QC Testing: MouseComponent:51-9003395Mouse B Lymphocyte Activation Antibody Cocktail; PE-Cy™7 CD25, PEDescription:CD69, and FITC CD19Size: 100 tests (1 ea)Vol. per Test:20 ulStorage Buffer:Aqueous buffered solution containing BSA and ≤0.09% sodium azide.Component:51-9003396Mouse B Lymphocyte Activation Isotype Control; PE-Cy™7, PE, and FITCDescription:Size: 100 tests (1 ea)Vol. per Test:20 ulStorage Buffer:Aqueous buffered solution containing BSA and ≤0.09% sodium azide.DescriptionThe Mouse B Lymphocyte Activation Antibody Cocktail is a three-color reagent designed to identify major subsets of B lymphocytes by direct immunofluorescent staining with flow cytometric analysis. The PC61 antibody reacts with CD25, the low affinity IL-2 Receptor α chain(IL-2Rα, p55) expressed on activated T and B lymphocytes from all mouse strains tested. CD25 is also found on some developing B cells inthe bone marrow, early developing T cells in the thymus, peripheral CD4+ regulatory T (Treg) cells, and dendritic cells. The H1.2F3 antibodyreacts with CD69 (Very Early Activation antigen). Its expression is rapidly induced upon activation of lymphocytes (T, B, NK, and NK-Tcells) neutrophils, and macrophages. CD69 is also expressed on thymocytes that are undergoing positive selection. The 1D3 antibody reactswith CD19, a B lymphocyte-lineage differentiation antigen that is expressed throughout B-lymphocyte development from the pro-B cellthrough the mature B-cell stages. Terminally differentiated plasma cells do not express CD19. The three antibodies have been titrated andpre-diluted, mixed together, and formulated for optimal staining performance. The Mouse B Lymphocyte Activation Isotype Control containsequivalent concentrations of fluorochrome- and isotype-matched negative-control immunoglobulin.The use of three different fluorochromes for the labeling of the three different antibodies permits the recognition of each of the three antigenson each cell in a sample. The levels of expression of the three antigens distinguish the major subpopulations of developing and peripheral Blymphocytes. Additional fluorochrome-labeled reagents may be combined with the Mouse B Lymphocyte Activation Antibody Cocktail, andthe Mouse B Lymphocyte Activation Isotype Control, to further characterize B-cell subpopulations.Preparation and StorageThe monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography.The antibody was conjugated with PE-Cy7 under optimum conditions, and unconjugated antibody and free PE-Cy7 were removed.The antibody was conjugated with R-PE under optimum conditions, and unconjugated antibody and free PE were removed.The antibody was conjugated with FITC under optimum conditions, and unreacted FITC was removed.Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.Application NotesApplicationFlow cytometry Routinely TestedIdentification of activated B lymphocytes using Mouse B Lymphocyte Activation Antibody Cocktail, with Isotype Control. BALB/csplenocytes were activated by culture for 48 hours with anti-IgM antibody (Jackson immunoresearch) and stained with eitherMouse B Lymphocyte Activation Isotype Control (left panels) or Mouse B Lymphocyte Activation Antibody Cocktail (middlepanels). Unactivated BALB/c splenocytes were stained with Mouse B Lymphocyte Activation Antibody Cocktail (right panels) orMouse B Lymphocyte Activation Isotype Control (not shown). Scatter plots were used to select either activated lymphoblasts (leftand middle panels) or resting lymphocytes (right panels) for data analysis. The two-color contour plots display the CD19+ Blymphocytes which express the activation antigens CD25 (top of middle and right panels) and CD69 (bottom of middle and rightpanels). Flow cytometry was performed on a BD FACSCalibur™ flow cytometry system.Product Notices1.This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use 1 × 10^6 cells in a 100-µl experimental sample (a test).Since applications vary, each investigator should titrate the reagent to obtain optimal results.2.3.Please refer to /pharmingen/protocols for technical protocols.4.For fluorochrome spectra and suitable instrument settings, please refer to our Fluorochrome Web Page at /colors.PE-Cy7 is a tandem fluorochrome composed of R-phycoerythrin (PE), which is excited by 488-nm light and serves as an energy donor,5.coupled to the cyanine dye Cy7, which acts as an energy acceptor and fluoresces maximally at 780 nm. PE-Cy7 tandem fluorochrome emission is collected in a detector for fluorescence wavelengths of 750 nm and higher. Although every effort is made to minimize the lot-to-lot variation in the efficiency of the fluorochrome energy transfer, differences in the residual emission from PE may be observed.Therefore, we recommend that individual compensation controls be performed for every PE-Cy7 conjugate. PE-Cy7 is optimized for use with a single argon ion laser emitting 488-nm light, and there is no significant overlap between PE-Cy7 and FITC emission spectra. When using dual-laser cytometers, which may directly excite both PE and Cy7, we recommend the use of cross-beam compensation during data acquisition or software compensation during data analysis.Please observe the following