机械设计基础(下)第二章

合集下载

机械设计基础第二章--常用机构介绍

机械设计基础第二章--常用机构介绍

4—机架 1,3—连架杆→定轴转动 2—连杆→平面运动 整转副:二构件相对运动为
整周转动。
摆动副:二构件相对运动不 为整周转动。
曲柄:作整周转动的连架杆
摇杆:非整周转动的连架杆
C
2
B
3
1
A
D
4
二、平面四杆机构的常用形式
1、曲柄摇杆机构
(构件4为机架、构件2为机架)
2、双曲柄机构
}全回转副四杆机构
(二)曲柄为最短杆。 ▲铰链四杆机构存在曲柄的条件是:
(一)最短杆与最长杆长度之和小于或等于其 余两杆长度之和。
(二)机架或连架杆为最短杆。
4、曲柄滑块机构 二、平面四杆机构的内部演化:
第二节 凸轮机构
一、凸轮机构的组成与分类: 运动方式:将主动凸轮的连续转动或
移动转换成为从动件的移动或摆动。 分类:1、形状
①盘形凸轮机构——平面凸轮 机构
②移动凸轮机构——平面凸轮 机构
③圆柱凸轮机构——空间凸轮 机构
2、运动形式
按从动件的运动型式:
①尖底从动件:用于 低速;
②滚子从动件:应用 最普遍;
③平底从动件:用于 高速
O
r0
1 2 3
4
5
6 7 8
二、从动件的常用运动规律
从动件的运动规律——从动件在工作过程中, 其位移(角位移)、速度(角速度)和加 速度(角加速度)随时间(或凸轮转角) 变化的规律。
长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂;
③只用于速度较低的场合。
由转动副联接四个构
件而形成的机构,称为铰 链四杆机构,如图所示。 图中固定不动的构件是机 架;与机架相连的构件称 为连架杆;不与机架直接 相连的构件称为连杆。连 架杆中,能作整周回转的 称为曲柄,只能作往复摆 动的称为摇杆。根据两连 架杆中曲柄(或摇杆)的数 目,铰链四杆机构可分为 曲柄摇杆机构、双曲柄机 构和双摇杆机构。

