广东省东莞市东莞中学初中部2017届中考考前押题数学试题(解析版)
2017年广东省东莞市中考数学试卷解析版
2017年广东省东莞市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D .2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【解答】解:4000000000=4×109.故选:C .3.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【解答】解:∵∠A =70°,∴∠A 的补角为110°,故选:A .4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【解答】解:∵2是一元二次方程x 2﹣3x +k =0的一个根,∴22﹣3×2+k =0,解得,k =2.故选:B .5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B .6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A .130°B .100°C .65°D .50°【解答】解:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =180°−∠D 2=65°, 故选:C .10.(3分)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD =BC =AB ,∠F AD =∠F AB ,在△AFD 和△AFB 中,{AF =AF ∠FAD =∠FAB AD =AB,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE =EC =12BC =12AD ,AD ∥EC ,∴EC AD =CF AF =EF DF =12, ∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选:C .二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a 2+a = a (a +1) .【解答】解:a 2+a =a (a +1).故答案为:a (a +1).12.(4分)一个n 边形的内角和是720°,则n = 6 .【解答】解:依题意有:(n ﹣2)•180°=720°,解得n =6.故答案为:6.13.(4分)已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b > 0.(填“>”,“<”或“=”)【解答】解:∵a 在原点左边,b 在原点右边,∴a <0<b ,∵a 离开原点的距离比b 离开原点的距离小,∴|a |<|b |,∴a +b >0.故答案为:>.14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是25 .【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25, 故答案为:25 15.(4分)已知4a +3b =1,则整式8a +6b ﹣3的值为 ﹣1 .【解答】解:∵4a +3b =1,∴8a +6b ﹣3=2(4a +3b )﹣3=2×1﹣3=﹣1;故答案为:﹣1.16.(4分)如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 √10 .【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH =√AE 2+EH 2=√32+12=√10,故答案为√10.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 【解答】解:原式=7﹣1+3=9.18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5. 【解答】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)]•(x +2)(x ﹣2) =2x (x+2)(x−2)•(x +2)(x ﹣2)=2x ,当x =√5时,原式=2√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:{30x +20y =68050x +40y =1240, 解得:{x =12y =16. 答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.【解答】解:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =50°,∴∠AEC =∠EAB +∠B =100°.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .在△BAD 与△F AD 中,{AB =AF ∠BAD =∠FAD AD =AD,∴△BAD ≌△F AD ,∴DB =DF ,∴D 在线段BF 的垂直平分线上,∵AB =AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;解法二:∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .∴AB =AF ,∵∠BAD =∠F AD ,∴AD ⊥BF (等腰三角形三线合一);(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG =BH =12BF .∵BF =BC ,BC =CD ,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有12+52+80200×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【解答】解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52,∴sin ∠OCB =OB BC =3352=2√55. 24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CFCP =34时,求劣弧BC ̂的长度(结果保留π)【解答】(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .解法二:证明:连接AC .∵OA =OC∴∠BAC =∠ACO ,∵CD 平行AF ,∴∠F AC =∠ACD ,∴∠F AC =∠CAO ,∵CF ⊥AF ,CE ⊥AB ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a , ∵∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠PBM ,∵CD 是直径,BM ⊥PC ,∴∠CMB =∠BMP =90°,∴△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM •PM =3a 2,∴BM =√3a ,∴tan ∠BCM =BM CM =√33, ∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC ̂的长=60⋅π⋅2√3180=2√33π.25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 (2√3,2) ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【解答】解:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =2√3,∠BCO =∠BAO =90°,∴B (2√3,2).故答案为(2√3,2).(2)存在.理由如下:∵OA=2,OC=2√3,∵tan∠ACO=AOOC=√33,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2√3,综上所述,满足条件的AD的值为2或2√3.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2√3,0),∴直线AC的解析式为y=−√33x+2,设D(a,−√33a+2),∴DN=−√33a+2,BM=2√3−a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD ∽△DNE ,∴DE BD =DN BM =−√33a+22√3−a =√33. ②如图2中,作DH ⊥AB 于H .在Rt △ADH 中,∵AD =x ,∠DAH =∠ACO =30°,∴DH =12AD =12x ,AH =√AD 2−DH 2=√32x , ∴BH =2√3−√32x ,在Rt △BDH 中,BD =√BH 2+DH 2=(12x)2+(2√3−32x)2, ∴DE =√33BD =√33•(12x)2+(2√3−32x)2,∴矩形BDEF 的面积为y =√33[(12x)2+(2√3−32x)2]2=√33(x 2﹣6x +12),即y =√33x 2﹣2√3x +4√3, ∴y =√33(x ﹣3)2+√3, ∵√33>0, ∴x =3时,y 有最小值√3.2017年广东省东莞市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×10103.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)8.(3分)下列运算正确的是( )A .a +2a =3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.。
广东省东莞市东莞中学初中部2017届中考考前押题数学试题
绝密★启用前广东省东莞市东莞中学初中部2017届中考考前押题数学试题试卷副标题考试范围:xxx ;考试时间:79分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、若y =kx ﹣4的函数值y 随x 的增大而减小,则k 的值可能是下列的( ) A .﹣4 B .0 C .1 D .32、下列运算正确的是( )A .x 4+x 2=x 6B .x 2•x 3=x 6C .(x 2)3=x 6D .x 2﹣y 2=(x ﹣y )23、下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .4、如图,A 、D 是⊙O 上的两个点,BC 是直径.若∠D =32°,则∠OAC =( )A .64°B .58°C .72°D .55°5、函数y =中,自变量x 的取值范围为( )A .x >B .x ≠C .x ≠且x ≠0D .x <6、的值等于( )A .4B .﹣4C .±4D .7、如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC =90°,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、选择题(题型注释)8、如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为( )A .3B .6C .3πD .6π9、若一组数据3,x ,4,5,6的众数是3,则这组数据的中位数为( ) A .3 B .4 C .5 D .610、已知等腰△ABC 的两条边的长度是一元二次方程x 2﹣6x +8=0的两根,则△ABC 的周长是 ( )A .10B .8C .6D .8或10第II卷(非选择题)三、填空题(题型注释)11、如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为__m(结果保留根号).12、如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.13、因式分解:m2n﹣6mn+9n=__.14、时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为__.15、如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是____.16、不等式组的解集是__.四、解答题(题型注释)17、如图,AB 是⊙O 的直径,点D 是弧AE 上一点,且∠BDE=∠CBE ,BD 与AE 交于点F.(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA=AO ,DE=2,求PD 的长.18、某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人. (1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?19、如图,在△ABC 中,∠C =90°,∠B =30°.