法向量解立体几何题

合集下载

立体几何向量法求二面角例题

立体几何向量法求二面角例题

专题40:空间角的向量求法精讲温故知新⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BD θ⋅= 例1:(2018·全国·高考真题(理))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .15B .56C .55D .22举一反三1.(2022·福建龙岩·模拟预测)已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的正弦值为( )A .153B .53C .64D .1042.(2022·山西晋城·三模(文))在正方体1111ABCD A B C D -中,点P 是底面ABCD 的中心,则直线1B P 与1AD 所成角的余弦值为___________.⑵求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .in a ua u ϕθ⋅==例2:(2022·全国·高考真题(理))在四棱锥P ABCD -中,PD ⊥底面,,1,2,3ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.举一反三(2022·浙江·高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.⑶求二面角二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角. 如图:求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ-根据具体图形确定θ是锐角或是钝角:如果θ是锐角,则cos cos m nm n θϕ⋅==, 即arccos m nm n θ⋅=;如果θ是钝角,则cos cos m nm n θϕ⋅=-=-, 即arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭. 例3:(2022·全国·高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22 O A B O A B l(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.举一反三(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.精练巩固提升1.(2018·江苏·高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.2.(2022·北京·高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.3.(2022·全国·高考真题(理))如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.4.(2021·全国·高考真题)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,5,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ;(2)求二面角B QD A --的平面角的余弦值.5.(2021·北京·高考真题)如图:在正方体1111ABCD A B C D -中,E 为11A D 中点,11B C 与平面CDE 交于点F .(1)求证:F 为11B C 的中点;(2)点M 是棱11A B 上一点,且二面角M FC E --的余弦值为53,求111A M A B 的值.6.(2021·浙江·高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.7.(2021·全国·高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.8.(2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?9.(2020·海南·高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.10.(2020·江苏·高考真题)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.11.(2019·浙江·高考真题)如图,已知三棱柱111ABC A B C -,平面11AA C C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.;(1)证明:EF BC(2)求直线EF与平面1A BC所成角的余弦值.12.(2019·全国·高考真题(理))图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。

空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释

空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释

空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释1.引言1.1 概述空间立体几何是数学中的一个重要分支,它研究三维空间中的几何结构和性质。

在空间立体几何中,线和面是两个基本的几何元素,线面交点坐标的求解是一个常见且重要的问题。

本文主要介绍了两种方法来求解线面交点的坐标:坐标法和向量法。

通过这两种方法,可以方便地求解线面交点的坐标,进而解决一些实际问题。

通过本文的学习,读者将能够掌握空间立体几何中线面交点坐标的求解方法,为进一步深入学习和应用空间几何提供了基础。

同时,本文还将探讨线面交点坐标的应用和展望,展示其在现实生活中的重要性和价值。

1.2 文章结构:本文主要分为引言、正文和结论三部分。

引言部分将从概述、文章结构和目的三个方面介绍本文的主要内容和研究背景。

正文部分将分为三个小节,首先是关于空间立体几何概念的介绍,接着是详细讨论如何利用坐标法求解线面交点坐标的方法,最后则是向量法求解线面交点坐标的具体过程。

结论部分将总结本文的主要观点和研究成果,探讨该方法的应用前景,并进行最终的结语。

1.3 目的:本文旨在介绍如何利用空间立体几何中的坐标法和向量法来求解线面交点坐标的方法。

通过深入讨论这两种方法的原理和步骤,我们希望读者能够更加深入地理解空间几何中的相关概念,并能够灵活运用这些方法解决实际问题。

通过掌握线面交点坐标求解的技巧,读者能够提升空间几何解题的效率和准确性,同时也能够为进一步学习和研究提供一定的参考和指导。

希望本文能够为读者提供一定的启发和帮助,让大家在空间几何学习中取得更好的成绩和收获。

2.正文2.1 空间立体几何概念空间立体几何是几何学中研究三维空间中图形与几何体的一门学科,是平面几何的延伸和拓展。

在空间立体几何中,我们不再局限于研究平面上的图形,而是考虑到三维空间中的物体和结构。

在空间立体几何中,我们研究的主要对象包括点、线、面和体。

点是空间中的一个位置,用于确定空间中的一个具体位置;线是由无数个点按照一定规律连成的直线段;面是由无数个点和线按照一定规律组成的平面图形;而体则是由无数个面组成的一个三维实体。

专题5:向量法做立体几何的线面角问题(解析版)

专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。

巧用法向量求解立体几何题

巧用法向量求解立体几何题

巧用法向量求解立体几何题立体几何题是中学数学中比较复杂的内容。

有时候采用传统的解题方法不容易完成,因此法向量的用法可以大大提高解题效率。

一、什么是法向量?法向量就是由一个单位向量构成的一条有向直线,它是表示空间中某一平面的垂直方向,或者是表示某条直线的方向。

一般情况下,法向量可以用一个向量图形表示,即平面的法向量是指从它的法线的垂直面抛射出的一条射线。

二、法向量在立体几何中的应用1.用法向量画三视图:三视图是旋转体三种正视图(前视图、侧视图和俯视图)的集合,即表达旋转体形状的完整和准确的图形。

三视图可以采用法向量画出来:一方面,用单位向量表示旋转体每一个面的法向量;另一方面,用单位向量表示旋转体从不同方向看的三个视图,然后根据变换关系完成三视图画法向量的运算过程。

2.计算立体图形的表面积:表面积是立体图形的最基本信息,但是对于一些复杂的图形,用传统的解题方法可能很难计算。

在这种情况下,法向量的用法可以大大简化工作量,从而获取表面积。

当我们从物体的不同视角测量它时,可以根据物体上每一面的法向量,结合变换矩阵,来计算图形总体表面积。

3.计算立体图形的体积:以立体图形的表面为基础,对立体体积的计算,可以用法向量作为媒介,结合变换矩阵,来实现立体图形的具体体积计算。

在实际的计算中,应该根据物体的每一个面,使用变换关系,将其投影到一定的平面上,然后根据这一平面的法向量的方向和变换矩阵,得到立体图形的体积。

三、如何利用法向量解立体几何题1.首先设定一个恰当的坐标系,根据坐标系将所求立体图形投影到一个平面上,从而获得其特征参数;2.把特征参数表示成一个详细的向量系统,然后计算向量系统中不同矢量的法向量;3.有了以上数据以后,就可以利用“平移变换”“旋转向量”“变换矩阵”等工具,将得到的法向量变换到相应的轴坐标系上,从而得出最后的结果。

四、法向量解立体几何题的特点1.计算过程清晰明了:由于是以向量的形式表示立体几何图形,而相关运算是基于向量矩阵以及变换矩阵进行计算,因此运算简单、清晰明了,不会出现误差。

向量法解立体几何练习题

向量法解立体几何练习题

向量法例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.解:(I )以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系, 则D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2) 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),1010226cos 3||||1140042tan 2n AA CDE n AA C DE C n AA n AA θθθ∴=--=∴--∙-⨯-⨯+⨯===⨯++⨯++∴=向量与平面垂直与所成的角为二面角的平面角 (II )设EC 1与FD 1所成角为β,则11222222111(4)322221cos 14||||132(4)22EC FD EC FD β∙⨯-+⨯+⨯===⨯++⨯-++2.如图6 已知四棱锥P ABCD -的底面为直角梯 形,AB//DC ,090DAB ∠=,PA ⊥底面ABCD ,且PA=AD=DC=112AB =,M 是PB 的中点。

(Ⅰ)证明:面PAD ⊥面PCD ;(Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小。

3.已知四棱锥P —ABCD ,底面ABCD 是菱形,⊥︒=∠PD DAB ,60平面ABCD ,PD=AD ,点E 为AB 中点,点F 为PD 中点. (1)证明平面PED ⊥平面PAB ; (2)求二面角P —AB —F 的余弦值. 1475ABC DMP图 64.. 如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面A B C D ,SA AB =,点M 是SD 的中点,AN S C ⊥,且交SC 于点N 。

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

向量法解立体几何及经典例题(上课用)

向量法解立体几何及经典例题(上课用)

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。

设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。

法向量在立体几何中的应用.

法向量在立体几何中的应用.

