江苏省专转本高数真题及答案
江苏专转本高等数学真题(附答案)
江苏专转本高等数学真题(附答案)2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为()A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a 2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为()A 、10<<αB 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' ()A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a . 12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 . 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→ 14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy . 15、求不定积分:?+dx x 12sin . 16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. 18、计算二重积分??Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2. 20、求微分方程x y y =-''的通解.。
江苏省专转本高数真题及答案
江苏省专转本⾼数真题及答案⾼等数学试题卷(⼆年级)注意事项:出卷⼈:江苏建筑⼤学-张源教授1、考⽣务必将密封线内的各项⽬及第 2页右下⾓的座位号填写清楚. 3、本试卷共8页,五⼤题24⼩题,满分150分,考试时间120分钟. ⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)⼆2)sinx ,则函数f (x )的第⼀类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有⼀个最⼤值B.只有⼀个极⼩值C.既有极⼤值⼜有极⼩值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. ⼀ dx 3dyD. - dx - 3dy2 21 15、⼆次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d ⼨ o f (「cos 〒,「sin ⼨)d 「B. —4d 丁 ? f (「cos 〒,「sin ⼨)「d 「&下列级数中条件收敛的是()⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝⼙ y ⑺(0) = _______ .江苏省 2 0 12 年普通⾼校专转本选拔考试2、考⽣须⽤钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上⽆效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos ⼨,「sin ⼨):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“⼆ n3 三、计算题(本⼤题共8⼩题,每⼩题8分,共64 分)2x +2cosx —2 lim ⼚x 0x ln(1 x)2116、计算定积分",-严.17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.18、设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连-2续导数,求⼀Zc^cy19、已知函数f(x)的⼀个原函数为xe x ,求微分⽅程丫 4/ 4^ f (x)的通解. 20、计算⼆重积分..ydxdy ,其中D 是由曲线y 「x-1,D四、综合题(本⼤题共2⼩题,每⼩题10分,共20分)21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积.3x322、已知定义在(⽫,畑)上的可导函数f(x)满⾜⽅程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数⽅程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平⾯(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本⼤题共2⼩题,每⼩题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6⼗x0 g(t)dt g(x)24、设f(x)⼀2—XHO,其中函数g(x)在(⽫,母)上连续,且lim g(x⼃=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)⼔.⼀. 选择题1-5BCCABD⼆. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt ⼆21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数⽅程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx ⼆(2x 1)d tanx ⼆(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.解:平⾯⼆的法向量n -OM 「=(0,3,⼀2),直线⽅向向量为S = n "「= (0,-2,-3),直线⽅程:x -1 y -1 z -10 ⼀ -2 ⼀ -3 18、设函数z ⼆f(x,xy^ (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的⼀个原函数为xe x ,求微分⽅程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” ? 4y ' 4y =0 的通解,特征⽅程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次⽅程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代⼊原⽅程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算⼆重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平⾯D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)⼧(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =⼻,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-⼆,0) (2,::)单调递增,在(0,2)单调递减。