(1)作∠A 的平分线AD ,交BC 于点D (用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S △DAC :S △ABC 的值.20、先化简,再求值:2a (a +2b )+(a ﹣2b )2,其中a =﹣1,.21、如图,直线y =mx 与双曲线y =相交于A 、B 两点,A 点的坐标为(1,2),AC ⊥x 轴于C ,连结B C .(1)求反比例函数的表达式;(2)根据图象直接写出当mx >时,x 的取值范围;(3)在平面内是否存在一点D ,使四边形ABDC 为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.22、为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x 小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.23、解方程:=5.24、如图,已知抛物线y=﹣x 2﹣x+2与x 轴交于A 、B 两点,与y 轴交于点C(1)求点A ,B ,C 的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.参考答案1、A2、C3、B4、B5、B6、A7、A8、B9、B10、C11、12、10.13、n(m﹣3)214、1.62×10415、416、3≤x<417、(1)证明见试题解析;(2)证明见试题解析;(3)PD=4,OA=.18、(1)男生有27人,女生有15人;(2)22名男生.19、(1)作图见解析;(2)1:3.20、15.21、(1)y=;(2)﹣1<x<0或x>1;(3)存在,D(﹣1,﹣4).22、(1)162°;(2)答案见解析;(3)7440人.23、x=24、(1)点A坐标(2,0),点B坐标(﹣4,0),点C坐标(0,2);(2);(3)M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【解析】1、试题解析:∵y=kx﹣4的函数值y随x的增大而减小,∴k<0,而四个选项中,只有A符合题意,故选A.【点睛】本题考查了一次函数的性质,要知道,在直线y=kx+b中,当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小.2、试题解析:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选C.【点睛】本题考查的是合并同类项、同底数幂的乘法、积的乘方和因式分解,掌握合并同类项法则、同底数幂的乘法法则、积的乘方法则和利用平方差公式进行因式分解是解题的关键.3、试题解析:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.解:∵BC是直径,∠D=32°,∴∠B=∠D=32°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC﹣∠BAO=90°﹣32°=58°.故选B.5、分式有意义的条件是分母不等于0,故分母2x﹣3≠0,解得x的范围.解:根据题意得:2x﹣3≠0,解得:x≠.故选B.6、根据平方与开平方互为逆运算,可得一个正数的算术平方根.解:,故选:A.7、试题分析:根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.作AD∥x轴,作CD⊥AD 于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象8、试题分析:已知圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,所以2πr=×2π×10,解得r=6.故选B.考点:圆锥的计算.9、试题分析:因为众数为3,所以,x=3,原数据为:3,3,4,5,6,所以,中位数为4考点:(1)众数的计算;(2)中位数的计算10、试题解析:x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,∴x1=2,x2=4.由三角形的三边关系可得:(两边之和大于第三边),∴腰长是4,底边是2,所以周长是:4+4+2=10.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.11、试题分析:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD 中,∠ABD=90°,∴AB=AD•sin∠ADB="60×sin60°" =60×=30(m).考点:解直角三角形的应用.12、根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.【点题】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.13、试题解析:m2n﹣6mn+9n=n(m2﹣6m+9)=n(m﹣3)2.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14、试题解析:将16200用科学记数法表示为:1.62×104.15、设△ABC面积为S,则△DEF面积为26﹣S,根据题意列方程即可得到结论.解:设△ABC面积为S,则△DEF面积为26﹣S,∴S=(26﹣S),解得:S=14,∴重叠部分面积=×14=4,故答案为:4.16、分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解:,由①得:x<4;由②得:x≥3,则不等式组的解集为3≤x<4.故答案为:3≤x<417、试题分析:(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.试题解析:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴,∵PA=AO,∴PA=AO=BO,∴,即,∴PD=4.考点:圆的综合题;综合题.18、试题分析:(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.19、试题分析:(1)首先以A为圆心,任意长为半径画弧,两弧交AB、AC于M、N两点;再分别以M、N为圆心,大于MN长为半径画弧,两弧交于一点O,画射线BO交AC于D即可.(2)分别计算出S△DAC和S△ABC的面积,作比值即可.试题解析:(1)如图所示:(2)解:∵在Rt△ACD中,∠CAD=30°,∴CD=AD.∴BC=CD+BD=CD+AD=3CD.∴S△DAC=,S△ABC=.∴S△DAC:S△ABC=:=1:3.【点睛】本题主要考查了作一个角的角平分线、直角三角形中30°角所对的直角边时斜边的一半的性质以及三角形面积公式的运用,属于基础性题目.20、试题分析:直接利用多项式乘法运算法则去括号,进而合并同类项,再将已知数据代入求出答案.试题解析:原式=2a2+4ab+a2﹣4ab+4b2当a=1,b=时;原式=3×(﹣1)2+4×()2=15.21、(1)把A坐标代入一次函数解析式求出m的值,确定出一次函数解析式,把A坐标代入反比例解析式求出k的值,即可确定出反比例函数解析式;(2)由题意,找出一次函数图象位于反比例函数图象上方时x的范围即可;(3)存在,理由为:由四边形ABDC为平行四边形,得到AC=BD,且AC∥BD,由AC与x轴垂直,得到BD与x轴垂直,根据A坐标确定出AC的长,即为BD的长,联立一次函数与反比例函数解析式求出B坐标,即可确定出D坐标.解:(1)把A(1,2)代入y=mx得:m=2,则一次函数解析式是y=2x,把A(1,2)代入y=得:k=2,则反比例解析式是y=;(2)根据图象可得:﹣1<x<0或x>1;(3)存在,理由为:如图所示,四边形ABDC为平行四边形,∴AC=BD,AC∥BD,∵AC⊥x轴,∴BD⊥x轴,由A(1,2),得到AC=2,∴BD=2,联立得:,消去y得:2x=,即x2=1,解得:x=1或x=﹣1,∵B(﹣1,﹣2),∴D的坐标(﹣1,﹣4).点睛:此题是一道反比例函数综合题,考查的知识有:待定系数法确定一次函数解析式以及反比例函数解析式,一次函数与反比例函数的交点,平行四边形的性质,以及坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22、(1)直接利用扇形统计图得出体育成绩“良好”所占百分比,进而求出所对扇形圆(2)首先求出体育成绩“优秀”和“良好”的学生数,再利用表格中数据求出答案;(3)直接利用“优秀”和“良好”学生所占比例得出学生中课外体育锻炼时间不少于4小时的学生人数.解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),23、观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘x(x+3),得x+3+5x2=5x(x+3),解得x=.检验:把x=代入x(x+3)=≠0.∴原方程的解为:x=.点睛:本题主要考查分式方程的解法.在解分式方程中要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.24、试题分析:(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标,由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.试题解析:(1)令y=0得,∴,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,)或(5,),此时点F(﹣1,),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,),点M2坐标(﹣1,).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,)或(﹣1,).考点:1.二次函数综合题;2.压轴题;3.函数的图象;4.分类讨论.。
广东省东莞市初中中考数学试卷习题含详解.doc
2017 年广东省东莞市中考数学试卷一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1. 5 的相反数是()A .B.5 C.﹣D.﹣ 52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016 年广东省对沿线国家的实际投资额超过4000000000 美元,将4000000000 用科学记数法表示为()A .0.4×109B.0.4×1010C.4×109D.4×10103.已知∠ A=70°,则∠ A 的补角为()A .110°B. 70°C.30°D.20°4.如果 22﹣3x k=0 的一个根,则常数 k 的值为()是方程 x +A .1 B.2C.﹣ 1 D.﹣ 25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A .95 B.90 C.85D. 806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A .等边三角形B .平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于 A, B 两点,已知点 A 的坐标为( 1, 2),则点 B 的坐标为()A.(﹣ 1,﹣ 2)B.(﹣ 2,﹣ 1)C.(﹣ 1,﹣ 1)D.(﹣ 2,﹣ 2)8.下列运算正确的是()23254269.如图,四边形ABCD 内接于⊙ O,DA=DC ,∠ CBE=50°,则∠ DAC 的大小为()A .130°B. 100°C. 65°D.50°10.如图,已知正方形ABCD ,点 E 是 BC 边的中点, DE 与 AC 相交于点 F,连接 BF,下列结论:① S△ABF =S△ADF;②S△CDF =4S△CEF;③S△ADF =2S△CEF;④S△ADF =2S△CDF,其中正确的是()A .①③B.②③C.①④D.②④二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)11.分解因式: a2+a=.12.一个 n 边形的内角和是720°,则 n=.13.已知实数 a,b 在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“ =)”14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知 4a+3b=1,则整式 8a+6b﹣3 的值为.16.如图,矩形纸片ABCD 中, AB=5 ,BC=3,先按图( 2)操作:将矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在边 AB 上的点 E 处,折痕为 AF ;再按图( 3)操作,沿过点 F 的直线折叠,使点 C 落在 EF 上的点 H 处,折痕为 FG,则 A、 H 两点间的距离为.