高一数学上学期期中试题29

合集下载

福建省厦门双十中学2023-2024学年高一上学期期中考试数学试题(含答案)

福建省厦门双十中学2023-2024学年高一上学期期中考试数学试题(含答案)

福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B= B. A B ⋂=∅C. A BD. B A2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 04. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )A. B.C. D.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20B. 21C. 22D. 237. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A a c b<< B. b c a << C. b a c << D. c b a<<8. 已知定义域为()0,∞+函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 否定是R x ∀∈,2220xx++>.的的B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f g x 为偶函数>”是“x y >”的必要条件10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A.114ab ≥ B.122a b+≥ C.2≥ D. 228a b +≥11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2ff a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 212. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.14. 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.16. 已知正数x ,y ,z 满足222321x y z ++=,则1zs xyz+=的最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.18. 已知函数()22(11)1xf x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 取值范围.20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R aa f x mx x a x m =++---∈,且12f a ⎛⎫=⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力的的22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?22. 已知函数()()9230xx mf x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B =B. A B ⋂=∅C. A BD. B A【答案】D 【解析】【详解】根据集合相等的概念,集合交集运算法则,集合包含关系等知识点直接判断求解.【分析】因为集合{}2,0,3A =,{}2,3B =,所以A B ≠,{}2,3A B ⋂=, B 是A 的真子集,所以A,B,C 错误,D 正确.故选:D2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >【答案】C 【解析】【分析】利用特殊值举反例排除即可得到答案.【详解】对于A ,若0,1a b ==-,则22<a b ,故A 错误;对于B ,若1,1a b ==-,则11a b>,故B 错误;对于C ,由于2x y =在R 上单调递增,所以a b >时,22a b >,故C 正确;对于D ,若0c =,则22ac bc =,故D 错误.故选:C3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 0【答案】B 【解析】【分析】根据奇函数()00f =得到a 值再用定义法验证即可.【详解】因为函数()()()2221f x x a x a =+-+-为奇函数,定义域为(),-∞+∞,所以()()()0210f a a =--=,解得1a =或2a =,当1a =时,()()221f x xx =-,则()()()221f x x x f x -=--≠-,不满足题意;当2a =时,()()221f x x x =+,则()()()221f x x x f x -=-+=-,满足题意.所以a 的值是2.故选:B4. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念和对数函数相关概念求解即可.【详解】由22log 2log 4x <=,解得04<<x ,由“04<<x ”是“13x <<”的必要不充分条件,所以“2log 2x <”是“13x <<”的必要不充分条件.故选:B5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )的A. B.C. D.【答案】D 【解析】【分析】通过分析幂函数和对数函数的特征可得解.【详解】函数()0ay xx =≥,与()log 0a y x x =>,答案A 没有幂函数图像,答案B.()0ay x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C ()0ay xx =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D ()0ay xx =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20 B. 21C. 22D. 23【答案】D 【解析】【分析】根据题意可列出方程10000(10.2) 1.2x x ⨯-=,求解即可,【详解】设经过x 天“进步“的值是“退步”的值的10000倍,则10000(10.2) 1.2x x ⨯-=,即1.2(100000.8x=,1.20.8lg10000log 10000231.2lg3lg20.1761lg l 4443g 20.8x ∴====≈≈-,故选:D .7. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b <<B. b c a <<C. b a c <<D. c b a<<【答案】D 【解析】【分析】根据指数函数的单调性和对数运算法则计算即可.【详解】由题意得,3227311121log 9log 322233c ===⨯=;因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10.90.5111333⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,由于0.510.73⎛⎫=⎪⎝⎭,所以10.73b <<;因为0.9x y =在R 上单调递减,所以1130.90.90.9a ==.所以c b a <<.故选:D8. 已知定义域为()0,∞+的函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3【答案】C 【解析】【分析】将()()1221211x f x x f x x x ->-变为()()2121110f x f x x x ++->,结合构造函数())1(),(0f x xg x x +=>,即可判断()g x 的单调性,由此将不等式()1f x x <-可化为()(3)g x g <,结合函数单调性,即可得答案.【详解】由题意知对于任意1x ,()20,x ∈+∞,12x x ≠,不妨设12x x <,则210x x ->,由()()1221211x f x x f x x x ->-得()()12212110x f x x f x x x -->-,即()()21122121110f x f x x x x x x x ⎡⎤++-⎢⎥⎣⎦>-,结合21120,0x x x x ->>得()()2121110f x f x x x ++->,即()()212111f x f x x x ++>,设())1(),(0f x xg x x +=>,则该函数在()0,∞+上单调递增,且()3(3)113f g =+=,则()1f x x <-即()11f x x+<,即()(3)g x g <,故03x <<,即不等式()1f x x <-的解集为()0,3,故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++>B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f gx 为偶函数>”是“x y >”的必要条件【答案】BC 【解析】【详解】根据含有一个量词命题的否定可判断A ;判断“0m <”和“关于x 的方程220x x m -+=有一正一负根”之间的逻辑关系可判断B ;根据函数奇偶性定义判断C ;判断>”和“x y >”的推出关系可的判断D.【分析】对于A ,命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++≥,A 错误;对于B ,当0m <时,对于220x x m -+=有440m ∆=->,即方程有两个不等实根,设为12,x x ,则120x x m =<,即12,x x 一正一负;当220x x m -+=有一正一负根时,只需满足120x x <,即0m <,即“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,B 正确;对于C ,由题意知()h x 的定义域为R ,由()(),()()f x f x g x g x -=--=可得()()()(())()h x f g x f g x h x -=-==,即函数()()()=h x f g x 为偶函数,C 正确;对于D >0x y >≥,反之,当x y >,比如0x y >>故>”是“x y >”的充分条件,D 错误,故选:BC 10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A. 114ab ≥B. 122a b +≥C. 2≥D. 228a b +≥【答案】AD【解析】【分析】运用基本不等式和特殊值法判断各个选项即可.【详解】对于A 和C ,因为0a >,0b >,所以4a b +=≥2≤,当且仅当2a b ==时等号成立,故04ab ≤<,则114ab ≥,故A 正确,C 错误;对于B ,代入2a b ==,12131222a b +=+=<,故B 错误;对于D ,()22282a b a b++≥=,当且仅当2a b ==时等号成立,故D 正确.故选:AD11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2f f a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 2【答案】BCD【解析】【分析】判断函数()2e e 122023x x f x x -+=+的奇偶性以及单调性,则由)()2f f a <+可得||2|a <+,将各选项中的数代入验证,即可得答案.【详解】由题意知()2e e 122023x x f x x -+=+的定义域为R ,()2e e 1()22)0(23x x f x f x x -+-==+-,即()f x 为偶函数,又0x >时,e 1x >,令e ,(1)x t t =>,且e x t =在(0,)+∞上单调递增,函数1y t t=+(1,)+∞上单调递增,故e e 2x xy -+=在(0,)+∞上单调递增,则()2e e 122023x x f x x -+=+在(0,)+∞上单调递增,在(,0)-∞上单调递减,故由)()2f f a <+得|||2|a <+,将各选项中的数代入验证,0,1,2适合,在故选:BCD12. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -【答案】BCD【解析】【分析】化简得到()()22f x f x +=,进而求得则()5.54f =,可判定A 错误;当12m =时,作出函数()y f x =的图象与曲线4log y x =的图象,结合图象,可判定B 正确;根据题意得出函数()f x 的值域对m 进行分类讨论,可判定C 正确;由()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数可判定D 正确.【详解】当2m =时,函数()()22f x f x =-可转化为()()22f x f x +=,则()()()()()5.5 3.522 3.521.524 1.5414f f f f =+==+==⨯=,所以A 错误;当12m =时,函数()y f x =的图象与曲线4log y x =的图象,如图所示,可得函数()y f x =的图象与曲线4log y x =的图象有3个交点,所以B 正确;对于C 中,依题意,max min ()()4f x f x -<,当[]0,2x ∈时,函数()f x 的值域为[]0,2;当1m >时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]0,2m ;若6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦, ;随着x 依次取值,值域将变成[0,)+∞,不符合题意,若1m <-时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]2,0m ;max min ()()224f x f x m -³->,不符合题意,所以C 正确;对于D ,当[]0,2x ∈时,可得函数()f x 的值域为[]0,2,当(2,4]x ∈时,函数()f x 的值域为[]0,2m ;当6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦……,当(24],22x n n ∈--时,函数()f x 的值域为20,2n m-⎡⎤⎣⎦,当(22,2]x n n ∈-时,函数()f x 的值域为10,2n m -⎡⎤⎣⎦当(2,22]x n n ∈+时,函数()f x 的值域为0,2n m ⎡⎤⎣⎦,若01m <<,12222n n m m m -<<<<,由图象可知,()y f x =的图象与直线12n y m -=在区间[]0,2,(2,4],……,],(2242n n --上均有2个交点,在(22],2n n -上有一个交点,在(2,)n +∞上无交点,所以()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -,所以D 正确.故选:BCD.【点睛】本题解题关键是准确作出函数的图象,数形结合可得判断B ,D ,利用()()22f x f x +=迭代可判断A ,对于C ,分1m >和1m <-两种情况讨论可判断.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.【答案】72-## 3.5-【解析】【分析】根据题意,令19x =,准确运算,即可求解.【详解】由函数)311x f x ++=-,令19x =,可得13479()1)13219f f +=+==--.故答案为:72-.14 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.【答案】{}2-【解析】【分析】根据不等式的解法和对数函数的性质,求得集合B ,结合集合并集的运算,即可求解.【详解】由不等式234(4)(1)0x x x x --=-+>,解得1x <-或>4x ,即{|1B x x =<-或4}x >,因为集合{}2,1,0,1,2A =--,所以{}2A B =-I .故答案为:{}2-.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.【答案】8【解析】【分析】根据指对幂运算法则进行计算即可.【详解】由题意得,391log 10log 1029019==,1413181⎛⎫ =⎝=⎪⎭,3130.02710-==,66663311l 1og 2log 2log 2log 1log 2log 63+=+=+=+,所以原式110101833=+-+=.故答案为:816. 已知正数x ,y ,z 满足222321x y z ++=,则1z s xyz+=的最小值为______.【答案】【解析】【分析】先代换1z +,结合基本不等式求解可得答案..【详解】因为222321x y z ++=,所以()()22232111z z x y z +=-=-+;易知1z <,所以221132z zx y +=-+;所以()221321xyz z z x y s xyz ++==-,由()114z z -≤,当且仅当12z =时取等号,可得()22432s y x y x +≥=≥,当且仅当228323x y ==,即x y ==时,取到最小值.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.【答案】(1){}|23A B x x =≤< ,{}|13A B x x ⋃=<≤;(2)12a <<.【解析】【分析】(1)化简集合A ,B ,再利用交集、并集的定义直接计算得解.(2)由“x ∈A ”是“x ∈B ”的必要不充分条件可得集合B A ,再利用集合的包含关系列出不等式组求解即得.【小问1详解】当a =1时,{}{}|(1)(30)|13A x x x x x -<=<-=<,{|()()}{|23}320B x x x x x =≤-≤≤=-,所以{}|23A B x x =≤< ,{}|13A B x x ⋃=<≤.【小问2详解】因为a >0,则{}|3A x a x a =<<,由(1)知,{|23}B x x =≤≤,因为“x ∈A ”是“x ∈B ”的必要不充分条件,于是得B A ,则有233a a <⎧⎨>⎩,解得12a <<,所以实数a 的取值范围是12a <<.18. 已知函数()22(11)1x f x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.【答案】(1)()f x 是奇函数,理由见解析(2)()f x 在(1,1)-上单调递减,证明见解析【解析】【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【小问1详解】()f x 是奇函数,理由如下:函数()22(11)1x f x x x =-<<-,则定义域关于原点对称,因为()()221x f x f x x --==--,所以()f x 是奇函数;【小问2详解】任取1211x x -<<<,则22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----,因为1211x x -<<<,所以2212211210,0,10,10x x x x x x +>->-<-<,所以12())0(f x f x ->,所以()f x 在(1,1)-上单调递减.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-的奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)()02f =,函数()()2g x f x =-是奇函数,证明见解析(2)(],0-∞【解析】【分析】(1)利用赋值法即可求得()02f =,利用奇函数定义和已知条件即可证明函数()()2g x f x =-奇偶性;(2)根据条件得到函数()f x 单调性,再结合题中条件将原不等式化简,将恒成立问题转化为最值问题进而求解.【小问1详解】因为函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,所以令0y =,得到()()()20f x f x f =+-,所以()02f =;函数()()2g x f x =-定义域为(),-∞+∞,因为()()()()()()()422020g x g x f x f x f x f x f +-=+--=+---=-=⎡⎤⎣⎦,所以函数()()2g x f x =-奇函数【小问2详解】因为对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,所以函数()f x 在(),-∞+∞单调递增,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭,即()126f x f m x ⎛⎫+--≥ ⎪⎝⎭,即()()122f x f m f x ⎛⎫+--≥⎪⎝⎭,即()12f x m f x ⎛⎫+-≥ ⎪⎝⎭,所以12x m x +-≥,所以12m x x≤+-对(]0,4x ∈恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时等号成立,所以min12220m x x ⎛⎫≤+-=-= ⎪⎝⎭,即实数m 的取值范围为(],0-∞20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R a a f x mx x a x m =++---∈,且12f a ⎛⎫= ⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.【答案】(1)(0,1){9} 是(2)-13【解析】【分析】(1)根据指数幂的含义以及对数函数的单调性分别求得a 的取值范围,综合可得答案;(2)由题意确定a 的值,化简()f x ,由12f a ⎛⎫= ⎪⎝⎭可得919()9ln 322m =+-,再由911(9ln 222f m ⎛⎫-=-- -⎪⎝⎭,两式相加即可求得答案.【小问1详解】由123a ≤可得09a ≤≤,当01a <<时,由1log 32a ≤得12log 3log a a a ≤,则123,09a a ≤∴<≤,故01a <<;当1a >时,由1log 32a ≤得12log 3log a a a ≤,则123,9a a ≥∴≥,故9a ≥;综合可得实数a 的取值范围(0,1){9} ;【小问2详解】由题意知1a >,则9a =,则()()()99ln 19ln 12f x mx x x =++---,需满足11x -<<,则()919ln 21x f x mx x+=+--,故由12f a ⎛⎫= ⎪⎝⎭得919(9ln 322m =+-,则9119ln 3222f m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,则1194,1322f f ⎛⎫⎛⎫-+=-∴-=- ⎪ ⎪⎝⎭⎝⎭.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)2t =时有最小值,最小值为5200kJ .【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()30,0130101,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060230,016012301016400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值()()min 16400kJ Q t Q ==;②疲劳阶段()48004001200(14)Q t t t t =++<≤,则有()480040012004005200kJ Q t t t =++≥+=,当且仅当48001200t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .22. 已知函数()()9230x x m f x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.【答案】(1)(,2]-∞;(2)()()12f x f x <;(3)1.【解析】【分析】(1)把1m =代入,结合一元二次不等式及指数函数单调性求解不等式即得.(2)利用差值比较法,结合基本不等式判断出两者的大小关系.(3)利用换元法化简()g x 的解析式,对3m 进行分类讨论,结合二次函数的性质求得m 的值.【小问1详解】当1m =时,函数123()92)633(x x x x f x +=-⋅-=⋅,不等式()27f x ≤化为2(3)63270x x -⋅-≤,即(33)(39)0x x +-≤,解得39x ≤,则2x ≤,所以不等式()27f x ≤的解集为(,2]-∞.【小问2详解】依题意,()()112212923923x x m x x mf x f x ++-⋅⋅-=-+()()()12121233332333x x x x x x m =+--⋅-()()1212333323x x x x m =-+-⋅,由210x x >>,得12330x x -<,又212x x m =,则123323x x m +>=>==⋅,因此()()120f x f x -<,所以()()12f x f x <.【小问3详解】令3x t =,0t >,则()()221323,9232mm x m x f x t t f x t t--=-⋅⋅-=-⋅=-⋅,于是()()()g x f x f x =+-2213232mmt t t t =-⋅⋅+-⋅2211(t t t =+)-2⋅3m ⋅(t +211()23()2m t t t t =+-⋅⋅+-221(3)23m m t t=+---,而12t t+≥=,当且仅当1t t =,即1t =,0x =时取等号,当32m ≤,即3log 2m ≤时,则当12t t +=时,()y g x =取得最小值313443211,log 4m m -⋅-=-=,矛盾;当32m >,即3log 2m >时,则当13m t t+=时,()y g x =取得最小值22311m --=-,解得1m =,则1m =,所以m 的值是1.【点睛】思路点睛:含参数的二次函数在指定区间上的最值问题,按二次函数对称轴与区间的关系分类求解,再综合比较即可.。