机械设计基础第二章答案

机械设计基础第二章答案

二、平面连杆机构2-1 判断题(1)×(2)×(3)√(4)×(5)√(6)×(7)√(8)√(9)√(10)×(11)×(12)√(13)×(14)×(15)√(16)×(17)×(18)√(19)×(20)√(21)×(22)×(23)×(24)×(25)√2-2 填空题(1)低(2)转动(3)3 (4)连杆,连架杆(5)曲柄,摇杆(6)最短(7)曲柄摇杆(8)摇杆,连杆(9)2 (10)>(11)运动不确定(12)非工作时间(13)惯性(14)大(15)中的摆动导杆机构有,中的转动导杆机构无(16)机架(17)曲柄(18)曲柄滑块(19)双摇杆(20)双曲柄机构(21)无,有2-3 选择题(1)A (2)C (3)B (4)A (5)B (6)B (7)A(8)C (9)A (10)A (11)A (12)C (13)C (14)A(15)A (16)A (17)A (18)A (19)A (20)A (21)A2-4 解:a)双曲柄机构,因为40+110<70+90,满足杆长条件,并以最短杆为机架b)曲柄摇杆机构,因为30+130<110+120,满足杆长条件,并以最短杆的邻边为机架c)双摇杆机构,因为50+100>60+70,不满足杆长条件,无论以哪杆为机架都是双摇杆机构d)双摇杆机构,因为50+120=80+90,满足杆长条件,并以最短杆的对边为机架2-5 解:(1)由该机构各杆长度可得l AB+ l BC<l CD+ l AD,由此可知满足杆长条件,当以AB杆或AB杆的邻边为机架时该机构有曲柄存在(2)以l BC或l AD杆成为机架即为曲柄摇杆机构,以l AB杆成为机架即为双曲柄机构,以l CD杆成为机架即为双摇杆机构2-6 解:(1)曲柄摇杆机构由题意知连架杆CD杆不是最短杆,要为曲柄摇杆机构,连架杆AB杆应为最短杆(0<l AB ≤300 mm)且应满足杆长条件l AB+l BC≤l CD+l AD,由此可得0<l AB≤150mm (2)双摇杆机构由题意知机架AD杆不是最短杆的对边,要为双摇杆机构应不满足杆长条件①AB杆为最短杆(0<l AB≤300mm)时,l AB+l BC>l CD+l AD,由此可得150mm<l AB≤300mm②AB杆为中间杆(300mm≤l AB≤500mm)时,l AD+l BC>l CD+l AB,由此可得300mm≤l AB<450mm③AB杆为最长杆(500mm≤l AB<1150mm)时,l AB+l AD>l CD+l BC,由此可得550mm<l AB<1150mm由此可知:150mm<l AB<450 mm,550mm<l AB<1150 mm(3)双曲柄机构要为双曲柄机构,AD 杆必须为最短杆且应满足杆长条件①AB 杆为中间杆(300mm ≤l AB ≤500mm )时,l AD +l BC ≤l CD + l AB ,由此可得450mm ≤l AB ≤500mm②AB 杆为最长杆(500mm ≤l AB <1150mm )时,l AB +l AD ≤l CD +l BC ,由此可得500mm ≤l AB ≤550mm由此可知:450mm ≤l AB ≤550mm2-7 解:a )b )c )d )e )各机构压力角和传动角如图所示,图a)、d )机构无死点位置,图b)、c )、e )机构有死点位置2-8 解:用作图法求解,主要步骤:(1)计算极位夹角:︒=+-⨯︒=+-⨯︒=3615.115.118011180K K θ (2)取比例尺μ=0.001m/mm(3)根据比例尺和已知条件定出A 、D 、C 三点,如图所示(4)连接AC ,以AC 为边作θ角的另一角边线,与以D 为圆心、摇杆DC 为半径的圆弧相交于C 1和C 2点,连接DC 1和DC 2得摇杆的另一极限位置(两个)(5)从图中量得AC =71mm ,AC 1=26mm ,AC 2=170mm(6)当摇杆的另一极限位置位于DC 1时:5mm .2221=⨯=AC AC l AB -μ,5mm .4821=+⨯=AC AC l BC μ (7)当摇杆的另一极限位置位于DC 1时: 5mm .4922=⨯=AC AC l AB -μ,5mm .12022=+⨯=AC AC l BC μ 答:曲柄和连杆的长度分别为22.5mm 、48.5mm 和49.5mm 、120.5mm 。

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

机械设计基础第二章

机械设计基础第二章

第2章平面机构运动简图及自由度计算机械是替代人类完成各项体力劳动甚至脑力劳动的执行者。

在各种新型机械的设计初期,首先需要采用机械系统运动简图来对比各种运动方案及工作原理,一边从中选出最佳的设计方案。

然后再按照运动要求确定及其各组成构件的主要尺寸,按照强度条件和工作情况确定机构个部分的详细结构尺寸。

机械系统的运动简图设计是设计机械产品十分重要的内容,正确、合理地设计机械系统简图,对于满足机械产品的功能要求,提高性能和质量,降低制造成本和使用费用等是十分重要的。

机械系统要完成比较复杂的运动,一般都需要将若干个机构根据机械系统的运动协调配合的要求组合起来,因此机械系统的运动简图也是机构系统的运动简图。

机械系统的运动简图是用规定的符号,绘出能准确表达机构各构件之间的相对运动关系及运动特征的简单图形。

一般某机构可分为平面机构和空间机构。

平面机构是指各运动构件均在同意平面或相互平行平面内运动的机构。

空间机构是指虽有的机构不完全是相互平行的平面内运动的机构。

本章将着重介绍机构的结构分析。

第一节机构的组成构件任何机器都是由若干个零件组装而成的。

构件是指组成机械的各个相对运动的单元。

构件和零件的概念是有区别的。

构件是机械中的运动单元体,零件则是机械中不可拆分的制造单元体。

构件可以是一个零件,也可以是由两个或两个以上的零件组成。

如图2-1所示的内燃机中的连杆就是由单独加工的连杆体、轴套、连杆头、轴瓦、螺杆、螺母等零件组成的,这些零件分别加工制造,但是当它们装配成连杆后则作为一个整体在发动机内部作往复运动相互之间并不产生相对运动,因此连杆可以看做一个构件。