法向量在立体几何中的应用查宝才(扬州市新华中学,江苏 225002)向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为直接,用向量的方法特别便于研究空间里涉及直线和平面的各种问题。

将向量引入中学数学后,既丰富了中学数学内容,拓宽了中学生的视野;也为我们解决数学问题带来了一套全新的思想方法——向量法。

下面就向量中的一种特殊向量——法向量,结合近几年的高考题,谈谈其在立体几何有关问题中的应用。

1 法向量的定义1.1 定义1 如果一个非零向量n 与平面α垂直,则称向量n 为平面α的法向量。

1.2 定义2 任意一个三元一次方程:0=+++D Cz By Ax ,222(C B A ++)0≠都表示空间直角坐标系内的一个平面,其中),,(C B A n =为其一个法向量。

]1[事实上,设点),,(0000z y x P 是平面α上的一个定点,),,(C B A n =是平面α的法向量,设点),,(z y x P 是平面α上任一点,则总有n P P ⊥0。

∴ 00=⋅n P P , 故 0),,(),,(000=---⋅z z y y x x C B A , 即 0)()()(000=-+-+-z z C y y B x x A , ∴ 0000=---++Cz By Ax Cz By Ax ,……① 设 000Cz By Ax D ---=,则 ① 式可化为0=+++D Cz By Ax )0(222≠++C B A ,即为点P 的轨迹方程。

从而,任意一个三元一次方程:0=+++D Cz By Ax )0(222≠++C B A , 都表示一个平面的方程,其法向量为),,(C B A =。

2 法向量在立体几何中的应用 2.1 利用法向量可处理线面角问题 设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,则有θπϕ-=2(图1)或θπϕ+=2(图2)图1 图2特别地 0=ϕ时,2πθ=,α⊥l ;2πϕ=时,0=θ,α⊆l 或α//l例1(2003年, 新课程 、江苏 、辽宁卷高考题)如图3,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,ο90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面上的射影是ABD ∆的重心G 。

空间向量与立体几何经典例题

空间向量与立体几何经典例题

空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。

在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。

例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。

解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。

假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。

由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。

其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。

假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。

带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。

因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。

例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。

解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。

假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。

立体几何中的向量方法真题与解析

立体几何中的向量方法真题与解析

立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。

解答立体几何问题的常用方法

解答立体几何问题的常用方法

备考指南立体几何问题侧重于考查同学们的空间想象、逻辑推理以及运算能力.求解立体几何问题的常用方法主要有几何法和向量法.掌握并合理运用这两种解题方法,有利于迅速找到解题的思路.下面结合实例,谈一谈解答立体几何问题的常用方法.一、几何法几何法是解答立体几何问题的常用方法,也是比较重要的方法.在运用几何法求解立体几何问题时,要根据空间中点、线、面之间的位置关系,寻找平行、垂直关系,灵活运用立体几何中的定义、公理、判定定理和性质定理来分析、解答问题.例1.如图1所示,已知四棱锥P-ABCD的底面ABCD是边长为3的菱形,PD=3,PA=PC=23,点Q是PD的中点.(1)求证:直线PB∥平面ACQ;(2)求证:平面PAD⊥平面ABCD.证明:(1)连接BD交AC于点O,连接OQ,根据菱形ABCD的性质可知O为BD的中点,因为Q是PD的中点,所以OQ是ΔPBD的中位线,可得OQ∥PB.又OQ⊂平面ACQ,PB⊄平面ACQ,由线面平行的判定定理得PB∥平面ACQ.(2)在ΔPAD中,PD2+DA2=32+(3)2=12=(23)2 =PA2,所以PD⊥DA.同理可证PD⊥DC.因为DA⋂DC=D,由线面垂直的判定定理得PD⊥平面ABCD.因为PD⊂平面PAD,所以由面面垂直的判定定理得平面PAD⊥平面ABCD.在解答立体几何中有关线线、线面、面面平行和垂直的问题时,往往需要首先根据图形理清点、线、面之间的位置关系,然后运用线线、线面、面面平行和垂直的定义、判定定理、性质定理来解题.对于第一个问题,需首先想到运用线面平行的判定定理;对于第二个问题,要证明面面垂直,往往需先想到运用面面垂直的判定定理,则需根据线面垂直的判定定理证明线面垂直,只需根据勾股定理证明线线垂直.二、向量法1.基底法基底法是指根据向量的基本定理,将各个向量用基底表示出来,通过向量运算来解题.运用基底法解题,需先根据立体几何图形的特点和位置关系,选择一组合适的向量,将其作为基底,再根据向量的基本定理,将各个向量用基底表示出来,利用向量的数量积公式、模的公式、共线定理等进行求解.例2.已知正四面体ABCD的各条棱长均为1,点E、F分别是BC、AD的中点,则AE∙CF=(). A.0 B.12 C.1 D.-12解:如图2所示,设向量AB=a ,AC=b , AD=c ,因为正四面体的各条棱长均为1,所以a ∙b =a ∙c =b ∙c =1×1×cos60°=12,且||||b 2=1.因为点E、F分别是BC、AD的中点,所以AE=a +b 2, CF=-b +c 2,所以AE∙CF=æèçöø÷a +b 2∙æèçöø÷-b +c 2=-12a ∙b +14a ∙c -12||||b 2+14b ∙c=-12×12+14×12-12×1+14×12=-12.故本题选D.以AB=a 、AC=b 、 AD=c 为基底,并用这些基底将AE、CF表示出来,即可根据向量的数量积公式,求得AE∙CF的表达式及值.运用基底法解题的关键在于根据题意和图形的特点,选取合适的基底.图1图2552.坐标法有些立体几何问题中的图形为特殊图形,如正方体、直棱柱、长方体、正棱锥、圆锥、圆柱等,此时可采用坐标法求解.首先要根据这些图形的特点,找到两条或三条垂直且交于一点的直线,将其作为坐标轴,建立空间直角坐标系;然后求得相关点的坐标、直线的方向向量以及平面的法向量,通过向量的坐标运算求得问题的答案.若用a 、b 表示直线a 、b 的方向向量,用m 、n 表示平面α、β的法向量,则(1)直线a 、b 所成角的余弦值为:cos θ=||||||cos a ,b =||||||||||a ∙b ||a ||||b ;(2)直线a 与平面α所成角的正弦值为:sin θ=||cos a,m =||||||||a∙m ||a ||m ;(3)平面α、β的二面角的余弦值为:cos θ=cos m ,n =m ∙n ||m ||n 或cos θ=-cos m ,n =-m ∙n ||m ||n (依平面角与法向量夹角的大小而定);(4)若A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为:d =|||||||| AP ∙n ||n.例3.据《九章算术》中的记载可知,堑堵是底面为直角三角形,侧棱垂直于底面的三棱柱;阳马是底面为矩形,一条侧棱垂直于底面的四棱锥;鳖臑是四个面均为直角三角形的四面体.如图3,在堑堵ABC -A 1B 1C 1中,AC ⊥BC .(Ⅰ)求证:四棱锥B -A 1ACC 1为阳马,并判断四面体A 1-CBC 1是否为鳖臑,若是,请写出各个面的直角(只写出结论);(Ⅱ)若A 1A =AB =2,当阳马B -A 1ACC 1的体积最大时,求二面角C -A 1B -C 1的余弦值.图3解:(Ⅰ)由堑堵ABC -A 1B 1C 1的定义知A 1A ⊥底面ABC ,所以BC ⊥A 1A ,因为BC ⊥AC ,A 1A ⋂AC =A ,所以BC ⊥平面A 1ACC 1.由堑堵ABC -A 1B 1C 1的定义知,四边形A 1ACC 1为矩形,因此四棱锥B -A 1ACC 1为阳马.易知四面体A 1-CBC 1为鳖臑,四个面的直角分别是∠A 1CB ,∠A 1C 1C ,∠BCC 1,∠A 1C 1B .(Ⅱ)因为A 1A =AB =2,由(Ⅰ)知阳马B -A 1ACC 1的体积为V =13S 矩形A 1ACC 1∙BC =13×A 1A ×AC ×BC =23AC ×BC≤13(AC 2+BC 2)=13×AB 2=43,所以当AC =BC =2时,V max =43,此时直线CA ,CB ,CC 1两两互相垂直,可建立如图4所示的空间直角坐标系C -xyz .易知点C (0,0,0),B (0,2,0),A 1(2,0,2),C 1(0,0,2),所以 CA 1=(2,0,2),CB =(0,2,0),BA 1=(2,-2,2),BC 1=(0,-2,2).设平面CA 1B 的法向量为n =(x ,y ,z ),则ìíîn ∙CA 1=0,n ∙ CB =0,可得ìíî2x +2z =0,2y =0,令x =2,则z =-1,y =0,则n =(2,0,-1);同理可得平面C 1A 1B 的一个法向量m =(0,2,1).所以cos <n ,m >=n ∙m ||n ||m =-13×3=-13.由图4知,二面角C -A 1B -C 1为锐二面角,故二面角C -A 1B -C 1的余弦值为13.利用坐标法求解有关夹角或距离问题,关键是建立合适的空间直角坐标系.通常要使更多的点落在坐标轴上,这样便于计算.有时可通过添加辅助线来画出其中的一条坐标轴.相比较而言,几何法和基底法的适用范围较广,对于大部分的题目,都可以采用几何法和基底法求解;而坐标法的适用范围较窄,只适用于求解方便建立空间直角坐标系的题目.但运用坐标法求解立体几何问题较为便捷,只需通过简单的向量运算即可.(作者单位:安徽省宁国市宁国中学)备考指南图456。