2001—2010年江苏专转本高等数学真题(附答案)
2011--2010江苏省普通高校“专转本”统一考试高等数学试题及答案成败在于努力从2001年到2010年的转本试卷及答案杨威2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2001—2017江苏专转本高等数学真题(与答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶 连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2019年江苏省普通高校“专转本”统一考试《高等数学》试卷
2019年江苏省普通高校“专转本”统一考试一、选择题(本大题共8小题,每小题4分,共32分)l. 设当0→x 时,函数()2()ln 1f x kx =+与()1cos g x x =-是等价无穷小,则常数k 的值为( ) A.14 B.12C.1D.2 2. 0x =是函数()111xf x e =+的( )A. 跳跃间断点B. 可去间断点C. 无穷间断点D. 振荡间断点 3. 设函数()f x 在0x =处连续,且()0lim 1sin 2x f x x→=,则()0f '=( )A. 0B.12C. 1D. 2 4. 设()f x 是函数cos2x 的一个原函数,且()00f =,则()f x dx =⎰( )A.1cos 24x C -+ B.1cos 22x C -+ C.cos2x C -+ D. cos2x C + 5. 设211ln 2ln 2a dx x x +∞=⎰,则积分下限a 的值为( ) A. 2 B. 4 C. 6 D. 8 6. 设()f x 为(),-∞+∞上的连续函数,则与211f dx x ⎛⎫⎪⎝⎭⎰的值相等的定积分为( ) A.()221f x dx x ⎰B. ()122f x dx x ⎰C. ()1122f x dx x ⎰D. ()1221f x dx x ⎰7.二次积分()011,xdx f x y dy --⎰⎰交换积分次序后得( )A.()011,y dy f x y dx --⎰⎰ B.()100,ydy f x y dx -⎰⎰C.()110,ydy f x y dx -⎰⎰ D.()10,ydy f x y dx -⎰⎰8.设()1ln 1nn u ⎛=-+⎝,1ln 1n v n ⎛⎫=+ ⎪⎝⎭,则( ) A.级数1nn u∞=∑与1nn v∞=∑都收敛 B. 级数1nn u∞=∑与1nn v∞=∑都发散C. 级数1nn u∞=∑收敛,而级数1nn v∞=∑发散 D. 级数1nn u∞=∑发散,而级数1nn v∞=∑收敛二、填空题{本大题共6小题,每小题4分,共24分)9. 设函数()()112,1,1x x x f x a x -⎧⎪-<=⎨≥⎪⎩在点1x =处连续,则常数a = .10. 曲线1ttx te y e ⎧=⎨=-⎩在点()0,0处的切线方程为 . 11. 设()ln 1y x =+,若()2018!n x y ==,则n = .12.定积分()141cosx x x dx -+⎰的值为 .13.设()2,1,2a b →→⨯=-,3a b →→⋅=,则向量a →与向量b →的夹角为 .14.幂级数2133n nn x n∞=+∑的收敛半径为 . 三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限()3ln 1lim1xx x t t dte →+-⎡⎤⎣⎦-⎰.16.求不定积分()2x xx e dx +⎰.17.计算定积分7⎰.18. 设()2,z f x y x y =-,其中函数f 具有二阶连续偏导数,求22zx∂∂.19. 设(),z z x y =是由方程()2sin 1y x xy z +++=所确定的函数,求z x ∂∂,z y∂∂.20. 求通过()1,0,1M ,且与直线1111:123x y z L ---==和21:2332x tL y t z t=+⎧⎪=+⎨⎪=+⎩都平行的平面方程.21.求微分方程xy y e '''-=的通解.22. 计算二重积分⎰⎰Dydxdy ,其中D是由曲线y =与直线1y =及0x =所围成的平面闭区域.四、证明题(本大题10分) 23.证明:当02x <<时,22xxe x+<-.五、综合题(本大题共2题,每小题10分,共20分)24.已知函数()43f x ax bx =+在点3x =处取得极值27-,试求: (1)常数,a b 的值;(2)曲线()y f x =的凹凸区间与拐点; (3)曲线()1y f x =的渐近线.25.设()f x 为定义在[)0,+∞上的单调连续函数,曲线():C y f x =通过点()0,0及()1,1,过曲线C 上任一点(),M x y 分别作垂直于x 轴的直线x l 和垂直于y 轴的直线y l ,曲线C 与直线x l 及x 轴围成的平面图形的面积记为1S ,曲线C 与直线y l 及y 轴围成的平面图形的面积记为2S ,已知122S S =,试求: (1)曲线C 的方程;(2)曲线C 与直线y x =围成的平面图形绕x 轴旋转一周所形成的旋转体的体积.。
01—10年江苏专转本数学真题(附答案)44页
2019年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限 14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域. 19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2001—2018年江苏专转本高等数学真题(及答案)
B、偶函数
C、非奇 非偶函数
D、不能确定奇偶性
4
8、设 I 1 x 4 dx ,则 I 的范围是
0 1 x
A、 0 I 2 2
B、 I 1
9、若广义积分
1
1 xp
dx
收敛,则
p
应满足
A、 0 p 1
B、 p 1
1
10、若
f (x)
1 2e x 1
f
' (x0 )
2 ,则 lim h0
f
(x0
h) h
f
(x0
h)
()
A、2
B、4
C、0
D、 2
2、若已知 F ' (x) f (x) ,且 f (x) 连续,则下列表达式正确的是
A、 F (x)dx f (x) c C、 f (x)dx F (x) c
B、 a b 1 2
D、 a b 1
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
9、设函数 y y(x) 由方程 ln(x y) ) x3 3x 2 x 9 的凹区间为
11、 1 x 2 (3 x sin x)dx 1
(2)求 g ' (x) .