重庆市2023-2024学年高一上学期期中数学试题含解析

重庆市2023-2024学年高一上学期期中数学试题含解析

重庆2023—2024年度(上)期中考试高一年级数学试题(答案在最后)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若()(){}1,2,1,3P =,则集合P 中元素的个数是()A .1B .2C .3D .42.命题“2,2120x R x x ∀∈-+≤”的否定为()A .2,2120x R x x ∀∉-+≤B .2,2120x R x x ∀∈-+>C .2000,2120x R x x ∃∈-+>D .2000,2120x R x x ∃∉-+>3.已知集合3A k k Z πααπ⎧⎫==+∈⎨⎬⎩⎭,,2,33k B k Z ππββ⎧⎫==+∈⎨⎬⎩⎭,下列描述正确的是()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件4.若3x >,则26113x x x -+-的最小值为()A .2B .2C .42D .225.已知2:80p m m -<,q :关于x 的不等式()2+490x m x -+>的解集为R ,则p 是q 的()A .AB A=I B .A B B=I C .A B =∅I D .以上选项都不对6.数学里有一种证明方法叫做proofswithoutwords ,也称之为无字证明,一般是指仅用图象语言而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比按个的数学证明更为优雅.现有如图所示图形,在等腰直角三角形ABC △中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,则该图形可以完成的无字证明为()A .()0,02a b ab a b +≥>>B .()220,022a b a b a b ++≤>>C .()20,0abab a b a b≤>>+D .()2220,0a b ab a b +≥>>7.已知0,0a b >>且1ab =,不等式11422m a b a b++≥+恒成立,则正实数m 的取值范围是()A .2m ≥B .4m ≥C .6m ≥D .8m ≥8.已知()f x 是定义在R 上的奇函数,当0x >时,()24f x x x =-,则不等式()0xf x <的解集为()A .()(),44,-∞-+∞U B .()()4,04,-+∞U C .()()4,00,4-U D .()4,4-二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.下列命题中是全称量词命题并且是真命题的是()A .2,10x R x x ∀∈-+≥B .,,243x Z y Z x y ∃∈∈+=C .菱形的对角线互相垂直D .任意四边形均有外接圆10.下列函数中,满足条件()()()121212+022f x f x x x f x x +⎛⎫<<< ⎪⎝⎭的函数是()A .()f x x=B .()2f x x =C .()f x =D .()1f x x=11.已知函数()f x 的定义域为R ,且()()()f x y f x f y +=+,当0x >时,()0f x >,且满足()21f =,则下列说法正确的是()A .()f x 为奇函数B .()21f -=-C .不等式()()232f x f x -->-的解集为()5,-+∞D .()()()()()202320220202220232023f f f f f -+-++++=L L 12.已知0b >,若对任意的()0,x ∈+∞,不等式32330ax x abx b +--≤恒成立.则()A .0a <B .23a b =C .24a b +的最小值为12D .23a ab a b +++的最小值为6-三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.)13.已知12102α-=,131032β=,则314210βα+=______(填数值)14.若函数()()224,134,1x ax a x f x a x a x ⎧-+<⎪=⎨-+≥⎪⎩,满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.15.若幂函数()f x 过点()4,2-,则满足不等式()()221f a f a ->-的实数a 的取值范围是______.16.设函数()f x 的定义域为R ,()1f x +为偶函数,()2f x +为奇函数,当[]1,2x ∈时,()2f x ax b =+,若()()036f f +=,则12f ⎛⎫=⎪⎝⎭______.四、解答题(本大题共6小题,共70分.请将正确答案做在答题卷相应位置,要有必要的推理或证明过程.)17.已知集合{}34A x x =-<<,集合{}133B x m x m =-<<+.(1)当2m =时,求()R ,A B A B U I ð;(2)当A B =∅I ,求m 的取值范围.18.已知关于x 的二次函数()235y mx m x n =+--的图象经过点()0,15-.(1)若关于x 的不等式()2350mx m x n +--<的解集为33m n x x ⎧⎫-<<⎨⎬⎩⎭,求m ,n 的值;(2)若0m <,求关于x 的不等式()2350mx m x n +-->的解集.19.已知ABC △的三边长为,,a b c ,其中2a =.求证ABC △为等边三角形的充要条件是()2224b c b c bc +-+=-.20.如图,现将正方形区域ABCD 规划为居民休闲广场,八边形HGTQPMKL 位于正方形ABCD 的正中心,计划将正方形WUZV 设计为湖景,造价为每平方米20百元;在四个相同的矩形EFUW ,IJVW ,VZON ,UZRS 上修鹅卵石小道,造价为每平方米2百元;在四个相同的五边形AEHLI ,DFGTS ,PQRCO ,BNMKJ 上种植草坪,造价为每平方米2百元;在四个相同的三角形HLW ,GTU ,PQZ ,KMV 上种植花卉,造价为每平方米5百元.已知阴影部分面积之和为8000平方米,其中GH TQ MP KL ====,LH GT PQ KM ===,//GH PM ,//TQ KL ,EF 的长度最多能达到40米.(1)设总造价为S (单位:百元),HG 长为2x (单位:米),试用x 表示S ;(2 6.6=,结果保留整数)21.已知函数()f x 为R 上的奇函数,当0x <时,()2af x x x=-+-.(1)求()f x 的解析式;(2)若函数()f x 在[)2,+∞上单调递减,求实数a 的取值范围.22.若在函数()f x 的定义域内存在区间[],a b ,使得()f x 在[],a b 上单调,且函数值的取值范围是[],ma mb (m 是常数),则称函数()f x 具有性质M .(1)当12m =时,函数()f x =M ?若具有,求出,a b ;若不具有,说明理由;(2)若定义在()0,2上的函数()45f x x x=+-具有性质M ,求m 的取值范围.重庆2023—2024年度(上)期中考试高一年级数学参考答案一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号12345678答案BCADABDC1.【答案】B【解析】集合P 中元素为()1,2,()1,3,共2个.故选:B 2.【答案】C【解析】因为命题“2,2120x R x x ∀∈-+≤”是全称量词命题,所以其否定为20,2120x R x x ∃∈-+>,故选:C3.【答案】A【解析】()13,33k A k k Z k Z ππααπαα⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,分子取到3的整数倍加1,()22,333k k B k Z k Z πππββββ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,分子取全体整数,所以A B ,所以A B A =I .故选:A .4.【答案】D【解析】由3x >得30x ->,()()223261123333x x x x x x x -+-+==-+≥=---233x x -=-即3x =D 5.【答案】A【解析】由关于x 的不等式()2+490x m x -+>的解集为R ,可得()24490m --⨯<,解之得210m -<<,由280m m -<,可得08m <<,则由{}08m m <<{}210m m -<<,可得p 是q 的充分不必要条件.故选:A6.【答案】A【解析】∵ABC △等腰直角三角形,O 为斜边AB 的中点,AD a =,BD b =,∴2a b OC +=,2a bOD -=,∵OC AB ⊥,∴2222222222a b a b a bCD OC OD +-+⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴CD CD OC ≥,所以()0,02a ba b +≥>>,故选项B 正确.故选B 7.【答案】D【解析】由题意,原恒成立等价于min11422m a b a b ⎛⎫++≥ ⎪+⎝⎭又∵0,0,0a b m >>>,且1ab =,∴112222m a b m a b m a b a b ab a b a b ++++=+=+≥=+++2a b ma b+=+时取等),4≥,所以8m ≥(当且仅当22a b ⎧=-⎪⎨=+⎪⎩或2a b ⎧=⎪⎨=-⎪⎩时等号成立)所以m 的取值范围是[)8,+∞,故选D 8.【答案】C【解析】当0x >时,令()()2=44f x x x x x -=-,可知:当04x <<时,()0f x <;当4x >时,()0f x >;又因为()f x 是奇函数,可知:当40x -<<时,()0f x >;当4x <-时,()0f x <;对于不等式()0xf x <,则()00x f x >⎧⎪⎨<⎪⎩或()0x f x <⎧⎪⎨>⎪⎩,可得40x -<<或04x <<,所以不等式()0xf x <的解集为()()4,00,4-U .故选:C二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.)题号9101112答案ACBDABACD9.【答案】AC【解析】对于A ,“∀”是全程量词,且由于140∆=-<,故对2,10x R x x ∀∈-+≥,为真命题,A 正确,对于B ,“∃”是存在量词,故B 错误,对于C ,所有的菱形的对角线都互相垂直,故C 正确,对于D ,任意四边形不一定有外接圆,对角和为180o的四边形,有外接圆;对角和不是180o的四边形,没有外接圆,故D 错误,故选:AC 10.【答案】BD【解析】由题意可知,当0x >时,满足条件()()()121212022f x f x x x f x x ++⎛⎫<<< ⎪⎝⎭的函数()f x 的图象是凹形曲线.对于A ,函数()f x x =的图象是一条直线,故当210x x >>时,()()121222f x f x x x f ++⎛⎫=⎪⎝⎭;对于B ,函数()2=f x x 的图象是凹形曲线,故当210x x >>时,()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭;对于C ,函数()f x =210x x >>时,()()121222f x f x x x f ++⎛⎫>⎪⎝⎭;对于D ,在第一象限,函数()1f x x=的图象是一条凹形曲线,故当210x x >>时,()()121222f x f x x x f ++⎛⎫<⎪⎝⎭,故选:BD 11.【答案】AB【解析】对于A 中,令0x y ==,可得()()()()00020f f f f =+=,所以()00f =,令y x =-,得到()()()00f x f x f -+==,即()()f x f x -=-,所以()f x 为奇函数,故A 正确;对于B 中,因为()f x 为奇函数,所以()()2=21f f --=-,故B 正确;对于C 中,设1212,,x x x x y x >==,可得()()()1212f x x f x f x -=+-,所以()()()()()121212f x f x f x f x f x x -=+-=-,又因为12x x >,所以120x x ->,所以()120f x x ->,即()()12f x f x >,所以()f x 在R 上单调递增,因为()21f -=-,所以()()()422222f f f -=--=-=-,由()()232f x f x -->-,可得()()()234f x f x f >-+-,所以()()()2347f x f x f x >--=-,所以27x x >-,得到7x >-,所以()()232f x f x -->-的解集为()7,-+∞,所以C 错误;对于D 中,因为()f x 为奇函数,所以()()0f x f x -+=,所以()()()()()()2023202320222022110f f f f f f -+=-+==-+=L ,又()00f =,故()()()()()202320220202220230f f f f f -+-++++=L L ,所以D 错误#故选:AB 12.【答案】ACD【解析】因为()()()()322233333ax x abx b x ax b ax x bax +--=+-+=-+,32330ax x abx b +--≤恒成立,即()()230x b ax -+≤恒成立,因为0b >,所以当(x ∈时,20x b -<,则需30ax +≥,当)x ∈+∞时,20x b ->,则需30ax +≤,故当x =30ax +=,即30+=,所以0a <且239a b =-⇒=,故选项A 正确,选项B 错误;所以294412a b b b +=+≥=,当且仅当94b b =时,即32b =时取等,故选项C 正确;因为222229993+333a ab a b a a a a a a a a ⎛⎫++=+++=+++ ⎪⎝⎭,令33t a a a a ⎛⎫=+=---≤-- ⎪⎝⎭,当且仅当3a a-=-,即a =t ≤-所以22296t a a =++,故222293333++33624a a t t t a a ⎛⎫⎛⎫+=+-=+- ⎪ ⎝⎭⎝⎭,所以在(,t ∈-∞-上,233324y t ⎛⎫=+- ⎪⎝⎭单调递减,即min 1266y =-=-2+36a ab a b ++≥-,故选项D 正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分#题号13141516答案241,3⎡⎤⎢⎥⎣⎦()1,1-72-13.【答案】2【解析】()()31131113113142513422342242101010=322222βαβα⎛⎫⎛⎫⨯⨯+-⨯+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=⨯⨯=== ⎪ ⎪⎝⎭⎝⎭14.【答案】41,3⎡⎤⎢⎥⎣⎦【解析】因为()()12120f x f x x x -<-,所以()f x 在R 上是减函数,当1x <时,()224f x x ax a =-+,对称轴为x a =,分段函数要满足在R 上单调递减,需要满足1303421a a a a a ≥⎧⎪-<⎨⎪-+≤+⎩,解得413a ≤≤.故答案为41,3⎡⎤⎢⎣⎦15.【答案】()1,1-【解析】幂函数()f x 的图象过点()4,2-,∴()f x 为偶函数,在一象限过()4,2;当0x ≥,设()f x x α=,则42α=,解得12α=;∴幂函数()()24f x xx R =∈,当[)0+x ∈∞,上单调递增;不等式()()()()221221221f a f a fa f a a a ->-⇔->-⇔->-,解得11a -<<;所以实数a 的取值范围是()1,1-.故答案为:()1,1-16.【答案】72-【解析】因为()1f x +是偶函数,所以()()+11f x f x -=+①,因为()2f x +是奇函数,所以()()+22f x f x -=-+②,令1x =,由①得:()()024f f a b ==+,由②得:()()()3=1f f a b -=-+,因为()()036f f +=,所以()462a b a b a +-+=⇒=,令0x =,由②得:()()()22208f f f b =-⇒=⇒=-,所以当[]1,2x ∈时,()2=28f x x -,11137=1122222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.17.【解析】(1)当2m =时,{}19B x x =<<{}39A B x x =-<<U 因为{}R 19B x x =≤≥或ð,所以(){}R 31A B x x =-<≤I ð(2)当B =∅时,133m m -≥+,解得2m ≤-;当B ≠∅时,133333m m m -<+⎧⎨+≤-⎩或13314m m m -<+⎧⎨-≥⎩解得5m ≥,综上,m 的取值范围是{}52m m m ≥≤-或.18.【解析】(1)由二次函数()235y mx m x n =+--的图象经过点()0,15-得15n =,因为不等式()2350mx m x n +--<的解集为33mn x x ⎧⎫-<<⎨⎬⎩⎭,所以0m >.易得关于x 的一元二次方程()2350mx m x n +--=的两个根分别为3m -,3n .由根与系数的关系可得53,33,33m n m mm n n m -⎧-+=⎪⎪⎨⎪-⋅=-⎪⎩解得3m =或-3(舍去),即3m =,15n =.(2)不等式()235150mx m x +-->可化为()()350mx x +->.令35m -=,得35m =-.①当35m =-时,不等式为()250x -<,无解;②当35m <-时,35m -<,解不等式()()350mx x +->得35x m -<<;③当305m -<<时,35m ->,解不等式()()350mx x +->得35x m<<-.综上:当35m <-时,原不等式的解集为35x x m ⎧⎫-<<⎨⎬⎩⎭;当35m =-时,原不等式的解集为∅;当305m -<<时,原不等式的解集为35x x m ⎧⎫<<-⎨⎬⎩⎭.19.【解析】(1)充分性:因为2a =,所以()2224b c b c bc +-+=-可化为()222b c a b c bc a +-+=-,即222a b c ab ac bc ++=++,所以222222222a b c ab ac bc ++=++,则()()()2220a b b c a c -+-+-=,所以0a b b c a c -=-=-=,即a b c ==,ABC △为等边三角形,充分性得证.②必要性:因为ABC △为等边三角形,且2a =,所以2a b c ===,则()2220b c b c +-+=,40bc -=,所以()2224b c b c bc +-+=-,必要性得证.故ABC △为等边三角形的充要条件是()2224b c b c bc +-+=-.附:充分性另外两种证法,方法二:因为()2224b c b c bc +-+=-,所以()()22234342b c b c b c bc +⎛⎫+-+=-≤⋅- ⎪⎝⎭,所以()()28160b c b c +-++≤,即()240b c +-≤,所以4b c +=,当且仅当2b c ==时,等号成立,即a b c ==,ABC △为等边三角形,充分性得证.方法三:因为()2224b c b c bc +-+=-,所以222244280b c b c bc +---+=,则()()()222220b c b c -+-+-=,所以2b c ==,即a b c ==,ABC △为等边三角形,充分性得证.20.【解析】(1)因为2HG x =米,所以HL =米,得HW LW x ==米.根据题意可得四个三角形的面积之和为22x 平方米,正方形WUZV 的面积为24x 平方米,四个五边形的面积之和为22228000400000042242x x x x ⎛⎫⎛⎫⨯-=- ⎪ ⎪⨯⎝⎭⎝⎭平方米,则休闲广场的总造价222222400000080000002042800022528616000S x x x x x x ⎛⎫=⨯+⨯+-+⨯=++⎪⎝⎭(020x <≤)(2)因为22800000086160001600016000800068800S x x =++≥++,当且仅当22800000086x x=,即2220x ==<时,等号成立,所以该居民休闲广场的总造价最低为68800百元.21.【解析】(1)当0x =时,由函数()f x 为R 上的奇函数得()00f =;当0x >时,0x -<,则()2a f x x x-=--,因为()f x 为R 上的奇函数,所以()()2a f x f x x x=--=-++,故()2,0,0,0,2,0.a x x x f x x a x x x ⎧-+-<⎪⎪==⎨⎪⎪-++>⎩(2)由函数()f x 在[)2,+∞上单调递减,设1x ∀,[)22,x ∈+∞,且12x x <,都有()()12f x f x <,即()()120f x f x ->恒成立即()()()12122112122210a a a f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=-+---+-=-⋅+> ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭恒成立、因为12x x <,所以210x x ->,故1x ∀,[)22,x ∈+∞,1210a x x +>⋅即12a x x >-⋅恒成立.而124x x -⋅<-,所以4a ≥-.22.【解析】(1)因为()f x =[)0,+∞上单调递增,所以()f x =[],a b上的函数值的取值范围是,即1212a b ==,显然0a b ≤<,所以04a b =⎧⎨=⎩,故函数()f x =M .(2)解:()45,014545,12x x x f x x x x x x ⎧+-<<⎪⎪=+-=⎨⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩,因为4y x x=+在()0,2上单调递减,在()2,+∞上单调递增①当[](),0,1a b ⊆时,()f x 单调递减,∴()()fa mb f b ma =⎧⎪⎨=⎪⎩,得4545a b a a b b +-=+-,整理得()()50a b a b -+-=,∵5a b +=与[](),0,1a b ⊆矛盾,∴当[](),0,1a b ⊆时,不合题意.②当[][),1,2a b ⊆时,()f x 在[)1,2单调递增,∴()()f a ma f b mb =⎧⎪⎨=⎪⎩,知()f x mx =在[)1,2上有两个不等实根,即()2451f x m x x x ==-+-在[)1,2上有两个不等实根,…(10分)令11,12t x ⎛⎤=∈ ⎥⎝⎦,()2451h t t t =-+-,由1122h ⎛⎫= ⎪⎝⎭,59816h ⎛⎫= ⎪⎝⎭,()10h =,知19216m <<,。

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知集合{}{}220,1||A x x B x x =+>=>,则A B = ()A .{}|21x x -<<B .{}|1x x >C .{|21x x -<<-或}1x >D .{|1x x <-或}1x >2.已知集合{}{}1,1,2,41,2,4,16M N =-=,.给出下列四个对应法则:①1y x=;②1y x =+;③y x =;④2y x =.请由函数定义判断,其中能构成从M 到N 的函数的是()A .①③B .①②C .③④D .②④3.已知函数()f x 在[)0,+∞上单调递减,则对实数120,0x x >>,“12x x >”是“()()12f x f x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()233xx f x =-的大致图象是()A .B .C .D .5.若函数()y f x =为奇函数,则它的图象必经过点()A .()0,0B .()(),a f a --C .()(),a f a -D .()(),a f a ---6.已知函数11(0,1)x y a a a -=+>≠的图像恒过定点A ,且点A 在直线(,0)y mx n m n =+>上,则11m n+的最小值为()A .4B .1C .2D .327.设()f x 是定义在R 上的奇函数、对任意()12,0,x x ∈+∞,且12x x ≠,都有()()2121f x f x x x ->-且(1)0f =、则不等式()0xf x >的解集为()A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,0)(1,)-∞⋃+∞D .(,1)(1,)-∞-+∞ 8.已知函数()2,123,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(0a >且1a ≠),若函数()f x 的值域为R ,则实数a 的取值范围是()A .20,3⎛⎤⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .[)2,+∞D .[)3,+∞二、多选题9.下列说法正确的是()A .命题“0x ∀>,都有e 1x x >+的否定是“0x ∃>,使得e 1≤+x xB .若0a b >>,则11a ab b+>+C .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数D .函数()y f x =的定义域为[]2,3,则函数()21y f x =-的定义域为3,22⎡⎤⎢⎥⎣⎦10.已知函数()e 1e 1x x f x -=+,则下列结论正确的是()A .函数()f x 的定义域为RB .函数()f x 的值域为()1,1-C .()()0f x f x +-=D .函数()f x 为减函数11.已知函数()f x 的定义域为R ,其图象关于()1,2中心对称.若()()424f x f x x --=-,则()A .()()4214f x f x -+-=B .()()244f f +=C .()12y f x =+-为奇函数D .()22y f x x =++为偶函数三、填空题12()1132081π3274⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭13.已知幂函数()()215m f x m m x -=+-在0,+∞上单调递减,则m =.14.将()22xx af x =-的图象向右平移2个单位后得曲线1C ,将函数=的图象向下平移2个单位后得曲线2C ,1C 与2C 关于x 轴对称.若()()()f x F x g x a=+的最小值为m 且2m >+则实数a 的取值范围为四、解答题15.已知集合U 为实数集,{5A x x =≤-或}8x ≥,{}121B x a x a =-≤≤+.(1)若5a =,求()U A B ⋂ð;(2)设命题p :x A ∈;命题q :x B ∈,若命题p 是命题q 的必要不充分条件,求实数a 的取值范围.16.已知函数()()3211f x x ax b x =++-+是定义在R 上的奇函数.(1)求a ,b 的值;(2)解不等式()3279333x x x xf >+-⨯+.17.已知定义域为R 的奇函数()21212x x f x =-+(1)判断函数()f x 的单调性,并用定义加以证明;(2)若对任意的[]1,2x ∈,不等式()()²²40f x mx f x -++>成立,求实数m 的取值范围.18.已知0a >且1a ≠,函数()4,02,0x a x x h x x -⎧≥=⎨<⎩,满足()()11h a h a -=-,设()x p x a -=.(1)若()()()231p x f x p x +=+,[)0,x ∞∈+,求函数()f x 的最小值;(2)函数()()()231p x f x p x +=+,()21g x x b x =-+-,若对[]11,1x ∀∈-,都存在[)20,x ∈+∞,使得()()21f x g x =,求b 的取值范围.19.对于定义在区间[],a b 上的函数f (x ),若()(){}[]()|,f P x max f t a t x x a b =≤≤∈.(1)已知()()[]121,2,0,1xf xg x x x ⎛⎫==∈ ⎪⎝⎭试写出()f P x 、()g P x 的表达式;(2)设0a >且1a ≠,函数()()2131,12x xf x a a a x ⎡⎤=+-⨯-∈⎢⎥⎣⎦,,如果()f P x 与()f x 恰好为同一函数,求a 的取值范围;(3)若()(){}[]()min ,f Q x f t a t x x a b =≤≤∈存在最小正整数k ,使得()()()f f P x Q x k x a -≤-对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的"k 阶收缩函数",已知1b >,函数()4f x x x=+是[]1,b 上的“3阶收缩函数”,求b 的取值范围.。