向量方法解立体几何

向量方法解立体几何

用向量方法求空间角和距离空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b 求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n 求二面角 二面角l αβ--的平面角α=1212arccos||||n n n n 求点面距离 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==例题:如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离例题:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。

平面平面ABCD B B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II )试问:当A A '的长度为多少时二面角A C A D -'-大小为?60 D A CB P例题:如图,正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA上任意一点. (Ⅰ)求证: 直线1B P 不可能与平面11ACC A 垂直;(II )当11BC B P ⊥时,求二面角11C B P C --的大小. 例题:如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)例题:如图,在直三棱柱111ABC A B C -中,90A ︒∠=,1,,O O G 分别为111,,BC BC AA 的中点,且12AB AC AA ===.(1)求1O 到面11ACB 的距离;(22) (2)求BC 到面11GBC 的距离.(263)空间向量与立体几何例题:已知A ,B ,C 三点不共线,O 是平面外任意一点,若有OC OB OA OP λ++=3251确定的点与A ,B ,C 三点共面,则λ=______.(152因为13251=++λ) 例题:直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点。

巧用法向量 妙解高考题

巧用法向量 妙解高考题
0 、 )
= {2 1z { 即: -O x、 + , ( 1 、 . 、 。 1 12 0 1 B (/1 一 / , '所 V ) 、J ,





I I I m I = n
孚 , B与 面 孵面 D 平 F
在 平 面



D O (,
谈 平 面 法 向量 及 其 应 用 . 即

×+ y2

… 又

【 1 (湖北题, 例 】 文史 ) 如图 1 所示 的多面体
是 由底 面 为 A C 的 长方 B D

体被截面 AE CF所截 面而
得 到 的 . 其 中 A 4 B= .
BC=2, CCl =3, 曰E=1 .

以构造 三角形 求线段 长度 ;通过 作 出点 到平 面 的垂
线 ,利 用解 三角形求 点面距 离 .也可 以利用 “ 等积 法”求点 到面的距 离. 由于该题 图形存 在过一点 两 但 两垂直 的三条直线 ,利用空间 向量的坐标运算 可迅速
求 解.
垂 直 B 于 E. ,为 D
一,) 0.
A 所 成 的 二 面 角 的 大 小 为 a cs 5 . A. r 。 c (H) 点 A 到 平 面 B I DF的 距 离 , 即
图4
( )由 A I - g=
( 1

0 0
. 、8 = 0 - ) f
B F 的 法 向 量 上 的 投 影 的 绝 对 值 . 所 以 距 离 d D :
图 1
ABCD — l Cl l A Bl D ,
主要是考查线 面关系和空 间距 离的求解等 基础知识 . 同时考 查空间想像 力和推理 与运算能 力. 在解题 时可

立体几何典型问题的向量解法

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。

它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。

一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。

(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。

还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。

(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

巧用向量法,妙解立体几何题

巧用向量法,妙解立体几何题

思路探寻立体几何问题的命题方式较多,常见的有证明线面平行、求二面角、求点到平面的距离等.由于立体几何问题对同学们的空间想象和运算能力有较高的要求,所以对大部分的同学来说,解答这类问题存在一定的难度.若根据题意和几何图形的特点构造空间向量,则可利用向量法,简便、快速地求得问题的答案.接下来,通过几个例题介绍一下如何巧妙运用向量法解答立体几何问题.一、运用向量法求点到平面的距离一般来说,求点到平面的距离,可以运用定义法、等体积法、向量法.运用向量法求点到平面的距离,要先求出平面的一个法向量n ;再求出一个已知点P 与平面内任意一点M 的方向向量MP ,可得点P 到平面的距离为d =| MP |∙|cos < n , MP >|=| n ∙ MP || n |,其中| MP |是向量 MP 的模,| n |是平面的法向量n 的模.例1.如图1所示的多面体是由底面为ABCD 的长方形被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.试求点C 到平面AEC 1F 的距离.解:以DA 、DC 、DF 为坐标轴建立如图1所示的空间直角坐标系,则A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3),CC 1=(0,0,3),设F 点的坐标为(0,0,z ),由于AEC 1F 为平行四边形,所以 AF =EC 1,又 AF =(-2,0,z ), EC 1=(-2,0,2),即z =2.设n 为平面AEC 1F 的一个法向量,因为 n 不垂直于平面ADF ,所以设 n =(x ,y ,1),于是{n ∙ AE =0, n ∙ AF =0,即{4y +1=0,-2x +2=0,解得ìíîx =1,y =-14,设 CC 1与n 的夹角为α,可得cos α=| CC 1∙ n || CC 1|∙| n |=31,则点C 到平面AEC 1F 的距离为d =|CC 1cos α|=3×.先根据图形的特点建立空间直角坐标系,得到 CC 1;然后求出平面AEC 1F 的法向量,即可利用公式d =| CC 1|∙|cos < n , CC 1>|=| n ∙CC 1|| n |求解.在求平面的法向量时,可采用待定系数法,先设出平面的法向量;然后根据法向量与平面内的两个直线垂直的关系,建立方程组,解该方程组即可求出待定系数、法向量的坐标.二、运用向量法证明线面平行由线面平行的判定定理可知,要证明线面平行,只要证明直线与平面内的两条相交直线平行即可.但有时候很难在平面内找到两条相交的直线与已知直线平行,此时,可建立合适的空间直角坐标系,求得平面外一条直线的方向向量 l 和平面的法向量n ,只要证明 n ∙l =0,就说明直线l 与平面平行.例2.如图2,在直三棱锥ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于点D ,求证:PB 1//平面BDA 1.图2图3证明:如图3所示,以A 1为原点,以 A 1B 1, A 1C 1,A 1A为x 轴,y 轴,z 轴建立空间直角坐标系,则P (0,2,0),B 1(1,0,0),B (1,0,1),D (0,1,0.5),所以 PB 1=()1,-2,0, BD =æèöø-1,1,-12, BA 1=(-1,0,-1),设平面BDA 1的法向量为n =(x ,y ,z ),由ìíî BD ∙n =0,BA 1∙ n =0,得{-x +y -0.5z =0,-x -z =0,不妨令z =2,则x =-2,y =-1,可得n =(-2,-1,2),则 PB 1∙ n =1×()-2+()-2×()-1+0×2=0,得 PB 1⊥ n ,所以PB 1//平面BDA 1.先建立空间直角坐标系,求得 PB 1、 BD 、BA 1,根据BD 、 BA 1垂直平面BDA 1的法向量,建立方程组,求得法向量n ,并证明 PB 1∙ n =0,即可证明平面BDA 1的法向量n 与PB 1的方向向量 PB 1垂直,这就说明PB 1//平面BDA 1.求解空间几何中的二面角、线面角等问题,也可以采用向量法.运用向量法求解立体几何问题,一要寻找题目或图形中的垂直关系,有时可以作一个平面的垂线,以建立方便求点的坐标的空间直角坐标系;二要熟记并灵活运用一些空间向量的运算法则、公式、定义等.(作者单位:江西省南昌市第十九中学)肖雪芝图147Copyright ©博看网. All Rights Reserved.。