23、设 f (x) 在 0, c上具有严格单调递减的导数 f ' (x) 且 f (0) 0 ;试证明:
对于满足不等式 0 a b a b c 的 a 、 b 有 f (a) f (b) f (a b) .
24、一租赁公司有 40 套设备,若定金每月每套 200 元时可全租出,当租金每月每套增加 10 元 时,租出设备就会减少一套,对于租出的设备每套每月需花 20 元的维护费。问每月一套的定金 多少时公司可获得最大利润?
江苏专转本高等数学真题(附答案) (2)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2021年江苏专转本高等数学真题及答案
江苏省普通高校“专转本”统一考试高等数学一、选取题(本大题共5小题,每小题3分,共15分)1、下列各极限对的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表达 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22t t y te x t ,则==0t dx dy7、0136'''=+-y y y 通解为8、互换积分顺序=⎰⎰dy y x f dx x x220),(9、函数yx z =全微分=dz 10、设)(x f 为持续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 间断点,并阐明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 值. 17、求x x y y sec tan '=-满足00==x y 特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成区域.19、已知)(x f y =过坐标原点,并且在原点处切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处获得极值,试拟定a 、b 值,并求出)(x f y =表达式.20、设),(2y x x f z =,其中f 具备二阶 持续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周体积。
江苏专升本高等数学真题(附答案)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2019—2019年江苏专转本高数真题(打印版)共18页
2019—2019年江苏专转本⾼数真题(打印版)共18页第 1 页2005年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、0=x 是xx x f 1sin )(=的A 、可去间断点B 、跳跃间断点C 、第⼆类间断点D 、连续点2、若2=x 是函数)21ln(ax x y +-=的可导极值点,则常数=aA 、1-B 、21C 、21- D 、13、若?+=C x F dx x f )()(,则?=dx x xf )(cos sinA 、C x F +)(sinB 、C x F +-)(sin C 、C F +(cos)D 、C x F +-)(cos 4、设区域D 是xoy 平⾯上以点)1,1(A 、)1,1(-B 、)1,1(--C 为顶点的三⾓形区域,区域1D 是D 在第⼀象限的部分,则:=+??dxdy y x xy D)sin cos (A 、??1)sin (cos 2D dxdy y xB 、??12D xydxdyC 、??+1)sin cos (4D dxdy y x xy D 、05、设yxy x u arctan ),(=,22ln ),(y x y x v +=,则下列等式成⽴的是v x u ??=?? B 、xvx u ??=C 、x v y u ??=??D 、yv y u ??=??6、正项级数(1) ∑∞=1n n u 、(2) ∑∞=13n n u ,则下列说法正确的是A 、若(1)发散、则(2)必发散B 、若(2)收敛、则(1)必收敛C 、若(1)发散、则(2)不定D 、若(1)、(2)敛散性相同⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分)第 2 页7、=----→x x xe e x x x sin 2lim; 8、函数x x f ln )(=在区间[]e ,1上满⾜拉格郎⽇中值定理的=ξ;9、=++?-11211x x π;10、设向量{}2,4,3-=α、{}k ,1,2=β;α、β互相垂直,则=k ;11、交换⼆次积分的次序=?-+-dy y x f dx x x 2111),( ;12、幂级数∑∞=-1)12(n n x n 的收敛区间为;13、设函数+=a xx x f x F sin 2)()( 00=≠x x 在R 内连续,并满⾜:0)0(=f 、6)0('=f ,求a .14、设函数)(x y y =由⽅程?-==t t t y t x cos sin cos 所确定,求dx dy、22dx y d .15、计算?xdx x sec tan 3.16、计算?10arctan xdx17、已知函数),(sin 2y x f z =,其中),(v u f 有⼆阶连续偏导数,求xz、y x z2 18、求过点)2,1,3(-A 且通过直线12354:zy x L =+=-的平⾯⽅程. 19、把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间.20、求微分⽅程0'=-+x e y xy 满⾜e y x ==1的特解.