precautions: Absorption of visible light can significantly alter the energy transfer occurring in any tandem6.fluorochrome conjugate; therefore, we recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to prevent exposure of conjugated reagents, including cells stained with those reagents, to room illumination.Cy is a trademark of Amersham Biosciences Limited. This conjugated product is sold under license to the following patents: US Patent Nos.7.5,486,616; 5,569,587; 5,569,766; 5,627,027.8.Warning: Some APC-Cy7 and PE-Cy7 conjugates show changes in their emission spectrum with prolonged exposure to formaldehyde. If you are unable to analyze fixed samples within four hours, we recommend that you use BD™ Stabilizing Fixative (Cat. No. 338036).9.Source of all serum proteins is from USDA inspected abattoirs located in the United States.10.Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water beforediscarding to avoid accumulation of potentially explosive deposits in plumbing.This product is subject to proprietary rights of Amersham Biosciences Corp. and Carnegie Mellon University and made and sold under 11.license from Amersham Biosciences Corp. This product is licensed for sale only for research. It is not licensed for any other use. If you require a commercial license to use this product and do not have one return this material, unopened to BD Biosciences, 10975 Torreyana Rd, San Diego, CA 92121 and any money paid for the material will be refunded.ReferencesBendelac A, Matzinger P, Seder RA, Paul WE, Schwartz RH. Activation events during thymic selection. J Exp Med. 1992; 175(3):731-742. (Biology)Brandle D, Muller S, Muller C, Hengartner H, Pircher H. Regulation of RAG-1 and CD69 expression in the thymus during positive and negative selection. Eur J Immunol. 1994; 24(1):145-151. (Biology)Ceredig R, Lowenthal JW, Nabholz M, MacDonald HR. Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature. 1985; 314(6006):98-100. (Biology)Chen J, Ma A, Young F, Alt FW. IL-2 receptor alpha chain expression during early B lymphocyte differentiation. Int Immunol. 1994; 6(8):1265-1268. (Biology) Garni-Wagner BA, Witte PL, Tutt MM, et al. Natural killer cells in the thymus. Studies in mice with severe combined immune deficiency. J Immunol. 1990;144(3):796-803. (Biology)Godfrey DI, Zlotnik A. Control points in early T-cell development. Immunol Today. 1993; 14(11):547-553. (Biology)Krop I, de Fougerolles AR, Hardy RR, Allison M, Schlissel MS, Fearon DT. Self-renewal of B-1 lymphocytes is dependent on CD19. Eur J Immunol. 1996;26(1):238-242. (Biology)Krop I, Shaffer AL, Fearon DT, Schlissel MS. The signaling activity of murine CD19 is regulated during cell development. J Immunol. 1996; 157(1):48-56. (Biology) Lowenthal JW, Corthesy P, Tougne C, Lees R, MacDonald HR, Nabholz M. High and low affinity IL 2 receptors: analysis by IL 2 dissociation rate and reactivity with monoclonal anti-receptor antibody PC61. J Immunol. 1985; 135(6):3988-3994. (Biology)Lowenthal JW, Zubler RH, Nabholz M, MacDonald HR. Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes. Nature. 1985; 315(6021):669-672. (Biology)Marzio R, Jirillo E, Ransijn A, Mauel J, Corradin SB. Expression and function of the early activation antigen CD69 in murine macrophages. J Leukoc Biol. 1997; 62(3):349-355. (Biology)Nishimura T, Kitamura H, Iwakabe K, et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol. 2000; 12(7):987-994. (Biology)Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000; 192(2):295-302. (Biology)Rolink A, Grawunder U, Winkler TH, Karasuyama H, Melchers F. IL-2 receptor alpha chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int Immunol. 1994; 6(8):1257-1264. (Biology)Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000; 192(2):303-309. (Biology)Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993; 73(1):5-8. (Biology)Yokoyama WM, Koning F, Kehn PJ, et al. Characterization of a cell surface-expressed disulfide-linked dimer involved in murine T cell activation. J Immunol. 1988; 141(2):369-376. (Biology)Yokoyama WM, Maxfield SR, Shevach EM. Very early (VEA) and very late (VLA) activation antigens have distinct functions in T lymphocyte activation. Immunol Rev. 1989; 109:153-176. (Biology)Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells. 1994; 12(5):456-465. (Biology)。
Ziopharm公司3500万美元授权第三代睡美人CD19特异性CAR-T细胞疗法丨医麦黑科技
Ziopharm公司3500万美元授权第三代睡美人CD19特异性CAR-T细胞疗法丨医麦黑科技今天是2018年12月21日农历冬月十五医麦客:睡美人CAR-T2018年12月21日/医麦客eMedClub/--Ziopharm和TriArm 昨天宣布,将创办合资公司Eden BioCell,以在中国(包括澳门、香港、台湾)和韩国进行睡美人CAR-T疗法的临床和商业化开发。
根据协议条款,TriArm出资3500万美元,Ziopharm授权第三代睡美人CD19特异性CAR-T细胞疗法。
对于Eden BioCell,双方各持股50%。
Ziopharm首席执行官Laurence Cooper博士表示,“在中国地区推进睡美人平台是我们临床发展和业务发展战略的关键部分”。
基于睡美人平台,可在两天甚至更短时间制造CAR-T细胞,表达CD19特异性CAR、膜结合白细胞介素-15(mbIL15)和一个控制开关。
Laurence Cooper(图片来源:)围绕这样一个新闻,小编接下来将从三点展开:1.中国在CAR-T细胞治疗领域的研究角色和商业角色2.睡美人CD19特异性CAR-T细胞疗法3.CAR-T可能的发展趋势和走向扮演重要角色截止至撰稿前,全世界已有近740项CAR-T临床研究,且美国和东亚占了大部分,分别是302、238项。
而在东亚中,中国的224项占了94%。
从这些直观数据,我们可以看到中国已然是CAR-T临床试验以及研究的一个大国,研究投入和实力都不容小觑。
而我国作为人口大国,又必然是药企和生物公司商业开发的必争之地。
可以说,中国在CAR-T细胞疗法的研究和商业开发中,都扮演着重要角色。
CAR-T临床研究的世界分布(图片来源:)CAR-T临床研究在东亚的分布(图片来源:)睡美人CAR-T“睡美人” 转座系统是Tc1/mariner 转座子超家族中的一员,已经沉寂了一千多万年,直到1997年,Ivics等才揭示了其转座活性。
cd19靶点原理
