八年级数学下册19.2平行四边形第4课时三角形的中位线练习课件新版沪科版

合集下载

八年级数学下册第六章平行四边形3三角形的中位线三角形中位线定理知

八年级数学下册第六章平行四边形3三角形的中位线三角形中位线定理知

三角形中位线定理制卷人:打自企;成别使;而都那。

审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。

【学习目的】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:〔1〕三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.12,每个小三角形的面积为原三角形面积的1 4.〔3〕三角形的中位线不同于三角形的中线.要点二、顺次连接任意四边形各边中点得到的四边形的形状顺次连接任意四边形各边中点得到的四边形是平行四边形.【典型例题】类型一、三角形的中位线1.如图,P、R分别是长方形ABCD的边BC.CD上的点,E.F分别是PA.PR的中点,点P在BC上从B向C 挪动,点R不动,那么以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C;【解析】连AR,由E.F分别为PA,PR的中点知EF为△PAR的中位线, 那么12EF AR,而AR长不变,故EF大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联络起来,进展联想,必要时添加辅助线,构造中位线图形.举一反三:【变式】在△ABC中,中线BE.CF交于点O,M、N分别是BO、CO中点,那么四边形MNEF是什么特殊四边形?并说明理由.【答案】5;解:四边形MNEF是平行四边形.理由如下:∵BE.CF是中线,∴E.F分别是AC.AB的中点,∴EF是△ABC的中位线,∴EF ∥BC 且EF=21BC ,∵M 、N 分别是BO 、CO 中点,∴MN 是△OBC 的中位线,∴MN ∥BC 且MN=21BC ,∴EF ∥MN 且EF=MN ,∴四边形MNEF 是平行四边形.2.如图,△ABC 中,D.E 分别是BC.AC 的中点,BF 平分∠ABC ,交DE 于点F ,假设BC =6,那么DF 的长是〔 〕A .2B .3 C.52 D .4【思路点拨】利用中位线定理,得到DE ∥AB ,根据平行线的性质,可得∠EDC =∠ABC ,再利用角平分线的性质和三角形内角外角的关系,得到DF =DB ,进而求出DF 的长.【答案解析】解:在△ABC 中,D.E 分别是BC.AC 的中点∴DE ∥AB∴∠EDC =∠ABC∵BF 平分∠ABC∴∠EDC =2∠FBD在△BDF 中,∠EDC =∠FBD +∠BFD∴∠DBF =∠DFB∴FD =BD =12BC =12×6=3.【总结升华】三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如下图,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】此题中所求线段MD 与线段AB.AC 之间没有什么联络,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一〞构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩==∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC=18,∴ NC=AC-AN=18-12=6,∵ D.M分别为BN、BC的中点,∴ DM=12CN=162=3.【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一〞、三角形的中线、中位线等联络起来,进展联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图,BE,CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M,求证:MN∥BC.【答案】证明:延长AN、AM分别交BC于点D.G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BN也为等腰三角形的中线,即AN=GN.同理AM=DM,∴MN为△ADG的中位线,∴MN∥BC.4.〔1〕如图1,在四边形ABCD中,E.F分别是BC.AD的中点,连接EF并延长,分别与BA.CD的延长线交于点M、N,那么∠BME=∠CNE,求证:AB=CD.〔提示取BD的中点H,连接FH,HE作辅助线〕〔2〕如图2,在△ABC 中,且O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G ,假设AB=DC=5,∠OEC=60°,求OE 的长度.【思路点拨】〔1〕连结BD ,取DB 的中点H ,连结EH 、FH ,证明出EH ∥AB ,EH=21AB ,FH ∥CD ,FH=21CD ,证出HE=HF ,进而证出AB=CD ;〔2〕连结BD ,取DB 的中点H ,连结EH 、OH ,证明出EH=OH ,可证明证出△OEH 是等边三角形,进而求出OE=25.【答案与解析】〔1〕证明:连结BD ,取DB 的中点H ,连结EH 、FH .∵E.F 分别是BC.AD 的中点,∴EH ∥AB ,EH=21AB ,FH ∥CD ,FH=21CD ,∵∠BME=∠CNE ,∴HE=HF ,∴AB=CD ;〔2〕解:连结BD ,取DB 的中点H ,连结EH 、OH ,∵AB=CD ,∴HO=HE ,∵∠OEC=60°,∴∠HEO=∠AGO=60°,∴△OEH 是等边三角形,∵AB=DC=5,∴OE=25.【总结升华】此题考察了三角形的中位线定理、全等三角形的断定与性质,解答此题的关键是参考题目给出的思路,作出辅助线,有一定难度.举一反三:【变式】如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,假设AB=5,CD=3,那么EF 的长是〔 〕A .4B .3C .2D .1【答案】D ;解:连接DE 并延长交AB 于H ,∵CD ∥AB ,∴∠C=∠A ,∠CDE=∠AHE ,∵E 是AC 中点,∴AE=CE ,∴△DCE ≌△HAE ,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12BH,∴BH=AB-AH=AB-DC=2,∴EF=1.制卷人:打自企;成别使;而都那。

《19.2平行四边形》作业设计方案-初中数学沪科版12八年级下册

《19.2平行四边形》作业设计方案-初中数学沪科版12八年级下册

《平行四边形》作业设计方案(第一课时)一、作业目标本作业设计的目标是使学生通过第一课时的学习,能理解平行四边形的概念和性质,掌握平行四边形的相关基本知识,并能够初步应用这些知识解决简单的几何问题。