三、解答题(本大题共 3 小题,每小题 6 分,共 18 分)17.计算: | ﹣7| ﹣( 1﹣π)0+()﹣1.18.先化简,再求值:(+)?(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30 本,女生每人整理20 本,共能整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1240 本.求男生、女生志愿者各有多少人?四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)20.如图,在△ ABC 中,∠ A >∠ B.(1)作边 AB 的垂直平分线 DE,与 AB ,BC 分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在( 1)的条件下,连接AE ,若∠ B=50°,求∠ AEC 的度数.21.如图所示,已知四边形ABCD , ADEF 都是菱形,∠ BAD= ∠FAD,∠ BAD 为锐角.(1)求证: AD ⊥BF;(2)若 BF=BC,求∠ ADC 的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千人数克)A 45≤x <50 12B 50≤x <55 mC 55≤x <60 80D 60≤x <65 40E 65≤x <70 16(1)填空:① m=(直接写出结果);②在扇形统计图中, C 组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000 名学生,请估算九年级体重低于60 千克的学生大约有多少人?五、解答题(本大题共 3 小题,每小题 9 分,共27 分)23.如图,在平面直角坐标系中,抛物线2ax b 交 x 轴于 A(1,0),B(3,0)两点,y=﹣x + +点 P 是抛物线上在第一象限内的一点,直线BP 与 y 轴相交于点 C.(1)求抛物线 y=﹣x 2 ax b 的解析式;+ +(2)当点 P 是线段 BC 的中点时,求点P 的坐标;(3)在( 2)的条件下,求sin∠ OCB 的值.24.如图,AB 是⊙ O 的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙ O 于点 C,垂足为点 E,作直径 CD,过点 C 的切线交 DB 的延长线于点 P,AF⊥PC于点 F,连接 CB.(1)求证: CB是∠ ECP的平分线;(2)求证: CF=CE;(3)当 = 时,求劣弧的长度(结果保留 p)25.如图,在平面直角坐标系中,O 为原点,四边形ABCO是矩形,点A, C 的坐标分别是 A(0,2)和 C( 2,0),点D是对角线AC上一动点(不与A, C 重合),连结 BD,作 DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形BDEF.(1)填空:点 B 的坐标为;(2)是否存在这样的点 D,使得△ DEC是等腰三角形?若存在,请求出 AD 的长度;若不存在,请说明理由;(3)①求证:=;②设 AD=x,矩形 BDEF的面积为 y,求 y 关于 x 的函数关系式(可利用①的结论),并求出 y 的最小值.25.如图,在平面直角坐标系中,O 为原点,四边形ABCO是矩形,点A, C 的坐标分别是 A(0,2)和 C( 2,0),点D是对角线AC上一动点(不与A, C 重合),连结 BD,作 DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形BDEF.(1)填空:点 B 的坐标为;(2)是否存在这样的点 D,使得△ DEC是等腰三角形?若存在,请求出 AD 的长度;若不存在,请说明理由;(3)①求证:=;②设 AD=x,矩形 BDEF的面积为 y,求 y 关于 x 的函数关系式(可利用①的结论),并求出 y 的最小值.2017 年参考答案与试题解析一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1. 5 的相反数是( )A .B .5C .﹣D .﹣ 5【考点】 14:相反数.【分析】 根据相反数的概念解答即可.【解答】 解:根据相反数的定义有: 5 的相反数是﹣ 5.故选: D .2. “一带一路 ”倡议提出三年以来,广东企业到 “一带一路 ”国家投资越来越活跃,据商务部门发布的数据显示,2016 年广东省对沿线国家的实际投资额超过4000000000 美元,将4000000000 用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【考点】 1I :科学记数法 —表示较大的数.【分析】 科学记数法的表示形式为 a × 10n的形式,其中 1≤ a <10, n 为整数.确定 n 的值| |时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】 解: 4000000000=4× 109.故选: C .3.已知∠ A=70°,则∠ A 的补角为()A .110°B . 70°C .30°D .20°【考点】 IL :余角和补角.【分析】 由∠ A 的度数求出其补角即可.【解答】 解:∵∠ A=70°,∴∠ A 的补角为 110°,故选 A.如果 2 是方程 x 2﹣3x+k=0 的一个根,则常数 k 的值为()4A .1B .2C .﹣ 1D .﹣ 2【考点】 A3:一元二次方程的解.【分析】把 x=2 代入已知方程列出关于 k 的新方程,通过解方程来求 k 的值.【解答】解:∵ 2 是一元二次方程 x2﹣ 3x+k=0 的一个根,∴22﹣3×2+k=0,解得, k=2.故选: B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A .95 B.90 C.85D. 80【考点】 W5 :众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据 90 出现了两次,次数最多,所以这组数据的众数是90.故选 B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A .等边三角形B .平行四边形C.正五边形D.圆【考点】 R5:中心对称图形; P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选 D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线 y=(k2≠0)相交于A,B 两点,已知点 A 的坐标为( 1,2),则点 B 的坐标为()A .(﹣ 1,﹣ 2)B.(﹣ 2,﹣ 1)C.(﹣ 1,﹣ 1)D.(﹣ 2,﹣ 2)8称.【解答】解:∵点 A 与 B 关于原点对称,∴B 点的坐标为(﹣ 1,﹣ 2).故选: A.8.下列运算正确的是()A .a+2a=3a2B.a3?a2=a5 C .( a4)2=a6D.a4+a2=a4【考点】 47:幂的乘方与积的乘方;35:合并同类项; 46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解: A 、 a+2a=3a,此选项错误;B、 a3?a2=a5,此选项正确;C、( a4)2=a8,此选项错误;D、a4与 a2不是同类项,不能合并,此选项错误;故选: B.9.如图,四边形ABCD 内接于⊙ O,DA=DC ,∠ CBE=50°,则∠ DAC 的大小为()A .130°B. 100°C. 65°D.50°【考点】 M6 :圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠ADC 的度数,由等腰三角形的性质求得∠DAC 的度数.【解答】解:∵∠ CBE=50°,∴∠ ABC=180° ﹣∠ CBE=180°﹣50°=130°,∵四边形 ABCD 为⊙ O 的内接四边形,∴∠ D=180°﹣∠ ABC=180° ﹣130°=50°,∵DA=DC ,∴∠ DAC==65°,故选 C.10.如图,已知正方形ABCD ,点 E 是 BC 边的中点, DE 与 AC 相交于点 F,连接 BF,下列结论:① S△ABF =S△ADF;②S△CDF =4S△CEF;③S△ADF =2S△CEF;④S△ADF =2S△CDF,其中正确的是()A .①③B.②③C.①④D.②④【考点】 LE:正方形的性质.【分析】由△ AFD ≌△ AFB ,即可推出 S△ABF =S△ADF,故①正确,由 BE=EC= BC=AD ,AD ∥EC,推出= = =,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形 ABCD 是正方形,∴AD ∥CB,AD=BC=AB ,∠ FAD=∠FAB,在△ AFD 和△ AFB 中,,∴△ AFD ≌△ AFB ,∴S△ABF =S△ADF,故①正确,∵BE=EC= BC=AD , AD ∥ EC,∴= = = ,∴S△CDF=2S△CEF, S△ADF =4S△CEF, S△ADF =2S△CDF,故②③错误④正确,故选 C.二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)11.分解因式: a2+a= a(a+1).【考点】 53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解: a2 +a=a(a+1).故答案为: a(a+1).12.一个 n 边形的内角和是720°,则 n= 6.【考点】 L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)?180°,依此列方程可求解.【解答】解:设所求正 n 边形边数为 n,则( n﹣2)?180°=720,°解得 n=6.13.已知实数 a,b 在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“ =)”【考点】 2A:实数大小比较; 29:实数与数轴.【分析】首先根据数轴判断出 a、b 的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵ a 在原点左边, b 在原点右边,∴a<0< b,∵a 离开原点的距离比 b 离开原点的距离大,∴| a| >| b| ,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】 X4:概率公式.【分析】确定出偶数有 2 个,然后根据概率公式列式计算即可得解.【解答】解:∵ 5 个小球中,标号为偶数的有2、4 这 2 个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知 4a+3b=1,则整式 8a+6b﹣3 的值为﹣1.【考点】 33:代数式求值.【分析】先求出 8a+6b 的值,然后整体代入进行计算即可得解.【解答】解:∵ 4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣ 1.16.如图,矩形纸片ABCD 中, AB=5 ,BC=3,先按图( 2)操作:将矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在边 AB 上的点 E 处,折痕为 AF ;再按图( 3)操作,沿过点 F 的直线折叠,使点 C 落在 EF 上的点 H 处,折痕为 FG,则 A、 H 两点间的距离为.【考点】 PB:翻折变换(折叠问题);LB :矩形的性质.【分析】如图 3 中,连接 AH .由题意可知在 Rt△ AEH 中,AE=AD=3 ,EH=EF﹣HF=3﹣ 2=1,根据 AH=,计算即可.【解答】解:如图 3 中,连接 AH .由题意可知在 Rt△AEH 中, AE=AD=3 ,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心有限公司咨询电话 0769-8598 8066三、解答题(本大题共 3 小题,每小题 6 分,共 18 分)17.计算: | ﹣7| ﹣( 1﹣π)0+()﹣1.【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式 =7﹣1+3=9.18.先化简,再求值:(+ ) ?( x2﹣4),其中 x= .【考点】 6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.【解答】解:原式 =[ + ] ?(x+2)( x ﹣2)= ?(x+2)( x﹣ 2)=2x ,当x= 时,原式 =2 .19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30 本,女生每人整理20 本,共能整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1240本.求男生、女生志愿者各有多少人?【考点】 9A:二元一次方程组的应用.