江苏省南京市中考数学试题分类解析 专题12 押轴题

合集下载

江苏省13市中考数学试题分类解析汇编专题12 押轴题

江苏省13市中考数学试题分类解析汇编专题12 押轴题

江苏13市2011年中考数学试题分类解析汇编专题12:押轴题解答题1.(苏州10分)已知二次函数()()2680y a x x a =-+>的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点.(1)如图①,连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点O'恰好落在该抛物线的对称轴上, 求实数a 的值;(2)如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF 的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程; (3)如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四 边形)?请说明理由.【答案】解:(1)由()268y a x x =-+, 令0y =,解得,122,4x x == 。

令0x =,解得,8y a =。

∴点A 、B 、C 的坐标分别为(2,0),(4,0),(0,8a )。

∴该抛物线的对称轴为3x =。

如图①,设该抛物线的对称轴与x 轴的交点为点M ,则由OA=2得AM=1。

由题意,得O'A=OA=2,∴O'A=2AM,∴∠O'AM=600。

∴∠OAC=∠CAO'=600。

∴OC=OA =8a =a = (2)若点P 是边EF 或边FG 上的任意一点,结论仍然成立。

①如图②,若点P 是边EF 上的任意一点(不与点E 重合),连接PM ,∵点E (4,4)、F (4,3)与点B (4,0)在一直线上,点C 在y 轴上,∴PB<4,PC≥4,∴PC>PB 。

2024届苏南京一中学中考数学押题卷含解析

2024届苏南京一中学中考数学押题卷含解析

2024学年苏南京一中学中考数学押题卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列长度的三条线段能组成三角形的是 A .2,3,5 B .7,4,2 C .3,4,8D .3,3,42.在平面直角坐标系xOy 中,函数31y x 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限3.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA 的值为( ) A .B .C .D .4.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .42cmD .5cm5.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .146.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =7.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元8.已知a m =2,a n =3,则a 3m+2n 的值是( ) A .24 B .36C .72D .69.对于函数y=21x ,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点 C .它的图象不经过第三象限D .y 随x 的增大而减小10.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ) A .y=(x ﹣2)2+1 B .y=(x+2)2+1 C .y=(x ﹣2)2﹣3 D .y=(x+2)2﹣311.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 12.,a b 是两个连续整数,若7a b <<,则,a b 分别是( ).A .2,3B .3,2C .3,4D .6,8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则依题意所列的方程是_____________.14.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.15.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条. 16.一个正n 边形的中心角等于18°,那么n =_____. 17.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____. 18.如图,随机闭合开关1K ,2K ,3K 中的两个,能让两盏灯泡1l 和2l 同时发光的概率为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知抛物线y=﹣33x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF 的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.20.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.21.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.22.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:23 ECDF=;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.①如图2,若∠AFE=45°,求ECDF的值;②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.23.(8分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.24.(10分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.26.(12分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?27.(12分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.2、A【解题分析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【题目详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【题目点拨】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.3、C【解题分析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【题目详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C.【题目点拨】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.4、C【解题分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【题目详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴14cm2CE DE CD===,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴242cm OC CE==,故选:C.【题目点拨】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键. 5、B 【解题分析】试题分析:根据平行四边形的性质可知AB=CD ,AD ∥BC ,AD=BC ,然后根据平行线的性质和角平分线的性质可知AB=AF ,DE=CD ,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10. 故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解. 6、C 【解题分析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点. 7、A 【解题分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【题目详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【题目点拨】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 8、C 【解题分析】试题解析:∵a m =2,a n =3, ∴a 3m+2n =a 3m •a 2n =(a m )3•(a n )2 =23×32 =8×9=1. 故选C. 9、C 【解题分析】直接利用反比例函数的性质结合图象分布得出答案. 【题目详解】 对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确; 第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大, 故选C . 【题目点拨】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键. 10、C 【解题分析】试题分析:根据顶点式,即A 、C 两个选项的对称轴都为,再将(0,1)代入,符合的式子为C 选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为11、C 【解题分析】首先求出方程的根,再利用半径长度,由点O 到直线a 的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离. 【题目详解】 ∵x2-4x-12=0, (x+2)(x-6)=0,解得:x 1=-2(不合题意舍去),x 2=6,∵点O 到直线l 距离是方程x 2-4x-12=0的一个根,即为6, ∴点O 到直线l 的距离d=6,r=5, ∴d >r ,∴直线l 与圆相离.故选:C【题目点拨】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.12、A【解题分析】<<【题目详解】<<a=2,b=1.故选A.【题目点拨】<<二、填空题:(本大题共6个小题,每小题4分,共24分.)13、100(1+x)2=121【解题分析】根据题意给出的等量关系即可求出答案.【题目详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【题目点拨】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.14、15°、30°、60°、120°、150°、165°【解题分析】分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB时,∠ECB=∠B=60°.③如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.15、20000【解题分析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.16、20【解题分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【题目详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【题目点拨】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.17、203 301【解题分析】根据按一定规律排列的一列数依次为579111315,,,,,4710131619…,可得第n个数为2331nn++,据此可得第100个数.【题目详解】由题意,数列可改写成579111315 ,,,,, 4710131619,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为5(1)24(1)3nn+-⨯+-⨯=2331nn++,∴这列数中的第100个数为2100331001⨯+⨯+=203301;故答案为:203 301.【题目点拨】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.18、1 3【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【题目详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,∴能让两盏灯泡同时发光的概率21 ==63,故答案为:13.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、3;(2)17312见解析.【解题分析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(43,找点C关于AE的对称点G(-2,3),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=33x-33;直线AE的解析式:y= -33x-33,过点M作y轴的平行线交FH于点Q,设点M(m,-33m²+233m+3),则Q(m,33m-33),根据S△MFP=S△MQF+S△MQP,得出S△MFP=-33m²+33m+433,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=433,CP=433,进而得出△CFP为等边三角形,边长为433,翻折之后形成边长为433的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.20、2.【解题分析】将原式化简整理,整体代入即可解题.【题目详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【题目点拨】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.21、(1)详见解析;(2)详见解析.【解题分析】(1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;(2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.【题目详解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;(2)∵AC2=DC•EC,∴AC DC EC AC.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【题目点拨】本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA =BC 、BE =BA ;(2)利用相似三角形的判定定理找出△AFD ∽△CFA .22、(1)见解析;(2)①23EC DF =;②cos ∠AFE =25 【解题分析】(1)用特殊值法,设2BE EC ==,则4AB BC ==,证ABE ECF ∆∆∽,可求出CF ,DF 的长,即可求出结论; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,证FGD ∆和AEF ∆是等腰直角三角形,证FCE AGF ∆∆∽,求出:CE GF 的值,即可写出:EC DF 的值;②如图3,作FT FD =交AD 于点T ,作FH AD ⊥于H ,证FCE ATF ∆∆∽,设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==,112DH DT x +==,分别用含x 的代数式表示出∠AFE 和∠D 的余弦值,列出方程,求出x 的值,即可求出结论.【题目详解】(1)设BE =EC =2,则AB =BC =4,∵90AEF ∠︒=,∴90AEB FEC ∠+∠︒=,∵90AEB EAB ∠+∠︒=,∴∠FEC =∠EAB ,又∴90B C ∠∠︒==,∴ABE ECF ∆∆∽, ∴BE AB CF EC=, 即242CF =, ∴CF =1,则3DF DC CF -==,∴23EC DF =; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,∵45AFE ADC ∠∠︒==,∴FGD ∆和AEF ∆是等腰直角三角形,∴180135AGF DGF ∠︒-∠︒==,180135C D ∠︒-∠︒==,∴∠AGF =∠C ,又∵GAF D CFE AFE ∠+∠∠+∠=, ∴∠GAF =∠CFE ,∴FCE AGF ∆∆∽,∴2=2CE FE GF AF =, 又∵GF =DF , ∴22EC DF =;②如图3,作FT FD =交AD 于点T ,作FHAD ⊥于H ,则FTD FDT ∠∠=,∴180180FTD D ︒-∠︒-∠=,∴∠ATF =∠C , 又∵TAF D AFE CFE ∠+∠∠+∠=,且∠D =∠AFE ,∴∠TAF =∠CFE ,∴FCE ATF ∆∆∽,∴FE FC CE AF AT TF==, 设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==, ∴112DH DT x +==,且2FE FC AF AT x==, 由cos =cos AFE D ∠,得213x x x +=, 解得x =5,∴2cos 5EF AFE AF ∠==.【题目点拨】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键. 23、-14【解题分析】先化简,再解不等式组确定x 的值,最后代入求值即可.【题目详解】 (1x ﹣21x -)÷2212x x x x+-+, =(1)(1)x x x -+-÷2212x x x x +-+, =21x x-, 解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x ≤2,∴x =﹣1,0,1,2,∵x =﹣1,0,1时,分式无意义,∴x =2,∴原式=2122-=﹣14.24、(1)y =﹣8x +2560(30≤x ≤1);(2)把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.【解题分析】试题分析:(1)设从甲仓库运x 吨往A 港口,根据题意得从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B 港口的费用+乙仓库运往A 港口的费用+乙仓库运往B 港口的费用列式并化简,即可得总运费y (元)与x (吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x 的取值;(2)因为所得的函数为一次函数,由增减性可知:y 随x 增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560,x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920, 此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口. 考点:一次函数的应用.25、(1)2y x =;1522y x =-+;(2)点P 坐标为(114,98). 【解题分析】(1)将F (4,12)代入0n y x x=(>),即可求出反比例函数的解析式2y x =;再根据2y x =求出E 点坐标,将E 、F 两点坐标代入y kx b =+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【题目详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数解析式为1522y x=+﹣;(2)∵点E坐标为(1,2),点F坐标为1 4 2(,),∴点B坐标为(4,2),∴BE=3,BF=32,∴1139•32224 EBFS BE BF∆==⨯⨯=,∴94POA EBFS S∆∆==.点P是线段EF上一点,可设点P坐标为1522 x x+(,﹣),∴115942224x⨯-+=(),解得114x=,∴点P坐标为119 48(,).【题目点拨】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.26、(1)24,1;(2) 54;(3)360.【解题分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【题目详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).27、(1)y=﹣x2+x+3;D(1,);(2)P(3,).【解题分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【题目详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m2+m+3)﹣(﹣m+3)=,解得:m1=1(舍),m2=3,∴P(3,).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.。

2020年中考数学冲刺专题卷专题12 压轴题(解析版)

2020年中考数学冲刺专题卷专题12 压轴题(解析版)