通过完成本作业,学生应能加深对平行四边形知识的理解,提高解题能力。

二、作业内容1. 基础知识练习:(1)掌握平行四边形的定义及性质,如对边平行、对角相等等。

(2)掌握平行四边形的分类及其特征,如矩形、菱形等。

(3)了解平行四边形与平行线、相交线等概念的关系。

2. 实际应用题:(1)利用平行四边形的性质解决简单的几何问题,如面积计算、角度计算等。

(2)通过画图分析,加深对平行四边形性质的理解。

3. 拓展提高题:(1)分析平行四边形与其他几何图形的联系与区别。

(2)通过具体问题,培养学生的空间想象能力和逻辑推理能力。

三、作业要求1. 基础知识练习部分:要求学生熟练掌握平行四边形的定义和性质,并能准确运用相关知识点解答问题。

2. 实际应用题部分:要求学生通过实际问题的解决,加深对平行四边形性质的理解,并能够灵活运用所学知识解决实际问题。

3. 拓展提高题部分:要求学生具备一定的空间想象能力和逻辑推理能力,能够通过具体问题,发现并分析出平行四边形与其他几何图形的联系与区别。

同时,鼓励学生进行自主探索和思考,培养其独立思考和解决问题的能力。

四、作业评价1. 评价标准:根据学生对平行四边形定义和性质的掌握程度、解题的正确性和解题思路的清晰度进行评价。

2. 评价方式:采用教师评价和学生互评相结合的方式,及时反馈学生的作业情况,并给出针对性的建议和指导。

五、作业反馈1. 学生对作业的完成情况应进行自我反思和总结,找出自己在学习过程中的不足和需要改进的地方。

2. 教师根据学生的作业完成情况和评价结果,对学生进行有针对性的指导和帮助,及时纠正学生在学习过程中的错误和偏差。

3. 对共性问题进行集体讲解和辅导,确保学生对知识的掌握和理解达到教学目标的要求。

2022春八年级数学下册 第19章 四边形19.4综合与实践 多边形的镶嵌习题课件沪科版

2022春八年级数学下册 第19章 四边形19.4综合与实践 多边形的镶嵌习题课件沪科版
【点拨】由镶嵌的条件可知,在一个顶点处各个内角的和为 360°, 可先求出 a,b 的值,从而得出 a+b 的值.正三角形的每个内角 是 60°,正十二边形的每个内角是 150°,∵60+2×150=360,∴ a=1,b=2,∴a+b=3.
5.只用下列图形中的一种,能够进行平面镶嵌的 是( C ) A.正十边形 B.正八边形 C.正六边形 D.正五边形
8.用正三角形作平面镶嵌,同一顶点周围,正三角形 的个数为____6____.
【点拨】先求出正三角形每个内角的度数,再求个数即可.正三 角形的每个内角是 60°,同一顶点周围,正三角形的个数为 360°÷60°=6.
9.能够铺满地面的正多边形的组合是( B ) (1)正三角形与正方形; (2)正五边形与正十边形; (3)正六边形与正三角形. A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)
【点拨】分别求出正方形和正八边形每个内角的度数,结合镶嵌 的条件即可得到答案.正方形的每个内角为 90°,正八边形的每 个内角为 135°, ∵90°+2×135°=360°, ∴正方形,正八边形地砖的块数分别是 1,2.
【答案】A
*4.在地面上某一点周围,a个正三角形,b个正十二边 形 (a , b 均 不 为 0) 恰 能 铺 满 地 面 , 则 a + b = ___3_____.
12.下列图形中,能用来铺满地面的是( A )
易错总结:易错的原因是误认为凡是正多边形就可以铺满地面, 其实并不是所有的正多边形都可以铺满地面,而对于某些非正多 边形,只要满足铺满地面的条件,也可以铺满地面.显然选项 A 中图形的内角和为 360°,满足铺满地面的条件,故选 A.
13.【中考·齐齐哈尔】如图,蜂巢的横截面由正六边形组成, 且能无限无缝隙拼接.称横截面图形由全等正多边形组成, 且能无限无缝隙拼接的多边形具有同形结构.若已知具有 同形结构的正n边形的每个内角度数为α,满足:360°= kα(k为正整数),则k关于边数n的函数是 ________.(写出n的取值范围)