027:选修2-1 3.2.3 利用法向量解决立体几何中的线面角问题和求点到平面的距离问题

027:选修2-1  3.2.3  利用法向量解决立体几何中的线面角问题和求点到平面的距离问题

选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题班级 姓名一、目标导引1.会利用法向量解决立体几何中的线面角; 2.会求点到平面的距离问题. 二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= = .【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.11【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值.C1题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A , n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = = .例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.A1【课时作业027】班级 姓名 作业等级A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值.【答案:63】12.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.【答案:155】3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.(答案k=1)5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.(答案32)1选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题一、目标导引1.利用法向量解决立体几何中的线面角;2.求点到平面的距离问题二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= =【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. ①证明:AB ⊥A 1C ;②若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. ①证明 取AB 的中点O ,连接OC ,OA 1,A 1B . ∵CA =CB ,∴OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形,∴OA 1⊥AB .∵OC ∩OA 1=O , ∴AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .②解 由①知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,OC ⊂平面ABC , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点,OA ,OA 1,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz .设AB =2,则A (1,0,0),A 1(0,3,0), C (0,0,3),B (-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0), A 1C -→=(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BB 1→=0,即⎩⎨⎧x +3z =0,-x +3y =0,可取n =(3,1,-1).故cos 〈n ,A 1C -→〉=n ·A 1C -→|n ||A 1C -→|=-105,∴A 1C 与平面BB 1C 1C 所成角的正弦值为105.【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值解析 取AC 的中点E ,连接BE ,则BE ⊥AC ,以B 为坐标原点,BE ,BB 1所在直线分别为x 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则A ⎝⎛⎭⎫32,12,0,D (0,0,1),B (0,0,0),E ⎝⎛⎭⎫32,0,0,则AD →=⎝⎛⎭⎫-32,-12,1,BE →=⎝⎛⎭⎫32,0,0. ∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,BE ⊥AC ,BE ⊂平面ABC , ∴BE ⊥平面AA 1C 1C ,∴BE →=⎝⎛⎭⎫32,0,0为平面AA 1C 1C 的一个法向量.设AD 与平面AA 1C 1C 所成角为α,∵cos 〈AD →,BE →〉=-64,∴sin α=|cos 〈AD →,BE →〉|=64.题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A ,n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = =例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz , 则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0).所以AG →=(0,1,0),GE →=(-2,1,1),GF →=(-1,-1,2).设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d , 则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧ -2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z .令z =1,此时n =(1,1,1),所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值. 【答案:63】解析 以D 为坐标原点,DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B -→=(0,1,-1), A 1D -→=(-1,0,-1).∴AC 1→·A 1B -→=1-1=0,AC 1→·A 1D -→=1-1=0.∴AC 1⊥A 1B ,AC 1⊥A 1D .又A 1B ∩A 1D =A 1,且A 1B ,A 1D ⊂平面A 1BD ,∴AC 1⊥平面A 1BD . ∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.2.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O -xyz .设BC =1,A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0,C ⎝⎛⎭⎫0,12,0,D ⎝⎛⎭⎫32,0,0,所以BA ―→=⎝⎛⎭⎫0,12,32, BD ―→=⎝⎛⎭⎫32,12,0,CD ―→=⎝⎛⎭⎫32,-12,0. 设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA ―→=0,n ·BD ―→=0,所以⎩⎨⎧12y +32z =0,32x +12y =0,取x =1,则y=-3,z =1,所以n =(1,-3,1),所以cos 〈n ,CD ―→=32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155.3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】解 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz . 则A 1(0,0,a ),C (a ,a,0),D (0,a,0),E ⎝⎛⎭⎫a ,a2,0, (1) A 1C -→=(a ,a ,-a ),DE →=⎝⎛⎭⎫a ,-a 2,0,∴cos 〈A 1C -→,DE →〉=A 1C -→·DE →|A 1C -→||DE →|=1515,故A 1C 与DE 所成角的余弦值为1515.(2)连接DB 1,∵∠ADE =∠ADF ,∴AD 在平面B 1EDF 内的射影在∠EDF 的平分线上.又B 1EDF 为菱形,∴DB 1为∠EDF 的平分线,故直线AD 与平面B 1EDF 所成的角为∠ADB 1.由DA →=(0,-a,0),DB 1→=(a ,-a ,a ),∴cos 〈DA →,DB 1→〉=DA →·DB 1→|DA →||DB 1→|=33,又直线与平面所成角的范围是⎣⎡⎦⎤0,π2, (3)由已知得ED →=⎝⎛⎭⎫-a ,a 2,0, EB 1→=⎝⎛⎭⎫0,-a 2,a ,平面ABCD 的一个法向量为m =AA 1→=(0,0,a ).设平面B 1EDF的一个法向量为n =(1,y ,z ),由⎩⎪⎨⎪⎧n ·ED →=0,n ·EB 1→=0,得⎩⎪⎨⎪⎧y =2,z =1,∴n =(1,2,1),∴cos 〈n ,m 〉=m ·n |m ||n |=66,∴平面B 1EDF与平面ABCD 所成锐二面角的余弦值为66. B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC=6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE .∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又BE ∥AD ,∴CD ⊥AD . ∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为坐标原点,DA ―→,DC ―→,DD 1―→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),∴AC ―→=(-4k,6k,0),AB 1―→=(0,3k,1),AA 1―→=(0,0,1).设平面AB 1C 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC ―→·n =0,AB 1―→·n =0,即⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,可得平面AB 1C 的一个法向量为n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1―→,n 〉|=|AA 1―→·n ||AA 1―→|·|n |=|-6k |36k 2+13=67,解得k =1.故k 的值为1. 5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵P A ⊥底面ABCD ,BC ⊂平面ABCD ,∴P A ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又P A ∩AC =A , ∴BC ⊥平面P AC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又P A ⊥底面ABCD ,∴P A ⊥AE ,P A ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝⎛⎭⎫32,12,0,D ⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32.由(1)知平面P AC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55,解得h =3, 同理可求得平面PBC 的一个法向量n 2=(3,3,2),所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.。

高二数学第一次课向量法与立体几何练习题

高二数学第一次课向量法与立体几何练习题

向量法与立体几何一、空间向量相关知识回顾:1,向量的模长计算公式 2,向量的乘积计算公式3,向量夹角的计算公式(重要内容!) 4,向量的平行/垂直二、法向量的概念及在立体几何中的应用1,法向量的概念:垂直于平面的向量2,判断面面垂直,面面平行(立体几何十大判定、性质定理的回顾) 3,求二面角的大小(重点内容)三、课堂练习例1:在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =12,求面SCD 与面SBA 所成的二面角的正切值。

解:建立如图所示空间直角坐标系,则A(0,0,0)、D(12,0,0)、C(1,0,1)、S(0,0,1),面SAB 的一个法向量→AD =(12,0,0)。

设(,,)n x y z =是平面SCD 的一个法向量,则,,n DC n DS ⊥⊥即0,0n DC n DS ⊥=⊥=,又1(,1,0)2DC =,1(,0,1)2DS =-, ∴110,0,22x y x z +=-+=∴12y x =-, 且12z x =,∴(,,)22x x n x =-。

取1x =,得11(1,,)22n =-,cos ,AD n AD n AD n∴<>==63。

设二面角为θ,∴2tan 2θ= 例2:(本题15分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA∥平面BDE ;(2)平面PAC ⊥平面BDE .证明(1)∵O 是AC 的中点,E 是PC 的中点,∴OE∥AP, 又∵OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA∥平面BDE .(2)∵PO ⊥底面ABCD ,∴PO ⊥BD ,又∵AC ⊥BD ,且AC PO=O∴BD ⊥平面PAC ,而BD ⊂平面BDE ,∴平面PAC ⊥平面BDE .zyxBCADSDABC O EP例3:(本题16分)如图,在正三棱柱ABC A B C -111中,AB =2,AA 12=,由顶点B 沿棱柱侧面经过棱AA 1到顶点C 1的最短路线与AA 1的交点记为M , 求:(1)三棱柱的侧面展开图的对角线长 (2)该最短路线的长及A MAM1的值 (3)平面C MB 1与平面ABC 所成二面角(锐角)的大小解:(1)正三棱柱ABC A B C -111的侧面展开图是长为6,宽为2的矩形,其对角线长为6221022+=(2)如图,将侧面AA B B 11绕棱AA 1旋转120使其与侧面AA C C 11在同一平面上,点B 运动到点D 的位置,连接DC 1交AA 1于M ,则DC 1就是由顶点B 沿棱柱侧面经过棱AA 1到顶点C 1的最短路线,其长为 DC CC 212224225+=+=DMA ∆ ≌11MA C ∆, ∴=AM A M 1 故A MAM11= (3)连接DB ,C B 1,则DB 就是平面C MB 1与平面ABC 的交线 在∆DCB 中603090DBC CBA ABD CB DB ∠=∠+∠=+=∴⊥又C C CBD 1⊥平面 ∴CC 1⊥DB ∴DB ⊥面BCC 1∴C B DB 1⊥∴∠C BC 1就是平面C MB 1与平面ABC 所成二面角的平面角(锐角)侧面C B BC 11是正方形∴∠=C BC 145故平面C MB 1与平面ABC 所成的二面角(锐角)为45AA 1M1D例4:(本题10分):如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥;(Ⅱ)求证:1//ABC MN 平面. 解:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC ,∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ∵,,∴是正方形, ∴,∴11ABC CB 平面⊥ (Ⅱ)取1AC 的中点F ,连BF 、NF , 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =, 又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =, 故四边形BMNF 是平行四边形,∴BF MN //,而BF 面1ABC ,MN 平面1ABC ,∴//MN 面1ABC1BC CC =1CC BC ⊥11BCC B 11CB BC ⊥⊂⊄例5:已知四棱锥P -ABCD ,底面ABCD 是 60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.(建立坐标系,描出坐标即可) 解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. (2) MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aa DH =⨯=NM BPD CA。