【分析】设男生志愿者有x 人,女生志愿者有y 人,根据“若男生每人整理30 本,女生每人整理 20 本,共能整理680 本;若男生每人整理50 本,女生每人整理40 本,共能整理1240 本”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:,解得:.答:男生志愿者有12 人,女生志愿者有16 人.四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)20.如图,在△ ABC 中,∠ A >∠ B.(1)作边 AB 的垂直平分线 DE,与 AB ,BC 分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在( 1)的条件下,连接AE ,若∠ B=50°,求∠ AEC 的度数.【考点】 N2:作图—基本作图; KG :线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于 DE 是 AB 的垂直平分线,得到AE=BE ,根据等腰三角形的性质得到∠EAB= ∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:( 1)如图所示;(2)∵ DE 是 AB 的垂直平分线,∴AE=BE ,∴∠ EAB= ∠ B=50°,∴∠ AEC= ∠EAB+∠ B=100°.21.如图所示,已知四边形ABCD , ADEF 都是菱形,∠ BAD= ∠FAD,∠ BAD 为锐角.(1)求证: AD ⊥BF;(2)若 BF=BC,求∠ ADC 的度数.【考点】 L8:菱形的性质.【分析】(1)连结 DB 、DF.根据菱形四边相等得出AB=AD=FA ,再利用 SAS 证明△ BAD ≌△ FAD ,得出 DB=DF ,那么 D 在线段 BF 的垂直平分线上,又 AB=AF ,即 A 在线段 BF的垂直平分线上,进而证明 AD ⊥BF;(2)设 AD ⊥ BF 于 H,作 DG⊥BC 于 G,证明 DG= CD .在直角△ CDG 中得出∠ C=30°,再根据平行线的性质即可求出∠ADC=180° ﹣∠ C=150°.【解答】(1)证明:如图,连结DB 、DF.∵四边形 ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA , AD=DE=EF=FA .在△ BAD 与△ FAD 中,,∴△ BAD ≌△ FAD,∴DB=DF ,∴D 在线段 BF 的垂直平分线上,∵AB=AF ,∴A 在线段 BF 的垂直平分线上,∴AD 是线段 BF 的垂直平分线,∴AD ⊥BF;(2)如图,设 AD ⊥ BF 于 H,作 DG⊥BC 于 G,则四边形 BGDH 是矩形,∴DG=BH= BF.∵BF=BC, BC=CD ,∴DG= CD.在直角△ CDG 中,∵∠ CGD=90°,DG= CD,∴∠ C=30°,∵BC∥AD ,∴∠ ADC=180° ﹣∠ C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千人数克)A45≤x <5012B50≤x <55mC55≤x <6080D60≤x <6540E65≤x <7016(1)填空:① m= 52(直接写出结果);②在扇形统计图中, C 组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000 名学生,请估算九年级体重低于60 千克的学生大约有多少人?【考点】 VB :扇形统计图; V5 :用样本估计总体; V7 :频数(率)分布表.【分析】(1)①根据 D 组的人数及百分比进行计算即可得到 m 的值;②根据 C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60 千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:( 1)①调查的人数为: 40÷20%=200(人),∴m=200﹣12﹣ 80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为×360°=144°;故答案为: 52, 144;(2)九年级体重低于60 千克的学生大约有× 1000=720(人).五、解答题(本大题共 3 小题,每小题9 分,共 27 分)23.如图,在平面直角坐标系中,抛物线2 ax b 交 x 轴于 A(1,0),B(3,0)两点,y=﹣x + +点 P 是抛物线上在第一象限内的一点,直线BP 与 y 轴相交于点 C.(1)求抛物线 y=﹣x2+ax+b 的解析式;(2)当点 P 是线段 BC 的中点时,求点P 的坐标;(3)在( 2)的条件下,求sin∠ OCB 的值.【考点】 HA :抛物线与 x 轴的交点; H8:待定系数法求二次函数解析式; T7:解直角三角形.【分析】(1)将点 A 、B 代入抛物线 y=﹣x2+ax+b,解得 a, b 可得解析式;(2)由 C 点横坐标为 0 可得 P 点横坐标,将 P 点横坐标代入( 1)中抛物线解析式,易得P 点坐标;(3)由 P 点的坐标可得 C 点坐标, A 、B、 C 的坐标,利用勾股定理可得BC 长,利用 sin∠OCB=可得结果.【解答】解:( 1)将点 A 、B 代入抛物线 y=﹣ x2+ax+b 可得,,解得, a=4,b=﹣ 3,2∴抛物线的解析式为: y=﹣x +4x﹣3;所以 C 点横坐标 x=0,∵点 P 是线段 BC 的中点,∴点 P 横坐标 x P= ,=∵点 P 在抛物线 y=﹣x2 4x﹣3 上,+∴ y P= ﹣3= ,∴点 P 的坐标为(,);(3)∵点 P 的坐标为(,),点 P 是线段 BC 的中点,∴点 C 的纵坐标为 2×﹣0= ,∴点 C 的坐标为( 0,),∴BC==,∴s in∠OCB= == .24.如图, AB 是⊙ O 的直径, AB=4 ,点 E 为线段 OB 上一点(不与 O,B 重合),作 CE ⊥OB,交⊙ O 于点 C,垂足为点 E,作直径 CD,过点 C 的切线交 DB 的延长线于点 P, AF ⊥PC 于点 F,连接 CB.(1)求证: CB 是∠ ECP 的平分线;(2)求证: CF=CE;3 =时,求劣弧π()当的长度(结果保留)【考点】 S9:相似三角形的判定与性质; M2 :垂径定理; MC :切线的性质; MN :弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明 CF=CE,只要证明△ ACF ≌△ ACE 即可;(3)作 BM ⊥PF 于 M .则 CE=CM=CF ,设 CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出 BM ,求出 tan∠BCM 的值即可解决问题;【解答】(1)证明:∵ OC=OB,∴∠ OCB=∠OBC ,∵PF 是⊙ O 的切线, CE⊥ AB ,∴∠ OCP=∠CEB=90°,∴∠ PCB+∠ OCB=90°,∠ BCE+∠OBC=90°,∴∠ BCE=∠ BCP,∴BC 平分∠ PCE.(2)证明:连接 AC .∵AB 是直径,∴∠ ACB=90°,∴∠ BCP+∠ ACF=90°,∠ ACE+∠BCE=90°,∵∠ BCP=∠BCE,∴∠ ACF= ∠ACE,∵∠ F=∠AEC=90°, AC=AC ,∴△ ACF ≌△ ACE ,∴CF=CE.东莞市虎门铧师培训中心有限公司咨询电话 0769-8598 8066(3)解:作 BM ⊥ PF 于 M .则 CE=CM=CF ,设 CE=CM=CF=4a,PC=4a,PM=a,∵△ BMC ∽△ PMB ,∴= ,∴BM 2=CM?PM=3a2,∴BM=a,∴t an∠BCM= = ,∴∠ BCM=30°,∴∠ OCB=∠OBC=∠ BOC=60°,∴的长 ==π.25.如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点 A ,C 的坐标分别是A (0,2)和 C( 2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形 BDEF .(1)填空:点 B 的坐标为(2,2);(2)是否存在这样的点D,使得△ DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:=;②设 AD=x ,矩形 BDEF 的面积为 y,求 y 关于 x 的函数关系式(可利用①的结论),并求出y的最小值.【考点】 SO:相似形综合题.【分析】(1)求出 AB 、BC 的长即可解决问题;(2)存在.连接 BE,取 BE 的中点 K ,连接 DK 、KC .首先证明 B、D、E、 C 四点共圆,可得∠ DBC=∠DCE,∠EDC=∠EBC,由 tan∠ACO==,推出∠ ACO=30°,∠ACD=60°由△ DEC 是等腰三角形,观察图象可知,只有ED=EC,推出∠ DBC= ∠ DCE=∠ EDC=∠EBC=30°,推出∠ DBC= ∠ BCD=60°,可得△ DBC 是等边三角形,推出DC=BC=2 ,由此即可解决问题;(3)①由( 2)可知, B、D、E、C 四点共圆,推出∠ DBC=∠ DCE=30°,由此即可解决问题;②作 DH⊥ AB 于 H.想办法用 x 表示 BD 、 DE 的长,构建二次函数即可解决问题;20【解答】解:( 1)∵四边形 AOCB 是矩形,∴BC=OA=2 ,OC=AB=2,∠ BCO=∠BAO=90°,∴B(2,2).故答案为( 2,2).(2)存在.理由如下:连接 BE,取 BE 的中点 K,连接 DK 、KC .∵∠ BDE= ∠ BCE=90°,∴KD=KB=KE=KC ,∴B、D、E、C 四点共圆,∴∠ DBC= ∠DCE,∠ EDC= ∠EBC,∵t an∠ACO= = ,∴∠ ACO=30°,∠ ACB=60°①如图 1 中,△ DEC 是等腰三角形,观察图象可知,只有ED=EC,∴∠ DBC= ∠DCE=∠ EDC=∠EBC=30°,∴∠ DBC= ∠ BCD=60°,∴△ DBC 是等边三角形,∴DC=BC=2 ,在Rt△AOC 中,∵∠ ACO=30°,OA=2,∴AC=2AO=4 ,∴AD=AC ﹣ CD=4﹣2=2.∴当 AD=2 时,△ DEC 是等腰三角形.②如图 2 中,∵△ DCE 是等腰三角形,易知 CD=CE,∠ DBC=∠DEC=∠CDE=15°,∴∠ ABD= ∠ADB=75°,∴AB=AD=2 ,综上所述,满足条件的 AD 的值为 2 或 2 .21(3)①由( 2)可知, B、D、E、C 四点共圆,∴∠ DBC= ∠DCE=30°,∴t an∠DBE= ,∴= .②如图 2 中,作 DH ⊥AB 于 H.在Rt△ADH 中,∵ AD=x ,∠ DAH= ∠ ACO=30°,∴DH= AD= x,AH==x,∴BH=2﹣x,在 Rt△BDH 中, BD= = ,∴DE= BD= ? ,∴矩形BDEF 的面积为 y=[ 2=2﹣6x 12),] ( x +即y= x2﹣2 x 4,+∴y= ( x﹣3)2+ ,∵>0,∴x=3时,y有最小值22- 23 -。
广东省东莞市中考数学试卷(含详解)
2017年广东省东莞市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A .B.5 C .﹣D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是列结论:①S△ABF()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留p)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【考点】LE :正方形的性质.【分析】由△AFD ≌△AFB ,即可推出S △ABF =S △ADF ,故①正确,由BE=EC=BC=AD ,AD ∥EC ,推出===,可得S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD=BC=AB ,∠FAD=∠FAB ,在△AFD 和△AFB 中,,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE=EC=BC=AD ,AD ∥EC , ∴===,∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选C .二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD ≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF 的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P 点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE ⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF ⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值2017年广东省东莞市中考数学试卷(含详解)。