数学-八年级下册-第19章-19.2.1矩形及性质-第一课时-课件

数学-八年级下册-第19章-19.2.1矩形及性质-第一课时-课件

例1: 如图,矩形ABCD的两条对角线相交 于点O,∠AOB=60°,AB=4㎝,求矩形对角 线的长? A D
C
例2、已知:如图,矩形ABCD的两条对角 线相交于点O,∠AOD=120°,AC=8cm, 求矩形的边长.(精确到0.01㎝)
解: 在矩形ABCD中,
∵ ∠AOD=120° ∴ ∠AOB=60°
矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形 有一个角 是直角
矩形
矩形是特殊的平行四边形
矩形的一般性质:
具备平行四边形所有的性质
边 A O B C D 角
对边平行且相等 对角相等 对角线互相平分
对角线
探索新知:
矩形是一个特殊的平行四边形,除了具有平行 四边形的所有性质外,还有哪些特殊性质呢?
A D
B
C
猜想1:矩形的四个角都是直角. 猜想2:矩形的对角线相等.
求证:矩形的四个角都是直角.
已知:如图,四边形ABCD是矩形
求证:∠A=∠B=∠C=∠D=90°
证明: ∵四边形ABCD是矩形 ∴ ∠A=90° 又 矩形ABCD是平行四边形 ∴ ∠A=∠C
B
A
D
∠B = ∠D
C
∠A +∠B = 180° ∴ ∠A=∠B=∠C=∠D=90° 即矩形的四个角都是直角
5、矩形的一条对角线与一边的夹角为40°,则两条
对角线相交所成的锐角是(
D)
(A)20° (B)40° (C)60° (D)80°
6、两条直角边的长分别为12和5,则斜边上的中线(D )
(A)26 (B)13 (C)8。5 (D)6。5
7、已知:如图,矩形ABCD的两条对角线相交于O,

难点详解沪科版八年级数学下册第19章 四边形章节练习练习题(含详解)

难点详解沪科版八年级数学下册第19章 四边形章节练习练习题(含详解)