cd19靶点原理CD19靶点是一种蛋白质,广泛存在于B细胞的表面。
作为免疫系统中的重要调节因子,CD19在B细胞的发育、活化和增殖过程中起着重要作用。
CD19靶点治疗是一种新型的免疫疗法,通过针对CD19靶点的治疗手段,可以显著改善B细胞相关疾病的治疗效果。
CD19靶点治疗的原理主要包括两个方面:一是识别靶点,二是发挥治疗作用。
CD19靶点治疗通常采用嵌合抗原受体T细胞(CAR-T)或双抗体(BiTE)等技术,通过识别CD19靶点,引导免疫细胞对肿瘤细胞发起攻击。
CD19靶点识别的过程是关键的第一步。
CAR-T细胞疗法是一种基于基因工程的细胞免疫疗法,通过将人工合成的嵌合抗原受体基因导入T细胞中,使其表达能够识别CD19的受体。
这样一来,CAR-T细胞就具备了识别CD19靶点的能力。
双抗体(BiTE)则是一种通过连接两个单克隆抗体来实现双重识别的技术,其中一个单克隆抗体与CD19结合,另一个单克隆抗体与T细胞表面的CD3结合。
这样一来,BiTE就能够将T细胞与CD19靶点紧密结合,从而引导T细胞杀伤CD19阳性的肿瘤细胞。
CD19靶点治疗发挥治疗作用的机制有多种。
CAR-T细胞治疗通过识别CD19靶点,激活T细胞并引导其杀伤CD19阳性的肿瘤细胞。
CAR-T细胞与肿瘤细胞结合后,释放细胞毒素,导致肿瘤细胞死亡。
此外,CAR-T细胞还可以激活其他免疫细胞,如自然杀伤细胞和巨噬细胞,增强免疫反应,进一步抑制肿瘤生长。
双抗体(BiTE)则通过结合CD19和CD3,实现T细胞与肿瘤细胞的直接接触,激活T 细胞并引发细胞毒性反应,导致肿瘤细胞的死亡。
CD19靶点治疗在临床应用中取得了显著的疗效。
例如,CAR-T细胞疗法已经成功用于治疗B细胞相关的恶性肿瘤,如急性淋巴细胞性白血病(ALL)和非霍奇金淋巴瘤(NHL)。
临床研究表明,CAR-T细胞疗法可以使大部分患者达到完全缓解的状态,甚至在复发或难治性疾病中也能取得良好的治疗效果。
人细胞角蛋白19片段单克隆抗体的制备和鉴定
人细胞角蛋白19片段单克隆抗体的制备和鉴
定
1 引言
CD19是一种淋巴细胞表面抗原,它可以作为B淋巴细胞的标志物
被应用于治疗白血病和结核病,而获取CD19特异性单克隆抗体是治疗
这些疾病的关键。
2 抗体及原理
抗体是由B淋巴细胞分泌的一种重要的免疫球蛋白,它可通过识
别外源或内源抗原,刺激B淋巴细胞产生抗体来保护机体免受侵害。
单克隆抗体是指一种克隆抗体,识别空间结构与在抗原表位有关的抗原,它能特异性结合抗原分子,使用来治疗临床疾病的效果更好。
3 制备和鉴定
制备CD19特异性单克隆抗体的方法包括选择题目、测序分析、原
核表达和细胞表达等,其中细胞表达用于生产有效和稳定的抗原抗体,测序分析可以确定抗体特异性。
最后,进行活性和特异性鉴定,评估
抗体的活性和特异性,包括定量ELISA、Western blot和流式细胞仪
抗体夹心试验。
4结论
CD19特异性单克隆抗体的制备和鉴定,不仅可以提高抗体的稳定性,也能确保抗体的准确性、特异性和功能。
它们可以应用于治疗B 淋巴细胞相关疾病,提高治疗效果。
cd19靶点原理
cd19靶点原理CD19靶点是一种广泛应用于免疫治疗领域的重要分子,它在肿瘤免疫治疗中发挥着重要的作用。
本文将从CD19靶点的原理来介绍其在免疫治疗中的作用。
CD19是一种细胞表面分子,属于免疫球蛋白超家族。
它主要存在于B细胞的早期发育阶段,并且在成熟的B细胞表面表达。
CD19在B 细胞的发育、激活和信号传导中起着重要的作用。
免疫治疗中的CD19靶向治疗是利用特异性抗体或其他分子与CD19结合,通过激活免疫细胞来杀伤CD19阳性的癌细胞。
CD19靶向治疗的原理是通过特异性抗体与CD19结合,将肿瘤细胞与激活的免疫细胞连接起来,从而使免疫细胞能够识别并杀伤CD19阳性的癌细胞。
这些特异性抗体可以是单克隆抗体或嵌合抗体,具有高度的亲和力和特异性,能够高效地结合CD19。
CD19靶向治疗的主要方式有两种:一种是通过单克隆抗体直接结合CD19,另一种是通过嵌合抗体将CD19与其他免疫细胞表面的受体连接起来。
这些免疫细胞可以是T细胞、自然杀伤细胞或巨噬细胞等。
当CD19阳性的癌细胞与免疫细胞连接后,免疫细胞会释放细胞毒性物质,如穿孔素和颗粒酶等,杀伤癌细胞。
CD19靶向治疗在肿瘤免疫治疗中已经取得了显著的疗效。
在B细胞相关的恶性肿瘤中,如急性淋巴细胞白血病和非霍奇金淋巴瘤等,CD19靶向治疗已经成为一种重要的治疗手段。
研究表明,CD19靶向治疗可以显著提高患者的生存率和治疗效果。
尽管CD19靶向治疗在肿瘤免疫治疗中取得了显著的进展,但仍然存在一些挑战和问题。
首先,CD19靶向治疗可能导致一些不良反应,如细胞因子释放综合征和神经毒性等。
其次,一些患者可能会出现疗效不佳或复发的情况,这可能与肿瘤细胞的逃逸机制和免疫细胞的功能障碍有关。
此外,CD19靶向治疗在一些非B细胞相关的肿瘤中的疗效仍然有待进一步研究。
总的来说,CD19靶向治疗作为肿瘤免疫治疗的一种重要手段,已经在临床上取得了显著的疗效。
通过特异性抗体与CD19结合,CD19靶向治疗可以有效地杀伤CD19阳性的癌细胞。
【靶点Talk】CD19靶点科普和研究进展
【靶点Talk】CD19靶点科普和研究进展CD19作为目前肿瘤免疫治疗研发的热门靶点,其热度完全不输于PD-1和PD-L1。
今天给大家带来CD19相关介绍。
1、CD19的“简历”CD19是B细胞的生物标志物,通过B细胞受体(BCR)调节B细胞的发育增殖和分化并介导T细胞对靶细胞的杀伤。
CD19与CD21、CD81形成B细胞共同受体复合物,该复合物减少BCR介导的B细胞激活阈值,其中CD21起桥梁作用,CD81调节CD19的表达,CD19则发挥主要的信号传导作用。
此复合物在B细胞激活过程中解离,使得CD19能够在细胞膜中自由扩散并与BCR相互作用。
CD19与BCR和其他表面分子结合,可以直接和间接地募集和结合各种下游蛋白激酶,如Src、Ras、PI3K等。
Src蛋白在细胞表面聚集增强BCR信号。
BCR激活后,CD19还通过募集和激活PI3K和下游Akt激酶来增强BCR诱导的B细胞扩增信号传导。
2、研究进展据不完全统计,全世界已有300多个完成和正在进行的CAR-T临床试验,其中约150个针对CD19,占总数的50%。
随着 CD19 靶点的持续火热,靶向 CD19产品越来越丰富,CAR-T、单抗、双抗、和ADC 等疗法都得到相应的开发,接下来分享一下CD19靶点的临床应用和研究进展。
CD19 CAR-T目前,全球共5款CAR-T细胞疗法获批上市,其中四款均为CD19 CAR-T 细胞疗法。
从临床数据来看,四款CD19 CAR-T细胞疗法疗效均十分优异,但是CD19 CAR-T的劣势也十分明显,主要表现为安全性不足、价格过高、自体CAR-T制备时间较长。
CD19 双抗博纳吐单抗(Blincyto)是安进研发的一款靶向CD19和CD3的双抗药物,一端可与CD19结合,另一端可与T细胞表面的CD3结合,进而介导T细胞对肿瘤细胞的溶解。
博纳吐单抗用于治疗复发/难治性急性B淋巴细胞白血病,且在缓解期依旧有微小残留病灶(MRD)的儿童和成人患者。
cd19 酪氨酸残基
cd19 酪氨酸残基
CD19是一种白细胞分化抗原,主要表达于B细胞系,包括所有非浆细胞B细胞以及恶性B 细胞和滤泡树突状细胞(FDC)。
它是一种I型跨膜蛋白,包含单个跨膜结构域、胞内C末端和胞外N末端。
在胞外段,CD19含有两个C2型Ig样结构域。
胞内结构域高度保守,由242个氨基酸组成,在C末端附近有9个酪氨酸残基。
多项研究表明,CD19的生物学功能依赖于三个细胞质酪氨酸残基:Y391,Y482和Y513。
这些酪氨酸残基可能在信号转导过程中起到关键作用,当它们被磷酸化后,可以吸引并激活一系列的蛋白质,从而引发一系列的生物化学反应。
这些反应对于B细胞的激活、增殖和分化等过程都是至关重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial AntigenPresenting CellsHarjeet Singh1,Matthew J.Figliola1,Margaret J.Dawson1,Simon Olivares1,Ling Zhang1,Ge Yang1, Sourindra Maiti1,Pallavi Manuri1,Vladimir Senyukov1,Bipulendu Jena1,Partow Kebriaei2,Richard E.Champlin2,Helen Huls1,Laurence J.N.Cooper1,3*1Division of Pediatrics,Children’s Cancer Hospital,The University of Texas MD Anderson Cancer Center,Houston,Texas,United States of America,2Department of Stem Cell Transplantation and Cellular Therapy,The University of Texas MD Anderson Cancer Center,Houston,Texas,United States of America,3The University of Texas Graduate School of Biomedical Sciences at Houston,Houston,Texas,United States of AmericaAbstractAdoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor(CAR)is being evaluated in multiple clinical trials.Our current approach to adoptive immunotherapy is based on a second generation CAR(designated CD19RCD28) that signals through a CD28and CD3-f endodomain.T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB)transposon/transposase system to express this CAR.Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells(aAPC)in the presence of interleukin(IL)-2and21.Here,we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPCwere adapted for human application.Indeed,we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation(HSCT).We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors.Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by28days of co-culture on c-irradiated aAPC,1010T cells were produced of which.95%expressed CAR.These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.Citation:Singh H,Figliola MJ,Dawson MJ,Olivares S,Zhang L,et al.