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学上册期中考试题(带答案)关于高一数学上册期中考试题(带答案)当我们进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面本店铺为大家带来高一数学上册期中考试题(带答案),欢迎大家参考阅读,希望能够帮助到大家!高一数学上册期中考试题(带答案)一、选择题(本大题共12小题,每小题5分,共60分.)1.设全集U=R,集合A={X|X≥1},B={X|0≤X A.{X|02.如果集合A={X|X=2kπ+π,k∈Z},B={X|X=4kπ+π,k∈Z},则( )A.A BB.B AC.A = BD.A∩B=3.设A={X∈Z||X|≤2},B={y|y=X2+1.X∈A},则B的元素个数是( )A.5B.4C.3D.24.若log2 a1.则( ).A.a>1.b>0B.a>1.b5.已知集合A=B=R,X∈A,y∈B,f:X→y=aX+b,若4和10的原象分别对应是6和9,则19在f作用下的象为( )A.18B.30C.272D.286.已知函数的周期为 2.当,那么函数的图像与函数的图像的交点共有( )A.10个B.9个C.8个D.1个7.已知f(X)是一次函数,且2f(2)-3f((1)=5.2f(0)-f(-(1)=1.则f(X)的解析式为( )A.3X-2B.3X+2C.2X+3D.2X-38.下列四组函数中,表示同一函数的是( ).A.f(X)=|X|,g(X)=B.f(X)=lg X2.g(X)=2lg XC.f(X)= ,g(X)=X+1D.f(X)= •,g(X)=9.已知函数f(X)= ,则f(-10)的值是( ).A.-2B.-1C.0D.110.设f(X)为定义在R上的奇函数.当X≥0时,f(X)=2X+2X+b(b 为常数),则f(-(1)等于( ).A.-3B.-1C.1D.311.已知2lg(X-2y)=lgX+lgy,则Xy 的值为( )A.1B.4C.1或4D.14 或412.方程2X=2-X的根所在区间是( ).A.(-1.0)B.(2.(3)C.(1.(2)D.(0,(1)三岔中学20XX-20XX学年度第一学期期中考试题高一数学答题卡一、选择题(12_5=60分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(每小题5分,共20分.)13.求满足 > 的X的取值集合是14.设,则的大小关系是15..若定义在区间(-1.0)内的函数f(X)=log2a(X+(1)满足f(X)>0,则a的取值范围是__ _ ___.16.已知函数内有零点,内有零点,若m为整数,则m的值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)计算下列各式的值:((1)18.(12分)集合。

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

成都2023-2024学年度上期高2026届半期考试数学试题(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全称量词命题“5,lg 4x x x ∀∈+≠R ”的否定是()A.x ∃∈R ,5lg 4x x +=B.x ∀∈R ,5lg 4x x +=C.x ∃∈R ,5lg 4x x +≠D.x ∀∉R ,5lg 4x x +≠【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】“5,lg 4x x x ∀∈+≠R ”的否定是“x ∃∈R ,5lg 4x x +=”.故选:A .2.下列命题为真命题的是()A.若33a bc c<,则a b < B.若a b <,则33<ac bc C.若a b <,c d <,则a c b d -<- D.若a c b d -<-,c d <,则a c b d+<+【答案】D 【解析】【分析】举反例可判断选项A 、B 、C ,由不等式的性质可判断选项D.【详解】对于选项A ,当1c =-时,若33a bc c<,则a b >,与a b <矛盾,故选项A 错误;对于选项B ,当0c =时,若a b <,则330ac bc ==,与33<ac bc 矛盾,故选项B 错误;对于选项C ,当56a b ==,,10c d =-=,,满足a b <,c d <,但a c b d -=-,这与a c b d -<-矛盾,故选项C 错误;对于选项D ,因为a c b d -<-,c d <,所以由不等式性质可得:()()a c c b d d -+<-+,即a b <.因为a b <,c d <,由不等式性质可得:a c b d +<+,故选项D 正确.故选:D.3.设函数()ln 26f x x x x =+-,用二分法求方程ln 260x x x +-=在()2,3x ∈内的近似解的过程中,计算得(2)0,(2.5)0,(2.25)0f f f <>>,则下列必有方程的根的区间为()A.()2.5,3 B.()2.25,2.5 C.()2,2.25 D.不能确定【答案】C 【解析】【分析】利用零点存在性定理及二分法的相关知识即可判断.【详解】显然函数()ln 26f x x x x =+-在[]2,3x ∈上是连续不断的曲线,由于(2)0,(2.25)0f f <>,所以()()2· 2.250f f <,由零点存在性定理可得:()ln 26f x x x x =+-的零点所在区间为()2,2.25,所以方程ln 260x x x +-=在区间()2,2.25内一定有根.故选:C.4.函数2||3()33x x f x =-的图象大致为()A. B. C. D.【答案】D 【解析】【分析】根据函数的奇偶性、定义域、正负性,结合指数函数的单调性进行判断即可.【详解】由33011xx x -≠⇒≠⇒≠±,所以该函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,显然关于原点对称,因为()()()22||||333333x x x x f x f x ---===--,所以该函数是偶函数,图象关于纵轴对称,故排除选项AC ,当1x >时,()33=3300xxf x --<⇒<,排除选项B ,故选:D5.若0a >,0b >,则“221a b +≤”是“a b +≤”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.【详解】当0a >,0b >,且221a b +≤时,()()22222222a b a b ab a b +=++≤+≤,当且仅当2a b ==时等号成立,所以a b +≤,充分性成立;1a =,14b =,满足0a >,0b >且a b +≤,此时221a b +>,必要性不成立.则“221a b +≤”是“a b +≤”的充分不必要条件.故选:A6.已知当生物死亡后,它机体内原有的碳14含量y 与死亡年数x 的关系为573012x y ⎛⎫= ⎪⎝⎭.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的34.则可以推断,该遗址距离今天大约多少年(参考数据ln 20.7≈,ln 3 1.1≈)()A.2355B.2455C.2555D.2655【答案】B 【解析】【分析】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,再根据对数的运算性质及换底公式计算即可.【详解】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,即057301324x ⎛⎫= ⎪⎝⎭,所以01222234ln 3 1.1log log log 4log 322573043ln 20.7x ===-=-≈-,所以0115730224557x ⎛⎫≈⨯-= ⎪⎝⎭,即该遗址距离今天大约2455年.故选:B .7.已知函数2295,1()1,1a x ax x f x xx -⎧-+≤=⎨+>⎩,是R 上的减函数,则a 的取值范围是()A.92,2⎡⎫⎪⎢⎣⎭B.94,2⎡⎫⎪⎢⎣⎭C.[]2,4 D.(]9,2,2⎛⎤-∞+∞⎥⎝⎦【答案】C 【解析】【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a aa a -⎧≥⎪⎪-<⎨⎪-⨯+≥+⎪⎩,解得24a ≤≤,所以a 的取值范围是[]2,4故选:C8.设358log 2,log 3,log 5a b c ===,则()A.a c b <<B.a b c<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用中间值比较大小得到23<a ,2334b <<,34c >,从而得到答案.【详解】333log 22log 20o 33938l g a --=-=<,故23<a ,555log 27log 2522log 30333b --=-=>,555log 81log 12533log 30444b --=-=<,故2334b <<,888log 5log 33log 5054246124c --=-=>,34c >,故a b c <<故选:B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.任何集合都是它自身的真子集B.集合{},,,a b c d 共有16个子集C.集合{}{}42,Z 42,Zx x n n x x n n =+∈==-∈D.集合{}{}22|1,|22,x x a a x x a a a ++=+∈==-+∈N N 【答案】BC 【解析】【分析】根据真子集的性质、子集个数公式,结合集合的描述法逐一判断即可.【详解】A :根据真子集的定义可知:任何集合都不是它自身的真子集,所以本选项说法不正确;B :集合{},,,a b c d 中有四个元素,所以它的子集个数为42=16,所以本选项说法正确;C :因为{}(){}42,Z 412,Z x x n n x x n n =-∈==-+∈,所以{}42,Z x x n n =+∈与{}42,Z x x n n =-∈均表示4的倍数与2的和所组成的集合,所以{}{}42,Z 42,Z x x n n x x n n =+∈==-∈,因此本选项说法正确;D :对于{}2|22,x x a a a +=-+∈N ,当1a =时,2221x a a =-+=,即{}21|22,x x a a a +∈=-+∈N ,但{}21|1,x x a a +∉=+∈N ,所以两个集合不相等,因此本选项说法不正确.故选:BC.10.已知正实数x ,y 满足1x y +=,则下列不等式成立的有()A.22x y +≥ B.14≤xy C.124x x y+≥ D.1174xy xy +≥【答案】ABD【解析】【分析】选项A 用基本不等式性质判断即可;选项B 用基本不等式的推论即可;选项C 将1x y +=带入,再用基本不等式判断;D 利用对勾函数的单调性判断.【详解】对A :因为x ,y为正实数22x y +≥==,当且仅当12x y ==时取等号,所以A 正确;对B :因为2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时取等号,所以B 正确;对C:因为1222111x x y x y x x y x y x y ++=+=++≥+=+2y x x y =时取等号,所以C 错误;对D :由B 选项可知14≤xy ,令xy t =,则104t <≤,11xy t xy t +=+()1104f t t t t ⎛⎫=+<≤ ⎪⎝⎭因为对勾函数在104t <≤上是减函数,所以()11744f t f ⎛⎫≥= ⎪⎝⎭,所以D 正确;故选:ABD 11.已知()1121xa f x +=+-是奇函数,则()A.1a = B.()f x 在()(),00,x ∈-∞⋃+∞上单调递减C.()f x 的值域为()(),11,-∞-⋃+∞ D.()()3log 2f x f >的解集为()0,9x ∈【答案】AC 【解析】【分析】由奇函数的定义可判定A 项,利用指数函数的性质可判定B 项,进而可求值域判定C 项,可结合对数函数的性质解不等式判定D 项.【详解】因为函数()1121xa f x +=+-是奇函数,易知2100x x -≠⇒≠,则有()()()()()11211112210212121x x x xa a a f x f x a -+-++-+=+++=+=-+=---,解之得1a =,故A 正确;则()2121xf x =+-,易知当0210x x y >⇒=->且有21xy =-单调递增,故此时()2121x f x =+-单调递减,又由奇函数的性质可知0x <时()f x 也是单调递减,故()f x 在(),0∞-和()0,∞+上单调递减,故B 错误;由上可知0x >时,222100112121xx x ->⇒>⇒+>--,即此时()1f x >,由奇函数的性质可知0x <时,()1f x <-,则函数()f x 的值域为()(),11,-∞-⋃+∞,故C 正确;由上可知()()()33log 20log 21,9f x f x x >⇒<<⇒∈,故D 错误.故选:AC12.已知定义在(0,)+∞上的函数()f x 在区间()0,6上满足()()6f x f x -=,当(]0,3x ∈时,()13log f x x =;当[)6,x ∈+∞时,()21448f x x x =-+-.若直线y m =与函数()f x 的图象有6个不同的交点,各交点的横坐标为()1,2,3,4,5,6i x i =,且123456x x x x x x <<<<<,则下列结论正确的是()A.122x x +>B.()5648,49x x ∈C.()()34661x x --> D.()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ 【答案】ABD 【解析】【分析】先利用函数的对称性和解析式作出函数图象,分别求出直线y m =与函数()f x 的图象的交点的横坐标的范围,运用基本不等式和二次函数的值域依次检验选项即得.【详解】如图,依题意可得13132log ,03()log (6),361448,6x x f x x x x x x ⎧<≤⎪⎪⎪⎪=-<<⎨⎪⎪-+-≥⎪⎪⎩,作出函数()y f x =在(0,)+∞上的图象,设直线1y =与()y f x =的图象分别交于,,,A B C D 四点,显然有1(,1),(3,1),(7,1)3A B D ,由()()6f x f x -=知函数()f x 在区间()0,6上关于直线3x =对称,故可得:17(,1)3C .对于A 选项,由12()()f x f x =可得121133x x <<<<,111233log log x x =-,化简得121=x x ,由基本不等式得:122x x +>=,故A 项正确;对于B 选项,当[)6,x ∈+∞时,由()21448f x x x =-+-可知其对称轴为直线7x =,故562714,x x +=⨯=又因56678x x <<<<,故()25655551414x x x x x x =-=-+25(7)+49x =--在区间()6,7上为增函数,则有564849x x <<,故B 项正确;对于C 选项,由34()()f x f x =可得34356x x <<<<,131433log (6)log (6)x x -=--,化简得1343log [(6)(6)]0x x --=,故有()()34661x x --=,即C 项错误;对于D 选项,依题意,1236()()()(),f x f x f x f x m ===== 且01m <<,故()()()112266126()x f x x f x x f x x x x m +++=+++ ,又因函数()f x 在区间()0,6上关于直线3x =对称,故1423236,x x x x +=+=⨯=又由B 项分析知5614,x x +=于是126661426,x x x +++=++= 故得:()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ ,故D 项正确.故选:ABD.【点睛】关键点点睛:本题考查分段函数与直线y m =的交点横坐标的范围界定,关键在于充分利用绝对值函数与对称函数的图象特征进行作图,运用数形结合的思想进行结论检验.三、填空题:本大题共4小题,每小题5分,共20分.13.若定义在[]4,4-上的奇函数()f x 的部分图象如图所示,则()f x 的单调增区间为______.【答案】[]2,4和[]4,2--【解析】【分析】直接根据图象结合奇函数性质得到答案.【详解】根据图象,0x >时函数在[]2,4上单调递增,函数为奇函数,故函数在[]4,2--上也单调递增.故答案为:[]2,4和[]4,2--.14.若()()2log ,0215,0xx x f x f x x >⎧=⎨++≤⎩,则(1)(7)f f --=______.【答案】32【解析】【分析】直接计算得到答案.【详解】()()2log ,0215,0x x x f x f x x >⎧=⎨++≤⎩,则()()2221113(1)(7)147log 14log 7log 22222f f f f --=+-=+-=+=.故答案为:32.15.石室中学“跳蚤市场”活动即将开启,学生们在该活动中的商品所卖款项将用来支持慈善事业.为了在这次活动中最大限度地筹集资金,某班进行了前期调查.若商品进货价每件10元,当售卖价格(每件x 元)在1025x <≤时,本次活动售出的件数()42105P x =-,若想在本次活动中筹集的资金最多,则售卖价格每件应定为______元.【答案】15【解析】【分析】结合已知条件,求出利润()f x 的解析式,然后结合换元法和基本不等式即可求解.【详解】由题意可知,利润4210(10)()(5)x f x x -=-,1025x <≤,不妨令10(0,15]t x =-∈,则利润44421010()50025(5)10t f x y t t t ===≤+++,当且仅当25t t=时,即5t =时,即15x =时,不等式取等号,故销售价格每件应定为15元.故答案为:15.16.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.那么,函数()323f x x x x =--图象的对称中心是______.【答案】()1,3-【解析】【分析】计算出()()b f x a b f x a +-++--()232662622a x a a a b =-+---,得到3266026220a a a a b -=⎧⎨---=⎩,求出13a b =⎧⎨=-⎩,得到对称中心.【详解】()()bf x a b f x a +-++--()()()()()()3232332x a x a x a x a x a x a b =+-+-++-+--+--+-32232232233336333x ax a x a x ax a x a x ax a x a =+++------+-+223632x ax a x a b-+-+--()232662622a x a a a b =-+---,要想函数()y f x a b =+-为奇函数,只需()2326626220a x a a a b -+---=恒成立,即3266026220a a a a b -=⎧⎨---=⎩,解得13a b =⎧⎨=-⎩,故()323f x x x x =--图象的对称中心为()1,3-故答案为:()1,3-四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)计算2173ln 383log 210e 22lg 527log 10-⎛⎫-⨯--⎪⎝⎭;(2)已知11224x x-+=,求3322x x -+的值.【答案】(1)0(2)52【解析】【分析】(1)结合指数运算及对数运算性质,换底公式即可求解;(2)考察两式间的内在联系,结合立方和公式即可求解.【详解】(1)21723ln 3833log 2101727e22lg 52()(lg 5lg 2)27log 10864-⎛⎫-⨯--=--+ ⎪⎝⎭1791088--==;(2)由11224x x-+=,则112122()216x x x x --+=++=,则114x x -+=,则3322x x-+()11122141352x x x x --⎛⎫=+-+=⨯= ⎪⎝⎭.18.已知全集R U =,集合5|1,{|16}2A x B x x x ⎧⎫=>=<≤⎨⎬-⎩⎭,{1C x x a =≤-∣或21}x a ≥+.(1)求()U A B ∩ð;(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1){31}xx -<≤∣(2)(],2[7,)-∞-+∞ 【解析】【分析】(1)解出分式不等式,求出集合A ,再利用交集和补集的含义即可得到答案;(2)分R C =和R C ≠讨论即可.【小问1详解】{}5310(3)(2)0{32}22x A x x x x x x x x x +⎧⎫⎧⎫=>=>=+->=-<<⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣∣{16}B x x =<≤∣,{1U B x x ∴=≤∣ð或6}x >,(){31}U A B x x ∴=-<≤ ∣ð.【小问2详解】{36}A B x x =-<≤ ∣,且()A B C ⊆ ,①R C =,1212a a a -≥+⇒≤-,此时满足()A B C ⊆ ,②R C ≠,2a >-,此时213a +>-,则167-≥⇒≥a a ,此时满足()A B C ⊆ ,综上所述,实数a 的取值范围为(],2[7,)-∞-+∞ .19.在“①函数()f x 是偶函数;②函数()f x 是奇函数.”这两个条件中选择一个补充在下列的横线上,并作答问题.注:如果选择多个条件分别解答,按第一个解答计分.已知函数()ln(e )ln(e )f x x k x =++-,且______.(1)求()f x 的解析式;(2)判断()f x 在()0,e 上的单调性,并根据单调性定义证明你的结论.【答案】(1)选择①时,()ln(e )ln(e )f x x x =++-;选择②时,()ln(e )ln(e )f x x x =+--(2)答案见解析【解析】【分析】(1)根据函数的奇偶性的定义求解参数k ,即可得()f x 的解析式;(2)根据函数单调性的定义证明即可得结论.【小问1详解】选择①:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是偶函数,所以()()()()ln e ln e f x x k x f x -=-++=,则()()()()ln e ln e ln e ln e x k x x k x -++=++-,则1k =所以()ln(e )ln(e )f x x x =++-;选择②:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是奇函数,所以()()()()ln e ln e f x x k x f x -=-++=-,则()()()()ln e ln e ln e ln e x k x x k x -++=-+--,则1k =-所以()ln(e )ln(e )f x x x =+--;【小问2详解】选择①:函数22()ln(e )ln(e )ln(e )f x x x x =++-=-在()0,e 上单调递减.证明:1x ∀,()20,e x ∈,且12x x <,有,有22222221121212(e )(e )()()x x x x x x x x ---=-=+-,由120e x x <<<,得120x x +>,120x x -<,所以1212()()0x x x x +-<,于是222212e e 0x x ->->,所以222221e 01e x x -<<-,所以22222222121221e ()()ln(e )ln(e )ln ln10e xf x f x x x x --=---=<=-,即12()()f x f x >,所以函数22()ln(e )f x x =-在()0,e 上单调递减.选择②:函数e ()ln(e )ln(e )ln e xf x x x x+=+--=-在()0,e 上单调递增.证明:1x ∀,()20,e x ∈,且12x x <,则21211221212121e e (e )(e )(e )(e )2()e e (e )(e )(e )(e )x x x x x x x x x x x x x x +++--+---==------由120e x x <<<,得210x x ->,2e 0x ->,1e 0x ->,所以21212()0(e )(e )x x x x ->--,即2121e e 0e e x x x x ++>>--,于是2211e e 1e e x x x x +->+-,所以2212211211e e e e ()()lnln ln ln10e e e e x x x x f x f x x x x x +++--=-=>=+---,即12()()f x f x <,所以函数e ()lne xf x x+=-在()0,e 上单调递增.20.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:()20.43()49.18,02256.26e14.73,2x a x x f x x -⎧-+≤<⎪=⎨⎪⋅+≥⎩,又已知酒后1小时测得酒精含量值为46.18毫克/百毫升,根据上述条件,解答以下问题:(1)当02x ≤<时,确定()f x 的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:ln527 6.27,ln56268.63,ln14737.29===)【答案】(1)23()12()49.182f x x =--+(2)314分钟后【解析】【分析】(1)根据题中条件,建立方程(1)46.18f =,解出即可;(2)根据题意建立不等式,解出即可.【小问1详解】根据题意知,当02x ≤<时,23()()49.182f x a x =-+,所以23(1)(149.1846.182f a =-+=,解得12a =-,所以当02x ≤<,23()12()49.182f x x =--+.【小问2详解】由题意知,当车辆驾驶人员血液中的酒精含量小于20mg /百毫升时可以驾车,当02x ≤<时,()20f x >,此时2x ≥,由0.456.26e 14.7320x -⋅+<,得0.4 5.27527e56.265626x-<=,两边取自然对数可得,0.4ln 527ln 5626 6.278.36 2.09x -<-=-=-,所以 2.095.2250.4x >=,又5.225小时=313.5分钟,故喝1瓶啤酒314分钟后才可以驾车.21.已知函数12x y a -=-(0a >,且1a ≠)过定点A ,且点A 在函数()()ln 1f x x m =+-,(R)m ∈的图象上.(1)求函数()f x 的解析式;(2)若定义在[]1,2上的函数()()ln 2y f x k x =+-恰有一个零点,求实数k 的取值范围.【答案】(1)()ln 1f x x =-(2)e 2e,42⎛⎤++ ⎥⎝⎦【解析】【分析】(1)把定点A 代入函数()f x 的解析式求出m 的值即可;(2)问题等价于()22e g x x kx =-+在[]1,2上恰有一个零点,根据函数零点的定义,结合二次函数的性质进行求解即可;【小问1详解】函数12x y a -=-(0a >,且1a ≠)过定点()1,1A -,函数()()ln 1f x x m =+-(R)m ∈的图象过点()1,1A -,即()ln 111m +-=-,解得0m =,函数()f x 的解析式为()ln 1f x x =-.【小问2详解】函数()()()ln 2ln 1ln 2y f x k x x k x +--==+-定义在[]1,2上,20k x ->在[]1,2上恒成立,可得4k >,令()()2ln 1ln 2ln 210y x k x kx x =-+--=-=,得22e 0xkx -+=,设()22e g x x kx =-+,函数()()ln 2y f x k x =+-在[]1,2上恰有一个零点,等价于()g x 在[]1,2上恰有一个零点,函数()22e g x x kx =-+图像抛物线开口向上,对称轴14kx =>,若()()12e 0282e 0g k g k ⎧=-+=⎪⎨=-+<⎪⎩,无解,不成立;若()()()()122e 82e 0g g k k ⋅=-+-+<,解得e2e 42k +<<+,满足题意;若()24282e 0k g k ⎧≥⎪⎨⎪=-+=⎩,无解,不成立;若()()12e 0124282e 0g k kg k ⎧=-+<⎪⎪<<⎨⎪=-+=⎪⎩,解得e 42k =+,满足题意.所以实数k 的取值范围为e 2e,42⎛⎤++ ⎥⎝⎦.22.若函数()f x 与()g x 满足:对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x g x m =成立,则称()f x 是()g x 在区间D 上的“m 阶伴随函数”;对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x f x m=成立,则称()f x 是区间D 上的“m 阶自伴函数”.(1)判断()22111f x x x =+++是否为区间[]0,4上的“2阶自伴函数”?并说明理由;(2)若函数()32πx f x -=区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,求b 的值;(3)若()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”,求实数a 的取值范围.【答案】(1)不是,理由见解析(2)1b =(3)314a ≤≤【解析】【分析】(1)根据给定的定义,取12x =,判断2()1f x =在[]0,4是否有实数解即可;(2)根据给定的定义,当11,3x b ⎡⎤∈⎢⎥⎣⎦时,用1x 表示2x 并判断单调性,求出值域,借助集合的包含关系求解即可;(3)根据()g x 的单调性求解其在区间[0,2]上的值域,进而将问题转化为()f x 在区间[0,2]上的值域是[]4,1--的子集,再结合二次函数的性质,分类讨论即可求解.【小问1详解】假定函数()22111f x x x =+++是区间[]0,4上的“2阶自伴函数”,则对任意的[]10,4x ∈,总存在唯一的[]20,4x ∈,使()()122f x f x =成立,取10x =,1()2f x =,由12()()2f x f x =,得2()1f x =,则()222221111f x x x =++=+,则()()222221110x x +-++=,进而可得()222131024x ⎡⎤+-+=⎢⎣⎦显然此方程无实数解,所以函数()22111f x x x =+++不是区间[]0,4上的“2阶自伴函数”,【小问2详解】函数()32πx f x -=为区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,则对任意11,3x b ⎡⎤∈⎢⎥⎣⎦,总存在唯一的21,3x b ⎡⎤∈⎢⎥⎣⎦,使得12()()1f x f x =,即123232ππ1x x --=,进而1243x x +=,得2143x x =-,显然函数2143x x =-在11,3x b ⎡⎤∈⎢⎥⎣⎦上单调递减,且当113x =时,21x =,当1x b =时,243x b =-,因此对1,3b ⎡⎤⎢⎥⎣⎦内的每一个1x ,在4[,1]3b -内有唯一2x 值与之对应,而21,3x b ⎡⎤∈⎢⎥⎣⎦,所以41[,1][,]33b b -⊆,所以14133b b ≥⎧⎪⎨-≥⎪⎩,解得11b b ≥⎧⎨≤⎩,即1b =,所以b 的值是1.【小问3详解】由于41log 67,t x y t =-=分别为定义域内单调递增和单调递减函数,所以函数()4log (167)g x x =--在[0,2]上单调递增,且()()102,22g g =-=-得函数()g x 的值域为12,2⎡⎤--⎢⎥⎣⎦,由函数()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”可知,对任意的1[0x ∈,2],总存在唯一的2[0x ∈,2]时,使得12()()2f x g x =成立,于是[]122()4,1()f xg x =∈--,则()2214f x x ax a =-+-在区间上[0,2]的值域是区间[]4,1--的子集,而函数()2214f x x ax a =-+-图象开口向上,对称轴为x a =,显然(0)14f a =-,()258f a =-,()241f a a a =--+,当0a ≤时,()f x 在[0,2]上单调递增,则min max ()(0)4()(2)1f x f f x f =≥-⎧⎨=≤-⎩,即0144581a a a ≤⎧⎪-≥-⎨⎪-≤-⎩,无解;当2a ≥时,()f x 在[0,2]上单调递减,则min max ()(2)4()(0)1f x f f x f =≥-⎧⎨=≤-⎩,即2584141a a a ≥⎧⎪-≥-⎨⎪-≤-⎩,无解;当02a <<时,()f x 在[0,]a 上单调递减,在[a ,2]上单调递增,则()()4(2)101f a f f ≥-⎧⎪≤-⎨⎪≤-⎩,即202581141144a a a a a <<⎧⎪-≤-⎪⎨-≤-⎪⎪-+-≥-⎩,解得314a ≤≤;综上,a 的取值范围是314a ≤≤.。