沪科版八年级数学下册第19章四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.102、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D3、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1404、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或175、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.26、平行四边形ABCD中,60∠=︒,则CA∠的度数是()A.30B.60︒C.90︒D.120︒∠+∠的度数是()7、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβA.180°B.220°C.240°D.260°8、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.109、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.4410、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.2、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.3、如图在正方形ABCD中,∠EAF的两边分别交CB、DC延长线于E、F点且∠EAF=45°,如果BE=1,DF=7,则EF=__.4、正方形的一条对角线长为4,则这个正方形面积是_________.5、如图,正方形ABCD内有一等边三角形BCE,直线DE交AB于点H,过点E作直线GF⊥DH交BC于点G,交AD于点F.以下结论:①∠CEG=15°;②AF=DF;③BH=3AH BE=HE+GE;正确的有_________.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,E、F是BC上的点,∠DAE=∠ADF.求证:BF=CE.2、如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F ,联结BF .(1)求证:四边形AFBD 是平行四边形;(2)当AB=AC 时,求证:四边形AFBD 是矩形.3、如图,ABCD 的对角线AC 与BD 相交于点O ,过点B 作BP ∥AC ,过点C 作CP ∥BD ,BP 与CP 相交于点P .(1)试判断四边形BPCO 的形状,并说明理由;(2)若将ABCD 改为矩形ABCD ,且6,8AB BC ==,其他条件不变,求四边形BPCO 的面积;(3)要得到矩形BPCO ,ABCD 应满足的条件是_________(填上一个即可).4、如图,矩形OABC 在平面直角坐标系中,OB ,OC 是x 2﹣12x +32=0的两根,OC >OA ,(1)求B 点的坐标.(2)把ABC 沿AC 对折,点B 落在点B '处,线段AB '与x 轴交于点D ,在平面上是否存在点P ,使D 、C 、B 、P 四点形成的四边形为平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.5、如图,四边形ABCD 中,AD BC ∥,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将△ABE 沿BE 折叠后得到△GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:四边形ABCD 是矩形;(2)求证:GF DF =;(3)若点6AB =,8BC =,求DF 的长.-参考答案-一、单选题1、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°, ∴正多边形的边数=36036=10. 故选:D .【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、D【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】 解:四边形OABC 是矩形,∴90OAB ∠=︒, 在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.3、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n,则(n-2)•180°=2340°,解得:n=15,①若截去一个角后边数增加1,则原多边形边数为14,②若截去一个角后边数不变,则原多边形边数为15,③若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16.故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.5、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、B【分析】根据平行四边形对角相等,即可求出C的度数.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴A C ∠=∠,∴60A ∠=︒,∴60C ∠=°.故:B .【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.7、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴3606060240αβ∠+∠=︒-︒-︒=︒;故选C .【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.8、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D .【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.9、B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】 解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE是直角三角形,是解答本题的关键.10、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键二、填空题1、10825或185或3【分析】过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:5AC,有三种情况:①当AB=BP=3时,如图1,过B作BM⊥AC于M,S△ABC=1122AB BC AC BM⋅=⋅,1134=5 22BM∴⨯⨯⨯⨯,解得:125 MB=,∵AB=BP=3,BM⊥AC,∴95 AM PM===,∴AP=AM+PM=185,∴△PAB的面积=111812108 225525 AP BM⋅=⨯⨯=;②当AB=AP=3时,如图2,∵BM=125,∴△PAB的面积S=11121832255 AP BM⋅=⨯⨯=;③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=13322=⨯,∵四边形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴122PN BC==,∴△PAB的面积11323 22S AB NP=⋅=⨯⨯=;即△PAB 的面积为10825或185或3. 故答案为:10825或185或3. 【点睛】 本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.2、2【分析】先根据矩形的性质证明△ABC 是等边三角形,得到10cm AO AB ==,则20cm AC =,然后根据勾股定理求出BC ==,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD 中,∠AOB =60°,10cm AB =,∵四边形ABCD 是矩形,∴∠ABC =90°,1122OB OA AC BD ===, ∴△ABC 是等边三角形,∴10cm AO AB ==,∴20cm AC =,∴BC ==,∴2=ABCD S AB BC ⋅=,故答案为:2.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.3、6【分析】根据题意把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE=7﹣1=6.【详解】解:如图,把△ABE绕点A逆时针旋转90°到DA,交CD于点G,由旋转的性质可知,AG=AE,DG=BE,∠DAG=∠BAE,∵∠EAF=45°,∴∠DAG+∠BAF=45°,又∵∠BAD=90°,∴∠GAF=45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE =1,DF =7,∴EF =GF =DF ﹣DG =DF ﹣BE =7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.4、8【分析】正方形边长相等设为a ,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为a ,对角线为4 24a =+28a ∴=故答案为:8.【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.5、①【分析】由正方形的性质和等边三角形的性质可得CD CE =,30ECD ∠=︒,可得75CED ∠=︒,可求15CEG ∠=︒,故①正确;由“SAS “可证ABE DCE ∆≅∆,可得AE DE =,可证EH ED =,由线段垂直平分线的性质可得HF FD AF =>,故②错误;设2AB BC BE a ===,由等边三角形的性质和三角形中位线定理分别求出AH ,BH 的长,可判断③,通过证明点B ,点G ,点E ,点H 四点共圆,可得45BHG BEG ∠=∠=︒,可证HG =,由三角形三边关系可判断④,即可求解.【详解】 解:四边形ABCD 是正方形,AB BC CD AD ∴===,90DAB ADC ABC BCD ∠=∠=∠=∠=︒,BCE ∆是等边三角形,BE CE BC ∴==,60BCE EBC ∠=︒=∠,CD CE ∴=,30ECD ∠=︒,75CED ∴∠=︒,15CEG ∴∠=︒,故①正确;如图,连接AE ,过点E 作直线MN AD ⊥于N ,交BC 于M ,连接EH ,30ABE ABC EBC ∠=∠-∠=︒,ABE DCE ∴∠=∠,又AB CD =,BE CE =,()ABE DCE SAS ∴∆≅∆,AE DE∴=,∴∠=∠,EAD EDA∴∠=∠,EAH EHA∴=,AE EH∴=,EH ED又FG DH⊥,∴=,FH FD>,FH AF∴>,故②错误;FD AF设2===,AB BC BE aMN AD⊥,90∠=∠=∠=∠=︒,DAB ADC ABC BCD∴四边形ABMN是矩形,⊥,∴=,2AN BM==,MN BCMN AB a⊥,∆是等边三角形,MN BCEBC∴==,EM,BM MC a==,2∴=,AN DN aEN a又EH HD=,AH EN a∴==-,24BH AB AH a∴=-=-,2∴≠,故③错误;BH AH3如图,连接HG,∠=︒,60CEG15∠=︒,BEC∴∠=︒,BEG45∠+∠=︒,180ABC GEH∴点B,点G,点E,点H四点共圆,BHG BEG∴∠=∠=︒,45∴∠=∠=︒,BGH BHG45∴=,BH BG∴=,HG+>,EH EG HG∴+,故④错误;EH EG故答案为:①.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,正方形的性质,勾股定理等知识,解题的关键是灵活运用这些性质解决问题.三、解答题1、见解析【分析】先证明=∠∠,然后证明△ABE≌△DCF,再根据全等三角形的性质得出结论.AEB DFC【详解】解:∵四边形ABCD 是矩形,∴AB CD =,90B C ∠=∠=︒,AD ∥BC ,∴∠ADF =∠CFD ,∠DAE =∠AEB ,∵=DAE ADF ∠∠,∴=AEB DFC ∠∠.在ABE △和DCF 中,=AEB DFC B CAB DC ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE DCF AAS △≌△,∴BE CF =,∴BE -FE =CF -EF ,即BF =CE .【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.2、(1)见解析(2)见解析【分析】(1)首先证明△AEF ≌△DEC (AAS ),得出AF =DC ,进而利用AF ∥B D 、AF =BD 得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【小题1】解:证明:(1)∵AF ∥BC ,∴∠AFC =∠FC D .在△AFE 和△DCE 中,AEF DEC AFE DCE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形;【小题2】∵AB =AC ,BD =DC ,∴AD ⊥B C .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.【点睛】此题主要考查了平行四边形的判定以及矩形的判定方法、全等三角形的判定与性质,正确掌握平行四边形的判定方法是解题关键.3、(1)平行四边形,理由见解析;(2)四边形BPCO的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形BPCO是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明AC BD即可得到矩形BPCO.【详解】解:(1)四边形BPCO是平行四边形,∵BP∥AC,CP∥BD,∴四边形BPCO是平行四边形.(2)连接OP.∵四边形ABCD是矩形,∴OB=12BD,OC=12AC,AC=BD,∠ABC=90°,∴OB=OC.又四边形BPCO是平行四边形,∴□BPCO是菱形.∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,∴四边形ABPO是平行四边形,∴OP=AB=6.∴S菱形BPCO=118624 22BC OP⨯=⨯⨯=.(3)AB=BC或AC⊥BD等(答案不唯一).当AB=BC时,ABCD为菱形,此时有:AC BD⊥,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO,当AC⊥BD时,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO.【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.4、(1)B(8,4);(2)存在,P1(3,4),P2(13,4),P3(3,-4)【分析】(1)x2﹣12x+32=0,解得x1=4,x2=8,OC>OA,故OA=4,OC=8,故B(8,4).(2)由对折可知,∠DAC=∠BAC,故∠DAC=∠ACO,AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=,解得x=5,故D点坐标为(3,0),由平行四边形性质可知P1(3,4),P2(13,OA OD AD4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【详解】(1)x2﹣12x+32=0,解得x1=4,x2=8,∵OC>OA,∴OA=4,OC=8,故B点坐标为(8,4)(2)由对折可知,∠DAC=∠BAC,又∵四边形OABC为矩形,∴AB//OC,∠BAC=∠ACO∴∠DAC=∠ACO,∴AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=有OA OD AD2224(8)x x+-=化简得22+-+=166416x x x解得x=5,故OD=8-5=3故D点坐标为(3,0)由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【点睛】本题考查了勾股定理,矩形的性质,平行四边形的性质,求出D点坐标,再根据平行四边形两对边分别平行且相等即可求得P点坐标.5、(1)证明见解析;(2)证明见解析;(3)83 DF【分析】(1)利用平行线的性质可得∠C=90°,再根据三个角是直角的四边形是矩形即可判定;(2)根据折叠的性质和中点的定义得出EG=ED,再用HL定理证明Rt△EGF≌Rt△EDF即可;(3)利用DF分别表示BF和FC,再在Rt△BCF中利用勾股定理求解即可.(1)证明:∵AD BC ∥,∴∠D +∠C =180°,∵90A D ∠=∠=︒,∴90C A D ∠=∠=∠=︒,∴四边形ABCD 为矩形;(2)证明:∵将△ABE 沿BE 折叠后得到△GBE ,∴△ABE ≌△GBE ,∴∠BGE =∠A ,AE =GE ,∵∠A =∠D =90°,∴∠EGF =∠D =90°,∵点E 是AD 的中点,∴EA =ED ,∴EG =ED ,在Rt △EGF 和Rt △EDF 中,EF EF EG ED=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL );∴GF DF =;(3)解:∵四边形ABCD 为矩形,△ABE ≌△GBE ,∴∠C =90°,BG =CD =AB =6,∵GF DF =;∴6BF BG GF DF =+=+,6CF DC DF DF =-=-,∴在Rt △BCF 中,根据勾股定理,222BF CF BC =+,即222(6)(6)8DF DF +=-+, 解得83DF =. 即83DF =.【点睛】本题考查矩形的性质和判定,全等三角形的判定定理,折叠的性质,勾股定理等.(1)掌握矩形的判定定理是解题关键;(2)能结合重点和折叠的性质得出EG =ED 是解题关键;(3)中能利用DF 正确表示Rt △BCF 中,BF 和CF 的长度是解题关键.。