因此,从运动角度来看,任何机器都是许多独立运动单元组合而成的,这些独立运动单元体称为构件。

从加工制造角度来看,任何机器都是由许多独立制造单元体组合而成的,这些独立制造单元体称为零件。

通常,为了完成同一使命而在结构上组合在一起并协同工作的零件称为部件,如联轴器、减速器等。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

昆明理工大学机械设计基础四版学习概要及作业集(下册)0825

昆明理工大学机械设计基础四版学习概要及作业集(下册)0825

《机械设计基础》学习概要及作业集(下册)姓名:学号:专业年级:学院:昆明理工大学目录第二章平面连杆机构--------------------------------------------------------------3第四章齿轮机构--------------------------------------------------------------------7第九章机械零件设计概论--------------------------------------------------------11 第十一章齿轮传动--------------------------------------------------------------------------------- 12第十三章带传动和链传动-----------------------------------------------------------16第十六章滚动轴承--------------------------------------------------------------------20第二章平面连杆机构教学目标1、知道何谓平面连杆机构?它有哪些优、缺点?2、清楚平面连杆机构有哪些运动和动力特性?3、知道铰链四杆机构存在曲柄的条件是什么?4、对机构演变的方法有所了解。

5、掌握四杆机构设计的几种方法。

6、了解常用四杆机构的特点及实际应用。

具体内容 1、平面连杆机构的特点2、铰链四杆机构的基本类型和特性3、铰链四杆机构曲柄存在条件4、平面四杆机构的演变方法5、平面四杆机构的设计基本要求平面连杆机构的优缺点及应用;急回特性、极位夹角、行程速比系数、压力角、传动角、最小传动角及其出现位置、死点;曲柄存在条件,图解法设计四杆机构。

重点铰链四杆机构的基本形式;铰链四杆机构的运动特性;曲柄存在条件;四杆机构的应用难点平面四杆机构的演化习题2—1试根据图中注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构、还是双摇杆机构。

机械设计基础课件——第二章联接

机械设计基础课件——第二章联接
2.半圆键联接(图2-4)
▪ 轴槽用与半圆键形状相同的铣刀加工,键能在槽中绕几何中心摆动, 键的侧面为工作面,工作时靠其侧面的挤压来传递扭矩。其特点是工 艺性好,装配方便,尤其适用于锥形轴与轮毂的联接,但是轴槽对轴 的强度削弱较大,只适宜轻载静联接。
▪ 3.楔键联接(图2-5)
▪ 键的上、下面为工作表面,键的上表面和轮毂槽底面均制成1∶100的 斜度(侧面有间隙),工作时打紧,靠上下面摩擦传递扭矩,并可传 递小部分单向轴向力。
第三节 螺纹联接和螺旋传动

一、螺纹的主要参数
▪ 1.大径d
▪ 它是与外螺纹牙顶或内螺纹牙底相重合的假想圆柱面的直径。一般定为螺纹的公称 直径。
▪ 2.小径d1 ▪ 它是与外螺纹牙底或内螺纹牙顶相重合的假想圆柱面的直径。一般为外螺纹危险剖
面的直径。
▪ 3.中径d2 ▪ 它是一个假想圆柱的直径,该圆柱母线上的螺纹牙厚等于牙间宽。

图 2-6
▪ 二、平键联接的选择计算
▪ 1.类型选择
▪ 键的类型应根据键联接的结构、使用特点及工作条件来选择。选择 时应考虑以下方面的情况:联接于轴上的零件是否需要沿轴滑动及滑 动距离的长短;键在轴上的位置等。
▪ 2.尺寸选择
▪ 根据轴的公称直径d,从相关手册中选择平键的尺寸b×h。根据轮毂 长度选择键长:静联接时键长应略小于轮毂长度,动联接时要考虑移 动距离;另外键长还应符合表中的标准长度系列。
▪ 7.牙型角(α)和牙侧角(β)
▪ 在轴向剖面内,螺纹牙型两侧边的夹角,用α表示。牙型侧边与螺纹轴线的垂线间的 夹角称为牙侧角,用β表示。

二、螺纹的类型、特点和应用
▪ 1.三角螺纹
▪ 公制三角形螺纹的牙型角α=60°,其大径d为公称直径。三角形螺纹的当 量摩擦系数大,自锁性能好,螺纹牙根部较厚,牙根强度高,广泛应用于各种 紧固联接。同一公称直径可以有多种螺距,其中螺距最大的称为粗牙螺纹, 其余都称为细牙螺纹。由图2-9a可见,细牙螺纹的螺距小且中径及小径均较 粗牙螺纹的大,故细牙螺纹的升角小,自锁性能好,但牙的工作高度小,不 耐磨、易滑扣,适用于薄壁零件、受振动或变载荷的联接,还可用于微调机 构中。