2020年中考数学冲刺专题卷12 压轴题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2019·江苏中考真题)如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,''B C 与BC ,AC 分别交于点D ,E.设CD DE x +=,AEC ∆'的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .【答案】B【解析】连接B′C ,作AH ⊥B′C′,垂足为H ,∵AB=AC ,∠B=30°,∴∠C=∠B=30°,∵△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,∴AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,∴AH=12AC′=1, ∴223AC AH '-=∴3,∵AB′=AC ,∴∠AB′C=∠ACB′,∵∠AB′D=∠ACD=30°,∴∠AB′C -∠AB′D=∠ACB′-∠ACD ,即∠DB′C=∠DCB′,∴B′D=CD ,∵CD+DE=x ,∴B′D+DE=x ,即B′E=x ,∴C′E=B′C′-B′E=23-x ,∴y=12C E AH 'g =12×(23-x)×1=132x -+, 观察只有B 选项的图象符合题意,故选B.2.(2019·四川中考真题)如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .412C .72D .4 【答案】C【解析】∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中BC=2222345+=+=OC OB∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP 又∵P 在圆C 上,且半径为2,∴当B 、C 、P 共线时BP 最大,即OQ 最大此时BP=BC+CP=7OQ=12BP=72. 3.(2019·山东中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .18【答案】C【解析】作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS 'V V ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数k y x =的图象经过点D , ∴15k =.故选:C .4.(2019·四川中考真题)如图,在四边形ABCD 中,AB DC P ,90ADC ∠=o ,5AB =,3CD AD ==,点E 是线段CD 的三等分点,且靠近点C ,FEG ∠的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若32BG =,45FEG ∠=o ,则HK =( )A .223B .526C .322D .1326【答案】B【解析】∵90ADC ∠=o ,3CD AD ==,∴32AC =∵5AB =,32BG =,∴72AG =, ∵AB DC P ,∴CEK AGK ∆∆:,∴CE CK EK AG AK KG ==, ∴172CK EK AK KG ==,∴27CK EK AK KG ==, ∵32CK AK +=,∴22CK =, 过E 作EM AB ⊥于M ,则四边形ADEM 是矩形,∴3EM AD ==,2AM DE ==,∴32MG =, ∴2235EG EM MG =+=, ∵27EK KG =,∴53EK =, ∵45HEK KCE ∠=∠=o ,EHK CHE ∠=∠,∴HEK HCE ∆∆:,∴55HE EC HK EK ===,∴设3HE x =,5HK x =,∵HEK HCE ∆∆:,∴EH HK HC EH=, ∴532253x x x =+,解得:106x =,∴526HK =, 故选:B .5.(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF ;③2BC CG =﹣1;④HOM HOG S S V V =2﹣2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④ 【答案】A【解析】如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,BC CDBCE DCG CE CG=⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH+∠CDG =90°,∠CDG =∠HDE ,∴∠BEC+∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△GHF ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,DN HN DC CG∴= 设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,222b a a a b-∴= 即a 2+2ab ﹣b 2=0,解得:a =b =(﹣b ,或a =(﹣1b (舍去),212a b∴=1BC CG∴= 故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG , ∴HO =12EG , 设正方形ECGF 的边长是2b ,∴EG =b ,∴HOb ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO △MFE ,∴OM OH EM EF 2b 2===, ∴EMOM ,∴1OM OE ===,∴1HOM HOES S ∆∆= ∵EO =GO ,∴S △HOE =S △HOG ,∴1HOM HOGS S ∆∆= 故④错误,故选:A .6.(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断:①0ab >且0c <;②420a b c -+>;③8>0+a c ;④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【答案】C【解析】 ∵对称轴在y 轴左侧,图象与y 轴交于y 轴正半轴,∴ab>0,c>0,故①错误,∵图象过点(1,0),对称轴为x=-1,∴图象与x 轴的另一个交点为(-3,0),∵抛物线的开口向下, ∴a<0,∴x=-2时,4a-b+c>0,故②正确,∵对称轴x=2b a -=-1, ∴b=2a ,∵x=1时,a+b+c=0,∴3a+c=0,∴8a+c=5a<0,故③错误,∵3a+c=0,∴c=-3a ,∴3a-3b=3a-3×2a=-3a=c ,故④正确, ax 2+bx+c=2x+2,整理得:ax 2+(b-2)x+c-2=0,∵直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,∴x 1+x 2+x 1⋅x 2=2b a --+2c a -=22(3)2a a a-++--=-5,故⑤正确,综上所述:正确的结论为②④⑤,共3个.故选C.7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是A.CE=3DE B.CE=2DEC.CE=3DE D.CE=2DE【答案】B【解析】过点D作DH⊥BC,垂足为H,∵AD=1,BC=2,∴CH=1,根据勾股定理可得DH=AB=2222DC CH-=,∵AD∥BC,∠ABC=90°,∴∠A=90°,∴∠AED+∠ADE=90°,又∵DE⊥CE,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴Rt△ADE∽Rt△BEC,∴AD AE DE BE BC CE==,设BE=x,则AE22x=-,即122xx-=,解得x=2,∴2DECE=,即CE=2DE,故选B.8.(2019·山东中考真题)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN,②当AE=AF时,BEEC=22,③BE+DF=EF,④存在点E、F,使得NF>DF,其中正确的个数是()A.1 B.2 C.3 D.4 【答案】B【解析】①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=12EF=22x,△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC2=AO+OC,∴1+22x2,x=22,∴BEEC=1(22)22---=(21)(22)-+=2;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,AE AEFAE HAEAF AH=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选B.二、填空题(本大题共4个小题,每小题6分,共24分)9.若数a使关于x 的不等式组2122224x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2a y +- 22y-=2有非负数解,则满足条件的整数a 的值是__________. 【答案】-2【解析】解不等式组2122224x x x a -⎧≤-+⎪⎨⎪+>-⎩,可得342x a x ≤⎧⎪⎨+>-⎪⎩,∵不等式组有且仅有四个整数解, ∴-1≤42a +-<0,∴-4<a ≤-2,解分式方程222a y y +--=2,可得y =22a +, 又∵分式方程有非负数解,∴y ≥0,且y ≠2,即22a +≥0,22a +≠2,解得a ≥-2且a ≠2,∴-2≤a ≤3,且a ≠2, ∴满足条件的整数a 的值为-2,故答案为:-2.10.(2019·江苏中考真题)如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,∠ABC=90°,AB=CB ,曲线0k y x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为________.【答案】4【解析】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N ,则∠M=∠ANB=90°,把C(3,4)代入2y x b =+,得4=6+b ,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1,所以A(1,0),∵∠ABC=90°,∴∠CBM+∠ABN=90°,∵∠ANB=90°,∴∠BAN+∠ABN=90°,∴∠CBM=∠BAN ,又∵∠M=∠ANB=90°,AB=BC ,∴△ABN ≌△BCM ,∴AN=BM ,BN=CM ,∵C(3,4),∴设AN=m ,CM=n ,则有413m n m n +=⎧⎨+-=⎩,解得31m n =⎧⎨=⎩, ∴ON=3+1=4,BN=1,∴B(4,1),∵曲线0k y x x =>()过点B ,∴k=4,∴4y x=, ∵将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,此时点A 移动后对应点的坐标为(1,a), ∴a=4,故答案为:4.11.(2019·四川中考真题)如图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为______.【答案】4【解析】∵E 、M 、D 位于反比例函数图象上,∴12OCE S k ∆=,12OAD S k ∆=, 过点M 作MG y ⊥轴于点G ,作MN x ⊥轴于点N ,∴四边形ONMG 是矩形,∴ONMG S k =矩形,∵M 为矩形ABCO 对角线的交点,∴44ABCO ONMG S S k ==矩形矩形,∵函数图象在第一象限,∴0k >,∴ABCO S =矩形OCE S ∆+OAD S ∆+S 四边形ODBE =12422k k k ++=, 解得:4k =.故答案为:412.(2019·辽宁中考真题)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.【答案】42223n n -. 【解析】在直线113y x =+中,当0x =时,1y =;当0y =时,3x =-; ∴1OA =,3OM =,∴1tan 3AMO ∠=, ∵90OAB OAM ︒∠+∠=,90AMO OAM ︒∠+∠=,∴OAB AMO ∠=∠, ∴1tan 3OB OAB OA ∠==,∴13OB =. ∵正方形ABCA 1中的四个小正方形都与△AOB 全等, ∴第一个阴影正方形的边长为:12133-=, ∴212439S ⎛⎫== ⎪⎝⎭,同理:111tan tan 3B C CBB OAB BC ∠==∠=, ∴11111333B C BC AC AB ===, ∴1143A B AB =, ∴221141639S S S ⎛⎫== ⎪⎝⎭, 同理可得2321161699S S S ⎛⎫== ⎪⎝⎭,3431161699S S S ⎛⎫== ⎪⎝⎭,…,11116164999n n n S S --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭142442422222222222233333n n n n n ----⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:42223n n -. 三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)13.(2019·山西中考真题)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 (1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x ==∴315(114,)4N +-,415(114,)4N -, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D(3,154), ∴N 1D=4,∴BM 1=N 1D=4,∴OM 1=OB+BM 1=8,∴M 1(8,0), 综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.14.(2019·广东中考模拟)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.【答案】(1)详见解析;(2)∠BDE=20°.【解析】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB ,∴∠PBC=∠PCB ,∴PC=PB ;(2)如图2,连接OD ,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC , ∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,∴∠DOC=∠DOH ﹣∠NOH=40°,∵OA=OD ,∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°,∵BC ∥DE ,∴∠BDE=∠CBD=20°.15.(2019·广西中考真题)如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点,A B 不重合),连接CE ,过点B 作BF CE ⊥于点G ,交AD 于点F .(1)求证:ABF BCE ∆∆≌;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC DG =;(3)如图3,在(2)的条件下,过点C 作CM DG ⊥于点H ,分别交,AD BF 于点,M N ,求MN NH的值.【答案】(1)见解析;(2)见解析;(3)54MN NH =. 【解析】(1)证明:∵BF CE ⊥,∴90CGB ∠=︒,∴90GCB CBG ∠+∠=︒,∵四边形ABCD 是正方形,∴90,CBE A BC AB ∠=︒=∠=,∴90FBA CBG ∠+∠=︒,∴GCB FBA ∠=∠,∴()ABF BCE ASA ∆∆≌;(2)证明:如图2,过点D 作DQ CE ⊥于Q ,设2AB CD BC a ===,∵点E 是AB 的中点, ∴12EA EB AB a ===, ∴5CE a =,在Rt CEB ∆中,根据面积相等,得BG CE CB EB ⋅=⋅, ∴25BG =, ∴2255CG CB BG a =-=, ∵90,90DCE BCE CBF BCE ∠+∠=︒∠+∠=︒, ∴DCE CBF ∠=∠,∵,90CD BC CQD CGB =∠=∠=︒,∴()CQD BGC AAS ∆∆≌,∴25CQ BG ==, ∴55GQ CG CQ a CQ =-==, ∵,90DQ DQ CQD GQD =∠=∠=︒,∴()DGQ DCQ SAS ∆∆≌,∴CD GD =;(3)解:如图3,过点D 作DQ CE ⊥于Q ,1122CDG S CG DQ CH DG ∆=⋅=⋅, ∴85CG DQ CH a DG ⋅==, 在Rt CHD ∆中,2CD a = ,∴2265DH CD CH a =-=, ∵90,90MDH HDC HCD HDC ∠+∠=︒∠+∠=︒, ∴MDH HCD ∠=∠,∴CHD DHM ∆∆∽,∴34DH HM H DH C ==, ∴910HM a =, 在Rt CHG ∆中,458,5CG CH a ==, ∴2245GH CG CH a =-=, ∵90,90NGH CGH HCG CGH ∠+∠=︒∠+∠=︒, ∴NGH HCG ∠=∠,∴NGH GCH ∆∆∽,∴HN HG HG CH=, ∴225HG HN a CH ==, ∴12MN HM HN a =-=,∴152245a MNNH a==。

2022年南京市中考数学原卷及解析

2022年南京市中考数学原卷及解析

2022年南京市中考数学试题分析一、总体分析1、试卷难度2022年南京中考数学试卷整体难度中等,和2019年、2020年难度类似,比2021年难度略低(2021年有几题超纲),整体难度系数接近0.7,符合中考大纲对于中考难度系数0.7的要求.平时数学学得不错的同学正常发挥,考108分以上问题不大.2、试卷结构(1)试卷分值:满分120分(2)题型分布:选择题1-6、填空题7-16、解答题17-27(3)内容占比:数与代数62分、图形与几何42分、统计与概率16分,代数、几何、概率统计分别占52%、35%、13%,基本符合中考大纲对于代数:几何:概统=45:40:15的要求。

二、命题分析1、难题分析从压轴题上看,难题主要集中在几何模块,主要有:(1)选择题第6题:考查空间想象能力;(2)填空题第16题:找规律问题;(3)解答题第25题考查一次函数;解答第26题考查相似计算;解答第27题依然延续南京中考一贯的几何探究题型,需要认真阅读材料并模仿运用,题目比较灵活创新,需要学生在平时注重类比迁移能力的培养。

2、易错题分析(1)填空题第13题二次函数图像应该是开口朝下,即a<0;(2)解答第23题考查三角函数,有一定计算量,一些同学可能会用错公式或者出现计算错误;(3)解答第25题最后一问需要列分式方程,解分式方程时需要检验增根,很多不重视过程的学生容易遗忘。

3、变化趋势(1)代数方面:有理数、代数式、一元一次方程、一元一次不等式变化不大,难度、题量保持稳定;二次函数难度和分值相比去年有所降低,一次函数难度相比去年有了提升;三角函数是初高中内容衔接紧密的一块,每年解答题中必考一道。

(2)几何方面:平行四边形的性质与判定证明题依然是常见题型,前两年均未出现,2022果不其然有所考察;圆中的证明计算是南京中考的热点题型,2022年在小题中考查有所减少,但在解答题中有所增加,是一道非常重要的拉分题型。

另需要注意的是,相似的计算和探究在2022年考查得更加灵活多变。

中考数学押轴题备考复习测试题12

中考数学押轴题备考复习测试题12

综合型问题一、选择题1.如图,抛物线y=x 2+1与双曲线y=xk的交点A 的横坐标是1,则关于x 的不等式xk + x 2+1<0的解集是 ( ▲ ) A .x>1 B .x<-1 C .0<x<1 D .-1<x<0【解题思路】由题意可得,把x =1代入y=x 2+1得,y=2,再将x =1, y=2代入y=xk 得,k =2,由已知x 的不等式x k+ x 2+1<0得,x 2+1<-x k ,即x 2+1<-x2,设y 1=x 2+1,y 2=-x2,求y 1<y 2时x 的取值范围,也就是x 的不等式xk + x 2+1<0的解集.如图所示,分别画出函数的图像,交点坐标(-1,2),所以当-1<x<0 ,y 1<y 2,即xk + x 2+1<0.所以选择D.【答案】D【点评】本题主要考查利用图像法,解关于x 的不等式xk + x 2+1<0,显然不能直接画出两个函数图象求解,必须绘制一个新的函数图象,(第10题)x例如:绘制y 1=x 2+1,y 2=-x2的图象,求出交点坐标(-1,2),由图象可得,x 的不等式xk + x 2+1<0的解集是-1<x<0.当然,可以运用A 、B 、C 、D 的取值范围的特殊值代入求出正确答案.难度中等.1. (2011台北33)图(十五)为一个四边形ABCD ,其中AC 与BD 交于E 点,且两灰色 区域的面积相等。

若AD =11,BC =10,则下列关系何者正确?(A)BCE DAE ∠<∠ (B)BCE DAE ∠>∠ (C)BE >DE (D)BE <DE【分析】:∵S △ABE= S △CDE ,∴S △BAD= S △CAD ,∴B 、C 两点到AD 的距离相等,∴AD ∥BC ,∴△ADE ∽△CBE, ∴AD BC =DE BE =1110,即BE <DE .【答案】:D【点评】:由面积相等借助等底同高的知识,得到两直线平行,借助相似得到比例,变换得 到结果,难度中等.2.图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。