(2013)Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells.PLoS ONE8(5):e64138.doi:10.1371/journal.pone.0064138Editor:Hossam M.Ashour,Wayne State University,United States of AmericaReceived January29,2013;Accepted April8,2013;Published May31,2013Copyright:ß2013Singh et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.Funding:Cancer Center Core Grant(CA16672);RO1(CA124782,CA120956,CA141303,CA163587,CA174385);R33(CA116127);P01(CA148600);Adee Heebe, Albert J.Ward Foundation;Ahuja family;Ann Parsons Memorial Foundation;Burroughs Wellcome Fund;Gillson Longenbaugh Foundation;Cancer Prevention and Research Institute of Texas;CLL Global Research Foundation;Department of Defense;Estate of Noelan L.Bibler;Harry T.Mangurian,Jr.,Fund for Leukemia Immunotherapy;Institute of Personalized Cancer Therapy;Leukemia and Lymphoma Society;Lymphoma Research Foundation;MDACC’s Sister Institution Network Fund;Miller Foundation;Mr.Herb Simons;Mr.and Mrs.Joe H.Scales;Mr.Thomas Scott;National Foundation for Cancer Research;Pediatric Cancer Research Foundation;Production Assistance for Cellular Therapies(PACT);and William Lawrence and Blanche Hughes Children’s Foundation.The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.Competing Interests:The authors have declared that no competing interests exist.*E-mail:ljncooper@IntroductionA chimeric antigen receptor(CAR)recognizes cell-surface tumor-associated antigen independent of human leukocyte antigen (HLA)and employs one or more signaling molecules to activate genetically modified T cells for killing,proliferation,and cytokine production[1].Targeting CD19has been achieved by us and others through the enforced expression of a CAR that recognizes CD19independent of HLA.Gene therapy can be combined with immunotherapy to redirect the specificity of T cells for B-lineage antigens and patients with advanced B-cell malignancies benefit from infusion of such tumor-specific T cells[1–9].In contrast to other groups that genetically modify T cells using recombinant retrovirus,we have developed a non-viral gene transfer approach to enforce expression of the introduced CAR.This was achieved application[10,11].SB-mediated gene transfer consists of coordinated excision and insertion of SB transposon from a plasmid by the SB transposase into TA dinucleotide repeats in the target-cell genome[12,13].To improve therapeutic potential,our 2nd generation CAR[14]signals through CD28and CD3-f with the expectation that this will sustain T-cell proliferation and recycle effector functions in vivo.To retrieve T-cell integrants stably expressing the CAR we developed aAPC to select for T cells in vitro that are capable of sustained CAR-mediated propagation.These aAPC(designated clone#4)co-express CD19along with the co-stimulatory molecules CD86,CD137L,a membrane-bound mutein of IL-15,and the Fc-receptor CD64.The SB system and aAPC have been combined to generate CD19-specific CAR+T cells in support of multiple clinical trials under INDs at MD Anderson Cancer Center(MDACC)[15].Totwo platform technologies to generate genetically modified T cells for infusion after autologous(IND#14193)and allogeneic HSCT (IND#14577),including after umbilical cord blood transplanta-tion(IND#14739),and lymphodepleting chemotherapy(IND# 15180).This report describes the manufacturing processes and associated testing to generate the clinical products for use in these investigator-initiated trials[16].Our clinical-grade CD19-specific T cells,prepared in compli-ance with current good manufacturing practice(cGMP)for Phase I and II trials can be generated by(i)electrotransfer of supercoiled DNA plasmids derived from SB system coding for CAR as a transposon and(ii)numeric expansion on CD19+aAPC clone#4. The manufacturing process includes every-7-to-10-day additions of c-irradiated aAPC in the presence of soluble recombinant human IL-2and IL-21.After28days,typically at least90%of the propagated T cells express CAR and are cryopreserved for infusion.These T cells meet release criteria defined by sterility, phenotype,viability,and cell number.In-process testing reveals that the electroporated/propagated T cells express CAR in a memory/naı¨ve population,have a normal karyotype,preserved TCR V b repertoire,and are able to lyse CD19+tumor targets in a CAR-dependent manner.Materials and MethodsGeneration of clinical-grade DNA plasmidsThe SB transposon,CoOp CD19RCD28/pSBSO,expresses the human codon optimized(CoOp)2nd generationCoOp CD19RCD28CAR under EF-1/HTLV hybrid compositepromoter(InvivoGen)comprised of Elongation Factor-1a(EF-1a) [17]and59untranslated region of the Human T-Cell Leukemia Virus(HTLV)[11,18].The derivation of this DNA plasmid is described in Figure S1.The SB transposase,SB11,under the cytomegalovirus(CMV)promoter is expressed in cis from the DNA plasmid pCMV-SB11[11].The derivation of this DNA plasmid is described in Figure S2.Both plasmids were sequenced in their entirety and manufactured by Waisman Clinical Biomanufacturing Facility(Madison,WI)using kanamycin for selection of the bacterial strain E.Coli DH5a.The release criteria for the DNA plasmids are shown in Table S1.CD19was expressed using the DNA plasmid D CD19CoOp-F2A-Neo/pSBSO (Figure S3).Cell countingTrypan-blue exclusion was used to distinguish live from dead cells and counted using Cellometer(Nexecelom Bioscience)[11]. Isolation