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题一、单选题(本大题共8小题)1. 已知集合{}2Z160U x x =∈-≤∣,集合{}2Z 340A x x x =∈--<∣,则UA =( )A .{14xx ≤≤∣或4}x =- B .{41xx -≤≤-∣或4}x = C .{}4,3,2,1,4---- D .{}4,3,2,1----2. 24x =是2x =-的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 若,,a b c R ∈,a b >则下列不等式成立的是( ) A .11a b<B .22a b <C .a c b c >D .2211a bc c >++ 4. 设函数()21,01,0x x f x x x -+≤⎧=⎨->⎩,若()3f a =,则实数=a ( )A .2B .2-或2C .4-或2D .4-5. 幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( )A .27B .9C .19D .1276. 下列函数中,既是其定义域上的单调函数,又是奇函数的是( ) A .4y x = B .1y x=C .y =D .3y x =7. 若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围为( )A .41,3⎛⎫- ⎪⎝⎭B .()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭C .4,13⎛⎫- ⎪⎝⎭D .()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭8. 已知函数()f x 的定义域是()0,∞+,且满足()()()1,12f xy f x f y f ⎛⎫=+= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,则不等式()()232f x f x +-≥-的解集为( ) A .[]1,2 B .][(),12,-∞⋃+∞C .()()0,12,3D .][()0,12,3⋃二、多选题(本大题共4小题)9. 已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=AB B .()1,2A ∈C .1B ∉D .2A ∈10. 已知关于x 的不等式20ax bx c ++>的解集为{}|23<<x x ,则下列说法正确的有( ) A .0a >B .0a b c ++<C .24c a b ++的最小值为6D .不等式20cx bx a -+<的解集为1|32x x x ⎧⎫<->⎨⎬⎩⎭或11. 下列说法正确的是( )A .偶函数()f x 的定义域为[]21,a a -,则1a =B .若函数()21y f x =-的定义域是[]2,3-,则f x y =的定义域是(]3,5-C .奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为1-,则()()24215f f -+-=-D .若集合{}2|420A x ax x =-++=中至多有一个元素,则2a ≤-12. 已知定义在R 上的函数()f x 的图像是连续不断的,且满足以下条件:①()()R,x f x f x ∀∈-=;② ()12,0,x x ∀∈+∞,当12x x ≠时,()()21210f x f x x x ->-;③()10f -=.则下列选项成立的是( )A .()f x 在(),0∞-上单调递减,B .()()53f f -<C .若()()12f m f -<,则3m <D .若()0f x x>,则()()1,01,x ∈-⋃+∞三、填空题(本大题共3小题)13. 已知()y f x =为奇函数,当0x ≥时()()1f x x x =+,则()3f -= . 14. 已知1x >,则1411y x x =++-的最小值是 . 15. 已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()()2,01f x f x f +=-=,则()()()()()12320212022f f f f f +++++= .四、双空题(本大题共1小题)16. 已知函数()22,31,3x x x c f x c x x ⎧+-≤≤⎪=⎨<≤⎪⎩,若0c ,则()f x 的值域是 ;若()f x 的值域是[]1,3-,则实数c 的取值范围是 .五、解答题(本大题共6小题)17. (1)某网店销售一批新款削笔器,每个削笔器的最低售价为15元.若按最低售价销售,每天能卖出30个;若一个削笔器的售价每提高1元,日销售量将减少2个.为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?(2)根据定义证明函数1y x x=+在区间()1,+∞上单调递增. 18. 已知命题2120p x x a ∀≤≤-≥:,,命题22R +2+2+=0q x x ax a a ∃∈:,. (1)若命题p 的否定为真命题,求实数a 的取值范围;(2)若命题p 为真命题,命题q 为假命题,求实数a 的取值范围.19. 已知函数()f x A ,集合={1<<1+}B x a x a -.(1)当=2a 时,求R A B ⋂();(2)若B A ⊆,求a 的取值范围.20. 已知幂函数()22()55m f x m m x -=-+的图象关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图象; (3)直接写出函数()g x 的单调区间.21. 已知函数()223,R f x x bx b =-+∈. (1)求不等式()24f x b <-的解集;(2)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.22. 设函数()()22,52(0)1x f x g x ax a a x ==+->+,(1)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x ≥,求实数a 的取值范围; (2)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x =,求实数a 的取值范围.参考答案1. 【答案】C【分析】解一元二次不等式求得集合U 和A ,根据补集的概念即可求得答案.【详解】解不等式2340x x --<得14,{Z 14}{0123}x A x x -<<∴=∈-<<=∣,,,, 由2160x -≤,可得44x -≤≤,{}Z 44{432101234}U x x ∴=∈-≤≤=----∣,,,,,,,,, {}4,3,2,1,4U A ∴=----故选:C. 2. 【答案】B【分析】先解方程24x =,进而判断出.24x =是2x =-的必要不充分条件. 【详解】①当24x =时,则2x =±,∴充分性不成立,②当2x =-时,则24x =,∴必要性成立,∴24x =是2x =-的必要不充分条件. 故选:B. 3. 【答案】D【分析】通过反例1a =,1b ,0c 可排除ABC ;利用不等式的性质可证得D 正确.【详解】若1a =,1b,则1111a b=>=-,221a b ==,则A 、B 错误; 若a b >,0c ,则0a c b c ==,则C 错误;211c +≥,21011c ∴<≤+,又a b >,2211a bc c ∴>++,则D 正确.故选:D. 4. 【答案】B【分析】根据()21,01,0x x f x x x -+≤⎧=⎨->⎩,分0a ≤和 0a >讨论求解. 【详解】解:()21,01,0x x f x x x -+≤⎧=⎨->⎩,当0a ≤时,13a -+=,则2a =-, 当0a >时,令24a =,则2a =, 故实数2a =-或2, 故选:B. 5. 【答案】A【分析】根据幂函数的概念及性质,求得实数m 的值,得到幂函数的解析式,即可求解.【详解】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-,当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A. 6. 【答案】D【分析】根据幂函数的单调性与奇偶性分析判断.【详解】对于A :∵()44x x -=,则4y x =是偶函数,故A 错误; 对于B :∵11=--x x ,则1y x=为奇函数,在()(),0,0,-∞+∞单调递减,但在定义域上不单调,故B 错误;对于C :y =[)0,∞+,在定义域上单调递增,但定义域不关于原点对称,即y =C 错误;对于3D :y x =在定义域R 上单调递增,且33()x x -=-,即3y x =为奇函数,故D 正确; 故选:D. 7. 【答案】B【分析】根据基本不等式,结合不等式有解的性质进行求解即可. 【详解】不等式234y x m m +<-有解,2min 3,0,04y x m m x y <⎛⎫∴+->> ⎪⎝⎭,且141x y +=,144224444y y x y x x x y y x ⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当44x y y x =,即2,8x y ==时取“=",min 44y x ⎛⎫∴+= ⎪⎝⎭,故234m m ->,即()()1340m m +->,解得1m <-或4,3m >∴实数m 的取值范围是()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭. 故选:B. 8. 【答案】D【分析】由赋值法得()42f =-,由函数的单调性转化后求解,【详解】由于()()()f xy f x f y =+,令1x y ==得()()121f f =,即()10f =,则()()11122022f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,由于112f ⎛⎫= ⎪⎝⎭,则()21f =-, 即有()()4222f f ==-,由于对于0x y <<,都有()()f x f y >,则()f x 在()0,∞+上递减, 不等式()()232f x f x +-≥-即为()()234f x x f ⎡⎤-≥⎣⎦.则20302(3)4x x x x >⎧⎪->⎨⎪-≤⎩,解得01x <≤或23x ≤<,即解集为][()0,12,3⋃. 故选:D9. 【答案】CD【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∵{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∴2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∴(1,2)B ∈,(1,2)A ∉,故B 错误. 故选:CD . 10. 【答案】BC【分析】由不等式与方程的关系得出02323a b a c a ⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,从而得到:5b a =-,6c a =,且a<0,再依次对四个选项判断即可得出答案.【详解】不等式20ax bx c ++>的解集为{}|23<<x x ,02323a b a c a ⎧⎪<⎪⎪∴+=-⎨⎪⎪⨯=⎪⎩,解得:5b a =-,6c a =,且a<0,故选项A 错误;5620a b c a a a a ++=-+=<,故选项B 正确;()2243641964c a a a b a a ++⎛⎫==-+-≥ ⎪+-⎝⎭, 当且仅当13a =-时等号成立,故选项C 正确;20cx bx a -+<可化为:2650ax ax a ++<,即26510x x ++>,则解集为1123x x x ⎧⎫--⎨⎬⎩⎭或,故选项D 错误;综上所述选项B 、C 正确, 故选:BC. 11. 【答案】BC【分析】根据偶函数的定义域关于原点对称,可判断A 项错误;根据抽象函数定义域的求解法则,以及使得分式根式有意义,可列出不等式组,可判断B 项正确;根据条件可得()21f =-,()48f =,根据奇函数的性质可求得()2f -与()4f -的值,代入即可得出C 项正确;由题意可知,方程2420ax x -++=至多有一个解,对a 是否为0讨论,可得D 项错误.【详解】由偶函数()f x 的定义域为[]21,a a -,可得210a a -+=,解得13a =,A 错;因为函数()21y f x =-的定义域是[]2,3-,所以23x -≤≤,即5215x -≤-≤.所以函数()f x 的定义域为[]5,5-.要使f x y =5530x x -≤≤⎧⎨+>⎩,解得35x -<≤,即y =(]3,5-,B 对;因为,奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为-1, 则()21f =-,()48f =,根据奇函数的性质可得,()()221f f -=-=,()()448f f -=-=-, 则()()()24228115f f -+-=⨯-+=-,则C 项正确;因为集合{}2420A x ax x =-++=∣中至多有一个元素, 所以方程2420ax x -++=至多有一个解,当0a =时,方程420x +=只有一个解12x =-,符合题意;当0a ≠时,由方程2420ax x -++=至多有一个解,可得Δ1680a =+≤,解得2a ≤-. 所以,0a =或2a ≤-,则D 项错误. 故选:BC. 12. 【答案】AD【分析】由①可得,()f x 为偶函数.由②可得,()f x 在()0,∞+上单调递增.后分析选项可得答案.【详解】由()()()21121221,0,,,0f x f x x x x x x x ∞-∀∈+≠>-得:()f x 在()0,∞+上单调递增,由R x ∀∈,()()f x f x -=得:函数()f x 是R 上的偶函数.对于A 选项,因()f x 在()0,∞+上单调递增,且()f x 为偶函数,则()f x 在(),0∞-上单调递减,故A 正确.对于B ,C 选项,因()f x 为偶函数,则()()f x f x =.又()f x 在()0,∞+上单调递增,则()()()553,f f f -=>故B 错误;()()()()1212f m f f m f -<⇔-<,又函数()f x 的图像是连续不断的,则有12m -<,解得13,m -<<故C 错误;对于D 选项,由()0f x >及()10f -=得:()()11f x f x >⇔>,解得1x <-或1x >,由()0f x <得:()()11f x f x <⇔<,解得11x -<< 则()0f x x>可化为:()00f x x ⎧>⎨>⎩或()00f x x ⎧<⎨<⎩,解得1x >或10x -<<,即()()1,01,x ∈-⋃+∞,故D 正确.故选:AD13. 【答案】-12【分析】利用奇函数的性质()()f x f x -=-即可得到答案. 【详解】因为()y f x =为奇函数,所以()()f x f x -=-, 故()()()3331312f f -=-=-⨯+=-. 故答案为:-12. 14. 【答案】9【分析】将目标式变形,利用基本不等式即可得出其最值. 【详解】1x >,10x ->,()(11414152415911x x x x x ∴++=-++-=--, 当且仅当()1411x x -=-即3=2x 时取等号, 32x ∴=时, 1411y x x =++-取最小值9. 故答案为:9. 15. 【答案】1-【分析】由()()2f x f x +=-知函数是周期为4的周期函数,再结合偶函数可求()()()()1234f f f f ,,,的值,从而可求()()()()()12320212022f f f f f +++++的值.【详解】由()f x 满足()()2f x f x +=-,则()()()42f x f x f x +=-+=,即函数是周期为4的周期函数;根据题意,()f x 是定义域为(),-∞+∞的偶函数,则有()()11f f -=,又由()f x 满足()()2f x f x +=-,则()()()111f f f -=-=,所以()()110f f =-=,由()()2f x f x +=-,可得()()()()201,310f f f f =-=-=-=, 则()()()()12340f f f f +++=, 所以()()()()()12320212022f f f f f +++++()()()()()()5051234121f f f f f f ⎡⎤=+++++=-⎣⎦. 故答案为:1-.16. 【答案】 [1,)-+∞ 1[,1]3.【分析】作出函数()f x 的图象,根据二次函数与反比例函数的图象与性质,结合图象,即可求解.【详解】由0c 时,函数()22,301,03x x x f x x x⎧+-≤≤⎪=⎨<≤⎪⎩,当[3,0]x ∈-时,函数()22f x x x =+,可得函数()f x 在[3,1]--上单调递减,在[1,0]-上单调递增, 且()()(3)3,11,00f f f -=-=-=,所以函数的值为[1,3]-; 当(0,3]x ∈时,函数()1f x x =为单调递减函数,其值域为1[,)3+∞, 综上可得,函数()f x 的值域为[1,)-+∞; 作出函数()f x 的图象,如图所示, 若函数()f x 的值域为[1,3]-,当1y =-时,即221x x +=-,解得=1x -, 当3y =时,即223x x +=,解得3x =-或1x =, 当13x=时,可得13x =,结合图象,可得实数c 的取值范围是1[,1]3.故答案为:[1,)-+∞;1[,1]3.17. 【答案】(1)应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元);(2)证明见解析.【分析】(1)设这批削笔器的销售价格定为()15x x 元/个,解不等式()30152400x x ⎡⎤--⨯⋅>⎣⎦即得解;(2)利用函数单调性的定义证明.【详解】(1)设这批削笔器的销售价格定为()15x x 元/个,由题意得()30152400x x ⎡⎤--⨯⋅>⎣⎦,即2302000,x x -+<方程230200x x -+=的两个实数根为1210,20x x ==,2302000x x ∴-+<解集为{1020}x x <<∣, 又15,1520x x ≥∴≤<,故应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元),才能使这批削笔器每天获得400元以上的销售收入.(2)证明:()12,1,x x ∀∈+∞,且12x x <,有()()()211212121212121212121211111x x x x y y x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,1,x x ∈+∞,得121,1x x >>.所以12121,10x x x x >->. 又由12x x <,得120x x -<.于是()12121210x x x x x x --<,即12y y <. 所以,函数1y x x=+在区间()1,+∞上单调递增. 18. 【答案】(1)(1,)+∞ (2)(0,1]【分析】(1)先求出p ⌝,然后利用其为真命题,求出a 的取值范围即可; (2)由(1)可知,命题p 为真命题时a 的取值范围,然后再求解q 为真命题时a 的取值范围,从而得到q ⌝为真命题时a 的取值范围,即可得到答案. 【详解】(1)根据题意,当12x ≤≤时,214x ≤≤, p ⌝:存在12x ≤≤,20x a -<为真命题,则1a >, 所以实数a 的取值范围是(1,)+∞;(2)由(1)可知,命题p 为真命题时,1a ≤, 命题q 为真命题时,2244(2)0a a a ∆=-+≥,解得0a ≤, 所以q ⌝为真命题时,0a >,所以1>0a a ≤⎧⎨⎩,解得01a <≤,所以实数a 的取值范围为(0,1]. 19. 【答案】(1){3<1x x -≤-或}34x ≤≤(2){3}aa ≤|【分析】(1)求出定义域,得到{-34}A xx =<≤|,进而计算出RB 及()R A B ⋂;(2)分B =∅与B ≠∅,列出不等式,求出a 的取值范围. 【详解】(1)要使函数()f x 40+3>0x x -≥⎧⎨⎩,解得:34x -<≤, 所以集合{-34}A x x =<≤|. 2a =,∴{}{}=1<<1+=1<<3B x a x a x x --, ∴{=1RB x x ≤-或}3x ≥,∴{=3<1RA B x x ⋂-≤-或}34x ≤≤;(2)B A ⊆,①当B =∅时,11a a -≥+,即0a ≤,满足题意;②当B ≠∅时,由B A ⊆,得1<1+131+4a a a a --≥-≤⎧⎪⎨⎪⎩,解得:03a <≤,综上所述:a 的取值范围为{}3a a ≤.20. 【答案】(1)1()f x x -=(2)作图见解析(3)递增区间是(,0)-∞,递减区间是(0,)+∞【分析】(1)利用幂函数的定义求出m 值,再结合其图象性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数、对称性作出()g x 的图象.(3)根据(2)中图象特征写出函数()g x 的单调区间.【详解】(1)因幂函数()22()55m f x m m x -=-+,则2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-∞+∞,()f x 是奇函数,图象关于原点对称,则1m =,当4m =时,函数2()f x x =是R 上的偶函数,其图象关于y 轴对称,关于原点不对称,所以幂函数()f x 的解析式是1()f x x -=(2)因函数()|()|g x f x =,由(1)知,1()||g x x =,显然()g x 是定义域(,0)(0,)-∞+∞上的偶函数,当0x >时,1()g x x =在(0,)+∞上单调递减,其图象是反比例函数1y x =在第一象限的图象,作出函数()g x 第一象限的图象,再将其关于y 翻折即可得()g x 在定义域上的图象,如图,(3)观察(2)中图象得,函数()g x 的递增区间是(,0)-∞,递减区间是(0,)+∞. 21. 【答案】(1){|11}x b x b -<<+(2)答案见解析【分析】(1)根据题意解一元二次不等式即可;(2)分类讨论函数单调区间,找到最小值点,由最小值为1,求出系数b ,再求函数在区间内的最大值.【详解】(1)若()24f x b <-,即22234x bx b -+<-,则()()110x b x b ⎡⎤⎡⎤---+<⎣⎦⎣⎦,∵11b b -<+,所以11b x b -<<+,故不等式()0f x <的解集为{|11}x b x b -<<+.(2)因为()223f x x bx =-+是开口向上,对称轴为x b =的二次函数,①若1b ≤-,则()f x 在[]1,2-上单调递增,∴函数()y f x =的最小值为()1421f b -=+=,解得32b =-, 故函数()y f x =的最大值为()27413f b =-=;②若2b ≥,则()f x 在[]1,2-上单调递减,∴函数()y f x =的最小值为()2741f b =-=,解得32b =(舍去); ③若12b -<<,则()f x 在[]1,b -上单调递减,在(],2b 上是单调递增,∴函数()y f x =的最小值为()231f b b =-=,解得b =b =(舍去),故函数()y f x =的最大值为()1424f b -=+=+综上所述: 当32b =-时,()f x 的最大值为13;当b =()f x 最大值为4+22. 【答案】(1)5,2⎡⎫+∞⎪⎢⎣⎭(2)5,42⎡⎤⎢⎥⎣⎦【分析】(1)根据题意,分别求出两个函数的最小值,将问题等价转化为min min ()()g x f x ≤,解不等式即可求解;(2)根据题意,分别求出两个函数的值域,然后将问题等价转化为()f x 在[0,1]上值域是()g x 在[0,1]上值域的子集,结合集合的包含关系即可求解.【详解】(1)因为()()()2221221214111x x f x x x x x -+⎡⎤===++-⎢⎥+++⎣⎦,利用1y x x =+函数图像性质可知()f x 在[]0,1上单调递增,于是()f x 在0x =处取得最小值,即()min ()00f x f ==,因为()52g x x a α=+-,注意到0a >,则()g x 在[]0,1上单调递增,于是()g x 在0x =处取得最小值,即()min ()052g x g a ==-,由题意可得:520a -≤,即得5,2a ∞⎡⎫∈+⎪⎢⎣⎭,所以实数a 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. (2)由(1)可知:()f x 在1x =处取得最大值,即()max ()11f x f ==于是当[]0,1x ∈时,()f x 的值域[]0,1A = ()g x 在1x =处取得最大值,即()max ()15g x g a ==- 于是当[]0,1x ∈时,()g x 的值域[]52,5B a a =-- 要使得对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x = 根据()f x 与()g x 的连续性可知A B ⊆成立 则52051a a -≤⎧⎨-≥⎩,解得5,42a ⎡⎤∈⎢⎥⎣⎦,所以实数a 的取值范围为5,42⎡⎤⎢⎥⎣⎦.。