中考数学专题复习12轴对称试题

中考数学专题复习12轴对称试题

卜人入州八九几市潮王学校12轴对称一、知识性专题专题1轴对称及轴对称图形【专题解读】此局部内容是近几年中考中常见的题型,也是新题型之一,解题的根据主要是轴对称及轴对称的性质.例1如图12-112所示的是小方画的正方形风筝图案,她以图中的对角线所在直线为对称轴,在对角线的下方画一个三角形,使得新的风筝图案成为轴对称图形,假设如图12-113所示的图形中有一图形为此轴对称图形,那么此图为()专题2利用轴对称变换作轴对称变换后的图形及设计方案【专题解读】利用轴对称变换设计精巧图案,当对称轴改变方向时,原图形的对称图形也改变方向,一个图形经过假设干次轴对称变换,再结合平移、旋转等.就可以得到非常美丽的图案.例2如图12-114①所示,给出了一个图案的一半,其中的虚线就是这个图案的对称轴,请画出这个图案的另一半.专题3等腰三角形的性质和断定【专题解读】等腰三角形的性质和断定可以用来证明角相等、线段相等以及线段垂直,这是几何证明中最重要的知识之一,它经常与其他几何知识(如四边形、圆等)综合在一起考察.例3如图12-115所示,AB=AC,E,D分别在AB,AC上,BD和CE相交于点F,且∠ABD=∠ACE.求证BF=CF.专题4等边三角形的性质和断定【专题解读】等边三角形是一个很特殊的三角形,它的三边都相等,三个角都是60°,正是由于它的特殊性,因此在很多的几何证明题中都会用到.例4如图12-116所示,AD是△ABC的中线,∠ADC=60°,BC=4,假设将△ADC沿直线AD折叠,那么C点落在点E的位置上,求BE的长.专题5含30°角的直角三角形的性质与等腰三角形的综合应用【专题解读】直角三角形中,30°角所对的直角边等于斜边的一半,这条性质在实际生活中有着广泛的应用.由角的特殊性,提醒了直角三角形中直角边和斜边的关系.例5如图12-117所示,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D.求证BE=3AD.二、规律方法专题专题6正确作辅助线解决问题【专题解读】本章涉及等腰三角形的性质、角平分线及线段的垂直平分线的性质,做题时可通过添加适当的辅助线由全等等知识获得结论.例6如图12-118所示,∠B=90°,AD=AB=BC,DE⊥AC.求证BF=DC.例7如图12-119所示,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于G.求证EG=FG.三、思想方法专题专题7分类讨论思想【专题解读】本章涉及等腰三角形的边、角的计算,应通过题意讨论其可能存在的情况,运用相关知识一一讨论不难获得结论.例8等腰三角形一腰上的中线把这个三角形的周长分为13 cm和15 cm两局部,试求此等腰三角形的腰长和底边长.,专题8数形结合思想【专题解读】数形结合思想是比较常用的数学思想,在解有关三角形的问题时显得尤为重要.例9(开放题)如图12-121所示,△ABC中,AB=AC,要使AD=AE,需添加的条件是.例10(探究题)如图12-122所示,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画几个例11(动手操作题)如图12-124①所示,△ABC中,AB=AC,∠A=36°,仿照图①请你再用两种不同的方法,将△ABC分割成3个三角形,使每个三角形都是等腰三角形(作图工具不限,不写作法和证明,但要标出所分得的每个等腰三角形的内角的度数).综合验收评估测试题一、选择题(每一小题3分,一共30分)1.如图12-125所示的四个中文艺术字中,不是轴对称图形的是()一日千里ABCD图12-1252.如图12-126所示,把等腰直角三角形ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的选项是()A.AB=BEB.AD=DCC.AD=CED.AD=EC3.如图12-127所示,直线CD是线段AB的垂直平分线,P为直线CD上的一点,线段PA=5,那么线段PB的长度为()A.6B.5C.4D.34.点P(3,-5)关于x轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)5.如图12-128所示,△ABC与△A′B′C′关于直线,对称,且∠A=78°,∠C′=48°,那么∠B的度数为()A.48°B.54°C.74°D.78°6.如图12-129所示的是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的间隔相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC的三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点7.如图12-130所示的是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面局部展开后的图形是图12-131中的()8.如图12-132所示,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,那么图中的等腰三角形有()A.5个B.4个C.3个D.2个9.如图12-133所示,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,假设以点P,O,A 为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.510.如图12-134所示,∠A=15°,AB=BC=CD=DE=EF,那么∠DEF等于()A.90°B.75°C.70°D.60°二、填空题(每一小题3分,一共30分)11.等腰三角形ABC的两边长为2和5.那么第三边长为.12.如图12-135所示,镜子中的号码实际是.13.如图12-136所示.△ABC中,DE垂直平分AC,交AB于E,∠A=30°,∠ACB=80°,那么∠BCE=°.14.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,那么原等腰三角形纸片的底角等于.15.如图12-137所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,假设∠ABE=20°,那么∠EFC′的度数为度.16.假设等腰三角形一腰上的高与底边的夹角为35°.那么这个三角形的顶角为.17.等边三角形是轴对称图形,它有条对称轴.18.(1)假设等腰三角形的一个内角等于130°,那么其余两个角分别为.(2)假设等腰三角形的一个内角等于70°,那么其余两个角分别为.19.如图12-138所示,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=3,那么点D到AB的间隔为.20.如图12-139所示,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,假设△ABC的周长是24,BE=a,那么△BDE的周长是.三、解答题(每一小题10分.一共60分)21.如图12-140所示,有分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A,B两个加油站的间隔相等,而且P到两条公路l1,l2的间隔也相等.请用尺规作图作出点P(不写作法,保存作图痕迹).22.如图12-141所示,∠BAC=∠ABD.(1)要使OC=OD,可以添加的条件为或者;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件.证明OC=OD.23.如图12-142所示,△ABC中,AB=AC,E在CA的延长线上,AE=AF,AD是BC边上的高,试判断EF与BC的位置关系,并说明理由.24.如图12-143所示,△ABC中,点E在AC上,点N在BC上,在AB上找一点F,使△ENF的周长最小,并说明理由.25.如图12-144所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度向正向航行,航行到C处时,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛B在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间是.26.如图12-145所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D,E引直线交AC于点F,那么有AF=FC.为什么附:中考真题精选轴对称图形1.以下交通标志是轴对称图形的是〔〕A 、B 、C 、D 、2.下面的图形中,既是轴对称图形又是中心对称图形的是〔〕A 、B 、C 、D 、3.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么以下列图案中不符合要求的是〔〕A .B .C .D .4.将一个矩形纸片依次按图〔1〕、图⑵的方式对折,然后沿图〔3〕中的虚线裁剪,最后头将图〔4〕的纸再展开铺平,所得到的图案是〔〕5.以下几何图形:①角②平行四边形③扇形④正方形,其中轴对称图形是〔〕A .①②③B .②③④C .①③④D .①②③④ 6.以下有一面国旗是轴对称图形,根据选项里面的图形,判断此国旗为何〔〕A 、B 、C 、D 、7.如图1,将某四边形纸片ABCD 的AB 向BC 方向折过去〔其中AB <BC 〕,使得A 点落在BC 上,展开后出现折线BD ,如图2.将B 点折向D ,使得B 、D 两点重迭,如图3,展开后出现折线CE ,如图4.根据图4,〔向上对折〕 图〔3〕 〔向右对折〕图〔4〕 DC B A 〔第6题〕判断以下关系何者正确?〔〕A、AD∥BCB、AB∥CDC、∠ADB=∠BDCD、∠ADB>∠BDC8.以下四个图案中,轴对称图形的个数是〔〕A、1B、2C、3D、49.在三角形、四边形、五边形、和正六边形中,是轴对称图形的是〔〕A、三角形B、四边形C、五边形D、正六边形10.观察以下列图案,既是中心对称图形又是轴对称图形的是〔〕A、B、C、D、11.以下汽车标志中既是轴对称又是中心对称图形的是〔〕A.B.C.D.12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,假设BC=3,那么折痕CE的长为〔〕A .32B .233C .3D .613.如图,阴影局部是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑.得到新的图形(阴影局部),其中不是..轴对称图形的是() 图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是〔〕A 、B 、C 、D 、14.以下几何图形:①角②平行四边形③扇形④正方形,其中轴对称图形是〔〕A .①②③B .②③④C .①③④D .①②③④15.如图,在Rt △ABC 中,∠ABC =90°,∠C =60°,AC =10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,那么EC 的长度是〔〕A .35B .35-5C .10-35D .5+316.在以下几何图形中,一定是轴对称图形的有〔〕A 、1个B 、2个C 、3个D 、4个17.如图.在直角坐标系中,矩形ABC 0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为〔1,3〕,将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为〔〕A 、412(,)55-B 、213(,)55-C 、113(,)25-D 、312(,)55- 等腰三角形1.如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,并连接BD 、DE .假设∠A =30∘,AB =AC ,那么∠BDE 的度数为何?A .45B .52.5C .67.5D .752.假设一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或者17cm3.如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE AB ⊥,垂足为点E ,那么DE 等于〔〕A .1013B .1513C .6013D .7513二、填空题1.边长为6cm 的等边三角形中,其一边上高的长度为________.2.等腰三角形的周长为14,其一边长为4,那么,它的底边为.3.如图,在△ABC 中,AB =AC ,︒=∠40A ,那么△ABC 的外角∠BCD =°.4.如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6,那么AD=__________________. 5如图,△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,那么∠E =度.6.如图,∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律上去,记∠A 2B 1B 2=1θ,∠3232A B B θ=,…,∠n+11A n n n B B θ+=那么⑴1θ=;⑵n θ=。

【中考12年】江苏省南京市中考数学试题分类解析 专题12 押轴题

【中考12年】江苏省南京市中考数学试题分类解析 专题12 押轴题

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1.(江苏省南京市2002年2分)某种出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是【】A、13B、11C、9D、72. (江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD 的长与宽之比,则a∶b等于【】.(A)2∶l (B)1∶2(C)3∶l (D)1∶33. (江苏省南京市2004年2分)如图所示,边长为12m的正方形池塘的周围是草地,池塘边A,B,C,D处各有一棵树,且AB=BC=CD=3m,现用长4m的绳子将羊拴在一棵树上,为了使在草地上活动区域的面积最大,应将绳子拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在【】A、A处B、B处C、C处D、D处4. (江苏省南京市2005年2分)下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是【】A、甲户比乙户多B、乙户比甲户多C、甲、乙两户一样多D、无法确定哪一户多【答案】D。

【考点】扇形统计图。

【分析】根据扇形图的意义,本题中的总量不明确,所以在两个图中无法确定哪一户多。

故选D。

5. (江苏省南京市2006年2分)下面是两户居民家庭全年各项支出的统计图.6. (江苏省南京市2007年2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是【】7. (江苏省南京市2008年2分)如图,已知⊙O的半径为1,AB与⊙O相切于点A,OB与⊙O交于点C,OD⊥OA,垂足为D,则cos AOB∠的值等于【】8. (江苏省2009年3分)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1) 11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n个数:232111(1)(1)(1)111112342nn n-⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【】A.第10个数B.第11个数C.第12个数D.第13个数9. (江苏省南京市2010年2分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为【】10. (江苏省南京市2011年2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a=的图象被⊙P的弦AB的长为23,则a的值是【】>2),半径为2,函数y x+C.23D.23A.23B.222∵在Rt△PAE中,由弦径定理可得AE=12AB=3,PA=2,∴由勾股定理可得PE=1。

2024届江苏省南京市中考冲刺卷数学试题含解析

2024届江苏省南京市中考冲刺卷数学试题含解析

2024学年江苏省南京市中考冲刺卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A .B .C .D .2.如图已知⊙O 的内接五边形ABCDE ,连接BE 、CE ,若AB =BC =CE ,∠EDC =130°,则∠ABE 的度数为( )A .25°B .30°C .35°D .40°3.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x -=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x-=- 4.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =5.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .156.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm7.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( )A .-1B .1C .0D .58.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( ) 百合花 玫瑰花 小华 6支 5支 小红8支3支A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元9.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .1210.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球二、填空题(本大题共6个小题,每小题3分,共18分) 11.分解因式:4ax 2-ay 2=________________. 12.已知:=,则的值是______.13.如图,已知反比例函数y=(x >0)的图象经过Rt △OAB 斜边OB 的中点C ,且与直角边AB 交于点D ,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.14.已知a、b 是方程x2﹣2x﹣1=0 的两个根,则a2﹣a+b 的值是_______.15.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.16.七边形的外角和等于_____.三、解答题(共8题,共72分)17.(8分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.18.(8分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?19.(8分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价.(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?20.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.21.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA 的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离CD;求这枚火箭从A到B 的平均速度是多少(结果精确到0.01)?22.(10分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?23.(12分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).24.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【题目详解】该几何体的俯视图是:.故选A.【题目点拨】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.2、B【解题分析】如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【题目详解】如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=12∠AOE=30°.故选:B.【题目点拨】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、C【解题分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【题目详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【题目点拨】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4、D【解题分析】先将方程左边提公因式x,解方程即可得答案.【题目详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【题目点拨】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5、A【解题分析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.6、B【解题分析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【题目详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4故选B【题目点拨】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 7、D 【解题分析】 解:2728x y x y +=⎧⎨+=⎩①②,①+②得:3(x+y)=15, 则x+y=5, 故选D 8、A 【解题分析】设每支百合花x 元,每支玫瑰花y 元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x 、y 的二元一次方程,整理后即可得出结论. 【题目详解】设每支百合花x 元,每支玫瑰花y 元,根据题意得: 8x +3y ﹣(6x +5y )=8,整理得:2x ﹣2y =8, ∴2支百合花比2支玫瑰花多8元. 故选:A . 【题目点拨】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键. 9、B 【解题分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可【题目详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =- 故答案为B 【题目点拨】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解. 10、A【解题分析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、a(2x+y)(2x-y)【解题分析】首先提取公因式a,再利用平方差进行分解即可.【题目详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y).【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、–【解题分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【题目详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【题目点拨】此题主要考查比例的性质,a、b都用k表示是解题的关键.13、.【解题分析】由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k 的几何意义即可得到△OAD的面积.【题目详解】∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k =1×1.5=1.5,即反比例函数解析式为y =, ∴S △OAD =×1.5=. 故答案为:. 【题目点拨】本题考查了反比例函数的几何意义,一般的,从反比例函数(k 为常数,k ≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于 .14、1 【解题分析】根据一元二次方程的解及根与系数的关系,可得出a 2-2a=1、a+b=2,将其代入a 2-a+b 中即可求出结论. 【题目详解】∵a 、b 是方程x 2-2x-1=0的两个根, ∴a 2-2a=1,a+b=2,∴a 2-a+b=a 2-2a+(a+b )=1+2=1. 故答案为1. 【题目点拨】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-b a 、两根之积等于ca是解题的关键. 15、17 【解题分析】先利用完全平方公式展开,然后再求和. 【题目详解】根据(x +y )2=25,x 2+y 2+2xy =25;(x ﹣y )2=9, x 2+y 2-2xy =9,所以x 2+y 2=17. 【题目点拨】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b )(a-b )=22a b +.(3)常用等价变形:()2222 ,a b b a b a a b -=-=-+=-+()33a b b a -=--,()()a b a-=--,b()22--=+.a b a b16、360°【解题分析】根据多边形的外角和等于360度即可求解.【题目详解】解:七边形的外角和等于360°.故答案为360°【题目点拨】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于360°.三、解答题(共8题,共72分)17、(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处.【解题分析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【题目详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【题目点拨】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.18、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩.【解题分析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【题目详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为36 4.7 53 5.5 x yx y+=⎧⎨+=⎩解得0.913 xy=⎧⎪⎨=⎪⎩答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.19、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解题分析】(1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.(2)根据题意列出不等式解答即可.【题目详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:2002401.5x x-=4,解得:x=10,经检验:x=10是原方程的解,∴1.5x=15,答:文学书的单价为10元,则科普书的单价为15元.(2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,解得:m≤27.2,∴最多买科普书27本.【题目点拨】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.20、(1)a=﹣12;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或()或(3)s.【解题分析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点,∴C(0,1),∵点C在直线l2上,∴b=1,∴直线l2的解析式为y=ax+1,∵点B在直线l2上,∴2a+1=0,∴a=﹣12;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0,∴x=﹣1,由图象知,点Q在点A,B之间,∴﹣1<n<2(3)、解:如图,∵△PAC是等腰三角形,∴①点x轴正半轴上时,当AC=P1C时,∵CO⊥x轴,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②当P2A=P2C时,易知点P2与O重合,∴BP2=OB=2,∴2÷1=2s,③点P在x轴负半轴时,AP3=AC,∵A(﹣1,0),C(0,1),∴2∴AP32,∴BP3=OB+OA+AP32或BP3=OB+OA﹣AP3=32,∴(2)÷1=(2)s,或(32)÷1=(32)s,即:满足条件的时间t为1s,2s,或(232)s.点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.21、(Ⅰ)发射台与雷达站之间的距离CD约为4.44km;(Ⅱ)这枚火箭从A到B的平均速度大约是0.51/km s.【解题分析】(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD 中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【题目详解】(Ⅰ)在Rt ACD 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【题目点拨】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.22、(1)120;(2) 54;(3)答案见解析;(4)1650.【解题分析】(1)依据节目B 的数据,即可得到调查的学生人数;(2)依据A 部分的百分比,即可得到A 部分所占圆心角的度数;(3)求得C 部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【题目详解】()16655%120÷=,故答案为120;()182********⨯=, 故答案为54;()3C :12025%30⨯=,如图所示:()4300055%1650⨯=,答:该校最喜爱《中国诗词大会》的学生有1650名.【题目点拨】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.23、【解题分析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tan CDCAD∠=3x,根据AD+BD=AB列方程求解可得.【题目详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCD CADAD ∠=,∴AD=tan CDCAD∠=tan30x︒33,由AD+BD=AB3+x=10,解得:x=35,答:飞机飞行的高度为(5)km .24、(1)证明见解析;(2)4.【解题分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【题目详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【题目点拨】考点:全等三角形的判定与性质.。