of PBMCLeukapheresis products from two male volunteer healthy donors were purchased from Key Biologics LLC(Memphis,TN).The peripheral blood mononuclear cells(PBMC)were isolated by our adapting the Biosafe Sepax system(Eysins,Switzerland)for work in compliance with cGMP.Briefly,after closing all the clamps on the CS-900kit,100mL Ficoll(GE Healthcare)was aseptically transferred via60mL syringes to a density gradient media bag (‘‘ficoll bag’’)via Luer-lock connector and the tubing was heat sealed using a hand held sealer(Sebra,Model#2380).The kit was spike-connected to a1,000mL bag containing CliniMACS buffer (PBS/EDTA,Miltenyi,Cat#70026)with20mL25%Human Serum Albumin(HSA)(Baxter)(2%v/v,wash buffer)for washes, a final product bag[300mL Transfer Pack with Coupler(Baxter/ Fenwal4R2014)]and a reagent/blood ing the density gradient-based separation protocol(v126),the syringe piston was unit closed.The reagent/blood bag along with product bags was hung and all stopcocks were seated on the rotary pins in the‘T’position.After connecting the pressure-sensor line,the kit was validated by automatic single-use test and then manually primed using gravity flow.After completion of the cycle,the final product was aseptically transferred into a centrifuge tube and washed once each with wash buffer and phosphate buffered saline(PBS)at 400g for10minutes.After counting,cells were cryopreserved using cryopreservation media(50%HSA,40%Plasmalyte,10% DMSO)in CryoMACS Freeze bags(Miltenyi)and vials(Nunc) using BM5program(4u C to24u C at rate22u C/min,24u C to 260u C at rate235u C/min,260u C to220u C at rate8u C/min, 220u C to245u C at rate22.5u C/min,245u C to280u C at rate 210u C/min)in a controlled-rate freezer(Planer Kryo750). Manufacture of aAPC(clone#4)master and working cell banksK562were transduced by lentivirus at the University of Pennsylvania to generate aAPC(clone#4,designated CJK64.86.41BBL.GFP.IL-15.CD19)that co-express(i)CD19,(ii) CD64,(iii)CD86,(iv)CD137L,and(v)membrane bound IL-15 (mIL-15)as a bi-cistronic vector with EGFP.The aAPC were numerically expanded in HyQ RPMI1640(Hyclone)containing 10%heat-inactivated defined FBS(Hyclone)and2mmol/L Glutamax-1(Life Technologies-Invitrogen)culture media(CM) maintaining the cells at56105/mL.A master cell bank(MCB)of 320vials was produced through Production Assistance of Cellular Therapies(PACT)(Table S2).A200vial working cell bank (WCB)of Clone4aAPC derived from the MCB was then generated at MDACC and tested(Table S3).aAPC(clone#4)to selectively propagate CAR+T cells The c-irradiated aAPC were used to numerically expand the genetically modified T cells.Thawed aAPC from WCB were propagated in CM for up to60days in VueLife cell culture bags and harvested using Biosafe Sepax II harvest procedure.Briefly, CS-490.1kit was connected to a300mL output bag(transfer pack)via Luer lock connection.The separation chamber was installed in the pit and the tubing was inserted into the optical sensor and stopcocks aligned in T-position.After connecting the pressure sensor line,the product bag and supernatant/plasma bags were hung on the holder.The modified protocol PBSCv302 was selected from the Sepax menu and the volume of input product to be processed(initial volume)was set to#840mL.After validation and kit test,the procedure was started.Following completion,the bags were removed,clamps closed and the kit was removed.The cells from the final product bag were aseptically removed,washed twice with wash media(10%HSA in Plasmalyte) and counted.aAPC were irradiated(100Gy)using a CIS BIO International radiator(IBL-437C#09433)and cryopreserved for later use in cryopreservation media using controlled-rate freezer (Planer Kryo750).OKT3-loading of aAPCThe OKT3-loaded(via CD64)aAPC(clone#4)were used to propagate control(CAR neg)autologous control T cells that had not undergone genetic modification.The aAPC,obtained from culture,were incubated overnight in serum-free X-Vivo15(cat# 04-744Q,Lonza)containing0.2%acetyl cysteine(Acetadote, Cumberland Pharmaceuticals)termed Loading Medium(LM). The next day cells were washed,irradiated(100Gy)using a Gamma Cell1000Elite Cs-137radiator(MDS Nordion),with1m g/106cells of functional grade purified anti-human CD3 (clone-OKT3,16-0037-85,eBioscience)and incubated with gentle agitation on a3-D rotator(Lab-Line)at4u C for30minutes. Following three washes with LM the cells were used in experiments or frozen in aliquots in liquid nitrogen in vapor layer for later use.Manufacture of CAR+T cellsThawed PBMC were resuspended in(i)Human T-cell kit(cat# VPA-1002,Lonza;100m L for26107cells in one cuvette),with(ii) the DNA plasmid(CoOp CD19RCD28/pSBSO)coding for CD19RCD28CAR transposon(15m g supercoiled DNA per 26107PBMC per cuvette),and(iii)the DNA plasmid(pCMV-SB11)coding for SB11transposase(5m g supercoiled DNA per 26107PBMC per cuvette).This mixture was immediately transferred to a cuvette(Lonza),electroporated(defining culture day0)using Nucleofector II(Program U-14,Amaxa/Lonza), rested in10%RPMI complete media for2to3hours,and after a half-media change,incubated overnight at37u C,5%CO2.The following day,cells were harvested,counted,phenotyped by flow cytometry,and co-cultured with c-irradiated