人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线

人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线

18.1.2平行四边形的判定(4)一一三角形的中位线课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线三边,并且等于2.如图,△43。

的周长为64,E、F、G分别为WA AC.■的中点,』'、6'、C分别为研EG、GF的中点,△/'B'C的周长为.如果及7、4EFG、△』'B'C分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第〃个三角形的周长是•3.中,D、E分别为45、"。

的中点,若座=4,AD=3,AE=2,则■的周长为—二、解答题4.已知:如图,四边形/列中,E、F、G、日分别是/以Ba CD、以的中点.求证:四边形麽诳是平行四边形.5.已知:网的中线初、堡交于点。

F、G分别是缪、%的中点.求证:四边形力碰是平行四边形.综合、运用、诊断6.已知:如图,E为6BCD中庞'边的延长线上的一点,代CE=DC,连结如'分别交应;刃于点尺G,连结4C交初于。

连结必求证:AB=20F.7.已知:如图,在曲时中,£是⑦的中点,尸是/的中点,FC与BE交于G.求证:GF=GC.E CAD.8.已知:如图,在四边形曲%中,AD=BC, E 、尸分别是力C 、/边的中点,死'的延长线分别与如、BC的延长线交于〃、G 点.求证:/AHF=/BGF.拓展、探究、思考9.已知:如图,网中,力是此'边的中点,北'平分ZBAC, BELAE 于E 点,若AB=5, AC=7,求应Z 10.如图在中,D 、E 分别为』弥上的点,巨BD=CE, < "分别是庞、,的中点.过刎的直线交AB 于P,交如于。