2024届江苏南京建邺区五校联考中考数学猜题卷含解析

2024届江苏南京建邺区五校联考中考数学猜题卷含解析

2024学年江苏南京建邺区五校联考中考数学猜题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.42.下列各数中是无理数的是()A.cos60°B.·1.3C.半径为1cm的圆周长D3833的相反数是()A 3B3C.﹣3D34.化简a1a11a+--的结果为()A.﹣1 B.1 C.a1a1+-D.a11a+-5.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是().A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>16.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+7.下列运算正确的是()A .a 3•a 2=a 6B .(x 3)3=x 6C .x 5+x 5=x 10D .﹣a 8÷a 4=﹣a 48.如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是( )A .235∠=B .245∠=C .255∠=D .2125∠=9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( ) 百合花 玫瑰花 小华6支 5支 小红8支 3支 A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元10.某射手在同一条件下进行射击,结果如下表所示:射击次数(n ) 10 2050 100 200 500 …… 击中靶心次数(m ) 8 19 44 92178 451 …… 击中靶心频率() 0.80 0.95 0.880.92 0.89 0.90 …… 由此表推断这个射手射击1次,击中靶心的概率是( )A .0.6B .0.7C .0.8D .0.9二、填空题(共7小题,每小题3分,满分21分)11.菱形ABCD 中,∠A=60°,AB=9,点P 是菱形ABCD 内一点,3AP 的长为_____.12.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=k x的图象经过点B ,则k=_______.13.方程3x 2﹣5x+2=0的一个根是a ,则6a 2﹣10a+2=_____.14.已知点(﹣1,m)、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a____0(用“>”或“<”连接).15.如图,在菱形ABCD 中,AE DC ⊥于E ,AE 8cm =,2sinD 3=,则菱形ABCD 的面积是______.16.用一条长 60 cm 的绳子围成一个面积为 2162cm 的矩形.设矩形的一边长为 x cm ,则可列方程为______.17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.三、解答题(共7小题,满分69分)18.(10分)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .证明:DE 为⊙O 的切线;连接OE ,若BC =4,求△OEC 的面积.19.(5分)如图,直线y=kx+2与x 轴,y 轴分别交于点A (﹣1,0)和点B ,与反比例函数y=m x的图象在第一象限内交于点C (1,n ).求一次函数y=kx+2与反比例函数y=m x的表达式;过x 轴上的点D (a ,0)作平行于y 轴的直线l (a >1),分别与直线y=kx+2和双曲线y=m x交于P 、Q 两点,且PQ=2QD ,求点D 的坐标.20.(8分)如图,在顶点为P 的抛物线y=a (x-h )2+k (a≠0)的对称轴1的直线上取点A (h ,k+14a ),过A 作BC ⊥l 交抛物线于B 、C 两点(B 在C 的左侧),点和点A 关于点P 对称,过A 作直线m ⊥l .又分别过点B ,C 作直线BE ⊥m 和CD ⊥m ,垂足为E ,D .在这里,我们把点A 叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE 叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x 2的焦点坐标以及直径的长. (2)求抛物线y=14x 2-32x+174的焦点坐标以及直径的长. (3)已知抛物线y=a (x-h )2+k (a≠0)的直径为32,求a 的值. (4)①已知抛物线y=a (x-h )2+k (a≠0)的焦点矩形的面积为2,求a 的值.②直接写出抛物线y=14x 2-32x+174的焦点短形与抛物线y=x 2-2mx+m 2+1公共点个数分别是1个以及2个时m 的值.21.(10分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.22.(10分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).(1)请用表格或树状图列出点P 所有可能的坐标;(1)求点P 在一次函数y =x +1图象上的概率.23.(12分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .24.(14分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【题目详解】解:∵反比例函数的图象位于一三象限,∴m >0当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【题目点拨】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.2、C【解题分析】分析:根据“无理数”的定义进行判断即可.详解:A 选项中,因为1cos602=,所以A 选项中的数是有理数,不能选A ; B 选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B ;C 选项中,因为半径为1cm 的圆的周长是2πcm ,2π是个无理数,所以可以选C ;D ,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.3、B【解题分析】一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【题目详解】.故选:B .本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.4、B【解题分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【题目详解】解:a1a1a11 a11a a1a1a1-+=-==-----.故选B.5、A【解题分析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【题目点拨】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.6、D【解题分析】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.7、D【解题分析】各项计算得到结果,即可作出判断.【题目详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8、C【解题分析】试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选C.9、A【解题分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【题目详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【题目点拨】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.10、D【解题分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【题目详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【题目点拨】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.二、填空题(共7小题,每小题3分,满分21分)11、33或63【解题分析】分成P 在OA 上和P 在OC 上两种情况进行讨论,根据△ABD 是等边三角形,即可求得OA 的长度,在直角△OBP 中利用勾股定理求得OP 的长,则AP 即可求得.【题目详解】设AC 和BE 相交于点O .当P 在OA 上时,∵AB=AD ,∠A=60°,∴△ABD 是等边三角形,∴BD=AB=9,OB=OD=12BD=92. 则2222993=9-()2AB OB -=. 在直角△OBP 中,2222933(33)()2PB OB -=-=. 则933333-= 当P 在OC 上时,93333=故答案是:.【题目点拨】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.12、16【解题分析】根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【题目详解】解:设D(a,b)则A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的34,∴S△OCE=3ba×3412=9解得ab=8k=a×2b=2ab=2×8=16故答案为16.【题目点拨】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.13、-1【解题分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【题目详解】解:∵方程3x 1-5x+1=0的一个根是a ,∴3a 1-5a+1=0,∴3a 1-5a=-1,∴6a 1-10a+1=1(3a 1-5a )+1=-1×1+1=-1.故答案是:-1.【题目点拨】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、296cm【解题分析】根据题意可求AD 的长度,即可得CD 的长度,根据菱形ABCD 的面积=CD×AE ,可求菱形ABCD 的面积. 【题目详解】 ∵sinD=23AE AD = ∴823AD = ∴AD=11∵四边形ABCD 是菱形∴AD=CD=11∴菱形ABCD 的面积=11×8=96cm 1.故答案为:96cm 1.【题目点拨】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.16、(30)216x x -=【解题分析】根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.【题目详解】解:由题意可知,矩形的周长为60cm ,∴矩形的另一边为:(30)x cm -,∵面积为 2162cm ,∴(30)216x x -=故答案为:(30)216x x -=.【题目点拨】本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.17、2π3【解题分析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π.三、解答题(共7小题,满分69分)18、 (1)证明见解析;(2【解题分析】试题分析:(1)首先连接OD ,CD ,由以BC 为直径的⊙O ,可得CD ⊥AB ,又由等腰三角形ABC 的底角为30°,可得AD=BD ,即可证得OD ∥AC ,继而可证得结论;(2)首先根据三角函数的性质,求得BD ,DE ,AE 的长,然后求得△BOD ,△ODE ,△ADE 以及△ABC 的面积,继而求得答案.试题解析:(1)证明:连接OD ,CD ,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,3∴33∴S△ABC=12AB•CD=12×33∵DE⊥AC,∴DE=12AD=12×33AE=AD•cos30°=3,∴S △ODE =12OD•DE=12×,S △ADE =12AE•DE=12×,∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE 2 19、()1一次函数解析式为22y x =+;反比例函数解析式为4y x=;()()22,0D . 【解题分析】(1)根据A (-1,0)代入y =kx +2,即可得到k 的值; (2)把C (1,n )代入y =2x +2,可得C (1,4),代入反比例函数m y x =得到m 的值; (3)先根据D (a ,0),PD ∥y 轴,即可得出P (a ,2a +2),Q(a ,4a ),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D 点的坐标.【题目详解】(1)把A (﹣1,0)代入y =kx +2得﹣k +2=0,解得k =2,∴一次函数解析式为y =2x +2;把C (1,n )代入y =2x +2得n =4,∴C (1,4),把C (1,4)代入y =m x得m =1×4=4, ∴反比例函数解析式为y =4x ; (2)∵PD ∥y 轴,而D (a ,0),∴P (a ,2a +2),Q (a ,4a ), ∵PQ=2QD ,∴2a +2﹣4a =2×4a, 整理得a 2+a ﹣6=0,解得a 1=2,a 2=﹣3(舍去),∴D (2,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.20、(1)4(1)4(3)23±(4)①a=±12;②当时,1个公共点,当m≤1或5≤m <时,1个公共点,【解题分析】 (1)根据题意可以求得抛物线y=14x 1的焦点坐标以及直径的长; (1)根据题意可以求得抛物线y=14x 1-32x+174的焦点坐标以及直径的长; (3)根据题意和y=a (x-h )1+k (a≠0)的直径为32,可以求得a 的值; (4)①根据题意和抛物线y=ax 1+bx+c (a≠0)的焦点矩形的面积为1,可以求得a 的值;②根据(1)中的结果和图形可以求得抛物线y=14x 1-32x+174的焦点矩形与抛物线y=x 1-1mx+m 1+1公共点个数分别是1个以及1个时m 的值.【题目详解】(1)∵抛物线y=14x 1, ∴此抛物线焦点的横坐标是0,纵坐标是:0+1144⨯=1,∴抛物线y=14x 1的焦点坐标为(0,1), 将y=1代入y=14x 1,得x 1=-1,x 1=1, ∴此抛物线的直径是:1-(-1)=4;(1)∵y=14x 1-32x+174=14(x-3)1+1, ∴此抛物线的焦点的横坐标是:3,纵坐标是:1+1144⨯=3, ∴焦点坐标为(3,3),将y=3代入y=14(x-3)1+1,得 3=14(x-3)1+1,解得,x 1=5,x 1=1, ∴此抛物线的直径时5-1=4; (3)∵焦点A (h ,k+14a ),∴k+14a=a(x-h)1+k,解得,x1=h+12a,x1=h-12a,∴直径为:h+12a-(h-12a)=1a=32,解得,a=±23,即a的值是23 ;(4)①由(3)得,BC=1 a,又CD=A'A=12a.所以,S=BC•CD=1a•12a=212a=1.解得,a=±12;②当或时,1个公共点,当m≤1或5≤m<时,1个公共点,理由:由(1)知抛,物线y=14x1-32x+174的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,或,过C(5,3)时,(舍去)或,∴当或时,1个公共点;当<m≤1或5≤m<时,1个公共点.由图可知,公共点个数随m的变化关系为当m<时,无公共点;当时,1个公共点;当<m≤1时,1个公共点;当1<m<5时,3个公共点;当5≤m<1个公共点;当m=5+2时,1个公共点; 当m >5+2时,无公共点;由上可得,当m=1-2或m=5+2时,1个公共点;当1-2<m≤1或5≤m <5+2时,1个公共点.【题目点拨】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.21、(1)50人;(2)补全图形见解析,表示A 组的扇形统计图的圆心角的度数为108°;(3)12. 【解题分析】分析:(1)、根据B 的人数和百分比得出样本容量;(2)、根据总人数求出C 组的人数,根据A 组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.详解:(1)被调查的总人数为19÷38%=50人; (2)C 组的人数为50﹣(15+19+4)=12(人),补全图形如下:表示A 组的扇形统计图的圆心角的度数为360°×1550=108°; (3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, ∴P (恰好选中甲)=61122. 点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.22、(1)见解析;(1).【解题分析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率. 试题解析:(1)画树状图:或列表如下:∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,∴P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.23、证明见解析【解题分析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【题目详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中{EA EC EB EB==,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD 与△CBD 中{AB CBABE CBE BD BD=∠=∠=,∴△ABD ≌△CBD ,∴AD=CD .【题目点拨】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.24、1【解题分析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x −1=0,∴x 2=x+1,则原式=1.。