aAPC at a ratio of 1:2(CAR+T cell:aAPC),which marked culture day1and the beginning of a7-day stimulation cycle.IL-21(cat#AF-200-21, PeproTech)and IL-2(cat#NDC65483-116-07,Novartis)were added on a Monday-Wednesday-Friday schedule onwards of day 1and day7respectively.NK cells can prevent the numeric expansion of CAR+T cells,especially if their overgrowth occurs early in the tissue culturing process.Therefore,a CD56-depletion was performed if CD3neg CD56+cells$10%using CD56beads (cat#70206,Miltenyi Biotech,20m L beads/107cells)on LS columns(cat#130-042-401,Miltenyi Biotech)in CliniMACS buffer containing25%HSA(80m L/107cells).T cells were cryopreserved as backup on culture day21after electroporation and the end of the3rd stimulation cycle using a controlled-rate freezer(Planer Kryo750)as described above,and stored in liquid nitrogen(vapor-layer).The cell counts for total,CD3+,and CAR+ T cells were plotted over time and slopes determined using linear regression.The fold-expansion results were compared using Student’s t-test.CD4/CD8ratios were calculated for each time point and validation runs and averaged.Generation of CAR neg control T cellsAs a control,56106mock transfected PBMC were co-cultured with irradiated and anti-CD3(OKT3)loaded K562-derived aAPC clone#4at a ratio of1:1in a7-day stimulation cycle.All the cultures were supplemented with IL-21(30ng/mL)from culture day1onwards,and IL-2(50U/mL)starting7days after the start of the culture.All cytokines were subsequently added on a Monday-Wednesday-Friday schedule.Cell linesCD19+Daudi b2m[Burkitt lymphoma,co-expressing b2 microglobulin,[19]]and CD19+NALM-6(pre-B cell)were cultured as described previously[11].EL-4cells(mouse T-cell lymphoma line)from ATCC were modified to express CD19using the construct D CD19CoOp-F2A-Neo/pSBSO.Briefly,56106EL-4 cells were resuspended in100m L of Amaxa Mouse T cell Nucleofector kit(Catalogue#VPA-1006)with SB transposon (D CD19CoOp-F2A-Neo/pSBSO,3m g)and SB transposase (pCMV-SB11,1m g)and electroporated(program X-001)using Nucleofector II(Lonza).The transfectants were cultured in a cytocidal concentration of G418(0.8mg/mL)and underwent fluorescent activated cell sorting(FACS)for homogeneous were obtained from ATCC and electroporated(Program T-14, Nucleofector II,Lonza)with CoOp CD19RCD28/pSBSO using the Amaxa/Lonza Nucleofector solution(Kit V).Two weeks after electroporation,Jurkat cells stably expressing CAR underwent FACS for homogeneous expression of CAR to obtain a clone (clone#12)[20].Cell lines were maintained in HyQ RPMI1640 (Hyclone)supplemented with2mmol/L Glutamax-1(Invitrogen) and10%heat-inactivated Fetal Calf Serum(FCS)(Hyclone;10% RPMI).All cell lines were validated using STR profiling or karyotyping according to institutional cell line authentication policy.Immunophenotype of cellsCells were stained using antibodies(Table S4)in100m L FACS Buffer(2%FBS,0.1%Sodium Azide)for30minutes at4u C.For intracellular staining,after fixing/permeabilization for20minutes, cells were stained in perm wash buffer with appropriate antibodies for30minutes at4u C.Acquisition was performed using FACSCalibur(BD Bioscience)and analyzed using Cell Quest (BD Bioscience)or FCS Express3.00.0612(De Novo Software, Thornhill,Ontario,Canada).Western BlotProtein expression of the chimeric CD3-f(73-kDa)derived from CD19RCD28was assessed as described previously[10].Briefly, protein lysates were transferred using iBlot Dry Blotting System (Invitrogen)onto nitrocellulose membrane,incubated with mouse anti–human CD3-f monoclonal antibody(cat#551033,0.5m g/ mL,BD Biosciences,CA)followed by horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG(cat#1858413,1:10,000; Pierce,IL),developed using SuperSignal West Femto Maximum Sensitivity substrate(Pierce,IL)and chemiluminescence captured using VersaDocTM4000gel documentation system(BioRad, CA).Telomere Length Analysis by Fluorescence In Situ Hybridization and Flow Cytometry(Flow-FISH) Telomere length of the T cells was measured by using the Telomere PNA Kit/FITC for Flow Cytometry(DAKO)according to the manufacturer’s instructions.Briefly,isolated cells(CD4or CD8)and control cells(cat#85112105,CEM-1301cell line; ECACC)were mixed in equal measure in hybridization solution with or without FITC-labeled telomere PNA probe for10minutes at82u C;hybridized overnight in the dark at room temperature; washed twice with a wash solution at40u C;resuspended in PBS containing2%FCS and propidium iodide(1m g/mL);and analyzed on a FACSCalibur(BD Biosciences).FITC-labeled fluorescent calibration beads(cat#824A,Quantum TM FITC MESF,Bangs Laboratories)were used for calibration of the flow cytometry machine.Relative telomere length(RTL)was deter-mined by comparing T cells with a CEM-1301cell line per:RTL~(Mean FL1sample cells with probeÀMean FL1sample cells without probe)|2|100 Chromium Release AssayT cells were evaluated for their cytotoxicity in a standard4-hour chromium release assay using51Cr-labeled target cells.T cells were plated in triplicate at16105,0.56105,0.256105,0.1256105bottom plate(Costar).After incubation,50m L of supernatant was harvested onto LumaPlate(Perkin Elmer),read in TopCount NXT(Perkin Elmer)and percent specific lysis was