线段#、40相等吗?为什么?A参考答案1.(1)中点的线段;(2)平行于三角形的,第三边的一半.2.16,64X(-)71-1.3.18.24.提示:可连结刃(或AC).5.略.6.连结庞CE』ABnUABECnBF=FC.DABCD=>AO=OC,:.AB=20F.7.提示:取座的中点R证明四边形庭烈'是平行四边形.8.提示:连结』G取』C的中点M再分别连结依MF,可得£¥=成9.ED=\,提示:延长冏?,交/C于尸点.10.提示:AP^AQ,取网的中点&连接洌NH.证明zMW是等腰三角形,进而证明/AP4ZAQP.最新人教版八年级数学下册期中综合检测卷考试用时:120分钟,试卷满分:120分一、选择题(每小题3分,共30分)1.若式子后3在实数范围内有意义,则x的取值范围是()A.xN3B.xW3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.l,1,a/2C.6,8,11D.5,12,233.下列各式是最简二次根式的是()A.炯B.V7C.a/20D,V034.下列运算正确的是()A.yfs-=B.=2?C.-'Jl=^2D.』(2一赃V=2-sf55.方程I 4x-8 I +Jx-y-m=O,当y>0时,m 的取值范围是()A.O<m<lB.mN2C.mW2D.m<26.若一个三角形的三边长为6,8, x,则此三角形是直角三角形时,x 的值是()A.8 B.10 C.2a /7 D.10 或 2妗7. 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形8. 能判定四边形ABCD 为平行四边形的题设是( )A.AB〃CD, AD=BCB.AB=CD, AD=BCC.ZA=ZB, ZC=ZDD.AB=AD, CB=CD 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()A.当AB=BC 时,它是菱形C.当ZABC=90°时,它是矩形 B.当ACLBD 时,它是菱形D.当AC=BD 时,它是正方形第9题图 第10题图第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF, AE 、BF 相交于点O, 下列结论:(1)AE=BF ; (2) AE±BF ; (3) AO=OE ; (4)S aaob =S 四边形 deof 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.已知最简二次根式』4a+3b与'刈2a-b+6可以合并,则ab=.12.若直角三角形的两直角边长为a、b,且满足V«2-6a+9+I b-4I=0,则该直角三角形的斜边长为.2513.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=—n,8S2=2n,则S3=.14.四边形ABCD的对角线AC,BD相交于点O,AC±BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,^ABC在正方形网格中,若小方格边长为1,则^ABC的形状是16.已知菱形ABCD中,对角线AC与BD相交于点O,ZBAD=120°,AC=4,则该菱形的面积是•17.AABC中,若AB=15,AC=13,高AD=12,则AABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标■三、解答题(共66分)19.(8分)计算下列各题:(1)(a/48-4J-)-(3J--2^5);(2)(2—迅严比•(2+V3)2016-2X|-^|-(-V3)°.220.(8分)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD±AD,求这块地的面积.21.(8分)已知9+血与9—应的小数部分分别为a,b,试求ab~3a+4b~7的值.22.(10分)如图,在等腰直角三角形ABC中,ZABC=90°,D为AC边上中点,过D点作DEXDF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,^ABC是直角三角形,且ZABC=90°,四边形BCDE是平行四边形, E为AC的中点,BD平分ZABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF±AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402m,ZABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/r^,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向^ABC外作等边AABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)(2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE 和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得ZABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长.最新人教版八年级数学下册期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式而i 、屈、应、Jx + 2、j40f 、J/ +》2中,最简二次根式有()A.1个B.2个C.3个D.4个2.若式子目有意义,则x 的取值范围为()A.xN4B.x 尹 3C.x34 或 x 乂3D.x34 且 x 尹33.下列计算正确的是( )A.a /4 X ^/6=4a /6B 疝+痴=应C.何:屁22 D.J(-15)2=-154.在 RtAABC 中,ZACB=90° , AC=9, BC=12,则点 C 到 AB 的距离是( )A 36「12A,—— B.—5 25厂 9、30C. — D.----4 45.平行四边形ABCD 中,ZB=4ZA,则ZC=()A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm, AC : BD=4 : 3,则菱形的面积是()A.12 cm 2 B.24 cm 2 C.48 cm 2 D.96 cm 2第6题图第8题图第10题图X =-17.若方程组(2工+*=3的解是.贝I直线y=—2x+b与y=x—a\x-y=a的交点坐标是()A.(-l,3)B.(l,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70, 1.65B.1.70, 1.70C.1.65, 1.70D.3,410.如图,在^ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE±AB于E,PF±AC 于F,M为EF中点,则AM的最小值为()二、填空题(每小题3分,共24分)11.当x=时,二次根式x+1有最小值,最小值为12.已知a,b,c是^ABC的三边长,且满足关系式yjc2-a2-b2+\a-b\=O,则Z^ABC的形状为13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数"灯x+bi y2=k2x+b2的图象相交于A(3,2),则不等式(k2—/ci)x+b2 -bi>0的解集为第14题图第16题图第18题图15.在数据一1,0,3,5,8中插入一个数据X,使得该组数据的中位数为3,则x的值为16.如图,3XBCD中,E、F分别在CD和BC的延长线上,ZECF=60°,AE〃BD,EF1BC, EF=2,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF,②ZAEB=75°,③BE+DF=EF,④S正方形ABCD=2+0,其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)12V2-31-+a/18(2)先化简,再求值:"+。

沪科版八年级数学下册(全套)精品课件

沪科版八年级数学下册(全套)精品课件

第16章 二次根式
沪科版八年级数学下册(全套)精品 课件
16.1 二次根式
沪科版八年级数学下册(全套)精品 课件
16.2 二次根式的运算
沪科版八年级数学下册(全套)年级数学下册(全套)精品 课件
沪科版八年级数学下册(全套)精 品课件目录
0002页 0029页 0045页 0061页 0110页 0175页 0212页 0264页 0295页 0337页 0357页
第16章 二次根式 16.2 二次根式的运算 17.1 一元二次方程 17.3 一元二次方程的根的判别式 17.5 一元二次方程的应用 18.1 勾股定理 第19章 四边形 19.2 平行四边形 19.4 综合与实践 多边形的镶嵌 20.1 数据的频数分布 20.3 综合与实践 体重指数

沪科版八年级数学下第19章《四边形》测试题(含答案)