四、证明题(本题8分)21、证明⽅程:0133=+-x x 在[]1,1-上有且仅有⼀根.第 3 页五、综合题(本⼤题共4⼩题,每⼩题10分,满分30分) 22、设函数)(x f y =的图形上有⼀拐点)4,2(P ,在拐点处的切线斜率为3-,⼜知该函数的⼆阶导数a x y +=6'',求)(x f .23、已知曲边三⾓形由x y 22=、0=x 、1=y 所围成,求:(1)、曲边三⾓形的⾯积;(2)、曲边三⾓形饶X 轴旋转⼀周的旋转体体积.24、设)(x f 为连续函数,且1)2(=f ,dx x f dy u F uyu=)()(1,)1(>u(1)、交换)(u F 的积分次序;(2)、求)2('F .⾼等数学参考答案1、A2、C3、D4、B5、A6、C7、2 8、1-e 9、2π10、5 11、dx y x f dy y y ??---11102),( 12、)1,1(-13、因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,8262)0(2)0()(sin 2)()('0lim limlim =+=+=+-=+=→→→f x f x f x x x f x F x x x a F =)0(,故8=a .14、t t t t t t dtdx dt dydx dy -=-+-==sin sin cos cos ,t t x y dx y d t t csc sin 1)('''22=--==. 15、原式C x x x x xd x d x +-=-=-=??sec sec 31sec sec sec sec )1(sec 322.16、原式??++-=+-=102210211)1(2141arctan x x d dx x x x x π 102)1ln(214x +-=π2ln 214-=π 17、'z ?=??,''12''122cos 2)2(cos xf y y f x y x z =?= 18、{}1,2,5=l ,{}0,3,4-=B ,{}2,4,1-= {}22,9,8241125--=-=?=kj il π平⾯点法式⽅程为:0)2(22)1(9)3(8=+----z y x ,即592298=--z y x .19、x x x x x x x x f -?++?=-++=1132116)1121(3)(222nn n n x x ∑∞=+??+-=01212)1(3,收敛域为11<<-x . 20、xe y x y x=?+1',通解为第 5 页x e x C C dx e x e e y x dx x x dx x +=+=-11 因为e y =)1(,C e e +=,所以0=C ,故特解为xey x=.21、证明:令13)(3+-=x x x f ,[]1,1-∈x ,且03)1(>=-f ,01)1(<-=f ,0)1()1(由连续函数零点定理知,)(x f 在)1,1(-上⾄少有⼀实根. (提醒:本题亦可⽤反证法证明)22、设所求函数为)(x f y =,则有4)2(=f ,3)2('-=f ,0)2(''=f .因为126''-=x y ,故12'123C x x y +-=,由3)2('-=y ,解得91=C . 故22396C x x x y ++-=,由4)2(=y ,解得22=C . 所求函数为:29623++-=x x x y . 23、(1)61612113102===?y dy y S (2)4021)()21(2212πππ=-=-=?x x dx x V x24、解:积分区域D 为:u y ≤≤1,u x y ≤≤(1)-===uxuDdx x f x dy x f dx d x f u F 111)()1()()()(σ;(2))()1()('u f u u F -=,1)2()2()12()2('==-=f f F .2006年江苏省普通⾼校“专转本”统⼀考试⾼等数学参考答案1、C2、B3、C4、C5、C6、A7、2 8、)(0x f 9、1- 10、1 11、)cos sin (x x y e xy + 12、113、原式3221==--→x xx 14、21211122''t t t t x y dx dy tt =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=?23 )ln 1(32)ln 1(ln 1第 6 页16、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202+=-==πππππ24cos 2cos 24220202-=-+=πππx17、⽅程变形为2'-=x y x y y ,令x y p =则''xp p y +=,代⼊得:2'p xp -=,分离变量得:dx x dp p ??=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nn x n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x . 19、{}1,1,11-n 、{}1,3,42-n ,k j i kj i n n l ++=--=?=3213411321直线⽅程为123123+=-=-z y x . 20、'22f x yz=??, ''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf xy z ++=?