高中数学【立体几何中的向量方法】专题练习

高中数学【立体几何中的向量方法】专题练习

高中数学【立体几何中的向量方法】专题练习1.在正方体ABCD-A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2 B.π3 C.π4 D.π6答案 D解析 法一 如图,连接C 1P ,因为ABCD-A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP ,所以C 1P ⊥平面B 1BP .又BP ⊂平面B 1BP ,所以有C 1P ⊥BP .连接BC 1,则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角.设正方体ABCD-A 1B 1C 1D 1的棱长为2,则在Rt △C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D.法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD-A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2).设直线PB 与AD 1所成的角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32.因为θ∈⎝ ⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三 如图,连接BC 1,A 1B ,A 1P ,PC 1,则易知AD 1∥BC 1,所以直线PB 与AD 1所成的角等于直线PB 与BC 1所成的角.由P 为正方形A 1B 1C 1D 1的对角线B 1D 1的中点,知A 1,P ,C 1三点共线,且P 为A 1C 1的中点.易知A 1B =BC 1=A 1C 1,所以△A 1BC 1为等边三角形 ,所以∠A 1BC 1=π3,又P 为A 1C 1的中点,所以可得∠PBC 1=12∠A 1BC 1=π6,故直线PB 与AD 1所成的角为π6,故选D.2.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN 与平面PDM 所成角的正弦值.(1)证明 因为底面ABCD 是平行四边形,∠ABC =120°,BC =4,AB =1,且M 为BC 的中点,所以CM =2,CD =1,∠DCM =60°, 易得CD ⊥DM .又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN 与平面PDM 所成角的正弦值为156.法二 因为PM ⊥MD ,由(1)知PM ⊥DC ,又MD ,DC ⊂平面ABCD ,MD ∩DC =D ,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM . 因为∠ABC =120°,AB =1, BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E ,则ME ⊥MD .故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2. 易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AN →·n |AN →|·|n |=5215=156. 故直线AN 与平面PDM 所成角的正弦值为156.3.在四棱锥Q-ABCD 中,底面ABCD 是正方形,若AD =2,QD =QA =5,QC=3.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B -QD -A 的平面角的余弦值. (1)证明 取AD 的中点为O ,连接QO ,CO .因为QA =QD ,OA =OD ,则QO ⊥AD , 又AD =2,QA =5, 故QO =5-1=2. 在Rt △ODC 中, CO =OD 2+CD 2= 5.因为QC =3,故QC 2=QO 2+OC 2,故△QOC 为直角三角形且QO ⊥OC . 因为OC ∩AD =O ,OC ,AD ⊂平面ABCD ,故QO ⊥平面ABCD . 因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)解 在平面ABCD 内,过O 作OT ∥CD ,交BC 于T ,则OT ⊥AD ,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系,则D (0,1,0),Q (0,0,2),B (2,-1,0),故BQ →=(-2,1,2),BD →=(-2,2,0).设平面QBD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BQ →=0,n ·BD →=0,即⎩⎨⎧-2x +y +2z =0,-2x +2y =0,取x =1,则y =1,z =12, 故n =⎝ ⎛⎭⎪⎫1,1,12.易知平面QAD 的一个法向量为m =(1,0,0), 故cos 〈m ,n 〉=m ·n |m ||n |=11×32=23. 又二面角B-QD-A 的平面角为锐角,故其余弦值为23.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2. 直线与直线所成的角、直线与平面所成的角、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线角设l ,m 所成的角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22.(2)线面角设直线l 与平面α所成的角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 sin θ=|a ·μ||a ||μ|=|cos a ,μ|.(3)面面角设平面α与平面β的夹角为θ(0≤θ≤π2), 则cos θ=|μ·v ||μ||v |=|cosμ,v|.3. 空间中的距离主要包括:点点距、点线距、线线距、点面距、线面距、面面距.热点一 利用空间向量证明平行、垂直【例1】 如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以向量AB→=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面PAD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面PAD 而致误.【训练1】 如图,在底面为直角梯形的四棱锥P-ABCD 中,AD ∥BC ,∠ABC =90°,PD ⊥平面ABCD ,AD =1,AB =3,BC =4.(1)求证:BD ⊥PC .(2)设点E 在棱PC 上,PE→=λPC →,若DE ∥平面PAB ,求λ的值.解 如图,在平面ABCD 内过点D 作直线DF ∥AB ,交BC 于点F ,以D 为坐标原点,DA ,DF ,DP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).设PD =a ,则P (0,0,a ),(1)证明 BD →=(-1,-3,0),PC →=(-3,3,-a ), 因为BD →·PC →=3-3=0, 所以BD ⊥PC .(2)由题意知,AB →=(0,3,0),DP →=(0,0,a ),PA →=(1,0,-a ),PC →=(-3,3,-a ),因为PE→=λPC →,所以PE →=(-3λ,3λ,-aλ), 则DE→=DP →+PE →=(0,0,a )+(-3λ,3λ,-aλ) =(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面PAB 的法向量, 则⎩⎪⎨⎪⎧AB →·n =0,PA →·n =0,即⎩⎨⎧3y =0,x -az =0.令z =1,得x =a ,所以n =(a ,0,1), 因为DE ∥平面PAB ,所以DE →·n =0, 所以-3aλ+a -aλ=0,即a (1-4λ)=0, 因为a ≠0,所以λ=14.故λ的值为14. 热点二 利用向量求线线角、线面角【例2】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,边长为4,E 为AB 的中点,PE ⊥平面ABCD .(1)若△PAB 为等边三角形,求四棱锥P-ABCD 的体积;(2)若CD 的中点为F ,PF 与平面ABCD 所成角为45°,求PC 与AD 所成角的余弦值.解 (1)∵正方形ABCD 的边长为4,且△PAB 为等边三角形,E 为AB 的中点, ∴PE =PB ·sin ∠PBE =AB ·sin 60°=23, 又PE ⊥平面ABCD , ∴四棱锥P-ABCD 的体积 V P -ABCD =13×42×23=3233. (2)如图,连接EF ,∵PE ⊥平面ABCD , EF ,AB ⊂平面ABCD , ∴PE ⊥EF ,PE ⊥AB , 又四边形ABCD 为正方形, E ,F 分别为AB ,CD 的中点, ∴EF ⊥AB ,∴AB ,EF ,PE 两两垂直.以E 为坐标原点,EB ,EF ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则C (2,4,0),A (-2,0,0),D (-2,4,0), ∵PF 与平面ABCD 所成角为45°,∴∠PFE =45°, ∴PE =EF ·tan ∠PFE =4,∴P (0,0,4), ∴PC→=(2,4,-4),AD →=(0,4,0).设PC 与AD 所成的角为θ,则 cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PC →·AD →|PC →|·|AD →|=166×4=23, 即PC 与AD 所成角的余弦值为23.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【训练2】在直角梯形ABCD 中,∠ABC =90°,BC ∥AD ,AD =4,AB =BC =2,M 为线段AD 中点.将△ABC 沿AC 折起,使平面ABC ⊥平面ACD ,得到几何体B-ACD .(1)求证:AB ⊥平面BCD ;(2)求直线BD 与平面BCM 所成角的正弦值.(1)证明 在直角梯形ABCD 中,∠ABC =90°,AB =BC =2,AD =4, ∴AC =22,CD =2 2.因此在△ACD 中,AD 2=CD 2+AC 2,从而CD ⊥AC .又∵平面ABC ⊥平面ACD ,且平面ABC ∩平面ACD =AC ,CD ⊂平面ACD , ∴CD ⊥平面ABC ,又AB ⊂平面ABC ,∴CD ⊥AB . 又AB ⊥BC ,且BC ∩CD =C ,∴AB ⊥平面BCD .(2)解 取AC 的中点O ,连接OB ,由题设可知△ABC 为等腰直角三角形,∴OB ⊥平面ACM .连接OM ,∵M ,O 分别为AD 和AC 的中点, ∴OM ∥CD .由(1)可知OM ⊥AC ,故以OM ,OC ,OB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则D (22,2,0),B (0,0,2),C (0,2,0),M (2,0,0), ∴CB→=(0,-2,2),CM →=(2,-2,0),BD →=(22,2,-2). 设平面BCM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB →=-2y +2z =0,n ·CM →=2x -2y =0,取x =1,则求得平面BCM 的一个法向量n =(1,1,1). 设直线BD 与平面BCM 所成的角为θ, 则直线BD 与平面BCM 所成角的正弦值为 sin θ=|cos 〈BD →,n 〉|=|BD →·n ||BD →|·|n |=23.