沪科版八年级数学下第19章《四边形》测试题(含答案)

第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。

沪科版八年级数学下册平行四边形对角线的性质PPT优秀课件

沪科版八年级数学下册平行四边形对角线的性质PPT优秀课件

当四个孩子看到时,争论不休,都认为自己分的 地少,同学们,你认为老人这样分合理吗?为什么?
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
获取新知
如图,已知 ABCD中,连接AC,BD,并设 它们相交于点O,OA与OC,OB与OD有什么关系? 你能证明发现的结论吗?
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
课堂小结
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
补充结论
1. △ABO≌ △CDO, △AOD ≌ △COB,
A
D
O
△ ABD ≌ △CDB,
△ ABC ≌ △CDA ;
B
C
2. △AOB、 △AOD、 △DOC、 △COB的面积相等,
且都等于平行四边形面积的四分之一.
沪科版八年级数学下册课 平件 行: 四1边9.形2对 角第线2课的时性质平行 PPT四优边秀形课对件角线的性质
6. 如图,已知▱ABCD与▱EBFD的顶点A,E,F,
C在一条直线上,求证:AE=CF. 证明:如图,连接BD交AC于点O. ∵四边形ABCD是平行四边形, ∴OA=OC(平行四边形的对角线互相平分). ∵四边形EBFD是平行四边形, ∴OE=OF(平行四边形的对角线互相平分), ∴OA-OE=OC-OF,即AE=CF(等式的性质).
沪科版八年级数学下册课件:19.2 第2课时 平行四边形对角线的性质
第19章 四边形
19.2 第2课时 平行四边形的对角线性质

沪科版数学八年级下册19.2三角形的中位线中考题汇编

沪科版数学八年级下册19.2三角形的中位线中考题汇编

沪科版数学八年级三角形的中位线中考题汇编一、选择题1. (2019·盐城)如图,D,E分别是△ABC的边BA,BC的中点,AC=3,则DE的长为()A. 2B. 43 C. 3 D.32第1题第3题第4题2. (2019·娄底)顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形3. (2019·铜仁)如图,D是△ABC内的一点,BD⊥CD,AD=7,BD=4,CD=3,E,F,G,H分别是AB,BD,CD,AC的中点,则四边形EFGH的周长为()A. 12B. 14C. 24D. 214. (2018·达州)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为()A. 32 B. 2 C.52 D. 3二、填空题5. (2019·长沙)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是________m.第5题第6题第7题6. (2019·梧州)如图,在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是________cm.7. (2019·泰安)如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是________.三、解答题8. (2019·徐州)如图,在矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,求AC的长.第8题9.(2019·广元)如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.第9题10.(2019·湖州)如图,在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连接DF ,EF ,BF.(1) 求证:四边形BEFD 是平行四边形;(2) 若∠AFB =90°,AB =6,求四边形BEFD 的周长.第10题11.(2019·扬州)如图,点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M ,N 分别是DC ,DF 的中点,连接MN.若AB =7,BE =5,求MN 的长.第11题12.(2019·青岛)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E ,F 分别为OB ,OD 的中点,延长AE 至点G ,使EG =AE ,连接CG ,CF.(1) 求证:△ABE ≌△CDF.(2) 当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.第12题13.(2019·淄博)如图,正方形ABDE和正方形BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M.连接MD,MG,MB.求证:DM⊥MG,并求MBMG的值.第13题参考答案一、 1. D 2. C 3. A 4. C二、 5. 100 6. 8 7. 22三、 8. ∵ M ,N 分别为BC ,OC 的中点,∴ BO =2MN =8.∵ 四边形ABCD 是矩形,∴ AC =BD =2BO =169. 连接AE.∵ E ,F 分别是边BC ,AC 的中点,∴ EF ∥AB ,EF =12AB.∵ AD =12AB ,∴ EF =AD.又∵ EF ∥AD ,∴ 四边形ADFE 是平行四边形.∴ DF =AE.∵ 在Rt △ABC 中,E 是BC 的中点,∴ AE =12BC =BE =CE.∴ DF =BE 10. (1) ∵ D ,E ,F 分别是AB ,BC ,AC 的中点,∴ EF ∥AB ,DF ∥BC.∴ 四边形BEFD 是平行四边形 (2) ∵ ∠AFB =90°,D 是AB 的中点,∴ DF =DB =12AB =3.∴ 四边形BEFD 是菱形.∴ BE =EF =DF =DB =3.∴ 四边形BEFD 的周长为4×3=12 11. 如图,连接CF.∵ 四边形ABCD 和四边形BEFG 都是正方形,∴ GF =GB =BE =5,BC =AB =7,∠G =90°.∴ GC =GB +BC =5+7=12.∴ CF =GF 2+GC 2=52+122=13.∵ M ,N 分别是DC ,DF 的中点,∴ MN =12CF =132第11题12. (1) ∵ 四边形ABCD 是平行四边形,∴ AB =CD ,AB ∥CD ,OB =OD ,OA =OC.∴ ∠ABE =∠CDF.∵ E ,F 分别为OB ,OD 的中点,∴ BE =12OB ,DF =12OD.∴ BE =DF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴ △ABE ≌△CDF (2) 当AC =2AB 时,四边形EGCF 是矩形 理由:∵ OA =OC ,∴ AC =2OA.∵ AC =2AB ,∴ AB =OA.∵ E 是OB 的中点,∴ AG ⊥OB.∴ ∠OEG =90°.同理,可得CF ⊥OD ,∴ AG ∥CF.∴ EG ∥CF.∵ EG =AE ,OA =OC ,∴ OE ∥CG.∴ EF ∥CG.∴ 四边形EGCF 是平行四边形.∵ ∠OEG =90°,∴ 四边形EGCF 是矩形.13. 延长GM 交DE 于点H ,连接BE ,BF.∵ 四边形ABDE 和四边形BCFG 都是正方形,∴ AB ∥DE ∥GF ,∠EBD =∠FBG =45°.∴ ∠HEM =∠GFM ,∠EBF =90°.∵ M 为EF的中点,∴ EM =FM =BM =12 EF.在△EHM 和△FGM 中,⎩⎪⎨⎪⎧∠EMH =∠FMG ,EM =FM ,∠HEM =∠GFM ,∴ △EHM ≌△FGM.∴ HM =GM ,EH =FG.∵ AB =2BC ,∴ 易得GF =EH =DH =DG.∴ △HDG 为等腰直角三角形.设BC =1,则AB =2,BE =22,BF =2,HG = 2.∴ MG =12HG=22,EF=BE2+BF2=10.∴ MB=12EF=102.∴MBMG=10222=5。