机械设计基础(下)第二章

机械设计基础(下)第二章

第6 页
2008 年4 月12 日
2、稳定循环变应力的基本参数和种类
a) 基本参数:
最大应力: ? max ? ? m ? ? a
最小应力: ? min ? ? m ? ? a
平均应力:
?
m
?
?
max
??
2
min
应力幅: ? a 应力循环特性 :
??
?
? ? max
min
? ?2min ? max
第3 页
2008 年4 月12 日
§2-1 载荷与应力的分类
一、载荷的分类
静载荷: 如锅炉的压力、匀速转动的离心力、自重等。
稳定循环变载荷:
循环变载荷 如往复式动力机械的曲轴。
变载荷: 随机变载荷
不稳定循环变载荷: 如汽车、农业机械等。
载荷
名义载荷 P 计算载荷 Pca 载荷系数 K
第4 页
Pca ? KP
a ?
a ?
O t
O t
3、名义应力和计算应力
名义应力——由名义载荷产生的应力 ? (? )
计算应力——由计算载荷产生的应力 ? ca (?ca )
第12 页
2008 年4 月12 日
§ 2-2 静应力时机械零件的强度计算
一、单向应力下的塑性零件 (失效形式:塑性变形)
强度条件:
或:
? ?? s? ?
sca ?
?s
? [ s]
?
2
?
?
(
s
)2? 2
?s
或:sca ?
s? s? ? [ s] s?2 ? s?2
三、脆性材料与低塑性材料(失效形式:断裂)
脆性材料极限应力: ? B—— 强度极限

机械设计基础--第二章(平面机构的结构分析)

机械设计基础--第二章(平面机构的结构分析)

图2-6 1-中心轮 1 2-行星轮 3-中心轮2 4-转臂
二、学习指导
d) 在平行四边形机构中加入一 个与某边平行且相等的构件,造成轨 迹重合而产生的虚约束,见图2-7构 件5引入的运动副为虚约束,计算机 构的自由度时要将构件5及运动副都 除去不计。此时 n=3,PL =4,PH =0, 故机构的自由度数为
三、典型实例分析
例题2-4 已知一机构如图2-12所示,求其自由度。 解:n=4
PL= 6 PH=0
1 3
2 4
F=3n-2PL-PH=34-26-0=0
即该机构自由度为0,它的各 构件之间不能产生相对运动。
5
图2-12
三、典型实例分析
例2-5 计算图2-13所示大筛机构的自由度。
解:E′或 E 为虚约束 C为复合铰链 F为局部自由度
(3)机构中存在着与整个机构运动无关的自由度称为
在计算机构自由度时应

个构件作为机架。
(4)在任何一个机构中,只能有
四、复习题
⒉ 选择题
(1)一个作平面运动的自由构件具有
(A) 一个; (B) 二个;
自由度。
(D) 四个。 。 (D) 四个。 。
(C) 三个;
(2)平面机构中的高副所引入的约束数目为 (A) 一个; (B) 二个; (C) 三个;
三、典型实例分析
a)
b)
c)
图2-9
d)
三、典型实例分析
例2-2 计算图2-10中牛头刨床传动机构的自由度。
解:n=6,PL= 8,PH=1。
F=3n-2PL-PH=36-28-1=1
即该机构只有一个自由度, 与原动件数相同(齿轮 3 为原动 件)。所以,满足机构具有确定运 动的条件。 图2-10

机械设计基础-第二章测验题 参考答案

机械设计基础-第二章测验题 参考答案

《机械设计基础》第二章平面机构的结构分析测验题班级:姓名:学号:成绩:一、填空题(每空2分,共16分)1. 机构具有确定运动的条件:机构的原动件数目=机构的自由度数。