故直线BD 与平面BCM 所成角的正弦值为23. 热点三 利用向量求平面与平面的夹角【例3】如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,AB ∥CD ,AB =2DC =23,AC ∩BD =F ,且△PAD 与△ABD 均为正三角形,G 为△PAD 的重心.(1)求证:GF ∥平面PDC ;(2)求平面PAD 与平面PBC 的夹角的余弦值.(1)证明 取PD 的中点E ,连接AE ,CE . 因为AB ∥CD ,AB =2DC =23,AC ∩BD =F , 所以AF FC =ABCD =2.又G 为△PAD 的重心,知AGGE =2. 因此AG GE =AFFC =2,所以GF ∥CE . 又GF ⊄平面PDC ,CE ⊂平面PDC , 所以GF ∥平面PDC .(2)解 设O 为AD 的中点,因为△PAD 为正三角形,则PO ⊥AD ,又因平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .过O 分别作BC ,AB 的平行线,建立如图所示的空间直角坐标系,则P (0,0,3),B ⎝ ⎛⎭⎪⎫32,332,0,C ⎝ ⎛⎭⎪⎫-32,332,0. 所以PB →=⎝ ⎛⎭⎪⎫32,332,-3,BC →=(-3,0,0). 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎨⎧PB →·n =32x +332y -3z =0,BC →·n =-3x =0,不妨取y =2,得n =(0,2,3).又OB ⊥平面PAD ,则取平面PAD 的一个法向量 n 0=23OB →=(1,3,0),所以cos 〈n,n0〉=n·n0|n||n0|=237×2=217.所以平面PAD与平面PBC的夹角的余弦值为21 7.探究提高两平面的夹角是指两平面相交所形成的四个二面角中不大于90°的二面角,它可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.【训练3】如图,已知三棱锥S-ABC中,△ABC是边长为2的等边三角形,且SB=SC=4,点D为SC的中点,DA=2.(1)求证:平面SAB⊥平面ABC;(2)求平面SAB与平面ABD的夹角的余弦值.(1)证明因为SC=4,且点D为SC的中点,所以SD=DC=2.又AC=DA=2,所以△ADC是等边三角形,所以∠DCA=π3,在△SAC中,由余弦定理,得SA=23,从而SC2=SA2+AC2,则SA⊥AC.又△SAB≌△SAC,得SA⊥AB,又AB∩AC=A,AB,AC⊂平面ABC,所以SA⊥平面ABC,又SA⊂平面SAB,所以平面SAB⊥平面ABC.(2)解以A为坐标原点,AB所在直线为x轴,在平面ABC内过点A垂直于AB 的直线为y轴,AS所在直线为z轴,建立如图所示空间直角坐标系.则A (0,0,0),B (2,0,0),C (1,3,0),S (0,0,23), 从而D ⎝ ⎛⎭⎪⎫12,32,3.所以AB →=(2,0,0),AD →=⎝ ⎛⎭⎪⎫12,32,3.设m =(x ,y ,z )为平面ABD 的法向量, 由⎩⎪⎨⎪⎧m ·AB→=0,m ·AD →=0,得⎩⎨⎧2x =0,12x +32y +3z =0. 令z =1,得m =(0,-2,1).又平面SAB 的一个法向量n =(0,1,0), 所以cos 〈m ,n 〉=m ·n |m ||n |=-255.所以平面SAB 与平面ABD 的夹角的余弦值为255. 热点四 利用空间向量求空间距离【例4】 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,PA ⊥平面ABCD ,且PA =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图.则A (0,0,0),B (a ,0,0),C (a ,a ,0),D (0,3a ,0),P (0,0,a ). 设F (0,m ,0),则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ).∵PC ⊥CF ,∴CF→⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0,∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎨⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP→=(-a ,0,a ),BC →=(0,a ,0),AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎨⎧x 0=z 0,y 0=0.取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,∴AD ∥平面PBC , ∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .探究提高 1.利用向量法求相关距离的一般步骤(1)建立空间直角坐标系. (2)求出相关的向量. (3)计算距离.2.线面距、面面距可转化为点面距.【训练4】 如图,P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,若已知AB =3,AD =4,PA =1,求点P 到BD 的距离.解 如图,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0),D (0,4,0), ∴PB→=(3,0,-1),BD →=(-3,4,0), 取a =PB→=(3,0,-1), u =BD →|BD →|=⎝⎛⎭⎪⎫-35,45,0,则a 2=10,a ·u =-95,所以点P 到BD 的距离为a 2-(a · u )2=10-8125=135.热点五 利用空间向量求解探索性问题【例5】如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠ABC =60°,AB =PA =2,PA ⊥平面ABCD ,E ,M 分别是BC ,PD 的中点,点F 在棱PC 上移动.(1)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ;(2)是否存在点F ,使得直线AF 与平面PCD 所成的角最大,若存在,试确定点F 的位置.(1)证明 如图所示,连接AC . ∵底面ABCD 为菱形,∠ABC =60°, ∴△ABC 为正三角形, ∵E 是BC 的中点,∴AE ⊥BC . 又AD ∥BC ,∴AE ⊥AD .∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE , ∵PA ∩AD =A ,PA ,AD 在平面PAD 内, ∴AE ⊥平面PAD .∵AE ⊂平面AEF ,∴平面AEF ⊥平面PAD .(2)解 由(1)知,AE ,AD ,AP 两两垂直,故以AE ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),P (0,0,2),M (0,1,1),E (3,0,0). ∴PC→=(3,1,-2),PD →=(0,2,-2),AP →=(0,0,2). 设PF→=λPC →=(3λ,λ,-2λ), 则AF→=AP →+PF →=(3λ,λ,2-2λ). 设平面PCD 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=3x 1+y 1-2z 1=0,m ·PD →=2y 1-2z 1=0,令z 1=3,则x 1=1,y 1=3,∴m =(1,3,3). 设直线AF 与平面PCD 所成角为θ,则sin θ=|cos 〈AF →,m 〉|=|AF →·m ||AF →||m |=|3λ+3λ+23-23λ|(3λ)2+λ2+(2-2λ)2×7=237×22⎝ ⎛⎭⎪⎫λ-122+12≤427. 当λ=12时,sin θ取最大值427.故存在点F ,使得直线AF 与平面PCD 所成的角最大,此时F 为PC 的中点. 探究提高 1.空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.利用空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【训练5】 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面SAC 的夹角的大小; 所以平面PAC 与平面SAC 的夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O-xyz ,如图.设底面边长为a ,则高SO =62a ,则S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS→=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD→=⎝ ⎛⎭⎪⎫-22a ,0,0, 则cos 〈DS →,OD →〉=DS →·OD →|DS →||OD →|=-12,所以平面PAC 与平面SAC 的夹角的大小为60°.(3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下: 由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC→=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE→=tCS →,t ∈[0,1],则BE→=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13.故侧棱SC 上存在一点E ,使得BE ∥平面PAC , 此时SC ∶SE =3∶2.一、选择题1.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的正弦值为( ) A.12 B.53 C.33 D.22答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的法向量为n 1=(1,y ,z ), 则有⎩⎨⎧A 1D →·n 1=0,A1E →·n 1=0,即⎩⎨⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的法向量为n 2=(0,0,1), ∴|cos 〈n 1,n 2〉|=23×1=23, 故平面A 1ED 与平面ABCD 所成角的正弦值为sin 〈n 1,n 2〉=1-⎝ ⎛⎭⎪⎫232=53.2.如图,在四棱锥S-ABCD 中,SD ⊥平面ABCD ,AB ∥CD ,AD ⊥CD ,SD =CD ,AB =AD ,CD =2AD ,M 是BC 中点,N 是线段SA 上的点,设MN 与平面SAD 所成角为α,则sin α的最大值为( )A.357B.337C.257D.237答案 A解析 以D 为坐标原点,DA 所在直线为x 轴建立如图所示的空间直角坐标系D-xyz ,设DA =2,则D (0,0,0),S (0,0,4),A (2,0,0),B (2,2,0),C (0,4,0),M (1,3,0),所以SA→=(2,0,-4).设SN→=λSA →(0≤λ≤1),则N (2λ,0,4-4λ),则MN →=(2λ-1,-3,4-4λ). 平面SAD 的一个法向量为DC→=(0,4,0),所以sin α=|MN →·DC →||MN →|·|DC →|=32(10λ2-18λ+13).因为0≤λ≤1,所以当λ=910, 即SN =9NA 时,sin α取得最大值357.3.