calculated per:Experimental51Cr released-Spontaneous51Cr released Maximum51Cr released-Spontaneous51Cr released|100Spontaneous and maximum release was determined by measuring chromium in the conditioned supernatant from target cells incubated with CM or0.1%Triton X-100(Sigma),respectively.Endotoxin TestingEndotoxin level in final products was determined using Endosafe H-PTS Portable Test System(Charles River Laborato-ries)as per the manufacturer’s guidelines.The test has a detection limit of0.01–10EU/mL which can be converted to EU/patient weight.Mycoplasma testingMycoplasma detection by PCR was performed using the TaKaRa Mycoplasma Detection Kit(Clontech)according to manufacturer’s instructions.T-cell receptor V b repertoireT-cell receptor(TCR)-V b usage of culture day28and day35 CAR+T cells was determined using a panel of24TCR V b–specific mAbs(cat#IM3497,IO TEST Beta Mark TCR-V b repertoire kit,Beckman Coulter)used in association with CD3-specific mAb(cat#340949,BD Biosciences,10m L)and isotype-matched control mAbs(cat#552834,BD Biosciences).Real time PCR to determine copy number of integrated CARTo determine the copy number of integrated CD19RCD28 CAR in genetically modified T cells,50–100ng genomic DNA (cat#80204,AllPrep DNA/RNA Mini Kit,Qiagen)was amplified using Steponeplus Real-time PCR system(Applied Biosystems)in a PCR reaction(2min for50u C,10min for95u C, followed by40cycles of15sec95u C and1min60u C)using the following primers:forward(59-CAGCGACGGCAGCTTCTT-39),reverse(59-TGCATCACGGAGCTAAA-39)and probe(59-AGAGCCGGTGGCAGG-39).Primers(Cat#4316844,Applied Biosystems)for RNAse P gene were used as an internal control. Serially-diluted genomic DNA from a genetically modified Jurkat-cell(clone#12)containing1copy of CAR fromCoOp CD19RCD28/pSBSO DNA plasmid was used to generatea standard curve[20].All the primers,probes and TaqMan Gene Expression Master Mix were purchased from Applied Biosystem. PCR for SB11transposaseDNA(20ng)(AllPrep DNA/RNA Mini Kit,Qiagen)isolated from CAR+T cells was amplified using a thermal cycler(PTC-200,DNA Engine,BioRad)using forward(59-ATGGGAAAAT-CAAAAGAAATC-39)and reverse(59-CTAGTATTTGGTAG-CATTGC-39)primers in a PCR reaction(95u C for5min;25 cycles of95u C for15sec,58u C for40sec,72u C for60sec; followed by a final extension at72u C for7min).GAPDH was used as the housekeeping gene and was amplified in the same PCR reaction using the primers,forward(59-TCTCCAGAACAT-CATCCCTGCCAC-39)and reverse(59-TGGGCCAT-GAGGTCCACCACCCTG-39).Linearized pCMV-SB11plasmid DNA(1ng)and genomic DNA(20ng)from genetically modified DNA plasmid SB11-IRES2-EGFP)[20]were used as positive control.Mock electroporated(CAR neg)and OKT3-aAPC-propa-gated T cells were used as a negative control.Assay to assess for unwanted autonomous T-cell growth To monitor aberrant T-cell growth,26105CAR+T cells, harvested after4aAPC-mediated stimulation cycles(28days after electroporation)were cultured in triplicate in a24-well tissue culture plate for an additional18days.(i)Positive control:the presence of aAPC and cytokines(50U/mL IL-2and30ng/mL IL-21).(ii)Test:the absence of aAPC and cytokines.The genetically modified T cells passed the assay when total viable cells at day18were(i).26105cells for CAR+T cells cultured with aAPC and cytokines and(ii),26104cells for CAR+T cells cultured without aAPC and cytokines.G-band karyotypingCAR+T cells at the end of co-culture were harvested and the slides were stained using Giemsa stain using standard procedure.A total of20G-banded metaphases were analyzed.ResultsaAPC(clone#4)K562functioning as aAPC(clone#4)were employed to selectively propagate CAR+T cells.The cultured aAPC were harvested from VueLife bags by Sepax II device using the volume reduction procedure which took,40minutes.The mean preprocessing volume and aAPC counts were575mL(range 500–700mL)and4.96108(range3.26108to7.76108),respec-tively.After processing with Sepax II,mean recovery of cells was 108%(range75to136%),with an output volume of125mL (range50to200mL)resulting in mean volume reduction of 78.3%(range60to91.6%,Figure1A,B).The automated cell recovery was similar to a manual volume reduction procedure (82%)which took45minutes of sustained operator time and resulted in91%volume reduction.aAPC were regularly monitored by flow cytometry for.80%expression of the introduced transgenes coding for CD19,CD64,CD86, CD137L,and EGFP(as a marker for expression of mIL-15). The immunophenotyping was undertaken upon generating the MCB and WCB and upon each addition of c-irradiated aAPC to T-cell cultures(that marked the beginning of each stimulation cycle,Figure1C).MCB and WCB for Clone4aAPC tested negative for sterility and mycoplasma on cells and cell supernatant. In the biosafety testing,no virus was detected by adventitious virus testing,replication competent retrovirus testing,and screening for a range of human pathogenic viruses.Testing validated that the aAPC(clone#4)was derived from K562based on finger printing (Table S5).Manufacture of CAR+T cellsValidation studies were undertaken for large scale production of CD19-specific CAR+T cells to establish that PBMC can be electroporated and propagated to clinical meaningful numbers [15](Figure2)and