2. 计算平面机构自由度的公式为 F=3n-(2PL +PH),应用此公式时应注意判断是否有复合铰链、局部自由度及虚约束。

3. 某平面机构有5个低副,1个高副,机构自由度为1,则该机构具有5个构件。

4. 在平面机构中,具有2个约束的运动副是低副,具有1个约束的运动副是高副。

二、单选题(每题2分,共20分)1.以下不属于机器的执行部分的是()。

A 数控机床的刀架B 工业机器人手臂C 汽车的车轮D 空气压缩机2.()保留了2个自由度,带进了一个约束。

A 高副B 移动副C 转动副D 低副3. 若复合铰链处有5个构件汇集在一起,应有()个转动副。

A 4B 3C 2D 54.在比例尺μl=20 mm/mm 的机构运动简图中,量得一构件的长度是10mm,则该构件的实际长度为()mm。

A 20B 50C 200D 5005.两个以上的构件共用同一转动轴线,所构成的转动副称为()。

A 复合铰链B 局部自由度C 虚约束D 单一铰链6.计算机构自由度时,对于局部自由度应()。

A 除去不计B 考虑C 部分考虑D 转化成虚约束7.火车车轮在轨道上转动,车轮与轨道构成()副。

A 移动B 高C 低D 转动8.在机构中采用虚约束的目的是为了改善机构的运动状况和()。

A 美观B 对称C 受力情况D 增加重量9. 为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。

A 构件数、运动副的类型及数目B 构件的运动尺寸C 机架和原动件D 以上都是10.计算机构自由度时,若计入虚约束,则机构的自由度就会()A 增多B 减少C 不变三、判断题(每题2分,共20分)1.一个作平面运动的构件有2个独立运动的自由度。

(×)2.平面低副机构中,每个转动副和移动副所引入的约束条件是相同的。

机械设计基础第二章平面连杆机构

机械设计基础第二章平面连杆机构
(3)过C1、C2、 P 作圆
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)

机械设计基础第2章 平面连杆机构 习题解答

机械设计基础第2章 平面连杆机构 习题解答

2.6设计一偏置曲柄滑块机构。

已知滑块的行程H =50mm ,行程速比系数K =1.5,导路的偏距e =20mm 。

试求曲柄的长度l AB 和连杆的长度l BC ,并求作最大压力角αmax 。

解:行程速比系数K=1.5,则机构的极位夹角为︒=+-︒=+-︒=3615.115.118011180K K θ选定作图比例,先画出滑块的两个极限位置C 1和C 2,再分别过点C 1、C 2作与直线成︒=-︒5490θ的射线,两射线将于点O 。

以点O 为圆心,OC 2为半径作圆,最后再作一条与直线C 1C 2相距为mm e 20=的直线,该直线与先前所作的圆的交点就是固定铰链点A。

作图过程如题2.6图所示。

直接由图中量取mm AC 251=,mm AC 682=,所以曲柄AB 的长度为mm AC AC l AB 5.2122568212=-=-=连杆BC 的长度为mm AC AC l BC 5.4622568221=+=+=2.7试设计一曲柄摇杆机构,已知行程速比系数K =1.2,摇杆长L CD =300mm ,其最大摆2B 1B 2C 1C Aeθ21C C θ-︒90题2.6图O角ψmax =35°,曲柄长L AB =80mm 。

求连杆长L BC ,并验算最小传动角γmin 是否在允许的范围内。

解:简要作图步骤:作圆η。

以O 为圆心,OC 1为半径作圆,再以C 2为圆心,2l AB 为半径作圆,两圆交于S 点;●连接C 2S 延长交圆η于A 点;❍⏹机构在AB ′C′D 位置时有γmin =430<[γ]2.8图所示为脚踏轧棉机的曲柄摇杆机构。

铰链中心A 、B 在铅垂线上,要求踏板DC 在水平位置上下各摆动10°,且l DC =500mm ,l AD =1000mm 。

试求曲柄AB 和连杆BC 的长度l AB 和l BC ,并画出机构的止点位置。

mmml 005.0=μ20125.1125.118011180=+-=+-=θK K η212AC AC AB l l l -=212AC AC BC l l l +=D1C 2C ψA1B 2B Pθθ- 90SminγB 'C 'O解:1取长度比例尺做机构图mmmml20=μ()()mmAC AC l l AB752205.5260212=-=-=μ()()mmAC AC l l BC11252202.5260212=+=+=μ2.9图所示为一实验用小电炉的炉门装置,在关闭时为位置E 1,开启时为位置E 2,试设计一四杆机构来操作炉门的启闭(各有关尺寸见图)。