2017广东中考押题卷(原创word版)
2017年广东省中考数学押题卷(本试卷满分120分,考试时间100分钟)奇点数学一、选择题(本大题10小题,每小题3分,共30分)1、3—的倒数是( ) A.3— B.33C. 3 D. 33— 2、下列图标既轴对称图形,又是中心对称图形的是( )A. B. C. D.3、据报道,2016年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用 科学计数法表示为( )A. 60.5×103B. 6.05×104C. 0.605×105D. 60.5×1044、运算正确的是( )A.ab b a 743=+B.623ab ab =)( C.ab a ab a ab a 3)24()5(222-=+-- D. 2612a a a =÷5、已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是( )A. 40,40B. 40,60C. 50,45D. 45,406、在(-1)0,5.0-,7-,()25--这四个数中,最小的数是( )A. (-1)0B. 5.0-C. 7-D. ()25--7、一个正多边形的外角是45°,则这个正多边形的边数是()A 、10B 、9C 、8D 、68、如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧 ⊙A 优弧上一点,则tan∠OBC 为( ) A.31 B. 22 C.42 D. 322 9、菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF=3,BD=4,则菱形ABCD 的周长为( )A. 4B. 64C. 74D. 2810、如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( )A .B .C .D .二、填空题(本大题6小题,每小题4分,共24分)11、多项式m 2n ﹣6mn+9n 分解因式的结果是______________.12、当x=2时,分式x a x b++的值为0,则a ,b ________. 13、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形OCED 的周长为______________.14、已知关于x 的一元二次方程mx 2+2x ﹣1=0有两个不相等的实数根,则m 的取值范围是______________.15、如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则DE BC的值为_____________. 16、如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为 cm 2.三、解答题(一)(本大题3小题,每小题6分,共18分)17、求不等式组21218x x x +>⎧⎨-≤-⎩的整数解。
2017数学押题卷
密 封线内不要答 题座位号 姓 名县 区学 校2017年广东省初中毕业生学业考试《数学》押题卷说明:1.全卷共6页,满分120分,考试时间为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案对应的字母填入相应的括号里内. ( )1. -2017的相反数是A .-2017B .2017C .20171-D .20171( )2. 数据7、7、5、5、6、5、6的众数是A .0B .7C .6D .5( )3. 不等式5x -5>2x +1的解集在数轴上表示正确的是( )4. 如右图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是A B C D( )5. 在Rt △ABC 中,∠C=90°,BC=3,AB=4,则sinA 的值为A .53B .54C .34D .43 ( )6. 如图 ,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB 等于 A .30° B .45° C .55° D .60° ( )7. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于A .108°B .90°C .72°D .60°( )8. 已知3是方程x 2-mx+n=0的一个根,则nm 91313+-= A .2 B .3 C .4 D .5( )9. 如图4×4的网格,A ,B ,C ,D ,O 均在格点上,点O 是A .△ACD 的外心B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心( )10. 如图,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其它边交于P 、Q 两点。
2017年广东省东莞市中考数学试卷解析版
2017年广东省东莞市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D .2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【解答】解:4000000000=4×109.故选:C .3.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【解答】解:∵∠A =70°,∴∠A 的补角为110°,故选:A .4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【解答】解:∵2是一元二次方程x 2﹣3x +k =0的一个根,∴22﹣3×2+k =0,解得,k =2.故选:B .5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B .6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A .130°B .100°C .65°D .50°【解答】解:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =180°−∠D 2=65°, 故选:C .10.(3分)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD =BC =AB ,∠F AD =∠F AB ,在△AFD 和△AFB 中,{AF =AF ∠FAD =∠FAB AD =AB,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE =EC =12BC =12AD ,AD ∥EC ,∴EC AD =CF AF =EF DF =12, ∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选:C .二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a 2+a = a (a +1) .【解答】解:a 2+a =a (a +1).故答案为:a (a +1).12.(4分)一个n 边形的内角和是720°,则n = 6 .【解答】解:依题意有:(n ﹣2)•180°=720°,解得n =6.故答案为:6.13.(4分)已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b > 0.(填“>”,“<”或“=”)【解答】解:∵a 在原点左边,b 在原点右边,∴a <0<b ,∵a 离开原点的距离比b 离开原点的距离小,∴|a |<|b |,∴a +b >0.故答案为:>.14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是25 .【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25, 故答案为:25 15.(4分)已知4a +3b =1,则整式8a +6b ﹣3的值为 ﹣1 .【解答】解:∵4a +3b =1,∴8a +6b ﹣3=2(4a +3b )﹣3=2×1﹣3=﹣1;故答案为:﹣1.16.(4分)如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 √10 .【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH =√AE 2+EH 2=√32+12=√10,故答案为√10.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 【解答】解:原式=7﹣1+3=9.18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5. 【解答】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)]•(x +2)(x ﹣2) =2x (x+2)(x−2)•(x +2)(x ﹣2)=2x ,当x =√5时,原式=2√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:{30x +20y =68050x +40y =1240, 解得:{x =12y =16. 答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.【解答】解:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =50°,∴∠AEC =∠EAB +∠B =100°.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .在△BAD 与△F AD 中,{AB =AF ∠BAD =∠FAD AD =AD,∴△BAD ≌△F AD ,∴DB =DF ,∴D 在线段BF 的垂直平分线上,∵AB =AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;解法二:∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .∴AB =AF ,∵∠BAD =∠F AD ,∴AD ⊥BF (等腰三角形三线合一);(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG =BH =12BF .∵BF =BC ,BC =CD ,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有12+52+80200×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【解答】解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32, ∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52,∴sin ∠OCB =OB BC =3352=2√55. 24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CFCP =34时,求劣弧BC ̂的长度(结果保留π)【解答】(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .解法二:证明:连接AC .∵OA =OC∴∠BAC =∠ACO ,∵CD 平行AF ,∴∠F AC =∠ACD ,∴∠F AC =∠CAO ,∵CF ⊥AF ,CE ⊥AB ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a , ∵∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠PBM ,∵CD 是直径,BM ⊥PC ,∴∠CMB =∠BMP =90°,∴△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM •PM =3a 2,∴BM =√3a ,∴tan ∠BCM =BM CM =√33,∴∠OCB =∠OBC =∠BOC =60°,∴BC ̂的长=60⋅π⋅2√3180=2√33π.25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 (2√3,2) ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【解答】解:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =2√3,∠BCO =∠BAO =90°,∴B (2√3,2).故答案为(2√3,2).(2)存在.理由如下:∵OA =2,OC =2√3,∵tan∠ACO=AOOC=√33,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2√3,综上所述,满足条件的AD的值为2或2√3.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2√3,0),∴直线AC的解析式为y=−√33x+2,设D(a,−√33a+2),∴DN=−√33a+2,BM=2√3−a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴DE BD =DN BM =−√33a+22√3−a =√33. ②如图2中,作DH ⊥AB 于H .在Rt △ADH 中,∵AD =x ,∠DAH =∠ACO =30°, ∴DH =12AD =12x ,AH =√AD 2−DH 2=√32x , ∴BH =2√3−√32x ,在Rt △BDH 中,BD =√BH 2+DH 2=(12x)2+(2√3−32x)2, ∴DE =√33BD =√33•(12x)2+(2√3−32x)2, ∴矩形BDEF 的面积为y =√33[(12x)2+(2√3−32x)2]2=√33(x 2﹣6x +12), 即y =√33x 2﹣2√3x +4√3,∴y =√33(x ﹣3)2+√3,∵√33>0, ∴x =3时,y 有最小值√3.。