江苏省南京玄武区六校联考2024届中考数学最后冲刺浓缩精华卷含解析

江苏省南京玄武区六校联考2024届中考数学最后冲刺浓缩精华卷含解析

江苏省南京玄武区六校联考2024届中考数学最后冲刺浓缩精华卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A.64×105B.6.4×105C.6.4×106D.6.4×1072.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=4.已知反比例函数y=﹣6x,当﹣3<x<﹣2时,y的取值范围是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣25.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是()A.100°B.80°C.60°D.50°6.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形8.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .3πB .23π C .43π D .76π 9.已知在四边形ABCD 中,AD//BC ,对角线AC 、BD 交于点O ,且AC=BD ,下列四个命题中真命题是( ) A .若AB=CD ,则四边形ABCD 一定是等腰梯形; B .若∠DBC=∠ACB ,则四边形ABCD 一定是等腰梯形; C .若AO COOB OD=,则四边形ABCD 一定是矩形; D .若AC ⊥BD 且AO=OD ,则四边形ABCD 一定是正方形.10.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°11.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( ) A .2 B .3 C .4 D .612.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根D .没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知点 M (1,2)在反比例函数的图象上,则 k =____.14.计算32)3-的结果是_____15.在平面直角坐标系中,点 A 的坐标是(-1,2) .作点A 关于x 轴的对称点,得到点A 1 ,再将点A 1 向下平移 4个单16.若点M(1,m)和点N(4,n)在直线y=﹣12x+b上,则m___n(填>、<或=)17.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:x …﹣3 ﹣2 0 1 3 5 …y …7 0 ﹣8 ﹣9 ﹣5 7 …则二次函数y=ax2+bx+c在x=2时,y=______.18.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.20.(6分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D 的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.22.(8分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)23.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.24.(10分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)(1)若关于x的反比例函数y=2ax过点A,求t的取值范围.(2)若关于x的一次函数y=bx过点A,求t的取值范围.(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.25.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=12x+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.27.(12分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)如图1,若BC=3,AB=5,则ctanB=_____;(2)ctan60°=_____;(3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合. 3、D 【解题分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去. 【题目详解】解:A 、原式=2249b c;故本选项错误;B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误;D 、原式=223x ;故本选项正确; 故选:D . 【题目点拨】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒. 4、C 【解题分析】 分析:由题意易得当﹣3<x <﹣2时,函数6y x=-的图象位于第二象限,且y 随x 的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了. 详解: ∵在6y x=-中,﹣6<0, ∴当﹣3<x <﹣2时函数6y x=-的图象位于第二象限内,且y 随x 的增大而增大, ∵当x=﹣3时,y=2,当x=﹣2时,y=3, ∴当﹣3<x <﹣2时,2<y <3,点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.5、B【解题分析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B6、C【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【题目点拨】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.7、C【解题分析】根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【题目详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质8、B【解题分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【题目详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴DE的长=602180π⨯=23π;故选B.【题目点拨】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.9、C【解题分析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.10、D【解题分析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.11、C【解题分析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.12、A【解题分析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【题目详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【题目点拨】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-2【解题分析】=1×(-2)=-2142【解题分析】【分析】根据二次根式的运算法则进行计算即可求出答案.【题目详解】(3233232,2.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.15、(-1, -6)【解题分析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【题目详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【题目点拨】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16、>【解题分析】根据一次函数的性质,k<0时,y随x的增大而减小.【题目详解】因为k=﹣12<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【题目点拨】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.17、﹣1【解题分析】试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,解:∵x=﹣3时,y=7;x=5时,y=7,∴二次函数图象的对称轴为直线x=1,∴x=0和x=2时的函数值相等,∴x=2时,y=﹣1.故答案为﹣1.18、35°【解题分析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析(2)3【解题分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【题目详解】(1)连接OC.∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵OA OCPA PCOP OP=⎧⎪=⎨⎪=⎩,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan∠COB3【题目点拨】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.20、(1)y=﹣2t+200(1≤t≤80,t为整数);(2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解题分析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t的值,结合函数图象即可得出答案;【题目详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t+200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y , 当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450, ∴当t=30时,w 最大=2450;∴第30天的日销售利润最大,最大利润为2450元. (3)由(2)得:当1≤t≤80时,w=﹣12(t ﹣30)2+2450, 令w=2400,即﹣12(t ﹣30)2+2450=2400,解得:t 1=20、t 2=40, ∴t 的取值范围是20≤t≤40, ∴共有21天符合条件. 【题目点拨】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.21、(1)y=x 2﹣2x ﹣3;(2)D (0,﹣1);(3)P 点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10). 【解题分析】(1)将A,B 两点坐标代入解析式,求出b,c 值,即可得到抛物线解析式;(2)先根据解析式求出C 点坐标,及顶点E 的坐标,设点D 的坐标为(0,m ),作EF ⊥y 轴于点F ,利用勾股定理表示出DC,DE 的长.再建立相等关系式求出m 值,进而求出D 点坐标;(3)先根据边角边证明△COD ≌△DFE ,得出∠CDE=90°,即CD ⊥DE ,然后当以C 、D 、P 为顶点的三角形与△DOC 相似时,根据对应边不同进行分类讨论: ①当OC 与CD 是对应边时,有比例式OC ODDC DP=,能求出DP 的值,又因为DE=DC,所以过点P 作PG ⊥y 轴于点G ,利用平行线分线段成比例定理即可求出DG ,PG 的长度,根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;②当OC 与DP 是对应边时,有比例式OC ODDP DC=,易求出DP ,仍过点P 作PG ⊥y 轴于点G ,利用比例式DG PG DPDF EF DE==求出DG ,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标. 【题目详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3), ∴10{3b c c -+==-,解得2{3b c =-=-,故抛物线的函数解析式为y=x 2﹣2x ﹣3; (2)令x 2﹣2x ﹣3=0, 解得x 1=﹣1,x 2=3, 则点C 的坐标为(3,0), ∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图), ∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12, ∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1, ∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4), ∴CO=DF=3,DO=EF=1, 根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ), ∴∠EDF=∠DCO , 又∵∠DCO+∠CDO=90°, ∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时, ∵△DOC ∽△PDC , ∴OC ODDC DP=1DP ,解得DP=3, 过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE==,即31DG PG==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0, 所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时, ∵△DOC ∽△CDP ,∴OC ODDP DC=,即3DP ,解得过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE ==,即31DG PG ==, 解得DG=9,PG=3,当点P 在点D 的左边时,OG=DG ﹣OD=9﹣1=8, 所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG=OD+DG=1+9=10, 所以,点P 的坐标是(3,﹣10),综上所述,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,满足条件的点P 共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.22、见解析【解题分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【题目详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【题目点拨】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.23、技术改进后每天加工1个零件.【解题分析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得5005000500351.5x x-+=,解得x=100,经检验x=100是原方程的解,则改进后每天加工1.答:技术改进后每天加工1个零件.点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.24、(1)t≤﹣34;(2)t≤3;(3)t≤1.【解题分析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.(2)把点A的坐标代入一次函数解析式求得a=1b;然后利用二次函数的最值的求法得到t的取值范围.(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.【题目详解】解:(1)把A(a,1)代入y=2ax得到:1=2aa,解得a=1,则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣12)2﹣34.因为抛物线t=﹣(b﹣12)2﹣34的开口方向向下,且顶点坐标是(12,﹣34),所以t的取值范围为:t≤﹣34;(2)把A(a,1)代入y=bx得到:1=ab,所以a=1b,则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+1b)2+3≤3,故t的取值范围为:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范围为:t≤1.【题目点拨】本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.25、(1)①150;②作图见解析;③13.3%;(2)59.【解题分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.【题目详解】①小明统计的评价一共有:(40+20)÷(1-60%=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:20150×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是59.考点:扇形统计图;条形统计图;列表法与树状图法.26、(1)y=﹣x2+2x+3,D点坐标为(57,24);(2)当m=54时,△CDP的面积存在最大值,最大值为12564;(3)m的值为54或3255【解题分析】(1)利用待定系数法求抛物线解析式和直线CD 的解析式,然后解方程组213223y x y x x ⎧=+⎪⎨⎪=-++⎩得D 点坐标; (2)设P (m ,-m 2+2m+3),则E (m ,-12m+3),则PE=-m 2+52m ,利用三角形面积公式得到S △PCD =12×52×(-m 2+52m )=-54m 2+258m ,然后利用二次函数的性质解决问题; (3)讨论:当PC=PE 时,m 2+(-m 2+2m+3-3)2=(-m 2+52m )2;当CP=CE 时,m 2+(-m 2+2m+3-3)2=m 2+(-12m+3-3)2;当EC=EP 时,m 2+(-12m+3-3)2=(-m 2+52m )2,然后分别解方程即可得到满足条件的m 的值. 【题目详解】(1)把A (﹣1,0),C (0,3)分别代入y=﹣x 2+bx+c 得103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴抛物线的解析式为y=﹣x 2+2x+3;把C (0,3)代入y=﹣12x+n ,解得n=3, ∴直线CD 的解析式为y=﹣12x+3,解方程组213223y x y x x ⎧=+⎪⎨⎪=-++⎩,解得03x y =⎧⎨=⎩ 或5274x y ⎧=⎪⎪⎨⎪=⎪⎩,∴D 点坐标为(52,74); (2)存在.设P (m ,﹣m 2+2m+3),则E (m ,﹣12m+3), ∴PE=﹣m 2+2m+3﹣(﹣12m+3)=﹣m 2+52m ,∴S△PCD=12•52•(﹣m2+52m)=﹣54m2+258m=﹣54(m﹣54)2+12564,当m=54时,△CDP的面积存在最大值,最大值为12564;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+52m)2,解得m=0(舍去)或m=54;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣12m+3﹣3)2,解得m=0(舍去)或m=52(舍去)或m=32;当EC=EP时,m2+(﹣12m+3﹣3)2=(﹣m2+12m)2,解得m=552+(舍去)或m=552-,综上所述,m的值为54或32或552-.【题目点拨】本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.27、(1);(2);(3).【解题分析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC ﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如图2,在Rt△ACH中,ctanC==2,设AH=x,则CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考点:解直角三角形.。

2024年中考数学考前押题密卷+全解全析(南京卷)

2024年中考数学考前押题密卷+全解全析(南京卷)