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题一、单选题1.命题“每一个四边形的对角线都互相垂直”的否定是()A .每一个四边形的对角线都不互相垂直B .存在一个四边形,它的对角线不垂直C .所有对角线互相垂直的四边形是平行四边形D .存在一个四边形,它的对角线互相垂直2.已知集合{}1,,A a b =,{}2,,B a a ab =,若A B =,则20232022a b +=()A .1-B .0C .1D .23.设0.70.80.713,,0.8,3a b c -⎛⎫=== ⎪⎝⎭则()A .a b c >>B .b a c >>C .c a b<<D .c b a>>4.已知关于x 的一元二次不等式20ax bx c ++<的解集为(1,5)-,其中,,a b c 为常数,则不等式20cx bx a ++≤的解集是()A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .1,[1,)5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .1(,1],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭5.已知实数1x >,则函数221y x x =+-的最小值为()A .5B .6C .7D .86.函数331x x y =-的图象大致是()A .B .C .D .7.定义在0,+∞上的函数()f x 满足:对()12,0,x x ∞∀∈+,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()36f =,则不等式()2f x x>的解集为()A .()3,+∞B .()0,3C .()0,2D .()2,+∞8.已知函数()2,123,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(0a >且1a ≠),若函数()f x 的值域为R ,则实数a 的取值范围是()A .20,3⎛⎤⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .[)2,+∞D .[)3,+∞二、多选题9.已知集合{}{}22320,(2)20A xx x B x ax a x =-+==-++=∣∣,若B A ⊆,则实数a 的值可以为()A .2B .1C .12D .010.若R a b c ∈,,,则下列命题正确的是()A .若22ac bc <,则a b <B .若01a <<,则aC .若0a b >>且0c <,则b c ba c a+>+D .22245a b a b +≥--11.已知x ,y 都为正数,且21x y +=,则下列说法正确的是()A .2xy 的最大值为14B .224x y +的最小值为12C .()x x y +的最大值为14D .11x y+的最小值为3+12.高斯(Gauss )是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]2.33-=-,[]15.3115=.已知函数()21122x xf x =-+,()()G x f x =⎡⎤⎣⎦,则下列说法正确的有()A .()G x 是偶函数B .()G x 的值域是{}1,0-C .()f x 是奇函数D .()f x 在R 上是增函数三、填空题1313827-⎛⎫+=⎪⎝⎭.14.函数2()1(0,1)x f x a a a -=+>≠的图象必经过定点.15.不等式210ax ax a -++>对R x ∀∈恒成立,则实数a 的取值范围为.16.函数()1(0)g x ax a =+>,()22f x x x =+,若[]11,1x ∀∈-,[]02,1x ∃∈-使()()10g x f x =成立,则a 的取值范围是.四、解答题17.解关于x 的不等式2(1)0x ax a --+<;18.已知集合{}310A x x =<<,{}29140B x x x =-+<,{}32C x x m =<<,(1)求A B ⋂,()R A B ð;(2)若x C ∈是()x A B ∈ 的充分而不必要条件,求实数m 的取值范围.19.已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.20.某工厂某种航空产品的年固定成本为250万元,每生产x 件,需另投入成本为()C x ,当年产量不足80件时,21()103C x x x =+(万元).当年产量不小于80件时,10000()511450C x x x=+-(万元).每件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?21.设幂函数()22()33m f x m m x -=--在(0,)+∞单调递增,(1)求()f x 的解析式;(2)设不等式()45f x x ≤+的解集为函数()2()[(1)()]g x f x a f x f x =++-的定义域,记()g x 的最小值为()h a ,求()h a 的解析式.。