2017中考数学押题答案
2017年广东省初中毕业生学业考试《数学》押题卷参考答案一、选择题1.B2.D3.A4.A5.D6.B7.C 8 A 9.B 10.A 二、填空题11. 3.61×108 12. 2 13. 16 14. 2∶3 15. 12 16. 1675三、解答题(一)17. 原式=2-1+2-3+2×32=2-1+2-3+3=3.18. 原式=142--x x ·2)2(1--x x =1)2)(2(--+x x x ·2)2(1--x x =22-+x x , 当x =3时. 原式=3472323--=-+;19. (1)作图(略); (2)平行四边形四、解答题(二)20.(1)学生人数200人,家长人数80÷20%=400人,总人数是600人;补全的统计图略,(2)表示家长“赞成”的圆心角的度数为40040×360°=36° (3) 树状图或列表(略);P (亮和丁家长同中)=3162=.21.(1)设该种商品每次降价的百分率为x. 得400(1-x )2=324.解得:x 1=0.1,x 2=1.9(舍去) 答:该种商品每次降价的百分率为10℅. (2)设第一次降价后至少要售出该种商品m 件.则第二次降价后至少要售出该种商品(100-m )件; 第一次降价后单件的利润是:400(1-0.1)-300=60, 第二次降价后单件的利润是:324-300=24,得:60m+24(100-m )≥3210, 得m≥22.5,所以m=23. 答第一次降价后至少要售出该种商品23件22. (1)∵新坡面的坡度为1:3,∴tan ∠CAB=31=33,∴∠CAB =30°.答:新坡面的坡角∠CAB 为30°;(2)文化墙PM 不需要拆除.作CD ⊥AB 于点D ,则CD=6,∵坡面BC 的坡度为1:1,新坡面的坡度为1:3, ∴BD=CD=6,AD=63,∴AB=AD ﹣BD=63﹣6<8,∴文化墙PM 不需要拆除.五、解答题(三)23. (1)∵抛物线221y ax ax =++与x 轴仅有一个公共点,∴△=4a 2-4a=0, 解得:a 1=1,a 2=0(舍去),∴抛物线对应的函数解析式为y=x 2+2x+1; (2)由y=x 2+2x+1得A (-1,0),∵点C 是线段AB 中点,∴B 的横坐标为1,把x=1代人y=x 2+2x+1,得y=4,∴B (1,4), 设AB 解析式为y=kx+b,得⎩⎨⎧=+=+-40b k b k 解得⎩⎨⎧==22b k ∴直线AB 解析式为y=2x+2(3)D (-1-5,0),D (5-1,0),D (1,0),D (0,1.5)24. (1)连OE ,∵CD 为⊙O 的直径,∴∠CED=900,∵∠PED=∠C ,∠CEO=∠C ,∴∠PED=∠CEO ,∴∠PED+∠DEO=∠DEO+∠OEC=900,∴OE ⊥PE , ∴PE 是⊙O 的切线;(2)∵AB ,CD 为⊙O 的直径,∴∠AEC+∠CEB=∠CEB+∠DEB=900∴∠AEC =∠DEB ,∵AE ∥CD ,∴∠AEC =∠C ,∵∠PED=∠C ,∴∠PED =∠DEB ,∴ED 平分∠BEP ;(3)∵CF=2EF ,设EF=x ,则CF=2x ,OF=2x-5,由(2)知∠DEB=∠C ,∴FE ⊥CD ,在Rt △OEF 中,52=x 2+(2x-5)2,得x 1=4,x 2=0(舍去),∴EF=4,CF=8,BE=8,DF=2,在Rt △ABE 中,AE=6,∵∠BEP=∠A ,∠EFP=∠AEB ,∴△AEB ∽△EFP ,,,,316648===PF PF AE EF BEPF ∴3103162=-=PD25. (1)85,85,PE ∥AB(2)∵EF 平行且等于CD , ∴四边形CDEF 是平行四边形,∴DE=CF=t ,在△PDE 和△FBP 中,⎪⎩⎪⎨⎧∠=∠-====FBP PDE tBF PD tBP DE 10∴△PDE ≌△FBP ,∴PE=PF ;(3)∵四边形CDEF 是平行四边形,∴∠DEQ=∠C ,∠DQE=∠BDC , ∵BC=BD=10, ∴∠DEQ=∠C=∠DQE=∠BDC ,∴△DEQ ∽△BCD ,∴,,410EQt CDEQ BCDE ==∴t EQ 52=,作BM ⊥CD 于M ,作PN ⊥EF 于N ,则MC=2,64=BM ,DE=DQ=BP=t ,PQ=10-2t , 又△PNQ ∽△BMD ,,,6410210PNt BMPNBD PQ==-)1(645tPN -=,tt y tt 5642256455221)1(64+-=-⨯⨯=.以下供参考 附:(1)否。
2017年广东省中考考前押题数学试卷
2017年广东省中考考前押题数学试卷一、选择题1.在0,2,(﹣3)0,﹣5这四个数中,负数是()A.0 B.2 C.(﹣3)0D.﹣52.如图所示的几何体的俯视图是()A.B.C.D.3.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.24.如图,已知△ABC中,D、E分别是AB、AC的中点,∠B=60°,则∠ADE的度数为()A.90° B.70° C.60° D.30°5.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.B.C.D.6.如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.25° B.30° C.40° D.50°7.已知x、y满足方程组,则x+y的值为()A.1 B.﹣3 C.﹣2 D.﹣18.如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=6,CD=2,则⊙O的半径为()A.5 B.C.D.49.一个圆锥的高为8cm,底面圆的半径为6cm,则这个圆锥的侧面积为()A.20πcm2B.30πcm2C.40πcm2D.60πcm210.如图所示,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则=()A.B.C.D.二、填空题11.一个六边形的每一个内角都相等,这个六边形的每一个内角的度数是.12.到2020年中国的消费总支出将是现在的3倍,中国的消费总支出预计将从2010年的20300亿美元上升到61800亿美元,而中国也将以2450亿美元的总消费额,成为全球最大的奢侈品消费市场,其中2450亿美元用科学记数法表示为美元.13.已知+|ab+3|=0,则a﹣b的值是.14.方程(x﹣2)(x﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2+2,四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的周长是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S2,运y=S1+S2,则y与x的关系式是.三、解答题17.计算:(﹣2016)0﹣(﹣6)+(﹣)﹣2﹣﹣|﹣4|18.已知一次函数y=kx+b的图象经过点A(1,﹣1)和点B(﹣1,3),求这个一次函数的解析式.19.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.四、解答题20.2015年4月20日,某服装厂为一学校新生生产校服,要求在9月1日前一定要完成,且在规定时间内要完成生产服装3200套,在加工了200套后,厂家把工作效率提高到原来的2倍,于是提前15天完成任务,求该服装厂原来每天生产多少套校服.21.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.22.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.五、解答题23.如图,抛物线与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP.(1)直接写出A、B、C的坐标;(2)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以PA、PD为邻边的平行四边形是否为菱形.24.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)求证:△FDB∽△FAD;(3)如果⊙O的半径为5,sin∠ADE=,求BF的长.25.已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0ED,当AD与BC重合时停止移动,设运动时间为t秒,△A0ED与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.2017年广东省中考考前押题数学试卷参考答案与试题解析一、选择题1.在0,2,(﹣3)0,﹣5这四个数中,负数是()A.0 B.2 C.(﹣3)0D.﹣5【考点】有理数的乘方;零指数幂.【分析】根据小于0的数是负数,可得负数的个数.【解答】解:(﹣3)0=1,﹣2<0,∴在0,2,(﹣3)0,﹣5这四个数中,负数是﹣5,故选:D.【点评】本题考查了正数和负数,小于0的数是负数,注意带负号的数不一定是负数.2.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点评】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.3.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,即可解答.【解答】解:∵<0<1<2,∴最大的数是2,故选:D.【点评】本题考查了有理数大小比较,解决本题的关键是熟记正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.如图,已知△ABC中,D、E分别是AB、AC的中点,∠B=60°,则∠ADE的度数为()A.90° B.70° C.60° D.30°【考点】三角形中位线定理.【分析】根据三角形中位线定理得到DE∥BC,根据平行线的性质解答即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=60°,故选:C.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.5.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有3种等可能的结果数,找出小明出“剪刀”后,能胜出的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.25° B.30° C.40° D.50°【考点】圆周角定理;平行线的性质.【专题】计算题.【分析】先根据平行线的性质求出∠AOD的度数,再由圆周角定理即可解答.【解答】解:∵OA∥DE,∠D=50°,∴∠AOD=50°,∵∠C=∠AOD,∠C=×50°=25°.故选A.【点评】本题比较简单.考查的是平行线的性质及圆周角定理.7.已知x、y满足方程组,则x+y的值为()A.1 B.﹣3 C.﹣2 D.﹣1【考点】二元一次方程组的解.【分析】利用加减消元法解出方程组,计算即可.【解答】解:,①×2+②得,7x=7,解得,x=1,把x=1代入①得,y=﹣2,则x+y=﹣1,故选:D.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二元一次方程组的一般步骤是解题的关键.8.如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=6,CD=2,则⊙O的半径为()A.5 B.C.D.4【考点】垂径定理.【分析】连结OA,如图,设⊙O的半径为r,根据垂径定理得到AC=BC=AB=3,再在Rt△OAC中利用勾股定理得到(r﹣2)2+32=r2,然后解方程求出r即可.