2024年中考数学考前押题密卷(南京卷)全解全析第Ⅰ卷一.选择题(本大题共6个小题,每小题2分,共12分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面的计算,不正确的是( )A.5a3﹣a3=4a3B.2m×3n=6m+nC.(﹣a m)2=a2m D.﹣a2×(﹣a)3=a5【分析】根据幂的乘方与积的乘方法则,合并同类项的法则,同底数幂的乘法法则,逐项判定即可【解答】解:A、5a3﹣a3=4a3,正确,不符合题意;B、2m×3n≠6m+n,原计算错误,符合题意;C、(﹣a m)2=(﹣1)2⋅(a m)2=a2m,正确,不符合题意;D、﹣a2×(﹣a)3=﹣a2×(﹣a3)=a5,正确,不符合题意;故选:B.【点评】本题考查的是幂的乘方与积的乘方,合并同类项,同底数幂的乘法法则,熟知以上知识是解题的关键.2.今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A.384×103B.3.84×105C.38.4×104D.0.384×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将384000用科学记数法表示为:3.84×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“标杆原理”的意义和价值.“标杆原理”在实际生产和生活中,有着广泛的运用.比如:小明用撬棍撬动一块大石头,运用的就是“标杆原理”.已知阻力F 1(N )和阻力臂L 1(m )的函数图象如图,若小明想使动力F 2不超过150N ,则动力臂L 2至少需要( )m .A .2B .1C .6D .4【分析】根据杠杆的平衡条件列出方程,即可解得答案.【解答】解:根据杠杆的平衡条件F 1•L 1=F 2•L 2可得:1200×0.5=150×L 2,解得L 2=4,答:动力臂L 2至少需要4m ,故选:D .【点评】本题考查反比例函数的应用,解题的关键是掌握杠杆的平衡条件.4.若关于x 的一元二次方程x 2﹣(2m ﹣1)x +m 2+3=0有实数根,则m 的取值范围是( )A .m ≥134B .m ≤C .m ≤−114D .m <−114 【分析】根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵关于x 的一元二次方程x 2﹣(2m ﹣1)x +m 2+3=0有实数根,∴Δ=[﹣(2m ﹣1)]2﹣4×1×(m 2+3)≥0,解得m ≤−114.故选:C .【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是牢记“当△≥0时,方程有实数根”.5.在某校举行的“我的中国梦”演讲比赛中,10名参赛学生的成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中不正确的是( )A.中位数是80 B.众数是80C.平均数是82 D.极差是40【分析】根据中位数、众数、平均数以及极差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(80+80)÷2=80,故选项A正确,不合题意;∵80出现了5次,出现的次数最多,∴众数是80;故选项B正确,不合题意;故B正确,不符合题意;z∵平均数是(60×1+70×1+80×5+90×2+100×1)÷10=81;故选项C结论错误,符合题意;最大值与最小值的差为100﹣60=40,故选项D正确,不合题意.故选:C.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数以及极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数和极差.6.如图,已知⊙O的直径AB=4,弦AC与弦BD交于点E,且OD⊥AC,垂足为点F.若AC=BD.则EC的长为( )A .√3B .1C .$√&&D .'√&&【分析】连结AD 、OC ,由OD ⊥AC 于点F ,根据垂径定理得AF =CF ,AD +=CD +,由AC =BD ,得AC+=BD +,可证明AD +=BC +=CD +,则∠AOD =60°,所以△AOD 是等边三角形,则AD =OD =2,DF =OF =12OD =1,由勾股定理得AF =CF =√AD !−DF !=√3,再证明△DFE ∽△AFD ,得)*+*=+*,*,则EF =DF 2AF ="33,即可求得EC =CF ﹣EF =2"33,于是得到问题的答案. 【解答】解:连结AD 、OC ,∵OD ⊥AC 于点F ,∴AF =CF ,AD+=CD +, ∵AC =BD ,∴AC+=BD +, ∴AC+−CD +=BD +−CD +, ∴AD+=BC +=CD +, ∴∠AOD =∠DOC =∠COB =13×180°=60°, ∵AB 是⊙O 的直径,AB =4,∴OD =OA =OB =12AB =12×4=2,∠ADB =90°,∴△AOD 是等边三角形,∴AD =OD =2,DF =OF =12OD =12×2=1,∴AF =CF =√AD !−DF !=√2!−1!=√3,∵∠DFE =∠AFD =90°,∠EDF =∠DAF =90°﹣∠ADF ,∴△DFE ∽△AFD ,∴)*+*=+*,*, ∴EF =DF 2AF =12"3="33, ∴EC =CF ﹣EF =√3−"33=2"33, 故选:C .z【点评】此题重点考查圆周角定理、垂径定理、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识,证明∠AOD =60°是解题的关键.第Ⅱ卷二.填空题(共10小题,满分20分,每小题2分)7.如果分式012"032"有意义,那么x 需满足的条件是 . 【分析】根据分式有意义的条件解答即可.【解答】解:∵分式012"032"有意义, ∴1﹣x 2≠0,解得x ≠±1.故答案为:x ≠±1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题的关键.8.因式分解mx 2+2mx +m = .【分析】提公因式m 后,再利用完全平方公式进行计算即可.【解答】解:原式=m (x 2+2x +1)=m (x +1)2,故答案为:m (x +1)2.【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式是的结构特征是正确解答的前提.9.如图,⊙O 的弦AB 、DC 的延长线相交于点E ,∠AOD =128°,∠E =40°,则∠BDC = .【分析】由圆周角定理求出∠ABD =12∠AOD =64°,由三角形外角的性质得到∠BDC =∠ABD ﹣∠E =24°.z【解答】解:∵∠ABD =12∠AOD ,∠AOD =128°,∴∠ABD =64°,∵∠E =40°,∴∠BDC =∠ABD ﹣∠E =64°﹣40°=24°.故答案为:24°.【点评】本题考查圆周角定理,三角形外角的性质,关键是由圆周角定理得到∠ABD =12∠AOD .10.已知3x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 . 【分析】把x 与y 的值代入方程计算得到a +2b 的值,原式变形后代入计算即可求出值.【解答】解:把3x =1y =2代入ax +by =3得:a +2b =3, 则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1.故答案为:1.【点评】此题考查了二元一次方程的解,以及代数式求值,方程的解即为能使方程左右两边相等的未知数的值.11.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AB 的长度为8cm ,那么PB 的长度是 cm .【分析】根据黄金分割比例直接求解即可得到答案.【解答】解:∵P 为AB 的黄金分割点(AP >PB ),设AP =x ,∴x 2=8(8﹣x ),解得:x #=4√5−4,x !=−4√5−4(不符合题意舍去),∴BP =8−4√5+4=12−4√5,故答案为:(12−4√5).【点评】本题主要考查黄金分割,解题的关键是熟练掌握黄金分割点的比例关系较长线段的平方等于较短边乘以整条线段.z12.如图,△ABC 的顶点均在正方形网格的格点上,则∠ABC +∠ACB 的度数等于 .【分析】根据网格和勾股定理可得△ADB 是等腰直角三角形,再根据三角形外角的性质即可求出∠ABC +∠ACB .【解答】解:如图,取格点D ,连接AD 、BD ,根据网格和勾股定理,得AD =BD =2,AB =√2!+2!=2√2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴∠DAB =45°.∴∠DAB =∠ABC +∠ACB =45°.故答案为:45°.【点评】本题考查了勾股定理、勾股定理的逆定理、三角形外角的性质,解决本题的关键是掌握勾股定理和其逆定理.13.如图,等边△ABC 中,D 、E 分别在边AC ,BC 上,AB =6,CD =23CE ,△CDE 沿直线DE 折叠,使点C 落在AB 边上的P 处,则CE = .【分析】证明△BPE ∽△ADP ,由相似三角形的性质得出45,+=5),4=4)4+,设CE =x ,则PE =x ,BE =6﹣x ,CD =23x ,得出4563"#2=2"#2,解得PB =9﹣x ,可得出关于x 的方程,解方程即可得出答案.【解答】解:∵△ABC 是等边三角形,∴AB =BC =AC =6,∠A =∠B =∠C =60°,∵△CDE 沿直线DE 折叠,使点C 落在AB 边上的P 处,∴CE =PE ,CD =PD ,∠C =∠EPD =60°,∴∠APD +∠BPE =120°,∵∠APD +∠ADP =120°,∴∠BPE =∠ADP ,∴△BPE ∽△ADP ,∴45,+=5),4=4)4+, 设CE =x ,则PE =x ,BE =6﹣x ,CD =23x ,∴AD =6−23x , ∴4563"#2=2"#2, ∴PB =9﹣x ,∴AP =6﹣(9﹣x )=x ﹣3.∴632732=23&63"#2, 解得x =215或x =9(不合题意,舍去). ∴CE =215.【点评】本题考查了翻折的性质,等边三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质及方程思想是解题的关键.14.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶,设两车出发时间为x (单位:h ),货车、轿车与甲地的距离为y 1(单位:km ),y 2(单位:km ),图中的线段OA 、折线BCDE 分别表示y 1,y 2与x 之间的函数关系.则两车出发 h 时,两车相距150km .z【分析】先求出图中各点的坐标,分别根据待定系数法求出直线BC ,DE ,OA 的解析式,然后分两种情况进行讨论:①当轿车休息前与货车相距150km 时;②当轿车休息后与货车相距150km 时,列出等式求解即可.【解答】解:由题意可求得OA 所在直线的表达式为y =75x ,则y =300时,x =4,∴点D 的坐标为(4,300),∵轿车在休息前2.4h 行驶300km ,休息后按原速度行驶,∴轿车行驶后300km 需2.4h ,∴点E 坐标为(6.4,0).设线段DE 所在直线的函数表达式为y =kx +b ,将点D (4,300),E (6.4,0)代入可求得线段DE 所在直线的函数表达式为y =﹣125x +800; 设BC 段的函数表达式为y =﹣125x +n ,将B (0,600)代入可求得线段BC 的函数表达式为y =﹣125x +600, ①当轿车休息前与货车相距150km 时,﹣125x +600﹣75x =150,解得x =2.25;②当轿车休息后与货车相距150km 时,75x ﹣(﹣125x +800)=150,解得x =4.75.故两车出发2.25小时或4.75小时后相距150km ,故答案为:2.25或4.75.【点评】本题考查了根据函数图象读取信息以及一次函数的实际应用,读懂题意,结合图象与行程问题的数量关系解题是关键.z 15.如果点M (﹣1,y )、点N (−12,y 2)都在函数y =2+m x 的图象上,且y 1<y 2,那么m 的取值范围是 .【分析】利用反比例函数的性质解决问题即可.【解答】解:∵点M (﹣1,y )、点N (−12,y 2)都在函数y =2+m x 的图象上,且y 1<y 2,∴2+m <0,∴m <﹣2,故答案为:m <﹣2.【点评】本题考查反比例函数的图象上的点的坐标特征,熟知反比例函数的性质是解题的关键.16.如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为 .【分析】作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB =BC =CD ,BE ∥GH ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =7,由勾股定理得42+(7﹣AB )2=AB 2,求得AB =6514,所以AE=AB ﹣BE =914,于是得到问题的答案. 【解答】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∴BH =GE =4,z∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7﹣CD =7﹣AB ,∴42+(7﹣AB )2=AB 2,解得AB =6514,∴AE =AB ﹣BE =6514−4=914, 故答案为:70'.【点评】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.三、解答题(本大题共11个小题,共88分.解答应写出文字说明,证明过程或演算步骤)17.(6分)求不等式组;x+12−1<x x >3(x −1)的整数解. 【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:解不等式210$−1<x ,得x >﹣1, 解不等式x >3(x ﹣1),得x <32, ∴不等式组的解集为﹣1<x <32, ∴不等式组的整数解为0,1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.(6分)先化简,再求值:(1−a a−3)÷a 2−3a a 2−6a+9,其中a =2√3. 【分析】先通分括号内的式子,再算括号外的除法,然后将a 的值代入化简后的式子计算即可.【解答】解:(1−aa−3)÷a2−3aa2−6a+9=a−3−aa−3•(A3&)"A(A3&)=−3a,当a=2√3时,原式=−32"3=−"32.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.19.(8分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?【分析】设每件售价应定为x元,则每件的销售利润为(x﹣40)元,日销售量为20+60−x5×10=(140﹣2x)件,利用该种小商品的日销售利润=每件的销售利润×日销售量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:设每件售价应定为x元,则每件的销售利润为(x﹣40)元,日销售量为20+60−x5×10=(140﹣2x)件,依题意得:(x﹣40)(140﹣2x)=(60﹣40)×20,整理得:x2﹣110x+3000=0,解得:x1=50,x2=60(不合题意,舍去).答:每件售价应定为50元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(8分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m= ,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?【分析】(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和D类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年级有多少名学生寒假在家做家务的总时间不低于20小时.【解答】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50﹣10﹣12﹣16﹣4=8(人),补全的条形统计图如图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,故答案为:32,57.6;(4)400×16+8+450=224(人),即估计该校七年级有224名学生寒假在家做家务的总时间不低于20小时.z【点评】本题考查扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)明明家客厅里装有一种开关(如图所示),从左到右依次分别控制着A (楼梯),B (客厅),C (走廊),D (洗手间)四盏电灯,按下任意一个开关均可打开对应的一盏电灯.(1)若明明任意按下一个开关,则下列说法中,正确的是 (填字母).A .打开的一定是楼梯灯B .打开的可能是卧室灯C .打开的可能是客厅灯D .打开走廊灯的概率是0&(2)若任意按下一个开关后,再按下另三个开关中的一个,则客厅灯和走廊灯亮的概率是多少?请用树状图法或列表法加以说明.【分析】(1)分别对4个选项进行判断即可;(2)画树状图,共有12个等可能的结果,客厅灯和走廊灯亮的结果有2个,再由概率公式求解即可.【解答】解:(1)∵明明家客厅里装有一种开关(如图所示),从左到右依次分别控制着A (楼梯),B (客厅),C (走廊),D (洗手间)四盏电灯,∴明明任意按下一个开关,打开的不一定是楼梯灯,打开的不可能是卧室灯,打开的可能是客厅灯,打开走廊灯的概率是0', 故选项A 、B 、D 不符合题意,选项C 符合题意,故选:C ;(2)画树状图得:z共有12个等可能的结果,客厅灯和走廊灯亮的结果有2个,∴客厅灯和走廊灯亮的概率为$0$=06. 【点评】本题考查的是用列表法或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.熟记求随机事件的概率公式是解题的关键.22.(8分)在矩形ABCD 中,AD >AB .(1)请在图1中用无刻度的直尺和圆规作图.先在AD 上确定点E ,使BE =BC .再在CD 上确定点F ,使以F 为圆心的圆经过点E 和点C .(2)在(1)的条件下,若AB =3,且sin ∠DEF =35,则BC 的长为 .【分析】(1)先以B 点为圆心,BC 为半径画弧交AD 于E 点,再作CE 的垂直平分线交CD 于F 点,然后以F 点为圆心,FE 为半径作圆即可;(2)先利用矩形的性质得到CD =AB =3,AD =BC =BE ,∠A =∠D =90°,再根据正弦的定义得到sin∠DEF =DF EF =35,则可设DF =3x ,EF =5x ,所以DE =4x ,于是利用CD =5x +3x =3可求出x =38,设BC =m ,则BE =AD =m ,AE =m −32,然后在Rt △ABE 中利用勾股定理得到32+(m −32)2=m 2,于是解方程求出m ,从而得到BC 的长.【解答】解:(1)如图,点E 、F 为所作;(2)∵四边形ABCD 为矩形,∴CD =AB =3,AD =BC =BE ,∠A =∠D =90°,在Rt △DEF 中,∵sin ∠DEF =DF EF =35, ∴设DF =3x ,EF =5x ,∴DE =4x ,∵FC =FE =5x ,∴CD =5x +3x =3,解得x =38, ∴DE =4x =32, 设BC =m ,则BE =AD =m ,∴AE =m −32,在Rt △ABE 中,32+(m −32)2=m 2,解得m =154,即BC 的长为0F '. 故答案为:0F '. 【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的性质、线段垂直平分线的性质和解直角三角形.23.(8分)如图,在平行四边形ABCD 中,O 是对角线AC 、BD 的交点,延长边CD 到点F ,使DF =DC ,过点F 作EF ∥AC ,连接OF 、EC . (1)求证:△ODC ≌△EDF ;(2)连接AF ,已知OD =DC 且∠BEC =45°,请判断四边形OCEF 的形状,并证明你的结论.【分析】(1)根据EF ∥AC ,可得∠EFC =∠OCF ,根据角边角,即可求证;(2)由(1)可知,△ODC ≌△EDF (ASA ),可证四边形OCEF 是平行四边形,再根据,∠BEC =45°,可证平行四边形OCEF 是菱形,根据△CDE 是等腰直角三角形,且OE =CF ,可证菱形OCEF 是正方形.【解答】(1)证明:∵EF ∥AC ,∴∠EFC =∠OCF ,在△ODC 和△EDF 中,E ∠EFC =∠OCF DF =DC ∠FDE =∠CDO,∴△ODC ≌△EDF (ASA ),(2)解:四边形OCEF 是正方形,理由如下,由(1)可得,△ODC ≌△EDF (ASA );∴OC =EF ,且EF ∥AC ,∴四边形OCEF 是平行四边形,∴∠FEO =∠EOC ,OD =ED ,∵OD =DC ,且∠BEC =45°,∴∠DEC =∠DCE =45°,∴∠CDE =180°﹣45°﹣45°=90°,即OE ⊥CF ,∴平行四边形OCEF 是菱形,∵△CDE 是等腰直角三角形,且OE =CF ,∴菱形OCEF 是正方形.【点评】本题主要考查特殊四边形的判定和性质、全等三角形的判定与性质,掌握平行四边形的判定和性质,正方形的判定和性质是解题的关键.24.(8分)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A 处,手柄长AB =25cm ,AB 与墙壁DD ′的夹角∠D ′AB =37°,喷出的水流BC 与AB 形成的夹角∠ABC =72°,现在住户要求:当人站在E 处淋浴时,水流正好喷洒在人体的 C 处,且使DE =50cm ,CE =130cm .问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).【分析】过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在△GAB中先求出GB、GA,再在△F AB中求出CF,最后利用线段的和差关系求出AD.【解答】解:过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.则四边形GFED是矩形.∴DE=FG=50cm,GD=EF.在Rt△GAB中,∵AB=25cm,∴sin37°=GBAB,cos37°=GAAB,∴GB≈25×0.60=15(cm),GA≈25×0.80=20(cm).∴BF=DF﹣BG=50﹣15=35(cm).∵∠ABC=72°,∠D'AB=37°,∴∠GBA=90°﹣∠D′AB=53°.∴∠CBF=180°﹣∠GBA﹣∠ABC=55°.∴∠BCF=90°﹣∠CBF=35°.∵tan35°=BF CF,∴CF≈350.70=50(cm).∴FE=CE+CF=50+130=180(cm).∴GD=FE=180(cm),∴AD=GD﹣AG=180﹣20=160(cm).答:安装师傅应将支架固定在离地面160cm的位置.【点评】本题主要考查了解直角三角形,构造直角△F AB、△GAB,掌握直角三角形的边角间关系是解决本题的关键.z 25.(8分)如图,点D 是△ABC 中AB 边上一点,以AD 为直径的⊙O 与BC 相切于点C ,连接CD .(1)判断△BCD 与△BAC 是否相似?并说明理由.(2)若⊙O 的半径为3,tan ∠BCD =12,求BC 的长度.【分析】(1)连接OC ,利用圆的切线的性质定理,圆周角定理,同圆的半径线段,等腰三角形的性质,等角的余角相等和相似三角形的判定定理解答即可;(2)利用直角三角形的边角关系定理,相似三角形的性质定理得到5+5L =L+,L =0$,设BD =x ,则BC =2x ,OB =3+x ,利用勾股定理列出关于x 的方程,解方程即可得出结论.【解答】解:(1)△BCD 与△BAC 相似,理由:连接OC ,如图,∵BC 为⊙O 的切线,∴OC ⊥BC ,∴∠OCD +∠DCB =90°.∵AD 为直径,∴∠ACD =90°,∴∠A +∠ADC =90°,∵OC =OD ,∴∠OCD =∠ODC ,∴∠DCB =∠A .∵∠CBD =∠ABC ,∴△BCD ∽△BAC ;(2)由(1)知:∠A =∠BCD ,∴tan ∠A =tan ∠BCD =12, ∵∠ACD =90°,∴tan ∠A =CD AC =12.z ∵△BCD ∽△BAC ,∴5+5L =L+,L =0$. ∵⊙O 的半径为3,∴AD =6.设BD =x ,则BC =2x ,OB =3+x ,∵OC 2+BC 2=OB 2,∴32+(2x )2=(3+x )2,解得:x =0(不合题意,舍去)或x =2.∴BC =2x =4.【点评】本题主要考查了圆的切线的性质定理,圆的有关性质,圆周角定理,相似三角形的判定与性质,勾股定理,直角三角形的性质,直角三角形的边角关系定理,连接经过切点的半径是解决此类问题常添加的辅助线.26.(10分)如图,已知抛物线y =ax 2+bx +c 的顶点D 的坐标为(﹣2,9),抛物线与坐标轴分别交于A 、B 、C 三点,且B 的坐标为(0,5),连接DB 、DC ,作直线BC . (1)求抛物线的解析式;(2)P 是x 轴上的一点,过点P 作x 轴的垂线,与CD 交于H ,与CB 交于G ,若线段HG 把△CBD 的面积分成相等的两部分,求P 点的坐标;(3)若点M 在直线CB 上,点N 在平面上,直线CB 上是否存在点M ,使以点C 、点D 、点M 、点N 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线y =ax 2+bx +c 的顶点D 的坐标为(﹣2,9),可设y =a (x +2)2+9,再将点B (0,5)代入,解得a 的值,则可得抛物线的解析式;(2)求得直线BC 与直线CD 的解析式,设点P 的坐标为(x ,0),则G (x ,x +5),H (x ,3x +15)根据S △CGH =12HG ×CP ,将S △CGH =用含x 的式子表示出来,再由S △BCD =S △DKC +S △DKB ,求得S △BCD ;根据线段HG 把△CBD 的面积分成相等的两部分,得出关于x 的方程,解方程并 作出取舍,则可得P 点的坐标;(3)设点M 的坐标为(m ,m +5),求得CD 的值,再分情况讨论:当CD 与DM 是菱形的两边时,则CD =DM ;当DM '与CM '是菱形的两边时,则CM '=DM ';当DM '与CM '是菱形的两边时,则CM '=DM '.分别得出关于m 的等式,解得m 的值,则可得点M 的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 的顶点D 的坐标为(﹣2,9),∴可设y =a (x +2)2+9,又∵抛物线过点B (0,5),代入得:5=4a +9,∴a =﹣1,∴y =﹣(x +2)2+9=﹣x 2﹣4x +5,∴抛物线的解析式为y =﹣x 2﹣4x +5;(2)∵抛物线y =﹣x 2﹣4x +5与坐标轴分别交于A 、B 、C 三点,且B 的坐标为(0,5), ∴当y =0时,﹣x 2﹣4x +5=0, 解得x 1=﹣5,x 2=1,∴A (1,0),C (﹣5,0),又∵D (﹣2,9),∴直线BC 的解析式为y =x +5;设直线CD 的解析式为y =kx +b ,将C (﹣5,0),D (﹣2,9)代入,得:N 0=−5k +b 9=−2k +b ,解得:N k =3b =15, ∴直线CD 的解析式为y =3x +15.设点P 的坐标为(x ,0),则G (x ,x +5),H (x ,3x +15).∴S △CGH =12HG ×CP =12(5+x )(3x +15﹣x ﹣5)z=12(5+x )(2x +10)=(5+x )(x +5)=(x +5)2,设抛物线的对称轴交直线BC 于点K ,如图:∵顶点D 的坐标为(﹣2,9),∴对称轴为直线x =﹣2,∴K (﹣2,3),∴DK =9﹣3=6,∴S △BCD =S △DKC +S △DKB =12×6×3+12×6×2=15,∴若线段HG 把△CBD 的面积分成相等的两部分,则(x +5)2=12×15, 解得:x 1="30−102,x 2=−10−"302(舍), ∴P (√&M30M $,0); (3)如图,设点M 的坐标为(m ,m +5),∵C (﹣5,0),D (﹣2,9),∴CD =R(−5+2)!+(9−0)!=3√10,当CD 与DM 是菱形的两边时,则CD =DM ,∴3√10=R(−2−m)!+(9−m −5)!,解得m 1=﹣5(不合题意,舍去),m 2=7,∴点M (7,12);当CD 与CM ''是菱形的两边时,则CD =CM '',∴3√10=R(−5−m)!+(m +5)!,解得m =±3√5−5,∴点M (3√5−5,3√5)或点M (﹣3√5−5,﹣3√5);当DM '与CM '是菱形的两边时,则CM '=DM ',∴R(m +5)!+(m +5)!=R(m +2)!+(m +5−9)!,解得m =−54,∴点M (−54,0F '). 综上所述,点M 的坐标为(7,12)或(3√5−5,3√5)或(﹣3√5−5,﹣3√5)或(−54,0F '). 【点评】本题属于二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式、一次函数和二次函数图象上的点的坐标特点、三角形的面积计算、一元二次方程及菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.27.(10分)综合与实践:问题情境:如图1,在正方形ABCD 中,点E 是对角线AC 上一点,连接BE ,过点E 分别作AC ,BE 的垂线,分别交直线BC ,CD 于点F ,G .数学思考:(1)线段BF 和CG 的数量关系 ;问题解决:(2)如图2,在图1的条件下,将“正方形ABCD ”改为“矩形ABCD ”,其他条件不变.若AB =2,BC =3,求5*LN的值; 问题拓展:(3)在(2)的条件下,当点E 为AC 的中点时,请直接写出△CEG 的面积.z【分析】(1)由正方形的性质得出∠ABC =∠D =90°,AB =BC =CD =AD ,证出∠FEB =∠CEG ,由“ASA ”可证△BEF ≌△GEC ,由全等三角形的性质得出BF =CG ;(2)证明△BFE ∽△GCE ,由相似三角形的性质得出5*LN =)*)L,求出tan ∠ECF =23,则可得出答案; (3)过点E 作EM ⊥CD 于M ,EN ⊥BC 于点N ,证出DM =CM =1,BN =CN =32,由(2)知△BFE ∽△GCE ,由相似三角形的性质证出∠EBF =∠G ,由锐角三角函数的定义得出tan ∠EBN =EN BN =23=tan G =EM GM,求出CG 的长,根据三角形面积公式可得出答案. 【解答】解:(1)∵四边形ABCD 是正方形,∴∠ABC =∠D =90°,AB =BC =CD =AD ,∴∠BAC =∠ACB =45°,∠ACD =∠DAC =45°,∵EF ⊥AC ,∴∠FEC =90°,∴∠EFC =90°﹣∠ACF =90°﹣45°=45°,∴∠EFC =∠ECF =∠ECG ,∴EF =EC ,∵BE ⊥EG ,∴∠BEG =90°,∴∠BEG =∠FEG ,∴∠BEC +∠CEG =∠BEG +∠FEB ,∴∠FEB =∠CEG ,∴△BEF ≌△GEC (ASA ),∴BF =CG ,故答案为:BF =CG ;(2)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠BCE +∠ACD =90°,∵EF ⊥AC ,∴∠FEC =90°,∴∠BCE +∠EFB =90°,∠FEB +∠BEC =90°,∴∠EFB =∠ECG ,又∵BE ⊥EG ,∴∠CEG +∠BEC =90°,∴∠FEB =∠CEG ,∴△BFE ∽△GCE ,∴5*LN =)*)L, 在Rt △ABC 中,tan ∠ACB =AB BC =23,∴tan ∠ECF =23,∴)*)L =$&, ∴5*LN =$&; (3)过点E 作EM ⊥CD 于M ,EN ⊥BC 于点N ,∵E 为AC 的中点,∴AC =EC ,∵EM ⊥DC ,AD ⊥DC ,∴EM ∥AD ,∴LQ +Q =)L ,),∴DM=CM=1,同理可得BN=CN=3 2,由(2)知△BFE∽△GCE,∴∠EBF=∠G,∴tan∠EBN=ENBN=23=tan G=EMGM,∴#"LN10=$&,∴CG=5 4,∴S△CEG=12CG•EM=12×54×32=1516.【点评】本题是相似形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定与性质,锐角三角函数的定义,勾股定理,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.。