+?+=. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f ,2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=?-dx x x S (2)πππ16)8()(284240=-+=??dy y dy y V 24、dx x f t dy x f dx dxdy x f tt t D t==000)()()(=≠=?00)()(0t a(1)0)(lim )(lim 00==?→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t (2)当0≠t 时,)()('t f t g =,第 7 页当0=t 时,)0()(lim )(lim )0()(lim )0(000'f h f hdx x f hg h g g h hh h ===-=→→→?综上,)()('t f t g =.2006年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、若21)2(lim 0=→x x f x ,则=→)3(lim0x f x x A 、21 B 、2 C 、3 D 、312、函数=≠=001sin)(2x x xx x f 在0=x 处A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续3、下列函数在[]1,1-上满⾜罗尔定理条件的是A 、x e y =C 、21x y -=D 、xy 11-= 4、已知C e dx x f x +=?2)(,则=-?dx x f )('A 、C e x +-22B 、C e x +-221C 、C e x +--22D 、C e x +--2215、设∑∞=1n n u 为正项级数,如下说法正确的是A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛B 、如果l u u nn n =+∞→1lim)0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n n u ,则∑∞=12n nu 必定收敛 D 、如果∑∞=-1)1(n n nu ,则∑∞=1n n u 必定收敛=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则??=Ddxdy y x f ),(A 、0B 、??1),(D dxdy y x f C 、2??1),(D dxdy y x f D 、4??1),(D dxdy y x f⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分)第 8 页7、已知0→x 时,)cos 1(x a -与x x sin 是等级⽆穷⼩,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,?=103)(dx x f ,则=1')(dx x xf10、设1=,⊥,则=+?)(b a a11、设x e u xysin =,=??xu12、=??Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三⾓形区域.三、解答题(本⼤题共8⼩题,每⼩题8分,满分64分)13、计算11lim31--→x x x . 14、若函数)(x y y =是由参数⽅程-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx y d .15、计算?+dx xxln 1. 16、计算dx x x ?20.17、求微分⽅程2'2y xy y x -=的通解.18、将函数)1ln()(x x f +=展开为x 的幂函数(要求指出收敛区间). 19、求过点)2,1,3(-M 且与⼆平⾯07=-+-z y x 、0634=-+-z y x 都平⾏的直线⽅程.20、设),(2xy x xf z =其中),(v u f 的⼆阶偏导数存在,求y z ??、x y z 2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本⼤题共3⼩题,每⼩题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线⽅程.第 9 页23、已知⼀平⾯图形由抛物线2x y =、82+-=x y 围成. (1)求此平⾯图形的⾯积;(2)求此平⾯图形绕y 轴旋转⼀周所得的旋转体的体积.24、设??=≠=??00)(1)(t a t dxdy x f t t g t D ,其中t D 是由t x =、t y =以及坐标轴围成的正⽅形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续;(2)求)('t g .2007年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、若2)2(lim0=→x x f x ,则=∞→)21(lim x xf xA 、41B 、21C 、2D 、42、已知当0→x 时,)1ln(22x x +是x n sin 的⾼阶⽆穷⼩,⽽x n sin ⼜是x cos 1-的⾼阶⽆穷⼩,则正整数=nA 、1B 、2C 、3D 、43、设函数)3)(2)(1()(---=x x x x x f ,则⽅程0)('=x f 的实根个数为B 、2C 、3D 、4 4、设函数)(x f 的⼀个原函数为x 2sin ,则=?dx x f )2('A 、C x +4cosB 、C x +4cos 21C 、C x +4cos 2D 、C x +4sin5、设dt t x f x ?=212sin )(,则=)('x fA 、4sin xB 、2sin 2x xC 、2cos 2x xD 、4sin 2x x 6、下列级数收敛的是A 、∑∞=122n n n B 、∑∞=+11n n nC 、∑∞=-+1)1(1n n nD 、∑∞=-1)1(n n n。