安徽省六安2023-2024学年高一上学期期中考试数学试题含解析

安徽省六安2023-2024学年高一上学期期中考试数学试题含解析

六安2023年秋学期高一年级期中考试数学试卷(答案在最后)满分:150分时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.命题“1x ∀>,20x x ->”的否定是()A.1x ∃≤,20x x ->B.1x ∀>,20x x -≤C.1x ∃>,20x x -≤D.1x ∀≤,20x x ->【答案】C 【解析】【分析】根据全称量词命题的否定为存在量词命题即可得解.【详解】因为全称量词命题的否定为存在量词命题,所以命题“1x ∀>,20x x ->”的否定是1x ∃>,20x x -≤.故选:C.2.若12162x A x ⎧⎫=≤≤⎨⎬⎩⎭,501x B x x ⎧⎫-=≥⎨⎬-⎩⎭,则()R A B =I ð()A.{}14x x <≤ B.{}14x x ≤< C.{}14x x << D.{}14x x ≤≤【答案】D 【解析】【分析】分别解指数不等式和分式不等式求出集合A 与集合B ,再由补集和交集知识进行求解即可.【详解】由12162x ≤≤,得14222x -≤≤,∵2x y =在R 上单调递增,∴解得14x -≤≤,∴{}1216142x A xx x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,又∵501x x -≥-()()51010x x x ⎧--≥⇔⎨-≠⎩,解得1x <或5x ≥,∴501x B x x ⎧⎫-=≥⎨⎬-⎩⎭{1x x =<或}5x ≥,∴{}15B x x =≤<R ð,又∵{}14A x x =-≤≤,∴(){}14A B x x ⋂=≤≤R ð.故选:D.3.已知p :12a >,q :指数函数()()32xf x a =-是增函数,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【答案】C 【解析】【分析】求出命题q 中a 的范围,判断两个命题间的充分性与必要性即可.【详解】因为指数函数()()32xf x a =-是增函数,所以3211a a ->⇒>,又p :12a >,所以p 是q 的必要不充分条件,故选:C4.若0.62a =,30.6b =,0.63c =,则它们的大小关系是()A.c a b >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】利用函数0.6y x =和0.6x y =的单调性即可比较.【详解】因为0.6y x =在()0,∞+上单调递增,所以0.60.60.6123<<,即1c a >>又0.6x y =在R 上单调递减,所以300.60.6<,即1b <,综上,c a b >>.故选:A5.若,x y 满足0,0,3x y xy x y >>=+,则3x y +的最小值为()A.10+B.10+C.12D.16【答案】D 【解析】【分析】利用乘“1”法即可得到答案.【详解】因为3xy x y =+,0,0x y >>,两边同除xy 得131x y+=,所以()133********y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+⎪ ⎪⎝⎭⎝⎭.当且仅当4x y ==时等号成立,故选:D .6.已知函数()x f x a b =+的图象如图所示,则函数()()()g x x a x b =--的大致图象为()A. B.C. D.【答案】A 【解析】【分析】根据指数函数的图象与性质结合函数()x f x a b =+的图象可求得,a b 的范围,再根据二次函数的图象即可得解.【详解】函数()x f x a b =+的图象是由函数x y a =的图象向下或向上平移b 个单位得到的,由函数()x f x a b =+的图象可得函数为单调递减函数,则01a <<,令0x =得()11,0b +∈-,则()2,1b ∈--,则函数()()()g x x a x b =--的大致图象为A 选项.故选:A .7.设定义在()2,2-上的函数()2112x f x x +=-,则使得()()121f x f x +>-成立的实数x 的取值范围是()A.1,02⎛⎫-⎪⎝⎭B.1,12⎛⎫-⎪⎝⎭C.()0,1 D.()0,2【答案】C 【解析】【分析】利用函数的单调性和奇偶性解不等式即可.【详解】()()()211=2x f x x x f -+=---,且定义域是()2,2-,所以()f x 为偶函数,且2112,x y x y +=-=在()0,2均为增函数,所以()f x 在()0,2为增函数,且()f x 为偶函数,所以()()121f x f x +>-,即1212122212x x x x ⎧+>-⎪-<+<⎨⎪-<-<⎩,解得01x <<.故选:C8.已知函数()f x 满足()()()1f x y f x f y +=++(,R x y ∈),当0x >时,()10f x +>且()12f =,若当[]1,3x ∈时,()()221f ax x f x ++<有解,则实数a 的取值范围为()A.9,4⎛⎫-∞- ⎪⎝⎭B.8,9⎛⎫-∞- ⎪⎝⎭C.(),2-∞- D.82,9⎛⎫--⎪⎝⎭【答案】B 【解析】【分析】证明函数单调递增,变换得到()()231f ax x f +<,根据单调性得到231ax x +<,计算函数最值得到答案.【详解】设12x x <,故()2110f x x -+>,则()()()()()2121112110f x f x f x x x f x f x x -=-+-=-+>,函数单调递增,()()221f ax x f x ++<,即()222f ax x x ++<,即()()231f ax x f +<,即231ax x +<在[]1,3x ∈有解,即221313924a x x x ⎛⎫<-=-- ⎪⎝⎭,2max1398249x ⎧⎫⎪⎪⎛⎫--=-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,故8,9a ⎛⎫∈-∞- ⎪⎝⎭.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭D.0a b c ++>【答案】AC 【解析】【分析】由题意可得3,4-是方程20ax bx c ++=的两个根,且0a >,然后利用根与系数的关系表示出,b c ,再逐个分析判断即可.【详解】关于x 的不等式20ax bx c ++≥的解集为(][),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;且方程20ax bx c ++=的两根为-3、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,因为12b ac a=-⎧⎨=-⎩,所以20cx bx a -+<,即2120ax ax a -++<,所以21210x x -->,解得14x <-或13x >,所以不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .10.以下从M 到N 的对应关系表示函数的是()A.R M =,R N =,1:f x y x→=B.R M =,{}0N y y =≥,:f x y x →=C.{}0M x x =>,R N =,:f x y →=D.*{|2,N }M x x x =≥∈*{|0,N },N y y y =≥∈2:22f x y x x →=-+【答案】BD 【解析】【分析】判断从M 到N 的对应关系是否表示函数,主要是判断集合M 中的每一个元素在集合N 中是否都有唯一的元素与之对应即可.【详解】对于A 选项,因0,M ∈而0没有倒数,故A 项错误;对于B 选项,因任意实数的绝对值都是非负数,即集合M 中的每一个元素在集合N 中都有唯一的元素与之对应,故B 项正确;对于C 选项,因每个正数的平方根都有两个,即集合M 中的每个元素在集合N 中都有两个元素与之对应,故C 项错误;对于D 选项,因2222(1)1,y x x x =-+=-+当*2,N x x ≥∈时,即有*,2,N y y ∈≥且每个x 对应唯一的y 值,故必有y N ∈成立,故D 项正确.故选:BD.11.已知函数()33f x x =--,下列说法正确的是()A.()f x 定义域为[)(]3,00,3-B.()f x 在(]0,3上单调递增C.()f x 为奇函数D.()f x 值城为()3,3-【答案】ABC 【解析】【分析】根据函数的性质逐个判定即可.【详解】对于A :函数定义域需满足290330x x ⎧-≥⎪⎨--≠⎪⎩,解得[)(]3,00,3x -∈ ,A 正确;对于B :当(]0,3x ∈时()f x ====,在(]0,3单调递减,所以()f x 在(]0,3内单调递增,B 正确;对于C :由A 知函数定义域为[)(]3,00,3- ,所以()f x ==,所以()()f x f x x-==-,所以()f x 为奇函数,C 正确;对于D :由B 知()f x 在(]0,3内单调递增,所以(]0,3x ∈时()(],0f x ∈-∞,又由C 知()f x 为奇函数,所以[)3,0x ∈-时()[)0,f x ∈+∞,所以()f x 得值域为(),-∞+∞,D 错误,故选:ABC12.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若函数()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A.函数()922f x x=-不存在跟随区间B.若[]1,a 为()222f x x x =-+的跟随区间,则2a =C.二次函数()22f x x x =-+存在“3倍跟随区间”D.若函数()f x m =-存在跟随区间,则1,04m ⎡⎤∈-⎢⎥⎣⎦【答案】BC 【解析】【分析】根据“跟随区间”的定义对选项逐一分析,根据函数的单调性、值域等知识确定正确答案.【详解】对于A 选项,由题,因为函数()922f x x=-在区间(),0∞-与()0,∞+上均为增函数,若()922f x x =-存在跟随区间[],a b 则有922922a ab b ⎧=-⎪⎪⎨⎪=-⎪⎩,即,a b 为922x x =-的两根.即22940x x -+=的根,故1,42a b ==,故A 错误.对于B 选项,若[]1,a 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,a 为增函数,故其值域为21,22a a ⎡⎤-+⎣⎦,根据题意有222a a a -+=,解得1a =或2a =,因为1a >故2a =,故B 正确.对于C 选项,若()22f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b ,当1a b <≤时,易得()22f x x x =-+在区间上单调递增,此时易得,a b 为方程232x x x =-+的两根,求解得=1x -或0x =.故定义域[]1,0-,则值域为[]3,0-.故C 正确.对于D 选项,若函数()f x m =-存在跟随区间[],a b ,因为()f x m =-为减函数,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩即()()11a b a b a b -=+-+=-(,因为a b <1=.易得01≤<.所以(1a m m ==--,令t =[]()0,1t ∈代入化简可得20t t m --=,同理t =也满足20t t m --=,即20t t m --=在区间[]0,1上有两不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.)2232711644-⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭________.【答案】13【解析】【分析】根据题意,由指数幂的运算,即可得到结果.【详解】原式2332345194134⨯⎛⎫=⨯+-=+= ⎪⎝⎭.故答案为:1314.已知函数()f x 的定义域为()1,3,则函数()3g x -=的定义域为________.【答案】()5,6【解析】【分析】根据复合函数的定义域的性质求解即可.【详解】因为()f x 的定义域为()1,3,所以()3f x -满足13346x x <-<⇒<<,又函数()3g x -=有意义,所以505x x ->⇒>,所以函数()3g x -=的定义域为()5,6,故答案为:()5,615.已知)132fx +=++,则()f x 的解析式为________.【答案】()2354f x x x =-+,1x ≥【解析】【分析】换元法求解表达式,第一步令括号内的表达式为t ,第二步将表达式中的x 换成t 即可.【详解】)132f x +=++的定义域为[)0,∞+.令1,1t t =≥,则2(1)x t =-,所以,由)132fx +=++得()23(1)2,1f t t t =-++≥,即()2354,1f t t t t =-+≥.于是()2354,1f x x x x =-+≥.故答案为:()2354,1f x x x x =-+≥.16.已知函数()f x x x a =-,当[]0,1x ∈时()f x 的最大值为3,则实数a 的值为________.【答案】2-或4【解析】【分析】化简()f x x x a =-解析式为分段函数形式,讨论0a ≤时,结合最大值求得a 的值;0a >时,数形结合,讨论12a ≥和1122a a +<£以及112a <,确定函数在何处取得最值,求得a 的值,综合可得答案.【详解】由题意知函数的定义域为R ,()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a ≤时,由[]0,1x ∈得()()2224a a f x x x a x ⎛⎫=-=--⎪⎝⎭,所以当1x =时,()max 13,2f x a a =-=∴=-,当0a >时,()f x 的图象如图所示,当12a≥,即2a ≥时,()f x 在[0,1]上单调递增,所以()f x 函数在[0,1]上的最大值为(1)13,4f a a =-=∴=,当1122a a <£,即22a ≤<时,()f x 在[0,1]上的图象在2a x =处达到最高点,所以()f x 在[0,1]上的最大值为2(324a a f ==,不符合题意;当112a <,即02a <<-时,()f x 在[0,1]上的图象在1x =处达到最高点,所以()f x 在[0,1]上的最大值为(1)13,2f a a =-==-,不符合题意,故a 的值为2-或4,故答案为:2-或4四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合U =R ,{}03A x x =≤≤,{}21,R B x m x m m =≤≤+∈.(1)2m =,求A B ⋃;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.【答案】(1){}05A B x x ⋃=≤≤(2)()[],10,1-∞-⋃【解析】【分析】(1)根据集合的并集运算求解即可.(2)根据命题间的充分不必要关系转化为集合间的包含关系,进而求出参数取值范围.【小问1详解】当2m =时,{}25B x x =≤≤,因为{}03A x x =≤≤,所以{}05A B x x ⋃=≤≤【小问2详解】由题意“x B ∈”是“x A ∈”的充分不必要条件得B AÜ①若B =∅,则21m m >+,解得1m <-;②若B ≠∅,则21m m ≤+,解得1m ≥-;B A Ü,∴0213m m ≥⎧⎨+<⎩或0213m m >⎧⎨+≤⎩,∴01m ≤≤综合①②得:m 的取值范围是()[],10,1-∞-⋃.18.已知幂函数()()233af a a x x =-+为偶函数,a ∈R .(1)求()f x 的解析式;(2)若函数()g x 是定义在R 上的奇函数,当0x >时,()()1g x f x x =++,求函数()g x 的解析式.【答案】(1)()2f x x=(2)()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩【解析】【分析】(1)根据题意,由幂函数的定义,列出方程,即可得到结果;(2)根据题意,由函数的奇偶性求解函数解析式,即可得到结果.【小问1详解】()f x 为幂函数,∴2331a a -+=,解得1a =或2a =,又()f x 为偶函数,∴2a =,∴()2f x x =.【小问2详解】由(1)得,当0x >时,()21g x x x =++①当0x =时,()0g x =;②当0x <时,0x ->;∴()()()2211g x x x x x -=-+-+=-+,∴()()21g x g x x x =--=-+-综上得()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩19.已知二次函数()f x 是R 上的偶函数,且()04f =,()15f =.(1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[)2,+∞上单调递增;(2)当0a >时,解关于x 的不等式()()()21212f x a x a x <-+++.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)待定系数法求的()f x ,应用定义法证明函数的单调性;(2)分类讨论两根的大小关系即可求解.【小问1详解】设()2f x ax bx c =++,(0a ≠)()f x 为偶函数,∴0b =.()04f =,∴4c =,∴()24f x ax =+又()15f =,∴1a =,∴()24f x x =+,∴()244x g x x x x+==+.证明:[)12,2,x x ∀∈+∞,且12x x <,()()12121244g x g x x x x x ⎛⎫-=+-+ ⎪⎝⎭()()1212124x x x x x x --=[)12,2,x x ∈+∞,且12x x <,∴120x x -<,1240x x ->,120x x >∴()()120g x g x -<,∴()()12g x g x <∴()g x 在[)2,+∞上单调递增.【小问2详解】()()2241212x a x a x +<-+++整理得:()22120ax a x -++<,因式分解得()()120ax x --<当0a >,方程()()120ax x --=的两根为1a 和2,且1122aaa--=.①当102a <<时,12a >,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭②当12a =时,12a =,原不等式的解集为∅③12a >时,12a <,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭综上:当102a <<时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭当12a =时,不等式的解集为∅当12a >时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭.20.天气转冷,宁波某暖手宝厂商为扩大销量,拟进行促销活动.根据前期调研,获得该产品的销售量a 万件与投入的促销费用x 万元(0x ≥)满足关系式91ka x =-+(k 为常数),而如果不搞促销活动,该产品的销售量为6万件.已知该产品每一万件需要投入成本20万元,厂家将每件产品的销售价格定为432a ⎛⎫+ ⎪⎝⎭元,设该产品的利润为y 万元.(注:利润=销售收入-投入成本-促销费用)(1)求出k 的值,并将y 表示为x 的函数;(2)促销费用为多少万元时,该产品的利润最大?此时最大利润为多少?【答案】(1)3k =,361121y x x =--+,0x ≥(2)当促销费用为5万元时,该产品的利润最大,最大利润为101万元【解析】【分析】(1)由题意求得k ,再利用利润公式即可求得y 关于x 的函数;(2)利用基本不等式即可得解.【小问1详解】依题意,当0x =时,96a k =-=,∴3k =,∴391a x =-+,所以43632201241121y a a x a x x a x ⎛⎫=+--=+-=-- ⎪+⎝⎭,∴361121y x x =--+,0x ≥.【小问2详解】因为3636112113111y x x x x ⎛⎫=--=-++ ⎪++⎝⎭113101≤-=,当且仅当3611x x =++,即5x =时,等号成立.∴当促销费用为5万元时,该产品的利润最大,最大利润为101万元.21.已知函数()133x x bf x a++=+是定义在R 上的奇函数.(1)求实数a ,b 的值;(2)若对任意()1,2x ∈,不等式()()222210f x x f x k +-+->恒成立,求实数k 的取值范围.【答案】(1)3a =,1b =-.(2)4k ≤【解析】【分析】(1)利用()00f =,()()11f f -=-,求得a ,b 的值,再检验即可;(2)先证明()f x 为R 上单调递增,再结合奇偶性可得2321k x x <+-恒成立,利用二次函数的性质求得()2321g x x x =+-,()1,2x ∈的最小值,进而可解.【小问1详解】由()f x 是R 上的奇函数得()1003b f a +==+,∴1b =-,∴()1313xx f x a+-=+,又()()11f f -=-,解得3a =,∴()()1313133331x x x x f x +--==++,则()()()()()311331331313331x xx xxxf x f x ------===-=-+++∴()f x 为R 上的奇函数,∴3a =,1b =-.【小问2详解】()()()31312121331331331x x x x x f x -+-⎛⎫===- ⎪+++⎝⎭任取12,R x x ∈,且12x x <,则()()()()()212121122332231313131x x x x x x f x f x --=-=++++,因为3x y =在R 上单调递增,所以当12x x <时,1233x x <,即12330x x -<,又2110,1033x x +>+>,所以()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上单调递增.()1,2x ∀∈,()()22221f x x f x k +->--由()f x 为奇函数,上式可变形为()()22221f x x f k x+->-由()f x 为R 上增函数得22221x x k x +->-即2321k x x <+-恒成立,令()2321,12g x x x x =+-<<,而()2214321333g x x x x ⎛⎫=+-=+- ⎪⎝⎭,所以()g x 在()1,2单调递增,所以()()14g x g >=,∴4k ≤.22.已知定义在R 上的函数()142xx f x m m +=⋅--(m ∈R ).(1)当1m =时,求()f x 的值域;(2)若函数()f x 在()1,+∞上单调递增,求实数m 的取值范围;(3)若函数()y g x =的定义域内存在0x ,使得()()002g a x g a x b ++-=成立,则称()g x 为局部对称函数,其中(),a b 为函数()g x 的局部对称点,若()1,0是()f x 的局部对称点,求实数m 的取值范围.【答案】(1)[)2,-+∞(2)1,2⎡⎫+∞⎪⎢⎣⎭(3)40,3⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据题意,由换元法,结合二次函数值域,即可得到结果;(2)根据题意,分0,0,0m m m =<>讨论,结合条件,代入计算,即可得到结果;(3)根据题意,由局部对称点的定义,结合函数的单调性,代入计算,即可得到结果.【小问1详解】当1m =时,()1421xx f x +=--令20x t =>,()2221122y t t t =--=--≥-,∴()f x 的值域为[)2,-+∞.【小问2详解】令22x t =>,22y mt t m=-- 2x t =在()1,+∞上单调递增,∴要使()f x 在()1,+∞上单调递增,只需22y mt t m =--在()2,+∞上单调递增①当0m =时,2y t m =--在()2,+∞上单减不符合题意;②当0m <时,22y mt t m =--开口向下不符合题意;③当0m >时,012m m>⎧⎪⎨≤⎪⎩,解得12m ≥,∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【小问3详解】由()1,0是()f x 的局部对称点得x ∃∈R ,()()110f x f x ++-=代入整理得()()2442220x xxx m m --+-+-=①令222x x t -=+≥,则()22442222x x x xt --+=+-=-代入①式得22250mt t m --=,2225252tm t t t==--当2t ≥时,函数2y t =和5y t=-均为增函数∴52t t -在[)2,+∞上单调递增,∴5322t t -≥,∴240,32t t t⎛⎤∈ ⎥⎝⎦-,∴实数m 的取值范围为40,3⎛⎤ ⎥⎝⎦.。

最新版高一数学上学期期中试题及答案(新人教A版 第29套)

最新版高一数学上学期期中试题及答案(新人教A版 第29套)

高一上学期期中考试数学试题网]一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在①{}10,1,2⊆;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④∅{}0上述四个关系中,错误..的个数是( ) A.1个 B.2个 C.3个 D.4个2.下列函数中,在区间()0,+∞上是增函数的是( )A .2y x =-B .1y x =C .12xy ⎛⎫= ⎪⎝⎭ D .2log y x = 3. 函数1()lg(1)1f x x x=++-的定义域是( ) A .(),1-∞- B .()1,+∞ C .()()1,11,-+∞ D .(),-∞+∞4.已知函数2()(1)m f x m m x =-+是幂函数,则实数m 的值是( )A .0 B.1 C.0或1 D.1-5. 若0.3321log ,(),log 0.82a b c p ===,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>6.已知()f x 是定义在R 上的奇函数,当0x >时,()23x f x =-,那么(2)f -的值是( ) A .1- B .114 C .1 D .114- 7. 在下列区间中,函数()43x f x e x =+-的零点所在的区间为( ) A.1,04⎛⎫- ⎪⎝⎭ B. 10,4⎛⎫ ⎪⎝⎭ C. 11,42⎛⎫ ⎪⎝⎭ D.13,24⎛⎫ ⎪⎝⎭ 8.设函数⎩⎨⎧+∞∈-∞∈=),2(,log ]2,(,2)(2x x x x f x ,则满足4)(=x f 的x 的值是( )A.2B.16C.2或16D.-2或169.已知函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是( )A .B .C .D .10.已知3log 2,35b a ==,用,a b表示log ) A. 1a b ++ B. 1(1)2a b -- C . 1a b -- D.1(1)2a b ++11..函数(]12log ,0,8y x x =?的值域是 ( ) A. [)3,-+? B.[)3,+? C. (],3-? D.(],3-?12.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是( )元.A.2520B.2250C.900D.3150二、填空题:(本大题共4小题,每小题4分,共16分)13. 函数 )10(31≠>+=-a a ay x 且的图象必过定点P , P 点的坐标为_________.14.函数232(01)y x x x =-+≤≤的值域为15.函数()f x 的定义域为16.下列函数:○1y=x lg ; ○2;2xy = ○3y = x 2; ○4y= |x| -1;其中有2个零点的函数的序号是 。

高一数学期中检测题(29)

高一数学期中检测题(29)

高一数学期中检测题(29)一、选择题:本大题共12小题.每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.1.已知集合{0,1,2,3}A =,{2,3,4,5}B =,则A B 的子集个数为A .2B .3C .4D .52.若集合{0}P x R x =∈>,{(1)(4)0}P x Z x x =∈+-<,则P Q =A .(0,4)B .(4,)+∞C .{1,2,3}D .{1,2,3,4}3.设集合{20}A x x =->,2{320}B x x x =-+<,若全集U A =,则U C B =A .(,1]-∞B .(,1)-∞C .(2,)+∞D .[2,)+∞4.已知0.70.8a =,2log 0.7b =,0.81.3c =,则a ,b ,c 的大小关系是A .a b c >>B .b a c >>C .c b a >>D .c a b >>5.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是A .21()f x x =B .2()1f x x =+C .3()f x x =D .1()f x x= 6.已知()f x 是R 上的奇函数,当0x ≥时,2()2f x x x =+,则(3)f -=A .15-B .0C .6D .157.已知函数2log (0,)()3(,0]x x x f x x ∈+∞⎧=⎨∈-∞⎩,则1[()]4f f = A.9- B.19- C.19D.98 A.(,10]-∞ B.(,10)-∞ C.(0,10] D.(10,)+∞9.函数1()21x f x =-的值域为 A.(,1)-∞- B.(,1]-∞- C.(,1)(0,)-∞-+∞ D.(,1][0,)-∞-+∞10.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的 解集是A .{}|303x x x -<<>或B .{}|303x x x <-<<或C .{}|33x x x <->或D .{}|3003x x x -<<<<或11.已知(3)1()log 1a a x a x f x x x --<⎧=⎨≥⎩是R 上的增函数,那么a 的取值范围是 A .3[,3)2B .(1,3)C .(0,1)D .(1)+∞, 12.当102x <≤时,2log a x x <恒成立,则a 的取值范围是 A. (10,16) B.(10,4) C.(1,116) D.(1,14) 二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数()f x 的图象经过点(12,4),则(6)f 的值为 . 14.函数2()43f x x x =-++的单调递增区间是 .15.函数3()21x f x a +=+的图像一定经过的定点的坐标为 .16.设25a b m ==,且1112a b +=,则m = . 三、解答题:本题共6道大题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知集合{37}A x x =≤<,{210}B x x =<<,{1,2,3}C =.(Ⅰ)求A B ;()R C A B ;(Ⅱ)写出集合C 的所有非空真子集.18.(本小题满分12分)计算下列各式的值:(Ⅰ)011191132()()(()348----++-- (Ⅱ)51lg12.5lg lg 82-+. 19.(本小题满分12分) (Ⅰ)已知()1x f x x =+,求1(2)+()2f x f x; (Ⅱ)已知2(1)21f x x x +=++,求()f x 的解析式.20.(本小题满分12分)为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时.超过部分每吨5元,当用水超过15吨时,超过部分每吨10元.(Ⅰ)求水费y (元)关于用水量x (吨)之间的函数关系式;(Ⅱ)若某居民某月所交水费为93元,试求此用户该月的用水量.21.(本小题满分12分)设函数2()3f x x ax =++,其中,a 为实数.(Ⅰ)当x R ∈时,()f x a ≥恒成立,求a 的取值范围;(Ⅱ)当[2,2]x ∈-时,()f x a ≥恒成立,求a 的取值范围.22.(本小题满分12分)已知定义在R 上的函数()f x 对任意实数a ,b 都满足()()()f a b f a f b +=,且(1)0f ≠,当0x >时,()1f x >.(Ⅰ)求(0)f 的值;(Ⅱ)证明:()f x 在(,)-∞+∞上是增函数; (Ⅲ)解不等式1(2)(24)f x f x -<-.。