2021年江苏省南京市中考数学压轴题总复习(附答案解析)

2021年江苏省南京市中考数学压轴题总复习(附答案解析)

2021年江苏省南京市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.
(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;
(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;
(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.
2.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。

2020年部编人教版江苏省各市中考数学分类精析专题12押轴题

2020年部编人教版江苏省各市中考数学分类精析专题12押轴题

专题12:押轴题江苏泰州锦元数学工作室编辑一、选择题1. (2020年江苏常州2分)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为【】A.a+b B.2a+b C.3a+b D.a+2b2. (2020年江苏淮安3分)如图,点A、B、C是⊙O上的三点,若∠OBC=50°,则∠A的度数是【】A.40° B.50° C.80° D.100°3. (2020年江苏连云港3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且=,EF⊥AB,垂足为F,则EF的长为【】BAE22.5A .1B .2C .422-D .324-4. (2020年江苏南京2分)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是【 】的三角形与下面的三角形重叠,故错误。

故选B 。

5. (2020年江苏南通3分)如图,R t△ABC 内接于⊙O ,BC 为直径,AB=4,AC=3,D 是»AB的中点,CD 与AB 的交点为E ,则CE DE等于【 】A .4B .3.5C .3D .2.56. (2020年江苏苏州3分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(33C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A 13B31C319D.77. (2020年江苏宿迁3分)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是【】A.1 B.1或13-+C.1或13+D.13-+或13+【分析】分点P与点A在BC同侧和异侧两种情况讨论:8. (2020年江苏泰州3分)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是【】A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)事件C:在标准大气压下,温度低于0℃时冰融化是不可能事件,P(C)=0。

【中考12年】江苏省南京市2001-中考数学试题分类解析 专题12 押轴题

【中考12年】江苏省南京市2001-中考数学试题分类解析 专题12 押轴题

2001-2012年江苏南京中考数学试题分类解析汇编(12专题)专题12:押轴题一、选择题1. (2001江苏南京2分)一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格为【】A.1000元 B.800元 C.600元 D.400元【答案】B。

【考点】一元一次方程的应用(经济问题)。

【分析】设他的飞机票价格为x元,根据等量关系“超重部分每千克按飞机票价格的1.5%购买” ,而超重部分为(30-20)千克,故得方程:(30-20)×1.5%x=120,解得:x=800。

故选B。

2.(江苏省南京市2002年2分)某种出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是【】A、13B、11C、9D、7【答案】B。

【考点】一元一次不等式的应用。

【分析】已知从甲地到乙地共需支付车费17.2元,从甲地到乙地经过的路程为x千米,从而根据题意列出不等式,得出答案:∵支付车费为17.2元>起步价6元,∴x>3km。

∴1.4(x-3)+6≤17.2,解得:x≤11。

∴x的最大值为11千米。

故选B。

3. (江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于【】.(A )2∶l (B ) 1∶2 (C ) 3∶l (D ) 1∶3 【答案】A 。

【考点】折叠问题,比例线段,比例的性质。

【分析】∵a b a b 2::,∴22a =b 2。

【中考12年】江苏省南京市2002中考数学试题分类解析 专题12 押轴题

【中考12年】江苏省南京市2002中考数学试题分类解析 专题12 押轴题

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1.(江苏省南京市2002年2分)某种出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是【】A、13B、11C、9D、72. (江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD 的长与宽之比,则a∶b等于【】.(A)2∶l (B)1∶2(C)3∶l (D)1∶33. (江苏省南京市2004年2分)如图所示,边长为12m的正方形池塘的周围是草地,池塘边A,B,C,D处各有一棵树,且AB=BC=CD=3m,现用长4m的绳子将羊拴在一棵树上,为了使在草地上活动区域的面积最大,应将绳子拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在【】A、A处B、B处C、C处D、D处4. (江苏省南京市2005年2分)下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是【】A、甲户比乙户多B、乙户比甲户多C、甲、乙两户一样多D、无法确定哪一户多【答案】D。

【考点】扇形统计图。

【分析】根据扇形图的意义,本题中的总量不明确,所以在两个图中无法确定哪一户多。

故选D。

5. (江苏省南京市2006年2分)下面是两户居民家庭全年各项支出的统计图.6. (江苏省南京市2007年2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是【】7. (江苏省南京市2008年2分)如图,已知⊙O的半径为1,AB与⊙O相切于点A,OB与⊙O交于点C,OD⊥OA,垂足为D,则cos AOB∠的值等于【】8. (江苏省2009年3分)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1) 11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n个数:232111(1)(1)(1)111112342nn n-⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【】A.第10个数B.第11个数C.第12个数D.第13个数9. (江苏省南京市2010年2分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为【】10. (江苏省南京市2011年2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a=的图象被⊙P的弦AB的长为,则a的值是【】>2),半径为2,函数y xA.B.2+C.D.2∵在Rt△PAE 中,由弦径定理可得AE =12AB PA =2, ∴由勾股定理可得PE =1。

押江苏南京卷第12-16题(幂的运算、平面直角坐标系、圆、反比例函数、四边形)(原卷版)-中考数学

押江苏南京卷第12-16题(幂的运算、平面直角坐标系、圆、反比例函数、四边形)(原卷版)-中考数学

押江苏南京卷第12-16题押题方向一:幂的运算3年江苏南京卷真题考点命题趋势2023年江苏南京卷第11题幂的运算从近年江苏南京中考来看,同底数幂的运算近两年是必考题型,比较简单;预计2024年江苏南京卷还将继续重视对同底数幂的运算的考查。

2022年江苏南京卷第12题幂的运算1.(2023·江苏南京·中考真题)计算345124(8⨯⨯的结果是.2.(2022·江苏南京·中考真题)若44222a +=,5553333b ++=,则a b +=.幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;在运算的过程中,一定要注意指数、系数和符号的处理.1.若1239273m m m ⨯⨯=,则m 的值.2.已知n 是正整数,若444448n n n n +++=,则n 的值是.3.已知24a =,212b =,26c =,求a b c +-=.4.若26a =,45b =,815c =,则23a b c +-=.5.如果3147927381m m m +++⨯÷=,那么m 的值为.6.已知8a m =,6b m =,24c m =,则a b c m +-的值为.押题方向二:平面直角坐标系3年江苏南京卷真题考点命题趋势2022年江苏南京卷第14题平面直角坐标系从近年江苏南京中考来看,平面直角坐标系中与几何图形结合求点的坐标是常考题;预计2024年江苏南京卷还将继续重视对平面直角坐标系中与几何图形结合求点的坐标的考查。

2021年江苏南京卷第11题平面直角坐标系1.(2022·江苏南京·中考真题)在平面直角坐标系中,正方形ABCD 如图所示,点A 的坐标(1,0)-,点D 的坐标是(2,4)-,则点C的坐标是.2.(2021·江苏南京·中考真题)如图,在平面直角坐标系中,AOB 的边,AO AB 的中点C ,D 的横坐标分别是1,4,则点B 的横坐标是.正方形的性质,全等三角形的判定与性质,坐标与图形,正确添加辅助线是解题的关键.中点的性质,平面直角坐标系,三角形中线的性质,正确的使用中点坐标公式并正确的计算是解题的关键.1.在平面直角坐标系中,点A 的坐标是()1,3,将OA 绕着点A 逆时针旋转90︒得到AB ,则点B 的坐标是.2.如图,ABCD Y 的顶点A 在y 轴上,顶点B ,D 在x 轴上,边CD 与y 轴交于点E ,若3BD =,AD,45ADB ∠=︒,则点E 的坐标为.3.如图,在平面直角坐标系中,点A 的坐标是()8,0,点B 的坐标是()0,6,把线段AB 绕点B 逆时针旋转90︒后得到线段BC ,则点C 的坐标是.4.如图,在平面直角坐标系中,四边形ABCO 是正方形,已知点()2,1C ,则点B 的坐标是.5.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为()0,3,点B 的坐标为()5,0,点E 为对角线的交点,则点E 的坐标为.6.如图,在平面直角坐标系中,菱形OABC 中,已知()4,0A ,120OAB ∠=︒,对角线AC 、BO 交点D .将菱形OABC 绕点O 逆时针方向旋转,每次旋转60︒,则旋转2次后,点D 的坐标是,旋转2022次后.点D 的坐标是.7.如图,在平面直角坐标系中,正方形OABC 的顶点A ,C 分别在x 轴、y 轴上,以AB 为弦的⊙D 与y 轴相切.若点A 的坐标为()4,0,则点D 的坐标为.押题方向三:圆1.(2023·江苏南京·中考真题)如图,O 与正六边形ABCDEF 的边CD ,EF 分别相切于点C ,F .若2AB =,则O 的半径长为.2.(2022·江苏南京·中考真题)如图,四边形ABCD 内接于O ,它的3个外角EAB ∠,FBC ∠,GCD ∠的度数之比为1:2:4,则D ∠=.3.(2021·江苏南京·中考真题)如图,AB 是O 的弦,C 是 AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为cm .1)在证明圆周角相等或弧相等时,通常“由等角找等弧”或“由等弧找等角”;2)当已知圆的直径时,常构造直径所对的圆周角;3)在圆中求角度时,通常需要通过一些圆的性质进行转化。