01—10年江苏专转本数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏专转本数学真题共28页文档
<1>一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面 B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([ 三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求xz∂∂、y x z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏专转本高等数学真题 (附答案)
2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏专升本数学2024真题
江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1. 设1)(,11)(,1cos )(2-=-+=-=x e x x x x x γβα,则当0→x 时( )A. )(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B. )(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C. )(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D. )(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2. 若函数)(lim 22sin )(0x f x x x f x →+=则=→)(lim 0x f x ( ) A. 4-B.2-C. 2D. 4 3. 若x e2-是函数)(x f 的一个原函数,则='')(x f ( ) A. x e 24- B.e 4-C. x e 28-D. x e 28-- 4. 若)12ln()(+=x x f ,则=)()(x f n ( )A. n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅--- C. n n n x n )12()!1(2)1(1+-⋅⋅-- D. n n n x n )12()!1(2)1(+-⋅⋅- 5. 下列级数收敛的是( )A. ∑∞=++1211n n n B.∑∞=++-122)1(n n n C. ∑∞=11sin n n n D. ∑∞=-11sin )1(n n n 6. 设y y x x y x f 232),(223-+-=,则函数),(y x f ( )A. 在点)1,0(处不取极值,在点)1,1(处取极大值B. 在点)1,0(处不取极值,在点)1,1(处取极小值C. 在点)1,0(处取极大值,在点)1,1(处取极小值D. 在点)1,0(处取极小值,在点)1,1(处取极大值7. 矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----278811944113221111111的秩为( )A. 1B.2C. 3D. 4 8. 设向量组321,,ααα线性无关,则一定线性相关的向量组为( )A. 313221,αααααα+++,B.131221,αααααα---,C. 321211,αααααα+++,D. 321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分) 9. 若1=x 是函数x x ax x x f --=23)(的第一类间断点,则=→)(lim 0x f x10. 设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=t t y t t x 3232所确定的函数,若23|0-==t t dx dy ,则=0t11. 设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x x x x f ,)(sin x f y =,则==0|x dx dy 12. 若⎰⎰∞--∞-=a z ax dx e dx e 1,则常数=a 13. 幂级数∑∞=-1)1(!3n n n nx n n 的收敛半径为14. 行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15. 求极限)2(arctan lim 22π-∞→x x x16. 求不定积分dx x x x ⎰++-+2)3(1217. 计算定积分⎰-+10211dx x x x18. 已知x x x x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19. 