《机械设计基础》课程讲解课件第二章第一节铰链四杆机构及其演化

《机械设计基础》课程讲解课件第二章第一节铰链四杆机构及其演化

2.导杆机构
取曲柄滑块机构中的不同构件作为机架,可以得到以下 四种不同的机构。
曲柄滑块机构
转动导杆机构
定块机构
摇块导杆机构
应用
小型刨床机构
曲柄摆动导杆机构 (a)曲柄摆动导杆机构; (b)电气开关
卡车车厢自动翻转卸料机构
手动抽水机
3.偏心轮机构 扩大转动副
(a)等效曲柄滑块机构 (b)曲柄滑块机构 (c)等效曲柄摇杆机构 (d) 曲柄摇杆机构
摇杆为主动件时, 则可以将摇杆的摆动转换为 曲柄的整周回转运动。
应用举例:
①牛头刨床工作台横向进给机构 ②缝纫机的踏板机构
图 7-3 缝纫机踏板机构
牛头刨床进给机构
缝纫机踏板机构
(a)局部结构图 ; (b)曲柄摇杆机构运动简图 1—主动齿轮; 2—从动齿轮; 3—连杆; 4—摇杆(棘爪);
5—棘轮; 6—丝杠 ; 7—机架
一、平面四杆机构的基本型式—铰链四杆机构
1.曲柄摇杆机构 2.双曲柄机构
3.双摇杆机构
运动副全是转动副
二、平面四杆机构的演化型式
1.曲柄滑块机构 2.导杆机构 3.偏心轮机构
一、平面四杆机构的基本型式
1.曲柄摇杆机构
☆ 两连架杆中一个为曲柄,另
一个为摇杆。
曲柄为主动件时, 可以实现由曲柄的整周回转 运动到摇杆往复摆动的运动 转换。
特点:容易加工; 工作时润滑条件和受力情况好; 可用于较重载荷的传动中。
应用举例:蒸汽机换气阀传动机构、冲压机传动机构等。
机械设计基础
第二章 平面连杆机构
第一节 铰链四杆机构及其演化 第二节 平面四杆机构的基本特性
概念
定义: 全由低副(转动副、移动副)构 成的平面机构称为平面连杆机构