(多选)如图,四边形ABCD 是边长为1的正方形,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且ED =FB =1,G 为线段EC 上的动点,下列结论正确的是( )A.EC ⊥AFB.该几何体外接球的表面积为3πC.若G 为线段EC 的中点,则GB ∥平面AEFD.AG 2+BG 2的最小值为3 答案 ABC解析 如图,几何体可补成正方体,以D 为原点,DA→,DC →,DE →分别为x 轴,y轴,z 轴的正方向建立空间直角坐标系D-xyz ,由正方体的性质可知EC ⊥AF ,故A 正确;该几何体的外接球即为正方体的外接球,所以外接球的直径为正方体的体对角线长3,所以该几何体的外接球的半径为32,从而外接球的表面积为3π,故B 正确;连接HC ,BG ,由正方体性质可知,HC ⊥平面AEF ,所以HC →即为平面AEF 的一个法向量,又H (1,0,1),C (0,1,0),所以HC→=(-1,1,-1).若G 为线段EC 的中点,则G ⎝ ⎛⎭⎪⎫0,12,12,又B (1,1,0),则GB →=⎝ ⎛⎭⎪⎫1,12,-12. 因为GB →·HC →=0,又GB ⊄平面AEF ,所以GB ∥平面AEF ,故C 正确;设G (0,t ,1-t )(0≤t ≤1),又B (1,1,0),A (1,0,0),所以AG→=(-1,t ,1-t ),BG→=(-1,t -1,1-t ),所以AG 2+BG 2=(-1)2+t 2+(1-t )2+(-1)2+(t -1)2+(1-t )2=4t 2-6t +5,故当t =34时,AG 2+BG 2取得最小值为114,故D 错误.故选ABC. 二、填空题4.如图所示,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 因为AE ∶ED ∶AD =1∶1∶2,所以AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),所以AF →=(-1,2,0),EC →=(0,2,1), 所以cos 〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,所以AF 与CE 所成角的余弦值为45.5.如图所示,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为________.答案 13解析 如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0). 则D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1). 设平面ACD 1的法向量为n =(a ,b ,c ),则⎩⎨⎧n ·AC →=-a +2b =0,n ·AD 1→=-a +c =0,取a =2,得n =(2,1,2),∴点E 到平面ACD 1的距离 h =|D 1E →·n ||n |=|2+1-2|3=13.三、解答题6.如图,已知三棱柱ABC-A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M-xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形, 故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a 2.故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.7.如图,四棱锥P-ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的中点,且PB ⊥AM .(1)求BC ;(2)求二面角A-PM-B 的正弦值. 解 (1)连接BD 交AM 于点E ,因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD ⊥AM ,又因为PB ⊥AM ,PB ∩PD =P ,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD ,因为BD ⊂平面PBD ,所以AM ⊥BD . 设BC =x ,因为M 为BC 的中点, 则BM =MC =12BC =12x ,因为AB ⊥AD ,AM ⊥BD ,所以△DAB ∽△ABM , 所以AD BA =AB BM ,即x 1=112x ,解得x = 2.所以BC = 2.(2)由题意DA ,DC ,DP 两两互相垂直,以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴建立如图空间直角坐标系.所以A (2,0,0),P (0,0,1), B (2,1,0),M ⎝ ⎛⎭⎪⎫22,1,0,所以AP→=(-2,0,1),AM →=⎝ ⎛⎭⎪⎫-22,1,0,BP →=(-2,-1,1),BM→=⎝ ⎛⎭⎪⎫-22,0,0. 设平面APM 的法向量m =(x 1,y 1,z 1), 可得⎩⎪⎨⎪⎧m ·AP →=0,m ·AM →=0,即⎩⎨⎧-2x 1+z 1=0,-22x 1+y 1=0,令y 1=1,得到⎩⎨⎧x 1=2,y 1=1,z 1=2,所以m =(2,1,2),设平面BPM 的法向量n =(x 2,y 2,z 2), 所以⎩⎪⎨⎪⎧n ·BP→=0,n ·BM →=0,即⎩⎨⎧-2x 2-y 2+z 2=0,-22x 2=0, 令y 2=1,得到⎩⎨⎧x 2=0,y 2=1,z 2=1,所以n =(0,1,1),所以cos 〈m ,n 〉=m ·n |m ||n |=1+27×2=31414,所以sin 〈m ,n 〉=7014, 即二面角A-PM-B 的正弦值为7014.8.如图,在三棱锥A-BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E-BC-D 的大小为45°,求三棱锥A-BCD 的体积.(1)证明 因为AB =AD ,O 为BD 的中点,所以OA ⊥BD , 又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD , AO ⊂平面ABD ,所以AO ⊥平面BCD , 又CD ⊂平面BCD ,所以AO ⊥CD .(2)解 如图所示,以O 为坐标原点,OB ,OA 所在直线分别为x ,z 轴,在平面BCD 内,以过点O 且与BD 垂直的直线为y 轴建立空间直角坐标系.因为△OCD 是边长为1的正三角形,且O 为BD 的中点,所以OC =OB =OD =1,所以B (1,0,0),D (-1,0,0),C ⎝ ⎛⎭⎪⎫-12,32,0.设A (0,0,a ),a >0,因为DE =2EA , 所以E ⎝ ⎛⎭⎪⎫-13,0,2a 3.由题意可知平面BCD 的一个法向量为n =(0,0,1). 设平面BCE 的法向量为m =(x ,y ,z ), 因为BC →=⎝ ⎛⎭⎪⎫-32,32,0,BE →=⎝ ⎛⎭⎪⎫-43,0,2a 3, 所以⎩⎪⎨⎪⎧m ·BC →=0,m ·BE →=0,即⎩⎪⎨⎪⎧-32x +32y =0,-43x +2a 3z =0,令x =1,则y =3,z =2a ,所以m =⎝ ⎛⎭⎪⎫1,3,2a .因为二面角E-BC-D 的大小为45°, 所以cos 45°=⎪⎪⎪⎪⎪⎪m ·n |m ||n |=2a4+4a 2=22, 得a =1,即OA =1.由(1)得OA ⊥平面BCD , 又因为S △BCD =12BD ·CD sin 60°=12×2×1×32=32, 所以V A-BCD =13S △BCD ·OA =13×32×1=36.9.已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?(1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2,侧面AA 1B 1B 为正方形,所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF 2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC . ∵三棱柱ABC-A 1B 1C 1为直三棱柱,∴BB 1⊥AB 且BB 1⊥BC ,则BA ,BC ,BB 1两两互相垂直,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系B -xyz ,则B (0,0,0),E (1,1,0),F (0,2,1),BF→=(0,2,1). 设B 1D =m (0≤m ≤2),则D (m ,0,2),于是DE→=(1-m ,1,-2). 所以BF →·DE→=0,所以BF ⊥DE . (2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0).设平面DFE 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0, 又由(1)得DE→=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0, 令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2〉=32⎝ ⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ,则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272, 故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.如图所示,在四棱锥P-ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD ⊥BC .(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 的夹角为π3若存在,求CM CP 的值;若不存在,请说明理由.(1)证明 由AB ∥DC ,AB =AD =2,∠ADC =π2.根据勾股定理,得BD =AB 2+AD 2=2 2.又CD =4,∠BDC =π4,所以根据余弦定理得BC =2 2.所以CD 2=BD 2+BC 2,故BC ⊥BD .又BC ⊥PD ,PD ∩BD =D ,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .(2)解 设E 为BD 的中点,连接PE .因为PB =PD =6,所以PE ⊥BD ,PE =2.由(1)得BC ⊥平面PBD ,又BC ⊂平面ABCD ,所以平面ABCD ⊥平面PBD . 又平面ABCD ∩平面PBD =BD ,PE ⊂平面PBD ,所以PE ⊥平面ABCD .如图所示,以A 为坐标原点,分别以AD →,AB →和EP →的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A-xyz .则A (0,0,0),B (0,2,0),C (2,4,0),D (2,0,0),P (1,1,2).假设存在满足条件的M ,使得锐二面角为π3.设CM CP =λ(0≤λ≤1),即CM→=λCP →, 所以M (2-λ,4-3λ,2λ).易得平面PBD 的一个法向量为BC→=(2,2,0). 设n =(x ,y ,z )为平面ABM 的法向量,AB→=(0,2,0),AM →=(2-λ,4-3λ,2λ).由⎩⎪⎨⎪⎧n ·AB →=0,n ·AM →=0,得⎩⎨⎧2y =0,(2-λ)x +(4-3λ)y +2λz =0, 取x =2λ,得平面ABM 的一个法向量n =(2λ,0,λ-2).因为平面PBD 与平面ABM 的夹角为π3,所以|cos 〈BC →,n 〉|=cos π3,所以|4λ|22×4λ2+(λ-2)2=12,解得λ=23或λ=-2(舍去). 故在线段PC 上存在点M ,使得平面ABM 与平面PBD 的夹角为π3,且CM CP =23.。