高一数学上学期期中试题29

高一数学上学期期中试题29

卜人入州八九几市潮王学校九中二零二零—二零二壹高一数学上学期期中试题本卷须知卷I〔选择题〕一、选择题〔此题一共计12小题,每一小题5分,一共计60分,〕1.集合,,那么A. B. C. D.2.函数的定义域是〔〕A. B.C. D.3.以下四个图象中,可以作为函数的图象的是〔〕A. B. C. D.4.假设,那么的值是〔〕A. B. C. D.5.以下函数中,在区间上为增函数的是A. B. C. D.6.函数的零点所在的区间是〔〕A. B.C. D.7.方程的解的个数为〔〕A.个B.个C.个D.个8.函数且在上的最大值与最小值的差为,那么的值是〔〕A. B. C.或者 D.或者9.是定义在上的奇函数,且当时,,那么的值是( )A. B. C. D.10.设,,,那么〔〕A. B. C. D.11.函数的大致图象为A. B. C. D.12.假设函数⎩⎨⎧≤+->=1,1)32(1,)(xxaxaxfx是R上的减函数,那么实数a的取值范围是〔〕A.)1,32(B .)1,43[C .]43,32(D.),32(+∞卷II〔非选择题〕二、填空题〔此题一共计4小题,每一小题5分,一共计20分,〕13.假设点在幂函数的图象上那么_________.14.且恒过定点,那么点的坐标为________.15.设函数假设,那么________.16.对于以下结论:①函数的图象可以由函数且的图象平移得到;②函数与函数的图象关于轴对称;③方程的解集为;④函数为奇函数.其中正确的结论是________〔把你认为正确结论的序号都填上〕.三、解答题〔此题一共计6小题,17题10分,18、19、20、21、22各12分,一共计70分〕17.求的值;求的值.3),求的值;18.集合,集合.求当时,,;假设,务实数的取值范围.19.二次函数.〔1〕假设只有一个零点,务实数的值;〔2〕假设在区间内各有一个零点,务实数的取值范围.20.是定义在上的增函数,且满足,.求证:;求不等式的解集.21.函数,且.求的定义域;判断的奇偶性并予以证明;当时,求使的的取值范围.22.定义域为的函数是奇函数.求,的值;假设对任意的,不等式恒成立,求的取值范围.参考答案与试题解析2021年11月14日高中数学一、选择题〔此题一共计12小题,每一小题3分,一共计36分〕1.【答案】C【考点】交集及其运算【解析】求解不等式化简集合,再由交集的运算性质得答案.2.【答案】B【考点】函数的定义域及其求法【解析】由题意,分子根号下的式子大于或者等于零,分母不为零,据此列出的不等式组,求解即可.3.【答案】D【考点】函数的概念及其构成要素【解析】此题暂无解析4.【答案】A【考点】指数式与对数式的互化【解析】求出,利用对数运算法那么化简求解即可.5.【答案】A【考点】函数单调性的判断与证明【解析】根据根本初等函数的单调性,判断选项里面的函数是否满足条件即可.6.【答案】D【考点】函数的零点与方程根的关系【解析】由题意可以画出与的图象,他们的交点就是函数的零点,从而求解.7.【答案】C【考点】根的存在性及根的个数判断【解析】根据函数与方程之间的关系转化为两个函数的交点个数进展求解即可.8.【答案】D【考点】指数函数单调性的应用【解析】此题暂无解析9.【答案】C【考点】函数奇偶性的性质函数的求值【解析】根据函数奇偶性的性质,进展转化即可得到结论.10.【答案】D【考点】对数值大小的比较【解析】由于,,,即可得出.11.【答案】A【考点】函数奇偶性的性质函数的图象【解析】此题暂无解析12.【答案】C【考点】分段函数的应用函数单调性的性质【解析】此题暂无解析二、填空题〔此题一共计4小题,每一小题3分,一共计12分〕13.【答案】【考点】幂函数的概念、解析式、定义域、值域【解析】此题暂无解析14.【答案】【考点】指数函数的图象【解析】根据指数函数过定点的性质,即恒成立,即可得到结论.15.【答案】或者【考点】分段函数的应用【解析】按照与两种情况,分别得到关于的方程,解之并结合大前提可得到方程的解,最后综合即可.16.【答案】①④【考点】对数函数图象与性质的综合应用【解析】①利用图象的平移关系判断.②利用对称的性质判断.③解对数方程可得.④利用函数的奇偶性判断.三、解答题〔此题一共计7小题,每一小题10分,一共计70分〕17.【答案】解:原式.原式.【考点】对数的运算性质【解析】〔1〕利用指数运算性质即可得出.〔2〕利用对数运算性质即可得出.案】解:3)等式平方得:,∴.【考点】对数的运算性质有理数指数幂的化简求值【解析】〔1〕根据:可得;〔2〕根据指数与对数的运算性质可得.18.【答案】解:当时,,∴,.由得:,那么有:解得即,∴实数的取值范围为.【考点】子集与交集、并集运算的转换集合关系中的参数取值问题交集及其运算并集及其运算【解析】〔1〕由题意可得,,根据集合的根本运算可求〔2〕由得,结合数轴可求的范围19.【答案】解:〔1〕假设只有一个零点,那么判别式,即,那么或者.〔2〕假设在区间内各有一个零点,那么,即,那么,解得,即实数的取值范围是.【考点】函数的零点与方程根的关系【解析】〔1〕假设只有一个零点,那么判别式,解方程即可.〔2〕根据一元二次函数根的分布建立不等式关系进展求解即可.20.【答案】证明:由题意可得;解:原不等式可化为∵是定义在上的增函数∴解得:.【考点】抽象函数及其应用函数单调性的性质【解析】〔1〕由利用赋值法及可求证明〔2〕原不等式可化为,结合是定义在上的增函数可求21.【答案】解:,那么解得.故所求定义域为.为奇函数.证明:由知的定义域为,且,故为奇函数.因为当时,在定义域内是增函数,所以.解得.所以使的的取值范围是.【考点】对数函数的单调性与特殊点对数函数的定义域函数奇偶性的判断【解析】根据对数的性质可知真数大于零,进而确定的范围,求得函数的定义域.利用函数解析式可求得,进而判断出函数为奇函数.根据当时,在定义域内是增函数,可推断出,进而可知进而求得的范围.22.【答案】解:因为是奇函数,所以,即,.又由知,,,.经检验,时,是奇函数.由知,易知在上为减函数.又是奇函数,,等价于.为减函数,由上式可得:,即对一切有:,从而判别式.的取值范围是.【考点】不等式恒成立的问题指数函数单调性的应用奇偶性与单调性的综合【解析】利用奇函数定义,在中的运用特殊值求,的值;首先确定函数的单调性,然后结合奇函数的性质把不等式转化为关于的一元二次不等式,最后由一元二次不等式知识求出的取值范围.。

高一数学上学期期中试题附答案

高一数学上学期期中试题附答案

2019-2019年高一数学上学期期中试题附答案?一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。

)1、已知集合则集合的非空子集个数为()个.A. 15B. 16C. 7D. 82、下列函数是偶函数,且在区间上单调递减的是()A. B. C. D.3、已知幂函数的图像过点,则()A. B. C. D.4、三个数的大小关系是()A. B.C. D.5、函数与在同一坐标系中的图像只可能是( ) A.B.C.D.6、在用二分法求方程的一个近似解时,现在已经将一根锁定在区间内,则下一步可判定该根所在区间为()A. B. C. D.7、已知函数和函数,则函数与的图象关于()对称A. 轴B. 轴C.直线D. 原点8、已知是实数集,集合,则()A. B.C. D.9、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示,请根据以上数据作出分析,这个经营部将销售单价定为()元时才能获得最大的利润.销售单价/元678910 1112日均销售量/桶480440400360320280240A. 10.5B. 6.5C. 12.5D. 11.510、已知函数是定义在R上的偶函数,在上单调递减,且有,则使得的的范围为()A.B.C.?D.11、给出下列命题:1)函数和是同一个函数;2)若函数,则函数的单调递减区间是;3)对于函数,的图像关于轴对称的必要不充分条件;4)已知函数,定义函数,则函数是偶函数且当时,函数有四个零点.其中正确命题的个数有()个.A. 1B. 2C. 3D. 412、已知函数是定义在R上的奇函数,当时,若则实数的取值范围为()A . B. C. D.二、填空题(本大题共有4个小题,每小题5分,共20分)13、命题“若,则”的逆否命题为14、已知,则=1 5、已知关于方程()有两个实数解,则的取值范围是。

高一数学上学期期中试题4 29

高一数学上学期期中试题4 29

卜人入州八九几市潮王学校二零二零—二零二壹高一数学上学期期中试题总分值是:150分考试时间是是:120分钟 本卷须知:1、答第I2、每一小题在选出答案以后,需要用2B 铅笔把答题卡对应题目之答案涂黑。

如需改动,用橡皮擦干净后,再改涂在其它答案标号上;3、填空题答案写在答题纸规定的题号处;4、解答题应写出文字说明、推理或者演算过程;每一小题必须在答题纸题号所指示的答题区域答题。

本套试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两局部第I 卷〔选择题一共60分〕一、选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

1.以下几个关系中正确的选项是【】A.{}00=B.{}00∈C.0⊆{0}D.{}0φ=2()1log xf x =-的定义域为M,那么M=【】A.{}2x x ≤ B.{}02x x <≤ C.{}2x x ≥ D.3.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},那么A ∩(UB )=【】A.{}2 B.{}2,3 C.{}3 D.{}1,34.2()23f x x x =-+在区间[0,]t 上有最大值3,最小值2,那么t 的取值范围是【】A .B .C .D .5.三个数:0.22,21()2,122log 的大小是【】A.122log >0.22>21()2 B.122log >21()2>0.22C.0.22>21()2>122log D.0.22>122log >21()2)1,0(4)(1≠>+=-a a a x f x 的图象恒过定点p ,那么点p 的坐标【】A.(1,5)B.(1,4)C.(0,4)D.(4,0) 7.以下函数在定义域内,满足关系式1212()()()f x x f x f x +=的函数是【】A.3x y = B.2log x y = C.2y x = D.sin y x =2()ln f x x x=-的零点所在的大致区间是【】 A.(1,2)B.(2,3)C.1(1,)e和(3,4)D.(,)e +∞9.当1>a 时,在同一坐标系中,函数x a y -=与xa y log =的图像是【】A.B.C.D.10.函数⎩⎨⎧≥<+-=1,log 1,4)13(x x a x a y xa 是R 上的减函数,那么a 的取值范围是【】 A. B. C., D.11.2(1)20140a b --=,那么b a a b +=【】12.函数()af x x x=+在(0,2]上是减少的,在[2,)+∞上是增加的,那么a =【】 2第二卷〔非选择题一共90分〕二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕 13.设:f A B →是A 到B 的一个映射,其中A=B={}(,)|,x y x y R ∈,:(,)(,)f x y x y x y →-+,那么B 中元素(1,2)-在中A 的原像是; 14.函数()y f x =的图像与函数3log y x =(x>0)的图像关于直线y x =对称,那么()f x =; 15.幂函数()f x 的图像过点427)(,那么()f x 的解析式是____________; 16.函数2log (0)()3 (0)xx x f x x >⎧=⎨≤⎩,那么1[()]4f f 的值是. 三、解答题〔本大题一一共6小题,总分值是一共70分,解答题写出必要的文字说明、证明过程或者演算步骤〕17.〔本小题总分值是10分〕集合{}{}21,3,0A B x x ax b =-=++=,且A B =,务实数,a b 的值.18.〔本小题总分值是12分〕求以下各式的值:(1)(1)312log 2082264()(1)lg 10log (ln )349e π-++-+++.(2)假设lg 2a =,lg3b =,求5log 12的值〔结果用a ,b 表示〕. 19.〔本小题总分值是12分〕函数axx g )21()(=,函数)(x g 的图像过点,其中a 为常数.求a 的值; 假设24)(-=-x x h ,且)()(x h x g =,求满足条件的x 的值.20.〔本小题总分值是12分〕某城现有人口总数为100万人,假设年自然增长率为001.2试答复下面的问题:〔1〕写出该城人口总数y 〔万人〕与年份x 〔年〕的函数关系式;〔2〕计算10年以后该城人口总数〔准确度为0.1万人〕;〔3〕计算大约多少年以后该城人口总数将到达120万人〔准确度为1年〕。