机械设计基础-第二章3弹性连接

机械设计基础-第二章3弹性连接
自由高度
F2
设计:潘存云
δ
α
D2
设计:潘存云
四、弹簧的特性线
1.圆柱形螺旋压缩弹簧的特性线
F
F2Flim压缩弹簧的
特性曲线
F1 arctEgk λ
λ1 λ0
λ2
λlim
F1 2.圆柱形螺旋拉伸弹簧的特性线
拉伸弹簧分无预应力和有预应力
有预应力的拉伸弹簧比无预应力 的可节省轴向空间。
F2Flim
设计:潘存云
Hlim H2 H1 H0
机械设计基础-第二章3弹性连接
弹簧的功用和类型
工作特点:弹簧在外力作用下能产生较大的弹性变形, 在机械设备中被广泛用作弹性元件。
一、功用: 1.缓冲吸振; 如凸轮机构、离合器、阀门等; 2.控制机构运动或零件的位置;各种缓冲器中的弹簧;
3. 存储能量; 如钟表仪器中的弹簧; 4. 测量力的大小 。如弹簧秤中的弹簧
二 、弹簧的材料与制作
1、弹簧的材料
要求:
在力学性能方面:具有高的弹性极限、屈强比 和疲劳极限,具有足够的韧性和塑性;
在工艺性能方面:具有良好的淬透性、不易脱 碳、便于卷绕。
材料:热轧和冷拉弹簧钢 热轧钢以圆钢、扁钢、钢板形式 冷拉刚以钢丝、钢带形式
碳素弹簧钢:25~80钢、40Mn~70Mn
为了提高弹簧的疲劳强度,可采用喷丸 处理,使弹簧表面产生有益的残余压应力。经 过强压处理和喷丸处理的弹簧,不得再进行热 处理。
三、弹簧的几何尺寸
1. 压缩弹簧的结构尺寸 变形用
压缩弹簧在自由状态下,各圈之间留有一定间距δ 。
支承圈或死圈----两端有3/4~5/4圈并紧,以使弹簧站 立平直,这部分不参与变形。
热卷:d≥ 4mm → 淬火和回火
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验数据 1,0而,作s 出。
折线以内为疲劳和塑性安全区,折线以外为疲劳和 塑性失效区,工作应力点离折线越远,安全程度愈高。
第34页
三、影响机械零件疲劳强度的主要因素和零件极限应力图 由于实际机械零件与标准试件之间在绝对尺寸、
表面状态、应力集中、环境介质等方面往往有差异, 这些因素的综合影响使零件的疲劳极限不同于材料 的疲劳极限,
s B
45°
B
C m
B ——强度极限点
a 0 , 1 ,m m alx i mB
B(σB,0)
第29页
a A'
D' G'
45°
O
s B
45°
B
C m
D′—— 脉a动疲劳m极 限2 m 点a x2 0
D′(σ0/2, σ0/2 )
第30页
a A'
D' G'
45°
O
s B
45°
B
由于零件尺寸愈大时,材料的晶粒较粗,出现缺陷的 概率大,而机械加工后表面冷作硬化层相对较薄,所以对 零件疲劳强度的不良影响愈显著 。
( ) 见表2-8(螺纹联接), 图2-9(钢), 图2-10(铸铁)。
第38页
3、表面状态的影响 1)表面质量系数 ( )
零件加工的表面质量(主要指表面粗糙度)对疲劳强度的影响。 图2-11:钢的 B 越高,表面愈粗糙, ( )愈低。
N
有限寿命区
无限寿命区
当 130(140)NN0 时 随循环次数↑疲劳极限↓
N
O
N
N0
N
第22页
2)无限寿命区
N N0
N —— 持久极限
N
有限寿命区
无限寿命区
对称循环: 1 1
脉动循环: 0 0
N
O
N
N0
N
注意:有色金属和高强度合金钢没有无限寿命区!
3)疲劳曲线方程 (130 (140 )NN 0)
每种应力循环特性下都对应着该材料的最大应力:
max
再由应力循环特性可求出:min max
(m,a) 以 m 为横坐标、 a 为纵坐标,即可得材料在不同应力循 环特性下的 m — a 曲线,即为材料的疲劳极限应力图。
第26页
a A'
如图 A′B曲线上的点对应着
不同应力循环特性 下的材
料疲劳极限
零件的简化极限应力图。
a A' (0,1)
D' (0/2,0/2)
A(0,1/k)
零件对称循环疲劳点
A M'('me,'ae)
G'
D(0/2,0/2k)
D
零件脉动循环疲劳点
G
/K 0/2K
45°
O
135° C(s,0) m
G’C是静强度极限,不受kσ的影响,所以,该段不必修正。
第42页
a
AG :零件疲劳极限曲线
G上C各点: m ax m 如 果a s不会屈服m破ax坏s
a
A' D' G'
45°
O
s B
45°
B
C
m
零件的工作应力点(σm,σa)位于A’D’G’C折线以内 时,其最大应力既不超过疲劳极限,又不超过屈服极限。
第33页
a A'
D' G'
45°
O
s B
45°
B
C
m
材料的简化极限应力线图,可根据材料的三个
其中尤以应力集中、零件尺寸和表面状态三项 因素对机械零件的疲劳强度影响最大。
第35页
1、应力集中的影响——有效应力集中系数 k (k )
零件受载时,在几何形状突变处(圆角、凹槽、孔等)要产 生应力集中,对应力集中的敏感程度与零件的材料有关,一般材 料强度越高,硬度越高,对应力集中越敏感。