设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz20. 计算二次积分⎰⎰-1011cos x dy y y dx21. 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB = 22. 求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852********4321321x x x x x x x x x x x 的通解四、证明题(本题10分)23. 设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f(2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f五、综合题(本题共2小题,每小题20分,总计20分)24. 设函数)(x f 满足)42()()(-=-'x e x f x f x ,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25. 设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2012年普通高校“专转本”选拔考试高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚.2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效.3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟.一、 选择题(本大题共6小题,每小题4分,满分24分) 1、极限=+∞→)3sin 1sin 2(lim xxxx x () A.0B.2C.3D.5 2、设)4(sin )2()(2--=x x xx x f ,则函数)(x f 的第一类间断点的个数为()A.0B.1C.2D.33、设232152)(x x x f -=,则函数)(x f () A.只有一个最大值B.只有一个极小值 C.既有极大值又有极小值D.没有极值 4、设yx z 3)2ln(+=在点)1,1(处的全微分为() A.dy dx 3- B.dy dx 3+ C.dy dx 321+ D.dy dx 321- 5、二次积分dx y x f dy y),(101⎰⎰ 在极坐标系下可化为()A.ρθρθρθπθd f d )sin ,cos (40sec 0⎰⎰ B.ρρθρθρθπθd f d )sin ,cos (40sec 0⎰⎰C.ρθρθρθππθd f d )sin ,cos (24sec 0⎰⎰ D.ρρθρθρθππθd f d )sin ,cos (24sec 0⎰⎰6、下列级数中条件收敛的是()A.12)1(1+-∑∞=n n n nB.∑∞=-1)23()1(n nn C.∑∞=-12)1(n n n D.∑∞=-1)1(n n n二、填空题(本大题共6小题,每小题4分,共24分) 7要使函数xx x f 1)21()(-=在点0=x 处连续,则需补充定义=)0(f _________.8、设函数x e x x x y 22212(+++=),则=)0()7(y ____________. 9、设)0(>=x x y x ,则函数y 的微分=dy ___________.10、设向量→→b a ,互相垂直,且,,23==→→b a ,则=+→→b a 2___________.11、设反常积分21=⎰+∞-dx e a x ,则常数=a __________.12、幂级数n n n nx n )3(3)1(1--∑∞=的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13、求极限)1ln(2cos 2lim 320x x x x x +-+→. 14、设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求22,dx y d dx dy . 15、求不定积分⎰+dx xx 2cos 12. 16、计算定积分dx x x ⎰-21121 .17、已知平面∏通过)3,2,1(M 与x 轴,求通过)1,1,1(N 且与平面∏平行,又与x 轴垂直的直线方程.18、设函数)(),(22y x xy x f z ++=ϕ,其中函数f 具有二阶连续偏导数,函数ϕ具有二阶连续导数,求yx z∂∂∂2.19、已知函数)(x f 的一个原函数为x xe ,求微分方程)(44x f y y y =+'+''的通解.20、计算二重积分⎰⎰Dydxdy ,其中D 是由曲线1-x y =,直线x y 21=及x轴所围成的平面闭区域.四、综合题(本大题共2小题,每小题10分,共20分) 21、在抛物线)0(2>=x x y 上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.22、已知定义在),(+∞-∞上的可导函数)(x f 满足方程3)(4)(31-=-⎰x dt t f x xf x,试求:(1)函数)(x f 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线)(x f y =的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分) 23、证明:当10<<x 时,361arcsin x x x +>.24、设⎪⎩⎪⎨⎧≠=⎰0)0(0)()(20= x g x xdt t g x f x ,其中函数)(x g 在),(+∞-∞上连续,且3cos 1)(lim0=-→x x g x 证明:函数)(x f 在0=x 处可导,且21)0(='f . 