2021年南京二十九中高一上数学期中考试真题和答案

2021年南京二十九中高一上数学期中考试真题和答案

2021-2022学年度高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上 1. 已知集合{}0,1,2A =,{}1B x x =≥,则A B =( ).A.{}0 B.{}1 C.{}1,2 D.{}0,1,22.在下列图像中,能表示函数图像的是()A.B.C.D.3.已知:p 两个三角形对应角相等,:q 两个三角形全等,则()A.p 是q 的充分不必要条件B.p 是q 的必要不充分条件C.p 是q 的充要条件D.p 是q 的既不充分也不必要条件4.不等式11x≤的解集为(). A.{}1x x ≥ B.{}10x x x ≥≤或 C.{}10x x x ≥<或 D.{}01x x <≤5.已知函数()35,01,0x x f x x x x +≤⎧⎪=⎨+>⎪⎩,则()()1f f −=( ). A.52B.1−C. 52−D.116.设a 是非零实数,已知11a a −−=,则()()122442a a a a a a −−−++−=−( ). A.16B.13C.1D.37.某部门新录用甲、乙、丙三名工作人员,他们各自出生于鼓楼、玄武、建邺中的某个区,张松、单明、王玥有如下猜测:张松:甲出生于建邺,乙出生于玄武,丙也出生于建邺;单明:甲出生于建邺,乙出生于鼓楼,丙不出生于鼓楼;王玥:甲出生于鼓楼,乙出生于建邺,丙也出生于鼓楼;已知对甲、乙、丙的出生地,上述三人的猜测都是对1个,错2个,根据以上信息,在以下选项中可能正确的选项是( ).A. 甲出生于鼓楼,乙出生于玄武,丙出生于建邺B. 甲出生于建邺,乙出生于鼓楼,丙出生于鼓楼C. 甲出生于鼓楼,乙出生于玄武,丙出生于玄武D. 甲出生于玄武,乙出生于建邺,丙出生于鼓楼8. 已知,a b ∈R ,且a b ≠,满足()()()()4242332021332021a ab b ⎧−+−=⎪⎨−+−=⎪⎩,若对任意0x >均有t x a b x +≥+成立,则实数t 的最小值为( ). A. 3− B. 6− C. 6 D. 9二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分) 9. 下列命题中正确的是( ).A. 0∉∅B. {}1⊆NC. 12R Q ∈D. 若()x A B ∈,则()x A B ∈10. 已知01a b >>>−,则下列选项中一定正确的是( ).A. 11a b> B. 2a a b <− C. 2b a b <− D.b a a b>11. 已知函数()221174f x x x =+−,则下列说法正确的是( ). A. ()f x 的定义域是{}0x x ≠ B. ()f x 的最小值是94−C. ()f x 在区间()1,0−上是增函数D. ()0f x >的解集是()()(),22,22,−∞−+∞12. 设102a =,lg3b =,则下列四个等式中正确的是( ).A. lg122a b =+B. 61log 15a b a b−+=+ C. 106a b+= D. 152aa−=三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上13. 命题“2,9x x ax ∀∈−>R ”的否定是 .14. 计算423log 8log 3log 4+⨯= .15. 已知函数()()()2111f x x x =−−<<,则()f x 在区间()1,1−上是 函数(用“增”、“减”填空),方程()()2210f x f x −−−=的解是 .16. 对于实数m 和n ,定义运算22,:,n mn m nm n m mn m n⎧−≤⎪**=⎨−>⎪⎩,设()()()311f x x x =+*+且关于x 的方程()f x k =恰有三个互不相等的解123,,x x x ,则123x x x ++的取值范围是 .三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17. (本题10分)计算: ⑴ 12133227649125−−⎛⎫++ ⎪⎝⎭; ⑵ ()2lg 2lg5lg 20lg 0.1+⨯+.18. (本题12分)已知集合{}2230A x x x =+−<,{}2B x a x a =<<+. ⑴ 当0a =时,求AB ;⑵ 已知“x B ∈”是“x A ∈”的充分条件,求实数a 的取值范围.19. (本题12分)在①()5f a =,②12f a ⎛⎫= ⎪⎝⎭,③()()2121f f =+中,挑选一个补到下面的空格处,并作答: 已知一次函数()y f x =满足()13y f x ax =+=+,且 , ⑴ 求()y f x =的解析式;⑵ 解不等式()22xf x b b ≤+(其中b ∈R ).20. (本题12分)已知函数()()211x af x x x b+=−<<+是奇函数,且1225f ⎛⎫= ⎪⎝⎭,其中,a b 为实数. ⑴ 求,a b 的值:⑵ 判断()f x 的单调性,并用定义证明.21. (本题12分)通过技术创新,某公司的汽车特种玻璃已进入欧洲市场,2021年,该种玻璃售价为25欧元/平方米,销售量为80万平方米,销售收入为2000万欧元.⑴据市场调查,若售价每提高1欧元/平方米,则销售量将减少2万平方米;要使销售收入不低于2000万欧元,试问:这种玻璃的售价最多提高到多少欧元/平方米?⑵为提高年销售量,增加市场份额,公司将在2022年对该种玻璃实施二次技术创新和营销策略改革:提高价格到m 欧元/平方米(其中25m >);投入()256003m −万欧元作为技术创新费用,投入500万欧元作为固定宣传费用,投入2m 万欧元作为浮动宣传费用,试问:该种玻璃的销售量n (单位:万平方米)至少达到多少时,才可能使2022年的销售收入不低于2021年销售收入与2022年投入之和?并求出此时的售价.22. (本题12分)已知函数()24f x x ax =−++,()221g x x a x a =−+−+,其中a 为实数. ⑴当1a =时,① 求不等式()()f x g x ≥的解集;② 若不等式()()f x g x mx −≥的解集包含[]1,1−,求实数m 的取值范围; ⑵已知()4g x ≥在x ∈R 时恒成立,求a 的取值范围.2021-2022学年度高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上 1. 已知集合{}0,1,2A =,{}1B x x =≥,则AB =( ).A.{}0 B.{}1 C.{}1,2 D.{}0,1,2【答案】C ; 【解析】{}1,2AB =,故选C .2.在下列图像中,能表示函数图像的是()A.B.C.D.【答案】D ;【解析】函数一个自变量无法对应多个因变量,只有D 正确.3.已知:p 两个三角形对应角相等,:q 两个三角形全等,则()A.p 是q 的充分不必要条件B.p 是q 的必要不充分条件C.p 是q 的充要条件D.p 是q 的既不充分也不必要条件【答案】B ;【解析】对应角相等无法推出全等,而全等对应角必然相等,故选B .4.不等式11x≤的解集为(). A. {}1x x ≥ B.{}10x x x ≥≤或 C.{}10x x x ≥<或 D.{}01x x <≤【答案】C ; 【解析】1110xx x--=≤,解得{}10x x x ≥<或,故选C .5.已知函数()35,01,0x x f x x x x +≤⎧⎪=⎨+>⎪⎩,则()()1f f -=( ).A.52B.1-C. 52- D. 11【答案】A ;【解析】由题意得()()()5122f f f -==,故选A .6. 设a 是非零实数,已知11a a --=,则()()122442a a aa a a---++-=-( ). A.16B.13C. 1D. 3【答案】B ;【解析】由11a a --=,可知1a a -+()222123a a a a --+=+-=,()()2211a a a a a a ----=+-=()()1222244222213a a aa a a a a a a -----++-+-==-+,故选B .7. 某部门新录用甲、乙、丙三名工作人员,他们各自出生于鼓楼、玄武、建邺中的某个区,张松、单明、王玥有如下猜测:张松:甲出生于建邺,乙出生于玄武,丙也出生于建邺; 单明:甲出生于建邺,乙出生于鼓楼,丙不出生于鼓楼; 王玥:甲出生于鼓楼,乙出生于建邺,丙也出生于鼓楼;已知对甲、乙、丙的出生地,上述三人的猜测都是对1个,错2个,根据以上信息,在以下选项中可能正确的选项是( ).A. 甲出生于鼓楼,乙出生于玄武,丙出生于建邺B. 甲出生于建邺,乙出生于鼓楼,丙出生于鼓楼C. 甲出生于鼓楼,乙出生于玄武,丙出生于玄武D. 甲出生于玄武,乙出生于建邺,丙出生于鼓楼 【答案】C ;【解析】分别将四选项带回验证,可知C 正确.8. 已知,a b ∈R ,且a b ≠,满足()()()()4242332021332021a ab b ⎧-+-=⎪⎨-+-=⎪⎩,若对任意0x >均有t x a b x +≥+成立,则实数t 的最小值为( ). A. 3- B. 6-C. 6D. 9【答案】D ;【解析】设()42f x x x =+,函数为偶函数,且在[)0,+∞单调增,由()()33f a f b -=-,且a b ≠,可知330a b -+-=,即6a b +=,6t x x +≥对0x ∀>恒成立,可知6tx x+≥,即9t ≥, 故选D .二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分) 9. 下列命题中正确的是( ).A. 0∉∅B. {}1⊆NC.12R Q ∈D. 若()x AB ∈,则()x AB ∈【答案】BD ; 【解析】略.10. 已知01a b >>>-,则下列选项中一定正确的是( ). A.11a b> B. 2a a b <- C. 2b a b <- D.b a a b> 【答案】AC ; 【解析】A 选项,110a b>>,故A 正确; B 选项,10a =时2a a b >-,故B 错误; C 选项,21b a b <<-,故C 正确; D 选项,0.10.1a b =⎧⎨=-⎩时b aa b=,故D 错误,故选AC .11. 已知函数()221174f x x x =+-,则下列说法正确的是( ). A. ()f x 的定义域是{}0x x ≠ B. ()f x 的最小值是94-C. ()f x 在区间()1,0-上是增函数D. ()0f x >的解集是()()(),22,22,-∞-+∞【答案】ABC ;【解析】A 选项,函数定义域{}0x x ≠,故A 正确;B 选项,()221171792444f x x x =+-≥-=-,21x =时取等,故B 正确; C 选项,()1,0x ∈-函数递增,故C 正确;D 选项,0不在定义域中,故D 错误; 故选ABC .12. 设102a =,lg3b =,则下列四个等式中正确的是( ).A. lg122a b =+B. 61log 15a b a b-+=+ C. 106a b+= D. 152aa-=【答案】ACD ;【解析】由题意可知,lg 2a =,A 选项,lg122lg2lg32a b =+=+,故A 正确;B 选项,6lg15lg3lg51log 15lg 6lg 2lg3b a a b+-+===++,故B 错误; C 选项,lg 2lg310106a b ++==,故C 正确; D 选项,5lg 2lg 2log 21lg 2lg5155552aa--====,故D 正确;故选ACD .三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上 13. 命题“2,9x x ax ∀∈->R ”的否定是 . 【答案】2,9x x ax ∃∈-≤R ; 【解析】略.14. 计算423log 8log 3log 4+⨯= . 【答案】72; 【解析】42337log 8log 3log 4222+⨯=+=.15. 已知函数()()()2111f x x x =--<<,则()f x 在区间()1,1-上是 函数(用“增”、“减”填空),方程()()2210f x f x ---=的解是 .【答案】减;x =【解析】二次函数开口向上,对称轴01x =,可知()1,1x ∈-为减函数,且()()2210f x f x ---=,可知2221121111x x x x ⎧-=-⎪-<-<⎨⎪-<-<⎩,解得x =16. 对于实数m 和n ,定义运算22,:,n mn m nm n m mn m n ⎧-≤⎪**=⎨->⎪⎩,设()()()311f x x x =+*+且关于x 的方程()f x k =恰有三个互不相等的解123,,x x x ,则123x x x ++的取值范围是 . 【答案】51,6⎛⎫-- ⎪⎝⎭; 【解析】由题意可知,()()()21,0231,0x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩,其函数图像与交点情况如右图所示, 可知10,2k ⎛⎫∈ ⎪⎝⎭方程有三解,解得416x =, 且121x x +=-,()340,x x ∈, 故12351,6x x x ⎛⎫++∈-- ⎪⎝⎭.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17. (本题10分)计算: ⑴ 12133227649125--⎛⎫++ ⎪⎝⎭; ⑵ ()2lg 2lg5lg 20lg0.1+⨯+. 【答案】详见解析.【解析】⑴ 原式15161833=++=;⑵ 原式()()2lg 2lg5lg 2lg51lg 2lg5lg 2lg510=+⨯+-=+⨯+-=.18. (本题12分)已知集合{}2230A x x x =+-<,{}2B x a x a =<<+. ⑴ 当0a =时,求AB ;y =k⑵ 已知“x B ∈”是“x A ∈”的充分条件,求实数a 的取值范围. 【答案】⑴ ()3,2AB =-;⑵ 31a -≤≤-.【解析】⑴ 当0a =时,()0,2B =,且()3,1A =-,则有()3,2A B =-;⑵ 由题意可知B A ⊆,则有321a a ≥-⎧⎨+≤⎩,解得31a -≤≤-.19. (本题12分)在①()5f a =,②12f a ⎛⎫= ⎪⎝⎭,③()()2121f f =+中,挑选一个补到下面的空格处,并作答: 已知一次函数()y f x =满足()13y f x ax =+=+,且 , ⑴ 求()y f x =的解析式;⑵ 解不等式()22xf x b b ≤+(其中b ∈R ). 【答案】详见解析.【解析】若选①()5f a =,由()()13f x a x =-+,解得2a =或1a =-,当2a =时,()21f x x =+,()()2212xf x x x b b =+≤+, 化简得()()2210x b x b -++≤,解集情况如下:当14b <-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦,当14b =-时解集为14⎧⎫-⎨⎬⎩⎭,当14b >-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦;当1a =-时,()4f x x =-+,()()242xf x x x b b =-≤+, 化简得22420x x b b -++≥,解集情况如下:b <时解集为(),222⎡-∞+-+∞⎣,当1334b ⎛⎡⎫-+∈-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭时解集为R ; 若选②12f a ⎛⎫= ⎪⎝⎭,由()()13f x a x =-+,解得2a =, 当2a =时,()21f x x =+,()()2212xf x x x b b =+≤+, 化简得()()2210x b x b -++≤,解集情况如下:当14b <-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦,当14b =-时解集为14⎧⎫-⎨⎬⎩⎭,当14b >-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦;若选③()()2121f f =+,由()()13f x a x =-+,解得2a =,当2a =时,()21f x x =+,()()2212xf x x x b b =+≤+,化简得()()2210x b x b -++≤,解集情况如下: 当14b <-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦,当14b =-时解集为14⎧⎫-⎨⎬⎩⎭,当14b >-时解集为1,2b b ⎡⎤--⎢⎥⎣⎦.20. (本题12分)已知函数()()211x a f x x x b +=-<<+是奇函数,且1225f ⎛⎫= ⎪⎝⎭,其中,a b 为实数. ⑴ 求,a b 的值:⑵ 判断()f x 的单调性,并用定义证明.【答案】⑴ 01a b =⎧⎨=⎩;⑵ ()f x 在定义域内单调递增;【解析】⑴ 令()200a f b ==,得0a =,且11221254f b ⎛⎫== ⎪⎝⎭+,得1b =, 检验()21x f x x =+,有()()21x f x f x x -=-=-+, 函数()f x 为奇函数,故01a b =⎧⎨=⎩; ⑵ 函数()()2111x f x x x =-<<+,任取1211x x -<<<, ()()()()()()1212212122222121101111x x x x x x f x f x x x x x ---=-=>++++, 故函数()f x 在()1,1-上单调递增.21. (本题12分)通过技术创新,某公司的汽车特种玻璃已进入欧洲市场,2021年,该种玻璃售价为25欧元/平方米,销售量为80万平方米,销售收入为2000万欧元.⑴据市场调查,若售价每提高1欧元/平方米,则销售量将减少2万平方米;要使销售收入不低于2000万欧元,试问:这种玻璃的售价最多提高到多少欧元/平方米?⑵为提高年销售量,增加市场份额,公司将在2022年对该种玻璃实施二次技术创新和营销策略改革:提高价格到m 欧元/平方米(其中25m >);投入()256003m -万欧元作为技术创新费用,投入500万欧元作为固定宣传费用,投入2m 万欧元作为浮动宣传费用,试问:该种玻璃的销售量n (单位:万平方米)至少达到多少时,才可能使2022年的销售收入不低于2021年销售收入与2022年投入之和?并求出此时的售价.【答案】⑴ 40欧元/平方米;⑵ 详见解析;【解析】⑴ 设玻璃售价x 欧元/平方米,则有()802252000x x -⨯-≥⎡⎤⎣⎦,解得2540x ≤≤,故售价最高40欧元/平方米;⑵ 当25m >时,有()25200060050023mn m m ≥+-++, 即1500523n m m ≥++在25m >时有解,有min1500523n m m ⎛⎫≥++ ⎪⎝⎭,由150********m m ++≥=,当且仅当30m =时取等, 可知102n ≥,故商品2022年销售量达到102万平方米可满足题意,此时售价为30欧元/平方米.22. (本题12分)已知函数()24f x x ax =-++,()221g x x a x a =-+-+,其中a 为实数. ⑴当1a =时,① 求不等式()()f x g x ≥的解集;② 若不等式()()f x g x mx -≥的解集包含[]1,1-,求实数m 的取值范围; ⑵已知()4g x ≥在x ∈R 时恒成立,求a 的取值范围.【答案】⑴解集⎤⎥⎣⎦;[]2,4m ∈;⑵ (][),13,a ∈-∞-+∞;【解析】⑴ 当1a =时,()24f x x x =-++,()21g x x =-,① 若()()f x g x ≥,则有24210x x x --+-≤,当1x ≤时,2320x x --≤1x ≤≤, 当1x >时,260x x +-≤,解得12x <≤,综上,解集为⎤⎥⎣⎦; ② 若()()f x g x mx -≥对于[]1,1x ∀∈-恒成立,则有2230x x mx -++-≥,12301230m m -+-+≥⎧⎨-++-≥⎩, 解得[]2,4m ∈;⑵ 若()2214g x x a x a =-+-+≥恒成立,则有()()222212114g x x a x a a x x a a =-+-+≥-+-+=-≥, 当221a x a -≤≤时取等,解得(][),13,a ∈-∞-+∞.。

河南省信阳市2023-2024学年高一上学期期中数学试题

河南省信阳市2023-2024学年高一上学期期中数学试题

(2)求证 f x 在 R 上是增函数;
(3)若 f 1 2 ,解关于 x 的不等式 f x2 x f 1 2x 8 .
22.已知函数 f x x 2 x , g x x 2 x .
(1)求函数 f x 的定义域和值域;
(2)已知 a 为非零实数,记函数 h x f x ag x 的最大值为 m a ,求 m a .
次所加的油量固定.若规定平均单价越低,则该加油方案越实惠,不考虑其他因素影响,
则( )
A.甲方案实惠
B.乙方案实惠
C.哪种方案实惠需由两次油价决定 6.函数 y | x | x 的图象是( )
x
D.两种方案一样实惠
试卷第 1页,共 4页
A.
B.
C.
D.
7.已知函数
f
x
x 2
2x 3, x m,x2 x
y
af
x
,其中
f
x
1171xxx, 2
x 0,5 , x 5,11
,若多次投放,则某一
时刻水中的治污试剂浓度为每次投放的治污试剂在相应时刻所释放的浓度之和,根据试
验,当水中治污试剂的浓度不低于 4(克/升)时,它才能治污有效.
(1)若只投放一次 4 个单位的治污试剂,则有效时间最多可能持续几天?
(2)若先投放 2 个单位的治污试剂,6 天后再投放 m 个单位的治污试剂,要使接下来的 5
天中,治污试剂能够持续有效,试求 m 的最小值.
21.已知定义在 R 上的函数 f x 满足 f x y f x f y 2 ,且当 x 0 时,
f x 2 .
(1)求 f 0 的值,并证明 f (x) 2 为奇函数;
2
,若函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沁县中学2015-2016学年度第一学期高一期中考试数 学答题时间:120分钟,满分:150分 第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1. 设集合{}{}|10,|20A x x B x x =+>=-<,则图中阴影 部分表示的集合为( )A .{}|1x x >-B .{}|2x x ≥C .{}|21x x x ><-或D .{}|12x x -<<2.下列各组函数中,表示同一函数的是( ) A.1=y ,xxy = B.x y =,33x y = C.11+⨯-=x x y ,12-=x y D.x y =,()2x y =3.已知常数0a >且1a ≠,则函数1()1x f x a-=-恒过定点( )A .(0,1)B .(1,0)C .(1,1)-D .(1,1) 4.已知f(x)=(x+1)(x+a)为偶函数,则a=( ). A. -2 B. -1 C. 1 D. 25.设}3 2, ,21,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1-6.函数()f x =)A .1(0,)2B .(2,)+∞C .1(0,)(2,)2+∞D .1(0,][2,)2+∞7.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭8.已知1(),4()2(1),4xx f x f x x ⎧≥⎪=⎨⎪+<⎩则2(2log 3)f +=( ).A.124 B. 112 C. 18 D. 389. 下列所给4个图像中,与所给3件事吻合最好的顺序为①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A .(1)(2)(4)B .(4)(2)(3)C .(4)(1)(2)D .(4)(1)(3)10.三个数 3.3320.99,log ,log 0.8π的大小关系为( )A . 3.332log 0.99log 0.8π<<B . 3.323log 0.8log 0.99π<<C . 3.3230.99log 0.8l og l π<<D . 3.323log 0.80.99log π<<11.若函数y =f(x)的定义域是[2,4],则12(log )y f x =的定义域是( )A .[12,1]B .[116,14] C .[4,16]D .[2,4]12.若函数f(x)=(2),21()1,22x a x x x -≥⎧⎪⎨-<⎪⎩是R 上的单调递减函数,则实数a 的取值范围是( ).A. (,2)-∞B. 13[,2)8 C. (0,2) D. 13(,]8-∞ 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、不等式24122x -≤的解集为________.14、 ==36,则21a b+= 15、函数221()2x xy -=的单调增区间为________.16.已知函数)(x f 满足:)()()(q f p f q p f ⋅=+,2)1(=f ,则:)2013()2014()7()8()5()6()3()4()1()2(f f f f f f f f f f +++++ = 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)化简求值:(Ⅰ)()20.532025270.1100964π--⎛⎫⎛⎫++-⋅⎪ ⎪⎝⎭⎝⎭;(Ⅱ)82715lg lg lg12.5log 9log 828-+-⋅+2ln 2e .18. (本小题满分12分)设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A B ⊆成立的a 值的集合.19. (本小题满分12分)()1,1-上的函数. (Ⅰ)用定义法证明函数()x f 在()1,1-上是增函数; (Ⅱ)解不等式()()01<+-x f x f .20. (本小题满分12分)已知二次函数a ax x x f -+-=2)(2在区间[]0,1上有最大值2,求实数a 的值.21.(本题满分12分)如图,已知底角为45o的等腰梯形ABCD ,底边BC 长为7cm ,腰长为cm 22,当一条垂直于底边BC (垂足为F,不与B,C 重合)的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF =x,左边部分的面积y .(1)写出函数y= f(x)的解析式; (2)求出y= f(x)的定义域,值域.22. (本小题满分12分)已知二次函数2()f x ax bx c =++(a,b,c 为常数)满足条件: 1、图象经过原点; 2、(1)(1)f x f x -=+; 3、方程()f x x =有等根; (1)求()f x 的解析式;(2)若函数()()g x f x m =-有四个零点,求m 的取值范围。

沁县中学2015-2016学年度第一学期高一期中考试数学答题卡二、填空题:(本大题共4小题,每小题5分,满分20分)14、沁县中学2015-2016学年度第一学期高一期中考试数学答案17.(Ⅰ)()20.532025270.1100964π--⎛⎫⎛⎫++-⋅⎪ ⎪⎝⎭⎝⎭; (Ⅱ)82715lg lg lg12.5log 9log 828-+-⋅+2ln 2e .解:(Ⅰ)319;……………………5分(Ⅱ)133……………………10分18. 解:由A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤, ………5分 或2135a a +>-. ………8分 解得69a ≤≤或6a <.即9a ≤. ………10分 ∴使A B ⊆成立的a 值的集合为{9}a a ≤. ………12分19.解:(Ⅰ)证明:对于任意的()1,1,21-∈x x ,且21x x <,则()()()()()()()()()()()()()()22212121222112212122212122212222112111111111111x x x x x x x x x x x x x x x x x x x x x x x x x f x f ++--=++-+-=+++-+=+-+=- 1121<<<-x x , ()()011,0222121>++<-∴x x x x ,01,12121>-∴<∴x x x x . ()()021<-∴x f x f ,即()()21x f x f <.∴函数()21xf x x=+在()1,1-上是增函数.…………………… 6分 (Ⅱ)由已知及(Ⅰ)知,()f x 是奇函数且在()1,1-上递增,()()()()()()2102111201111111101<<⇔⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<-<<⇔-<-<<-<-<-⇔-<-⇔-<-⇔<+-x x x x x x x x x f x f x f x f x f x f∴不等式的解集为10,2⎛⎫ ⎪⎝⎭.……12分.20.(本小题满分12分)已知二次函数a ax x x f -+-=2)(2在区间[]0,1上有最大值2,求实数a 的值解析:由a a a x x f -+--=22)()(,得函数)(x f 的对称轴为:x a =,……2分 ①当0<a 时,()f x 在]1,0[上递减, 2)0(=∴f ,即2,2-=∴=-a a ; ……………………5分②当1>a 时,()f x 在]1,0[上递增, 2)1(=∴f ,即3=a ; ………………8分 ③当01a ≤≤时,()f x 在],0[a 递增,在[,1]a 上递减,2)(=∴a f ,即22=-a a ,解得:12-=或a 与01a ≤≤矛盾;…………11分综上:2a =-或3a = …………………12分21.(本题满分12分) 解:过点D A ,分别作BC AG ⊥,BC DH ⊥,垂足分别是G ,H 。

因为ABCD 是等腰梯形,底角为︒45,cm 22AB =,所以cm HC DH AG BG2====,又cm BC 7=,所以cm GH AD 3== ………2分当点F 在BG 上时,即]2,0(∈x 时,221x y =; ……4分当点F 在GH 上时,即(]5,2∈x 时,2(2)222y x x =+-⋅=- …6分当点F 在HC 上时,即()7,5∈x 时,CEF Rt ABCD ABFED S S S y ∆-==梯形五边形=10)7(212+--x . ……8分 所以,函数解析式为y=(](]()()⎪⎪⎩⎪⎪⎨⎧∈+--∈-∈7,5,107215,2,222,0,2122x x x x x x ………9分 (2)]2,0(∈x 时,221x y =是增函数,0<y≤2; (]5,2∈x 时,2(2)222y x x =+-⋅=-也是增函数,2<y≤8;∈x ()7,5时,y=10)7(212+--x ,在()7,5是增函数,8<y<10; 所以函数的定义域是(0,7);值域是(0,10). ………12分22.。

相关文档
最新文档