法向量解立体几何大题类型大题【范本模板】

法向量解立体几何大题类型大题【范本模板】

1。

(2008福建18)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面 ABCD ,侧棱P A =PD =2,底面ABCD 为直角梯形, 其中BC ∥ AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点。

(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为32?若存在,求出AQQD的值;若不存在,请说明理由。

(Ⅰ)证明 在△P AD 中P A =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面P AD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面P AD , 所以PO ⊥平面ABCD 。

(Ⅱ)解 以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O —xyz ,依题意,易得 A (0,-1,0),B (1,—1,0),C (1,0,0),D (0,1,0),P (0,0,1),所以110111CD PB ---=(,,),=(,,).所以异面直线PB 与CD 所成的角是arccos63, (Ⅲ)解 假设存在点Q ,使得它到平面PCD 的距离为32, 由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==, 取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由32CQ n n=,得13,23y -+= 解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =.2 (2007福建理•18)如图,正三棱柱ABC -A 1B 1C 1的所有 棱长都为2,D 为CC 1中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用法向量求空间的角与距离
一、用法向量求空间的角 (1)求直线与平面所成的角
设直线a 与平面α的夹角为θ,a 是直线a 的一个方向向量,m
是面α的
一个法向量,则sin cos ,a m a m a m θ=<>=

(2)求二面角
设二面角l αβ--的大小为[]0,θπ∈,,m n
分别是面,αβ的一个法向量,
则,m n <>
与θ相等或互补,再结合题目条件就能确定θ的大小。

,,,,,,m n m n m n m n θπ⎧<>⎪=⎨-<>⎪⎩
当同时指向二面角的不同部分当同时指向二面角的内部或外部
二、用法向量求空间的距离 (1)求两异面直线的距离
设12,l l 是两条异面直线,n
是12,l l 的公垂线段的方向向量,又C 、D 分别
是12,l l 上的任意两点,则CD n
AB n =
(2)求点到面的距离 设n
是平面α的法向量,AB 是平面α的一条斜线,则点B 到平面α的
AB n d n
=
三、实际运用
例1:在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB = 90°,侧棱AA 1=2,D 、E 分别CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G
(1)求A 1B 与平面ABD 所成的角的大小; (2)求点A 1到平面AED 的距离。

(1) 解:建立如图所示的空间直角坐标系,原点为C 点,设AC =
2(0)a a >则C (0,0,0)、A (2a,0,0)、B (0,2a,0)、D(0,0,1)、
A 1(2a,0,2)、E(a,a,1)、G(2a 3,2a 3,1
3),
设平面ABD 的一个法向量为(,,1)n λμ=。

∵→AD =(2,0,1),a -→
BD =(0,2,1),a -且n ⊥ 平面ABD
∴0,n AD =
且0n BD = , ∴210,a λ-+=且210,a μ-+=
∴111
,(,,1)222n a a a
λμ==∴= ,又 ∵→GE =2(,,),333
a a 且→
GE ⊥平面ABD , ∴0,GE AD = ∴222
0,33a -+=∴111(,,1),(2,2,2)22
n A B ==-- 。

∴1cos ,3n A B <>==-。

设A 1B 与平面ABD 所成的角为θ, ∴1in cos ,s n A B θ=<>= cos θ=即θ=(此题用传统方法解题思路不易获得,但用法向量则自然、简便,显示了
用法向量解立体问题的魅力。


(2) 解:设平面ADE 的一个法向量为(,,1)n x y =
,且
(2,0,1),
(A D D E =-=
1(0,0,2)AA = 。

故有0,n AD = 且0,n DE = 即1200
x x y -=⎧⎨
+=⎩,解得1
2x =,1
2y =-,∴11(,,1)22
n =- 。

y
设A 1点到平面AED 的距离为d
,则13n AA d n
==。

例2:已知正方体ABCD -A 1B 1C 1D 1的棱长为1,求异面直线DA 1与AC
的距离。

(分析:此题是一道典型的难以找到公垂线的例子,通常可转化为三棱锥等积求高的方法。

用法向量的方法就很方便。

) 解:以B 1为原点,建立空间直角坐标系,则A(1,0,1)、C(0,1,1),A 1(1,0,0)、D(1,1,1)、 于是→AC =(-1,1,0),→DA 1
=(0,-1,-1), 设异面直线DA 1与AC 的方向向量
(1,,)n λμ=

则100
n AC n DA ⎧=⎪⎨=⎪⎩
,即100λλμ-+=⎧⎨--=⎩,11λμ=⎧∴⎨=-⎩,∴(1,1,1)n =- 。

C 、D 分别是异面直线DA 1与AC 上的点,且→CD =(1,0,0),
所以异面直线DA 1与AC
的距离为3n CD d n
===
例3:在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,SA ⊥面
ABCD ,SA =AB =BC =1,AD =1
2,求面SCD 与面SBA 所成的二面角的正切值。

解:建立如图所示空间直角坐标系,则A(0,0,0)、
D(1
2,0,0)、C(1,0,1)、S(0,0,1),面SAB 的一个法向量→AD =(12
,0,0)。

设(,,)n x y z =
是平面SCD 的一个法向量,则
,,n DC n DS ⊥⊥ 即0,0n DC n DS ⊥=⊥=

又1(,1,0)2DC = ,1
(,0,1)2
DS =- ,
∴110,0,22x y x z +=-+=∴1
2
y x =-, 且12z x =,∴(,,)22x x n x =-。

取1x =,得11
(1,,)22
n =- ,cos ,AD n AD n AD n
∴<>=
θ
,∴tan 2θ= (此题所求的二面角是一个无棱二面角,对于这种问题,用空间向量解时,
不需作出二面角的平面角,从而体现了法向量的灵活性。


例4:在如图的试验装置中,正方形框架的边长都是1,且平面ABCD 与平面ABEF 互相垂直,活动弹子M ,N 分别在正方形对角线AC 和BF 上移动,且CM 和BN 的长度保持不变,记CM =BN
=(0a a <<。

(1) 求MN 的长;
(2) 当a 为何值时,MN 的长最小; (3) 当MN 的长最小时,求面MNA 与面MNB 所成二面角的余弦值。

解:(1)以点B 为坐标原点建立坐标系,得
下列坐标:B(0,0,0)、A(1,0,0)、C(0,0,1)、F(1,1,0)、
M(22a,0,1-22a)、N(22a, 22a,0)
.2
2(0,
,1)22
MN a =-
=21,a + (2
)2211(,2a a +=+
当a =时,MN 的长最小。

(3
)当a =
时,MN 的中点为G (12,14,14),所求二面角的余弦值 1
cos 3GA GB GA GB
θ==-。

相关文档
最新文档