一.选择题 1-5BCCABD 二.填空题7-122-e 128dx x x n )ln 1(+52ln ]6,0( 三.计算题13、求极限)1ln(2cos 2lim 320x x x x x +-+→. 原式=30304202sin lim 4sin 22lim 2cos 2lim xxx x x x x x x x x x -=-=-+→→→ 14、设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求22,dx y d dx dy . 原式=t t t t dt dx dt dy dx dy 211222=++==12112)()(22222+=+===t t tdt dx dt dx dyd dx dx dy d dx y d 15、求不定积分⎰+dx xx 2cos 12. 原式=⎰⎰⎰+-+=+=+)12(tan tan )12(tan )12(cos 122x xd x x x d x dx xx 16、计算定积分dx x x ⎰-21121 .原式=令t x =-12,则原式=613arctan 211221312312π==+=+⎰⎰t dt t dt t t t 17、已知平面∏通过)3,2,1(M 与x 轴,求通过)1,1,1(N 且与平面∏平行,又与x 轴垂直的直线方程.解:平面∏的法向量)2,3,0(-=⨯=→→→i OM n ,直线方向向量为)3,2,0(--=⨯=→→→i n S ,直线方程:312101--=--=-z y x 18、设函数)(),(22y x xy x f z ++=ϕ,其中函数f 具有二阶连续偏导数,函数ϕ具有二阶连续导数,求yx z∂∂∂2.解:xy f f xz221⋅'+⋅'+'=∂∂ϕϕ''⋅⋅+''+'+⋅''=∂∂∂y x f xy f x f y x z 22222122 19、已知函数)(x f 的一个原函数为x xe ,求微分方程)(44x f y y y =+'+''的通解.解:x x e x xe x f )1()()(+='=,先求044=+'+''y y y 的通解,特征方程:0442=++r r ,221-=、r ,齐次方程的通解为xex C C Y 221)(-+=.令特解为x e B Ax y )(+=*, 代入原方程得:1969+=++x B A Ax ,有待定系数法得:⎩⎨⎧=+=19619B A A ,解得⎪⎩⎪⎨⎧==27191B A ,所以通解为x x e x e x C C Y )27191()(221+++=- 20、计算二重积分⎰⎰Dydxdy ,其中D 是由曲线1-x y =,直线x y 21=及x轴所围成的平面闭区域.原式=⎰⎰+=12102121y ydx ydy . 四.综合题21、在抛物线)0(2>=x x y 上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.解:设P 点)0)(,(0200>x x x ,则02x k =切,切线:)(2,0020x x x x y -=- 即x x x y 0202,=+,由题意32)2(200020⎰=-+x dy y x x y ,得20=x ,)4,2(P 22、已知定义在),(+∞-∞上的可导函数)(x f 满足方程3)(4)(31-=-⎰x dt t f x xf x,试求:(1)函数)(x f 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线)(x f y =的凹凸区间与拐点.解:(1)已知3)(4)(31-=-⎰x dt t f x xf x两边同时对x 求导得:23)(4)()(x x f x f x x f =-'+即:x y xy 33=-',则323cx x y +-=由题意得:2)1(-=f ,1=c ,则323)(x x x f +-=(2)2,0,063)(212===-='x x x x x f 列表讨论得在),2()0,(+∞⋃-∞单调递增,在)2,0(单调递减。
极大值0)0(=f ,极小值4)2(-=f (3)1,066)(==-=''x x x f列表讨论得在)1,(-∞凹,在),1(+∞凸。
拐点)2,1(- 五、证明题23、证明:当10<<x 时,361arcsin x x x +>. 解:令0)0(,61arcsin )(3=--=f x x x x f ,0)0(,21111)(22='---='f x x x f0)1)1(1()1()(3232>--=--=''x x x x x x f ,在10<<x ,)(x f '单调递增,0)0()(='>'f x f ,所以在10<<x ,)(x f 单调递增,则有0)0()(=>f x f ,得证。
24、设⎪⎩⎪⎨⎧≠=⎰0)0(0)()(20= x g x xdt t g x f x ,其中函数)(x g 在),(+∞-∞上连续,且3cos 1)(lim0=-→x x g x 证明:函数)(x f 在0=x 处可导,且21)0(='f . 解:因为3cos 1)(lim 0=-→x x g x ,即321)(lim 20=→xx g x 所以有23)(lim 20=→x x g x 又因为)(x g 在),(+∞-∞上连续,所以0)(lim )0(0==→x g g x ,则。