理论应力集中系数:
其中,最不利的是对称循环变应力。
第11页
注意:静应力只能由静载荷产生,而变应力可能由变 载荷产生,也可能由静载荷产生!
a
O t
a O
t
3、名义应力和计算应力 名义应力——由名义载荷产生的应力 ( )
计算应力——由计算载荷产生的应力 ca(ca)
第12页
§ 2-2 静应力时机械零件的强度计算
最小应力: mi nma
minma
平均应力:
m
m
axm
2
in
minma maxma
应力幅:
a
m
axm
2
in
应力循环特性:
min max
1 1
5个参数中,知道两者,其余即可求出。 一般常用如下参数组合描述应力的特性: σ m和σa; σmax和σmin; σmax和σm
第7页
maxma
b) 稳定循环变应力种类: γ = –1 —— 对称循环变应力
一、单向应力下的塑性零件(失效形式:塑性变形)
强度条件: ca
ca
[ ] [ ]
s
[s ] s
[ s ]
或:
s
s
s ca
s ca
[s] [s]
σs、τs——材料的屈服极限 Sσ、Sτ——计算安全系数 [s]σ、[s]τ——许用安全系数
第13页
二、复合应力时的塑性材料零件(失效形式:塑性变形) 设单向正应力和切应力分别为σ和τ 由第三强度理论:(最大剪应力理论)
按静应力强度计算。
第16页
★ Δ §2-3 机械零件的疲劳强度计算
一、变应力作用下机械零件的失效特征
1、失效形式:疲劳断裂 2、疲劳破坏特征:
1)断裂过程:①产生初始裂纹 (应力较大处) ②裂纹尖端在切应力作用下反复 扩展,直至产生疲劳裂纹。
2)断裂面:①光滑区(疲劳发展区) ②粗糙区(脆性断裂区)
mi n 1 , ma x m ina, m0 max
第8页
γ = 0 —— 脉动循环变应力
mi n0, max
mi n0,
am2 max
第9页
-1< γ <+1 —— 不对称循环变应力
maxma
mi nma
γ = +1 —— 静应力
o
t
第10页
对称循环变应力
脉动循环变应力 非对称循环变应力
1、疲劳曲线:应力循环特性一定时,材料的疲劳极限与应力循 环次数之间关系的曲线。
N
有限寿命区
无限寿命区
N0 — 循环基数
— 持久极限
N
O
N
N0
N
第21页
1)有限寿命区 低周循环疲劳
N N0 高周循环疲劳
N103(104)
N103(104)
当N<103(104) —低周循环,疲劳极限接近于屈服极限, 按静强度计算。
循环特性,应力循环次数,应力幅都对疲劳极限有 很大影响。 5、当σm、γ一定时, σa越小,N越少,疲劳强度 越高。
第20页
二、材料的疲劳曲线和极限应力图
N( N) —— 疲劳极限,应力循环特性γ下应力循环N次
后材料不发生疲劳破坏时的最大应力。
疲劳寿命(N)—— 材料疲劳失效前所经历的应力循环次数N。
第一篇 机械设计总论篇
第二章 机械零件的强度
本章主要介绍机械零件在静应力和变应力时的强 度计算,极限应力图绘制及应用。
★重点内容: 变应力时机械零件的强度计算
Δ难点内容: 变应力时机械零件的强度计算
§2-1 载荷与应力的分类 §2-2 静应力时机械零件的强度计算 ★ Δ §2-3 机械零件的疲劳强度计算 §2-4 机械零件的接触强度
C m
C ——屈服极限点
塑性材料: s B
C (σs,0)
第31页
a A'
D' G'
45°
O
s B
45°
B
C
m
材料简化极限应力线图:——简化极限应力图 ADGC 作法:考虑塑性材料的最大应力不超过屈服极限,由C点作
135°斜线与A’D’的延长线交于G’,得到 ADGC
第32页
A上G各 点: m ax如果m a 不会疲m劳ax破坏m ax
直线AG方程 :
1e
1
k
a eem
e
A' (0,1)
D'(0/2,0/2)
A M'('me,'ae)
G'
D
G
/K 0/2K
或 1 k a e m e
45°
135°
GC :零件屈服极限曲线
O
C(s,0) m
直线GC方程:
a em es
' ae
,
' me
——
零件的极限应力幅和极限平均应力。
第3页
§2-1 载荷与应力的分类
一、载荷的分类
静载荷: 如锅炉的压力、匀速转动的离心力、自重等。
循环变载荷 变载荷:
随机变载荷
稳定循环变载荷: 如往复式动力机械的曲轴。
不稳定循环变载荷: 如汽车、农业机械等。
载荷
名义载荷 P 计算载荷 Pca 载荷系数 K
第4页
Pca KP
二、应力的分类
1、应力种类
ka(标 a(e零准件试的件)极)对 的限称 极应 11循 e(限 (标 零力环 应 准 件幅力 试 试幅 件 件劳 劳对 对极 极 ))称 称限 限循 循环 环的
第41页
2)、零件的极限应力图
由于 k 只对 a 有影响,而对 m无影响,所以在材料的极限应力图
A´D´G´C上几个特殊点以坐标计入 k 影响
相关文档
最新文档