meet pre-established release criteria (Table1).Two normal donor apheresis products were processed to isolate mononuclear cells(MNC)using the Sepax cell-processing system.The apheresis products201mL(donor1) and202mL(donor2)were processed in two batches(,100mL/ batch)generating a50mL output product.The pre-processing counts were similar to post-processing counts of the apheresis products.A total of5.36109and7.16109cells were isolated1and donor 2.Cells were then cryopreserved in aliquots (46107/mL)in CryoMACS freeze bags (10mL)and reference cryovials (1mL)for later use.Three separate validation experiments were performed and are summarized in Table 1.For validation run 1and 2(V1,V2)cells from donor 1and for validation 3(V3)cells from donor 2were used.For each run freshly-thawed PBMC were electroporated and ex vivo numerically expanded in separate culturing procedures (Table S6).On culture day 0,36108(V1)and 86108(V2,V3)cells were thawed (viability,88.9to 97.6%)and rested for 2hours prior to electroporation.2to 36108cells (V1=26108;V2and V3=36108)were electroporated at 26107cells per cuvette with CoOp CD19RCD28/pSBSO transposon and pCMV-SB11transposase DNA plasmids and the following day (culture day 1)co-cultured with aAPC clone #4based on CAR expression.The electroporation efficiency for the three validation runs was assessed on culture day 1as measured by expression of CAR (33.7%,25.5%and 47.1%).CAR expression at the end of co-culture (culture day 28)was 92,99.2and 96.7%,and the cultures contained 9565.3%(mean 6SD)CD3+T cells with negligible amounts of contaminating CD19+cells (0.760.15%,mean 6SD)and CD32+aAPC (0.660.6%,mean 6SD,Figure 3A,Table 1).We further confirmed CAR expression by Western blot of whole-cell lysates of electroporated/propagated T cells using CD3-f chain-specific mAb revealing an expected 73-kinetics of T-cell growth on aAPC,we observed an accelerated rate of T-cell propagation at the end of second week of culture (end of stimulation cycle 2),which is consistent with increased fold-expansion of total (p =0.01)and CD3+(p =0.01)T cells as compared to the fold-expansion in the first week of stimulation.The weekly fold-expansion at the end of third and fourth week for total (p =0.01,p ,0.001),CD3+(p =0.03,p ,0.001),CAR +(p =0.02,p ,0.001)T cells was consistently higher than that of week-one,respectively (Figure S4).We observed similar weekly fold-expansion for CD3+and CAR +T cells past week one of stimulation.After 4weeks of co-culture on c -irradiated aAPC there was an average 545-fold numeric expansion of CD3+T cells with a 1,111-fold expansion of CAR +T cells.The ex vivo expansion (culture day28)resulted in an average 2.8661010CD3+T cells,almost all of which were CAR +(2.6561010).The propagation kinetics of total (p =0.18),CD3+(p =0.17)and CAR +(p =0.2)T cells for the three validation runs were similar (Figure 4A,B,C ).These data support the recursive addition of aAPC for the selective outgrowth of CD19-specific T cells.Immunophenotype of electroporated and propagated CAR +T cellsTwo of the three validation runs resulted in a preferentialFigure 1.Harvest and characterization of aAPC.(A,B)Sepax volume reduction.aAPC clone #4grown in VueLife bags were harvested using CS-490.1kit in Sepax II.The Sepax harvest (S,n =4)was compared to manual (M,n =1)procedure.The mean pre/post-processing cell-counts (4.96108vs 56108)were similar using the Sepax system.(C)Phenotype of aAPC (clone #4).Flow cytometry analysis showing expression of CD19,CD64,CD86,CD137L and mIL-15(expressed with EGFP)(mIL-15-EGFP)on K562aAPC and K562parental controls.doi:10.1371/journal.pone.0064138.g001Figure2.Schematic of the process of generating clinical grade CD19-specific T cells.A MCB(PACT)and WCB(MDACC)were generated for K562-derived aAPC(clone#4).For the generation of CAR+T cells,aAPC were numerically expanded in bags,harvested using the Sepax II system, irradiated(100Gy),and cryopreserved for later use.CD19-specific T cells were manufactured as follows;PBMC were isolated from normal donor apheresis products using the Sepax II system and cryopreserved.The PBMC were later thawed,electroporated with the SB DNA plasmids (CD19RCD28CAR transposon,SB11transposase)using the Nucleofector System,co-cultured with thawed irradiated aAPC along with cytokines(IL-2 and IL-21)for a culture period of28days and cryopreserved.doi:10.1371/journal.pone.0064138.g002Figure3.Phenotype of CAR+T cell.(A)Expression of CD19RCD28CAR on T cells day after electroporation(culture day1)and after28days of co-culture on aAPC clone#4along with lack of CD19+aAPC.(B)CAR expression by western blot analysis using CD3-f specific antibody.Whole cell lysates were run on SDS-PAGE under reducing conditions.Molecular weight marker(M),Parental Jurkat cells(Lane1),CD19RCD28+Jurkat cells(Lane 2),CAR neg control T cells(Lane3)and CD19RCD28+T cells(Lane4).(C)Percent expression of CD3+,CD4+CAR+and CD8+CAR+T cells with in a lymphocyte gate in cultures over time.Each symbol represents a separate experiment;the solid lines are mean of the three validation experiments.(D)Immunophenotype of memory/naı¨ve,adhesion,activation,cytolytic and exhaustion markers on CAR+T cells at the end(d28)of co-culture.。