2022年江苏省南京市中考数学押题练习试卷A卷附解析

2022年江苏省南京市中考数学押题练习试卷A卷附解析

2022年江苏省南京市中考数学押题练习试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是由一些相同的小正方形构成的几何体的三视图,那么构成这个几何体的小正方体的个数为()A.7个B.6个C.5个D.4个2.四边形ABCD中,∠A:∠B:∠C:∠D=3:3:2:4,则此四边形是()A.一般四边形B.平行四边形C.直角梯形D.等腰梯形3.直角梯形的一腰长为l0 cm,这条腰与底所成的角为30°,则它的另一腰长为()A.2.5 cm B.5 cm C.10 cm D.15 cm4.计算:2532的值为()A.322B.328C.368D.865.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a6.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有()A.4个B.3个C.2个D.1个7.若222x mx+-可分解因式(21)(2)x x+-,则m的值是()A.-1 B.1 C.-3 D.38.方程231x y-=的解可以是()A.11xy=⎧⎨=-⎩B.11xy=⎧⎨=⎩C.11xy=-⎧⎨=⎩D.11xy=-⎧⎨=-⎩9.若∠AOB=50°,∠BOC=20°,则∠AOC的度数是()A.30°B.70°C.30°或 70°D.100°二、填空题10.如图,一游人由山脚A沿坡角为30的山坡AB行走600m,到达一个景点B,再由B沿山坡BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45,则山高CD等于(结果用根号表示)11.如图,在⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,若AE=8cm,EB=4cm,则OG=___________cm.12.如图,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点 P不与点A,C重合),且PE∥BC交AB 于E,PF∥CD交AD于F. 则阴影部分的面积是 .解答题13.已知一个几何体的三视图如图所示.则该几何体的体积为 cm3.14.市场上出售一种大豆,大豆的总售价与所售大豆的数量之间的关系如下表:所售大豆数量(kg)O1 1.52 2.53总售价(元)03 4.567.59(1)上表中所反映的变量是;(2)如果出售2.5 kg大豆,那么总售价应为元;(3)出售 kg大豆,可得总售价为45元.15.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 .三、解答题16.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待 定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A ,只有甲、乙两位评委给出相同结论的概率是多少?17.一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近? (参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)18.已知锐角α的三角函数值,使用计算器求锐角α(精确到 1"). (1) sin α= 0.3475P ;(2)cos α=0. 4273;(3) tan α= 1.2189.19. 如图,在□ABCD 中,点E 是BC 的中点,AB 的延长线与DE 的延长线交于点F ,连结 BD ,CF.(1)请指出图中哪些线段与线段CD 相等(不再添加辅助线); (2)试判断四边形DBFC 的形状,并证明你的结论.B CDA①②20.求证:等腰三角形两腰上的高相等. (要求画图,写出已知求证和证明)21.在同一直角坐标系中画出一次函数121y x =-+与223y x =+的图象,并根据图象解答下 列问题:(1)直线121y x =-+、223y x =+与y 轴分别交于A 、B .求A 、B 两点的坐标; (2)求直线121y x =-+与223y x =+的交点P 的坐标; (3)△PAB 的面积为多少?22.已知关于x 的方程5(2)324(1)x k x k +-=--的解为正数,试确定k 的取值范围. 6k <-23.已知y=x 2+px +q ,当x=1时,y 的值为2;当x=-2时,y 的值为2.求x=-3时y 的值.24.计算:(1)233x xy y -⋅;(2)2233a ab b -÷;(3)2211a a a a -⋅+;(4)21(1)1xx x +÷--;(5) 23225106321x y y x y x ⋅÷;(6) 2237843244a a a a a a +--⋅+-25.一个氧原子约重23⨯g,问 20 个氧原子重多少 g?2.65710-26.一次抽奖活动中,印发奖券 l000张. 其中一等奖 10 张、二等奖 200张、三等奖 300 张. 问第一位抽奖者中奖的概率是多少?中一等奖或二等奖的概率又是多少?27.如图所示,在四边形ABCD中,已知AB=AD,CB=CD,则在不添加其他线时,图中的哪两个角必定相等?请说明理由.28.如图,若∠l与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.29.下面的图表是某工厂职工学历调查的部分信息:职工学历统计表(单位:人):(1)由图表可知,这次调查的总人数是多少?“其他”学历的有多少人?(2)本科学历的人数占被调查总人数的百分比是多少?表示本科学历的扇形的圆心角是多少度?30.在如图所示的立体图形中,它们分别有几个面?哪些面是平面?哪些面是曲面?面面相交的地方形成了几条线?这些线是直的还是曲的?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.A6.B7.C8.D9.C二、填空题10.11.(300m212.613.12014.(1)总售价、所售大豆的数量;(2)7.5;(3)1515.15(x+2)=330三、解答题 16.(1)评委给出 A 选手的所有可能结果如下:由上可知评委给出 A 选手所有可能的结果有8种.(2)对于 A 选手,“只有甲、乙两住评委给出相同的结论”有 2 种,即“通过一通过一待定”、“待定一待定一通过”,所以对于 A 选手“只有甲、乙两位评委给出相同结论”的 概率是1417.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =( 60+x ) ·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近18.(1) 020204α'''≈;(2) α≈64°42′13";(3)'050383a '''≈19.(1)AB ,BF (2)平行四边形,证明略20.已知:△ABC 中,AB=AC ,BE ⊥AC ,CF ⊥AB ,垂足分别为E 、F .(图略) 求证:BE=CF略证:△ABE ≌△ACF ,BE=CF .21.图象略.(1)A(0,1),B(0,3); (2)P(12-,2); (3)111(31)222⨯-⨯-= .22.6k <-23.6.24.(1)2x y -;(2)229a b-;(3)1a a -;(4)21(1)x --;(5)3376x y ;(6)13a a -- 25.225.31410-⨯g26.51100,2110027.∠D=∠B ,理由略28.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°29.(1) 由专科学历的有50人及专科学历的人数占总人数的25%, 可知总人数为 50÷25%=200(人),其他学历的有200-29-50-62-23=36(人);(2)本科学历的人数为 29人,占总人数的百分比为 29÷200=14.5%,表示本科学历的扇形的圆心角为 360°×14.5% = 52.2°30.图①由三个面构成;两个平面一个曲面;面与面相交成两条曲线.图②是由一个曲面和一个平面组成;面与面相交形成一条曲线.图③由六个平面构成;面与面相交形成12条直线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1.(江苏省南京市2002年2分)某种出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是【】A、13B、11C、9D、72. (江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD 的长与宽之比,则a∶b等于【】.(A)2∶l (B)1∶2(C)3∶l (D)1∶33. (江苏省南京市2004年2分)如图所示,边长为12m的正方形池塘的周围是草地,池塘边A,B,C,D处各有一棵树,且AB=BC=CD=3m,现用长4m的绳子将羊拴在一棵树上,为了使在草地上活动区域的面积最大,应将绳子拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在【】A、A处B、B处C、C处D、D处4. (江苏省南京市2005年2分)下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是【】A、甲户比乙户多B、乙户比甲户多C、甲、乙两户一样多D、无法确定哪一户多【答案】D。

【考点】扇形统计图。

【分析】根据扇形图的意义,本题中的总量不明确,所以在两个图中无法确定哪一户多。

故选D。

5. (江苏省南京市2006年2分)下面是两户居民家庭全年各项支出的统计图.6. (江苏省南京市2007年2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是【】7. (江苏省南京市2008年2分)如图,已知⊙O的半径为1,AB与⊙O相切于点A,OB与⊙O交于点C,OD⊥OA,垂足为D,则cos AOB∠的值等于【】8. (江苏省2009年3分)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1) 11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n个数:232111(1)(1)(1)111112342nn n-⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【】A.第10个数B.第11个数C.第12个数D.第13个数9. (江苏省南京市2010年2分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为【】10. (江苏省南京市2011年2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a=的图象被⊙P的弦AB的长为,则a的值是【】>2),半径为2,函数y xA.B.2+C.D.2∵在Rt△PAE 中,由弦径定理可得AE =12AB PA =2, ∴由勾股定理可得PE =1。

又由y x =可得,∠OGF=∠GOF=450,FG =OF =2。

又∵PE⊥AB,PF⊥OF,∴在Rt△EPG 中,∠EPG=∠OGF=450,∴由勾股定理可得PG∴a =FG +PG =2B 。

11.(2012江苏南京2分)如图,菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D ’F ⊥CD 时,CF FD的值为【 】A. 12B. 6C. 16D. 18二、填空题1. (江苏省南京市2002年2分)下列命题:(1)所有的等腰三角形都相似;(2)所有的等边三角形都相似;(3)所有的等腰直角三角形都相似;(4)所有的直角三角形都相似。

其中真命题的序号是▲ _(注:把所有真命题的序号都填上)。

2. (江苏省南京市2003年2分)如图,⊙O的两条弦AB、CD相交于点P,PD=2PB,PC=2cm,则 PA=▲ cm.3. (江苏省南京市2004年2分)如图,矩形ABCD与⊙O交于点A、B、F、E,DE=1cm,EF=3cm,则AB= ▲ cm.4. (江苏省南京市2005年2分)如图,将一张等腰直角三角形纸片沿中位线剪开,可以拼出不同形状的四边形,请写出其中两个不同的四边形的名称:▲ .【答案】平行四边形,等腰梯形(答案不唯一)。

【考点】三角形中位线定理【分析】让相等边重合,动手操作看拼合的形状即可:如图:可知可拼成平行四边形、等腰梯形和矩形三种不同的形状.5. (江苏省南京市2006年3分)如图,矩形ABCD 与与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB=8cm ,AG=1cm ,DE=2cm ,则EF= ▲ cm .6.(江苏省南京市2007年3分)已知点P (x ,y )位于第二象限,并且y x 4+≤,x ,y 为整数,写出一个..符合上述条件的点P 的坐标: ▲ . 【答案】(-1,1)(答案不唯一)。

【考点】点的坐标。

【分析】如图,∵点P (x ,y )位于第二象限,且y x 4+≤,∴点P (x ,y )位于直线y=x 4+和x 轴,y 轴围成的在第二象限部分)。

三角形区域内(含y=x4又∵x,y为整数,∴共有6个点满足条件:(-1,1),(-1,2),(-1,3),(-2,1),(-1,2),(-3,1)。

7. (江苏省南京市2008年3分)如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器▲ 台.4cm,8. (江苏省2009年3分)如图,已知EF是梯形ABCD的中位线,△DEF的面积为2则梯形ABCD的面积为▲ cm2.9. (江苏省南京市2010年2分)如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的图形的面积是▲ cm2.【分析】列表如下:表中可见,只有9,21,33,45满足条件。

11.(2012江苏南京2分)在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是,(-1,-1),(-3,-1),把三角形ABC经过连续9次这样的变换得到三角形A’B’C’,则点A 的对应点A’的坐标是▲12.(2013年江苏南京2分)计算1111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是▲ 。

【答案】16。

【考点】有理数的计算,待定系数法的应用,整体思想的应用。

【分析】设1111x 2345+++=,则原式()221111511x x 1x x x x x x x 666666⎛⎫⎛⎫-+---+---+ ⎪ ⎪⎝⎭⎝⎭===。

三.解答题1.(江苏省南京市2002年7分)某厂要制造能装250毫升(1毫升=1厘米3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部都是0.02厘米,,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个盖撕下来,设一个底面是x 厘米的易拉罐的用铝量是y 厘米3。

(1)利用公式:用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度求y 与x 之间的函数关系式;(2)选择:该厂设计人员在设计时算出以下几组数据:根据上表推测,要使用铝量y(厘米3)的值尽可能小,底面半径x (厘米)的值所在范围是 ( )A 、1.6≤x≤ 2.4 B、2.4<x<3.2 C 、3.2≤x≤42.(江苏省南京市2002年8分)如图,客轮沿折线A -B -C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿某一方向匀速直线航行,将一批物品送达客轮。

两船同时起航,并同时到达折线A -B -C 上的某点E 处,已知AB =BC =200海里,∠ABC=900,客轮速度是货轮速度的2倍。

(1)选择:两船相遇之处E 点( )A 、在线段AB 上 B 、在线段BC 上 C 、可以在线段AB 上,也可以在线段BC 上 (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)3.(江苏省南京市2003年8分)如图.直线4y x 43=-+与x 轴、y 轴分别交于点M 、N .⑴ 求M 、N 两点的坐标;⑵ 如果点P 在坐标轴上,以点P 为圆心,512为半径的圆与直线4y x 43=-+相切,求点P 的坐标。

【答案】解:(1)当x=0时,y=4,当y=0时,40x43=-+,∴x=3。

∴M(3,0),N(0,4).(2)①当P1点在y轴上,并且在N点的下方时,4. (江苏省南京市2003年9分)如图⊙O与⊙O’相交于A、B两点,点O在⊙O’上,⊙O’的弦OC交AB于点D.⑴ 求证:OA2=OC·OD;⑵ 如果AC+BC=3OC,⊙O的半径为r.求证:AB=r35. (江苏省南京市2004年9分)如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.【答案】解:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4。

6. (江苏省南京市2004年8分)如图,AB⊥BC,DC⊥BC,垂足分别为B、C.(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由;(2)设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD.【答案】解:(1)存在。

理由如下:如图所示,假设AP⊥PD,∵∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∠BAP+∠APB=90°,∴∠APB=∠DPC。

∵∠B=∠C,∴△ABP∽△PCD。

相关文档
最新文档