人教版八年级数学下册:三角形的中位线【精品课件】

人教版八年级数学下册:三角形的中位线【精品课件】

(2)由(1)知DE=CF,又∵AD=BC,
∴Rt△DAE≌Rt△CBF,∴∠A=∠B.
10. 如图,四边形ABCD是平行四边形, ∠ABC=70°,BE平分∠ABC且交AD于点E,
DF∥BE且交BC于点F. 求∠1的大小.
解:∵四边形ABCD是平行四边形, ∠ABC=70°,∴∠ADC=∠ABC=70°,
解:分别取AC,BC的中点D,E, 连接DE,并量出DE的长,则 AB=2DE.
根据三角形的中位线平行于三角 形的第三边,且等于第三边的一半.
误区 诊断
误区 错误认识中点四边形 一 1.下列说法①任意四边形的四边中点的连线所 形成的四边形是平行四边形;②一个四边形的四边 中点的连线所形成的四边形是平行四边形,则这个 四边形一定是平行四边形;③平行四边形四边中点 的连线所形成的四边形是平行四边形.其中正确的是 ()
B
C
如图,在△ABC中,BD、CE分别是AC、AB 上的中线,BD与CE相交于点O,试探究BO与OD 的大小关系.(提示:分别取OB、OC的中点M、N)
解:OB=2OD, 如图,取OB、OC的中点M、 N,连接EM、MN、ND.∵E、D 分别为△ABC的中点,
∴ED∥BC,ED=
1 2
BC,
∵M、N是△OBC的中点,
A
D
理由:因为光线AD∥BC,纸板
对边AB∥CD,所以光线与纸板所形
B
C
成的四边形ABCD是平行四边形,而平行四边形对角
相等,所以∠2=∠1.
3.如图, ABCD的对角线AC,BD相交于点
O,且AC+BD=36,AB=11,求△OCD的周长.
解:∵ ABCD的对角线互相平分,
(OC=

19.2《三角形的中位线》教学设计20232024学年沪科版数学八年级下册19.2

19.2《三角形的中位线》教学设计20232024学年沪科版数学八年级下册19.2
教学方法与策略
1.教学方法:本节课采用讲授法、讨论法和实践活动法相结合的方式进行教学。讲授法用于向学生传授三角形中位线的定义和性质;讨论法用于引导学生探究中位线与第三边的关系;实践活动法用于让学生通过实际操作加深对中位线性质的理解。
2.教学活动:首先,通过引导学生复习三角形的基本概念和性质,为新知识的学习做好铺垫。接着,讲解三角形中位线的定义和性质,并利用多媒体展示中位线的作图过程。然后,组织学生进行小组讨论,探讨中位线与第三边的关系,并让学生举例说明。最后,安排实践活动,让学生亲自绘制三角形的中位线,并解决相关问题。
19.2《三角形的中位线》教学设计20232024学年沪科版数学八年级下册19.2
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教学内容
本节课的教学内容来自于沪科版数学八年级下册第19.2节《三角形的中位线》。本节主要内容包括:
1.三角形中位线的定义:三角形的中位线是连接一个三角形两个中点的线段。
课堂小结:
1.三角形的中位线是连接一个三角形两个中点的线段,长度等于它所对的边的一半。
2.三角形的中位线与第三边平行,并且等于第三边的一半。
3.三角形的中位线可以用来求解三角形的边长和角度,解决实际问题。
当堂检测:
1.判断题:
(1)三角形的中位线与第三边相等。()
(2)三角形的中位线与第三边平行。()
2.过程与方法:学生通过观察、分析和实践,培养了对几何图形的直观想象能力和逻辑推理能力。学生能够运用三角形中位线的性质进行几何图形的分析和计算,并能够将理论知识应用于实际问题中。
3.情感态度与价值观:学生通过学习三角形的中位线,培养了对几何学科的兴趣和好奇心,提高了对数学知识的运用能力和解决问题的能力,培养了解决实际问题的责任感和自信心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档