3D立体显示技术综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3D立体显示技术综述
Tuesday, May 24, 2011
09:44
引言
理想的视觉显示与日常经历中的场景对比,在质量、清晰度和范围方面应该是无法区分的,但是当前的技术还不支持这种高真实度的视觉显示。随着2009年底卡梅隆导演的《阿凡达》热映,三维立体(3D Stereo)显示技术成为目前火热的技术之一,通过左右眼信号分离,在显示平台上能够实现的立体图像显示。立体显示是VR虚拟现实的一个实现沉浸交互的方式之一,3D(3 dimensional)立体显示可以把图像的纵深,层次,位置全部展现,观察者更直观的了解图像的现实分布状况,从而更全面了解图像或显示内容的信息。
电影《阿凡达》热映的后时代,全民步入了3D立体的时代,随着技术的发展和对3D技术关注度的剧增,3D显示技术的普及化应用已进入紧锣密鼓的实用阶段。本文旨在介绍目前各种系统或设备对三维立体实现方式,推广三维立体的认知度。
1、3D立体显示原理
3D立体显示的基本原理如图表1所示。图中表示两眼光轴平行的情况,相当于两眼注视远处。内瞳距(IPD)是两眼瞳孔之间的距离。两眼空间位置的不同,是产生立体视觉的原因。F是距离人眼较近的物体B上的一个固定点。右面的两眼的视图说明,F点在视图中的位置不同,这种不同就是立体视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。这就是人类的立体视觉,由此获得环境的三维信息。
人眼的另一种工作方式是注视近处的固定点F。这时两眼的光轴都通过点F。两个光轴的交角就是图中的会聚角。因为两眼的光轴都通过点F,所以F点在两个视图中都在中心点。这时,与F相比距离人眼更远或更近的其他点,会存在视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。
目前市场上的3D立体技术的产品主要围绕着裸眼立体和非裸眼立体两种方式,其中涉及的主要产品有:液晶显示设备、等离子显示设备、便携式显示终端设备、投影设备等。
2、立体显示分类
3D立体显示技术可主要分为:裸眼立体显示、便携式立体显示、佩带眼镜的立体三种方式,下面分别介绍不同的显示技术。
因头盔式立体呈现方式较老而且使用极少,全息方式因价格等因素远离民用,因此,本文不对此部分内容做介绍与综述。
2.1裸眼立体显示
裸眼立体显示不要求辅助的观看设备(不需要佩带眼镜),不给用户附加任何约束。观看区域或观看体积的大小可能有所不同,裸眼立体显示也可由多人观看,但整体亮度或观看角度有极大限制。
2.1.1透镜(Lenticulars)显示技术
一个透镜面是圆柱透镜的阵列,它用于产生自动立体三维图像,这是通过把两个不同的二维图像导向各自的观看子区域。在透镜面前方不同的角度上,在子区域内形成图像。当观察者的头在正确的位置时,每只眼就在不同的观看区,看到不同的图像,得到双目视差。
透镜成图像对于大的视场要求高分辨率。对两个视场必须实时显示,而且图像被切片并放在透镜后面的垂直条中。可显示的视场的数目受到圆柱透镜聚焦能力不完善性的限制。透镜畸变和光的绕射减少了透镜方向性,于是由背面屏幕聚焦的图像,不是以平行射线出现,而是以某种角度散布。这种散布限制了能彼此区分的子区域数目。透镜面显示的另一个关键问题是背部屏幕图像必须对准缝口或透镜,否则子区域图像将不会导向合适的子区域。
优点:3D技术显示效果更好,亮度不受到影响。
缺点:相关制造与现有LCD液晶工艺不兼容,需要投资新的设备和生产线。
2.1.2视差档板(Parallax barrier)显示技术
视差档板是放在显示前方的垂直平板,它对每只眼都阻档了屏幕的一部分。视差档板的作用类似透镜面。差别在于它是用档板档住部分显示,而不是用透镜导引屏幕图像。屏幕显示两个图像,每个分成垂直条。屏幕上显示的条交替为左右眼图像,每只眼只看到它的条。
视差档板显示一般不使用,因为有几个缺点。首先,显示的图像太暗,因为档板档住每只眼大部分光。而且,对小的缝宽度,由缝隙的光扩散可能是问题,这是因为光线散射。此外,图像必须划分成条。
2.1.3切片堆积显示技术
切片堆积显示也称为多平面显示。它由多层二维图像(切片)构成三维体积。正如发光二极管(LED)的旋转线可以产生平面图像感,LED的旋转平面可以产生体图像。运动镜面必须以高频运动很大距离,所以也可以用变焦距镜面。一般用30Hz声音信号振动反射膜片。在镜面振动时,聚焦长度改变,反射的监示器在截断的金字塔型观看体积中形成图像。镜面连续改变其放大率,使随时间扫描的图像连续改变其深度。
这个途径的变型正由TI公司开发。在这个技术中,微机械镜面由硅梁支持在对角上。两个未支持的角涂上金属,用作静电驱动器电极,它使镜面拉到一边或另一边。驱动速率约10微秒,角偏转约10°,允许微镜面偏转入射光形成高分辨率显示。
切片堆积方法描绘一个照亮的体积,使物体是透明的,而被遮档的物体不能消隐。对空间数据集和固体建模问题这可能是理想的。但它不适于有消隐表面的照片和真实图像。增加头部跟踪就允许消隐表
面在绘制步骤对一个观看者近似地去掉。然而,不是所有表面都可以正确绘制,因为两眼可能由不同位置观看。
下图表示,数字式微镜面(DMD)的显示方式。(a)为微镜面的结构,(b)为TI公司开发的基于DMD的显示器。
2.2便携式立体眼镜
通过对立体显示原理的利用,部分厂商提供了便携式个人立体眼镜。通过安装在眼镜每只眼睛前的一个小的LED屏幕, 现在每一个稍微不同的画面在眼睛中产生视差,这将创建一个虚拟的三维立体图像,类似于两米开外。因镜头在眼镜内侧,为此并不需要额外的空间,佩带上即可实现3D影像。
下图设备由蔡司(Zeiss)公司研制的Cinemizer 视频眼镜适用于联接苹果Iphone、Ipad、诺基亚N高端系列等手机终端设备,通过读取设备上的特定制作的文件或内容而进行显示。当与设备连接时,除了可以播放3D立体图像或影片,还可在不丢失画面质量的情况下,从DVB-H 接收器上接收电视信号。用户可从Cinemizer 眼镜中看到一个相当于2m 距离外、39 英寸的虚拟显示屏幕,体会到家庭影院般的视觉悟体验。此外,Cinemizer 在耳挂处还带有一个滑块,可用于调节镜架和鼻垫,以适应不同的用户需求。