【解答】解:连结OA,如图,设⊙O的半径为r,∵OD⊥AB,∴AC=BC=AB=8,在Rt△OAC中,∵OA=r,OC=OD﹣CD=r﹣2,AC=3,∴(r﹣2)2+32=r2,解得r=.故选C.【点评】本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.9.一个圆锥的高为8cm,底面圆的半径为6cm,则这个圆锥的侧面积为()A.20πcm2B.30πcm2C.40πcm2D.60πcm2【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,列式计算即可.【解答】解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故选D.【点评】本题考查了圆锥的计算,圆锥的高、圆锥的底面半径与圆锥的母线组成直角三角形,扇形的面积公式为lR.10.如图所示,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则=()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设△DEF的面积为S,分别用S表示出△AEB,△AOB,△DOC的面积,即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,设△DEF的面积为S,∵DF∥AB,DE:EB=1:3,∴△ABE的面积为9S,∵EO:BO=1:2,∴△AOB的面积=△DOC的面积=6S,∴四边形FEOC的面积为6S﹣S=5S,∴=,故选D.【点评】本题考查相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质,属于中考常考题型.二、填空题11.一个六边形的每一个内角都相等,这个六边形的每一个内角的度数是120°.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x,故又可表示成6x,列方程可求解.【解答】解:设这个正六边形的每一个内角的度数为x,则6x=(6﹣2)•180°,解得x=120°.故这个正六边形的每一个内角的度数为120°.故答案选:120°.【点评】本题考查根据多边形的内角和计算公式求多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.12.到2020年中国的消费总支出将是现在的3倍,中国的消费总支出预计将从2010年的20300亿美元上升到61800亿美元,而中国也将以2450亿美元的总消费额,成为全球最大的奢侈品消费市场,其中2450亿美元用科学记数法表示为×1011 美元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.×1011,×1011.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.已知+|ab+3|=0,则a ﹣b 的值是 ± .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质求出a 2+b 2和2ab 的值,根据完全平方公式求出答案.【解答】解:由题意得,a 2+b 2﹣5=0,ab+3=0,即a 2+b 2=5,2ab=﹣6,(a ﹣b )2=11,则a ﹣b=±, 故答案为:±.【点评】本题考查的是非负数的性质、完全平方公式的知识,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.方程(x ﹣2)(x ﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 10 .【考点】解一元二次方程-因式分解法;等腰三角形的性质;勾股定理.【专题】计算题.【分析】先利用因式分解法解方程得到x 1=2,x 2=4,再根据三角形三边的关系判断等腰三角形的底为2,腰为4,然后计算这个等腰三角形的周长.【解答】解:∵(x ﹣2)(x ﹣4)=0,∴x ﹣2=0或x ﹣4=0,∴x1=2,x2=4,∵当2为腰,4为底时,2+2=4,不符合三角形三边的关系,∴等腰三角形的底为2,腰为4,∴这个等腰三角形的周长=2+4+4=10.故答案为10.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了等腰三角形的性质和三角形三边的关系.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2+2,四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的周长是4.【考点】相似三角形的判定与性质;含30度角的直角三角形;正方形的性质.【分析】设正方形的边长为x,由锐角三角函数可知CD===x,易得BC=x+x,由含30°直角三角形的性质可得BC=AC,易得x,可得结果.【解答】解:设正方形的边长为x,∵四边形BDEF是△ABC的内接正方形,∴△EDC为直角三角形,∴CD==x,∵∠A=30°,∴BC===,∴x x=解得:x=,∴正方形的周长是4,故答案为:4.【点评】本题主要考查了正方形的性质,含30°直角三角形的性质,锐角三角函数的定义,设正方形的边长为x,利用方程思想是解答此题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S2,运y=S1+S2,则y与x的关系式是y=.【考点】矩形的性质;函数关系式.【分析】根据题意可以得到AP、PD、DE的长,从而可以得到y与x的函数关系式,本题得以解决.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=AC=,AD为BC边上的高,AP=x,∴∠BAD=∠CAD=45°,BC=2,AD=1,∴AP=PE=x,PD=AD﹣AP=1﹣x,∴y=S1+S2==,故答案为:y=.【点评】本题考查矩形的性质、函数关系式,解题的关键是明确题意,利用数形结合的思想解答问题.三、解答题17.计算:(﹣2016)0﹣(﹣6)+(﹣)﹣2﹣﹣|﹣4|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+6+4﹣3﹣4=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知一次函数y=kx+b的图象经过点A(1,﹣1)和点B(﹣1,3),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】将A与B坐标代入y=kx+b中得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式.【解答】解:依题意将A(1,﹣1)与B(﹣1,3)代入y=kx+b,得,解得k=﹣2,b=1,∴所求的解析式为y=﹣2x+1.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.19.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可;(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【解答】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.【点评】本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.四、解答题20.2015年4月20日,某服装厂为一学校新生生产校服,要求在9月1日前一定要完成,且在规定时间内要完成生产服装3200套,在加工了200套后,厂家把工作效率提高到原来的2倍,于是提前15天完成任务,求该服装厂原来每天生产多少套校服.【考点】分式方程的应用.【分析】设该服装厂原来每天生产x套校服,根据题意列出方程,解方程即可.【解答】解:设该服装厂原来每天生产x套校服,则提高效率后每天生2产x套校服,由题意得,﹣(+)=15,解得,x=100,经检验,x=100是方程的解,答:设该服装厂原来每天生产100套校服.【点评】本题考查的是分式方程的应用,审清题意,找出相等关系,列出分式方程是解题的关键.21.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【专题】证明题.【分析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点评】本题主要考查了平行四边形的性质,全等三角形的判定以及菱形的判定,利用好E、F是中点是解题的关键.22.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有50 名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是57.6°;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【解答】解:(1)九年级(1)班共有=50(人),故答案为:50;(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1﹣50%﹣10%﹣20%﹣4%=16%,“二等奖”对应的扇形的圆心角度数是360°×16%=57.6°,故答案为:57.6°;(3)1250×(10%+16%+20%)=575(名),答:估计荣获一、二、三等奖的学生共有575名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题23.如图,抛物线与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP.(1)直接写出A、B、C的坐标;(2)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以PA、PD为邻边的平行四边形是否为菱形.【考点】二次函数综合题.【分析】(1)设y=0,解一元二次方程即可求出A和B的坐标,设x=0,则可求出C的坐标;(2)设P(x,0)(﹣2<x<4),由PD∥AC,可得到关于PD的比例式,由此得到PD和x的关系,再求出C到PD的距离(即P到AC的距离),利用三角形的面积公式可得到S和x的函数关系,利用函数的性质即可求出三角形面积的最大值,进而得到x的值,所以PD可求,而PA≠PD,所以PA、PD为邻边的平行四边形不是菱形.【解答】解:(1)A(4,0)、B(﹣2,0)、C(0,﹣4);(2)PA、PD为邻边的平行四边形不是菱形,理由如下:设P(x,0)(﹣2<x<4),∵PD∥AC,∴,解得,∵C到PD的距离(即P到AC的距离),∴△PCD的面积,即,∴△PCD面积的最大值为3,当△PCD的面积取最大值时,x=1,PA=4﹣x=3,,∵PA≠PD,∴PA、PD为邻边的平行四边形不是菱形.【点评】本题考查了二次函数和坐标轴的交点问题、平行线分线段成比例定理、特殊角的锐角三角形函数值、二次函数的最值问题以及菱形的判定,题目的综合性较强,难度中等.24.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)求证:△FDB∽△FAD;(3)如果⊙O的半径为5,sin∠ADE=,求BF的长.【考点】圆的综合题.【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)利用两角对应相等的两三角形相似进行证明即可.(3)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.【解答】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙0的切线;(2)证明:∵EF是⊙O的切线,∴∠ODB+∠BDF=90°,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD+∠BDF=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠OBD=90°,∴∠DAB=∠BDF,∵∠BFD=∠DFA,∴△FDB∽△FAD;(3)∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴=,即=,∴BF=.【点评】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.25.已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0ED,当AD与BC重合时停止移动,设运动时间为t秒,△A0ED与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】(1)在Rt△ADE中,解直角三角形即可;(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为一个三角形;<t≤4.5时,如答图2所示,此时重叠部分为一个四边形;<t≤6时,如答图3所示,此时重叠部分为一个五边形.(3)根据旋转和等腰三角形的性质进行探究,结论是:存在α(30°和75°),使△BPQ为等腰三角形.如答图4、答图5所示.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=3,DE=AD•sin30°=3,∴△AED的周长为:6+3+3=9+3.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△DNK.∵DD0=2t,∴ND=DD•sin30°=t,NK=ND÷tan30°=t,∴S=S△D0NK =ND•NK=t•t=t2;<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0 KN.∵AA0=2t,∴AB=AB﹣AA=12﹣2t,∴A0N=AB=6﹣t,NK=AN•tan30°=(6﹣t).∴S==﹣=×3×3﹣×(6﹣t )×(6﹣t )=t 2+t ﹣; <t ≤6时,如答图3所示,此时重叠部分为五边形D 0IJKN .∵AA 0=2t ,∴A 0B=AB ﹣AA 0=12﹣2t=D 0C ,∴A 0N=A 0B=6﹣t ,D 0N=6﹣(6﹣t )=t ,BN=A 0B •cos30°=(6﹣t );易知CI=BJ=A 0B=D 0C=12﹣2t ,∴BI=BC ﹣CI=2t ﹣6,S=S 梯形BND0I ﹣S △BKJ = [t+(2t ﹣6)]•(6﹣t )﹣•(12﹣2t )•(12﹣2t )=t 2+t ﹣. 综上所述,S 与t 之间的函数关系式为:S=.(3)存在α,使△BPQ 为等腰三角形.理由如下:经探究,得△BPQ ∽△B 1QC ,故当△BPQ 为等腰三角形时,△B 1QC 也为等腰三角形.(I )当QB=QP 时(如答图4),则QB 1=QC ,∴∠B 1CQ=∠B 1=30°,即∠BCB 1=30°,∴α=30°;(II )当BQ=BP 时,则B 1Q=B 1C ,若点Q 在线段B 1E 1的延长线上时(如答图5),∵∠B 1=30°,∴∠B 1CQ=∠B 1QC=75°,即∠BCB 1=75°,∴α=75°;若点Q 在线段E 1B 1的延长线上时(如答图6),∵∠CB 1E 1=30°,∴∠B 1CQ=∠B 1QC=15°,即∠BCB 1=180°﹣∠B 1CQ=180°﹣15°=165°,∴α=165°.③当PQ=PB 时(如答图7),则CQ=CB 1,∵CB=CB,1=CB,∴CQ=CB1又∵点Q在直线CB上,0°<α<180°,∴点Q与点B重合,此时B、P、Q三点不能构成三角形.综上所述,存在α=30°,75°或165°,使△BPQ为等腰三角形.【点评】本题考查了运动型与几何变换综合题,难度较大.难点在于:其一,第(2)问的运动型问题中,分析三角形的运动过程,明确不同时段的重叠图形形状,是解题难点;其二,第(3)问的存在型问题中,探究出符合题意的旋转角,并且做到不重不漏,是解题难点;其三,本题第(2)问中,计算量很大,容易失分.。
广东省东莞市2017届初中生毕业水平考试数学试题含答案
2017年东莞市初中毕业生毕业考试试题数学答案一.选择题1-5CCBBD 6-10CCCBA二.填空题11.612.13.(x﹣3)214.(-2,3)15.3.65 16. 28三.解答题(一)17.解:原式=2﹣1+3﹣2×……4分=4﹣.……6分18. 解:原式=•……3分=•=,……4分当x=﹣1时,原式=.……6分19.解:(1)如图所示:……3分(2)∵∠CDB=110°,∠ABD=30°,∴∠CAB=110°﹣30°=80°,……4分∵AE平分∠CAB,∴∠DAE=40°,……5分∴∠DEA=110°﹣40°=70°.……6分四、解答题(二)20.解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;……1分(2)由(1)得:a=300×0.3=90(人),……2分b==0.15;……3分如图所示;……4分(3)画树形图得:……6分∴一共有12种情况,抽取到甲和乙的有2种,∴P (抽到甲和乙)==. ……7分21.(1)解:设轮船在静水中的速度和水流的速度分别为x 千米/小时、y 千米/小时,…1分根据题意得:⎩⎨⎧=-=+108)(12108)(4y x y x ……3分 解得⎩⎨⎧==918y x ……4分 答:这艘轮船在静水中的速度和水流的速度分别为18千米/小时、9千米/小时. ……5分(2)设这艘轮船在静水中的速度要提高百分之比为a ,[18(1+a )+9](4-1)=108 ……6分解得a=50%答:这艘轮船在静水中的速度要提高50%. ……7分22.(1)证明:∵四边形ABCD 是正方形,∴A B=BC ,∠A BC=∠CBF=90°, ……1分∵BE=BF ,∴△A BE ≌△C BF , ……2分∴∠EA B=∠B CF , ……3分∵∠B CF+∠F =90°,∴∠EA B+∠F=90°,∴∠AGF =90°,∴AG ⊥CF ; ……4分(2)AC=222=+BC AB , ……5分∵点G 是线段CF 的中点,AG ⊥CF ,∴AE 垂直平分CF ,∴AC=AF=2, ……6分∴BF=2-1,∴BE=BF=2-1. ……7分五、解答题(三)23.解:(1)把点A (4,3)代入函数y=得:a=3×4=12, ∴y=. ……1分 OA==5,∵OA=OB ,∴OB=5,∴点B 的坐标为(0,﹣5), ……2分 把B (0,﹣5),A (4,3)代入y=kx+b 得: 解得:∴y=2x ﹣5; ……3分(2)∵MB=MC ,∴点M 在线段BC 的垂直平分线上, ……4分过点M 作ME ⊥BC ,交BC 于点E,即E 是线段BC 的中点,∴E (0, -1), ……5分设M (m ,-1),代入y=2x ﹣5,得m=2,∴点M 的坐标为(2,-1); ……6分(3)∵6221BDM =•=BD S △,∴BD=6, ……7分∴D(0,1)或(0,-11). ……9分24.(1)证明:如图1,连接OC ,∵DA 是⊙O 的切线,∴∠DAO=90°,∵AE=CE ,∴∠EOA=∠EOC , ……1分 在△ODA 和△ODC 中,⎪⎩⎪⎨⎧=∠=∠=ODOD EOC EOA OCOA ,∴Rt △ODA ≌Rt △ODC , ……2分 ∴∠DCO=∠DAO=90°,∴DC 是⊙O 的切线; ……3分(2)证明:如图2,连接OC ,由(1)证得∠AOE=∠COE ,又∵∠B=∠AOE ,∠F=∠COE ,∴∠B=∠F , ……4分∵OB=OE ,∴∠B=∠OEB ,∴∠F=∠OEG , ……5分∵∠EGC 是△EGF 的外角,∴∠EGC=∠F+∠GEF=2∠F ,即∠EGC=2∠F ; ……6分(3)解:∵EF 是⊙O 的直径,∴∠ECF=90°∵EF=2,∴OA=OE=EF=,∵DE=AD ,设DE=m ,∴AD=2m ,在Rt △DAO 中,OA 2+DA 2=OD 2, ∴,解得m 1=0(舍去),m 2=,∴DA=, ……7分∴DO=,∴在Rt △ADO 中,tan ∠DOA==,cos ∠DOA==, 如图3,过点E 作EH ⊥AB 于点H ,在Rt △EOH 中OH=OE •cos ∠EOH==, ∴EH=,AH=AO ﹣OH =5535-=, ……8分在Rt △EHA 中,EA 2=AH 2+EH 2,∴EA=2,∵AE=CE ,∴EC=2. ……9分25. 解:(1)∵OA=OC ,OA ⊥BC∴△AOC 为等腰直角三角形,即∠C=45°∵PF ⊥OC∴△PFC 为等腰直角三角形,即PF=FC=0.6………………1分 ∴BF=OC+OB-OC=1+1-0.6=1.4∵PF ⊥OC ,OA ⊥BC 即PF//OD∴△BOD ∽△BFP ………………2分∴FP OD BF OB = 即60411..OD=∴73=OD ………………3分(2)设CF=,即PF=CF=,OF=OC-CF=1-………………4分………………5分∴当=时,………………6分(3)连接OP当CF=时,PC=∵等腰Rt△AOC中,AC=∴PC=AC,即中点点P为斜边AC………………7分∴等腰Rt△AOC中:OP=PC=AP∠1=∠C=45°∠OPC=∠3+∠OPE=90°∵PG⊥PD,即∠DPE=∠2+∠OPE=90°∴∠2=∠3………………8分∴△POD≌△PCE(ASA)∴PD=PG………………9分。
2017年广东中考数学押题卷含解析(三)
2017年中考数学押题卷(三)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣|﹣2|的倒数是()A.2 B.C.D.﹣22.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1093.下列计算正确的是()A.()﹣2=9 B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=24.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.5.分解因式(2x+3)2﹣x2的结果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)6.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b27.不等式组的解集在数轴上表示为()A.B.C.D.8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°9.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.510.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5 B.12 C.10070 D.10080二、填空题(本大题共6小题,每小题4分,共24分)11.方程组的解是.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.13.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为.14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.15.如图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.第15题图16.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的三、解答题(本大题共3小题,每题6分共18分)17.计算:(+π)0﹣2|1﹣sin30°|+()﹣1.18.先化简,再求值:÷(1﹣)其中x=.19.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.。
广东省中考数学专项复习押题卷(三)课件
7.不等式组
的பைடு நூலகம்集在数轴上表示为(C)
8.如图,已知a∥b,直角三角板 的直角顶点在直线b上,若∠1=60°, 则下列结论错误的是(D)
A.∠2=60° B.∠3=60° C.∠4=120° D.∠5=40°
三 解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:
解:原式=1﹣1+2=2.
18.先化简,再求值:
19.随着国家“惠民政策”的陆续出台,为了切 实让老百姓得到实惠,国家卫计委通过严打药品销 售环节中的不正当行为,某种药品原价200元/瓶, 经过连续两次降价后,现在仅卖98元/瓶,现假定 两次降价的百分率相同,求该种药品平均每次降价 的百分率.
解:设该种药品平均每场降价的百分率是x, 由题意得:200(1﹣x)2=98 解得:x1=1.7(不合题意舍去),x2=0.3=30%. 答:该种药品平均每场降价的百分率是30%.
四 解答题(二)(本大题3小题,每小题7分,共21分) 20.某校开展了“互助、平等、感恩、和谐、进 取”主题班会活动,活动后,就活动的5个主题进 行了抽样调查(每位同学只选最关注的一个),根 据调查结果绘制了两幅不完整的统计图.根据图中 提供的信息,解答下列问题:
A
B
C
D
E
A
(A,B) (A,C) (A,D) (A,E)
B (B,A)
(B,C) (B,D) (B,E)
C (C,A) (C,B)
(C,D) (C,E)
D (D,A) (D,B) (D,C)
广东省东莞市2017届中考数学模拟试题
广东省东莞市2017届中考数学模拟试题 1、一、选择题(本大题包括10小题,共30分). 在-1、0、1、2这四个数中,最小的数是( ) A .— 1 B . 0 C . 1 D . 1 2、今年五月份香港举办“保普选反暴力”大联盟大型签名活动, 万用科学记数法表示为( )F 列各图是选自历届世博会徽中的图案,其中是中心对称图形的是(则/ A ' DB=( )5、今年,我市全面启动“精准扶贫”工作,某校为了了解九年级贫困生人数,对该校九年级 6个班 进行摸排,得到各班贫困生人数分别为: 12, 12, 14 , 10, 18, 16,这组数据的众数和中位数分别 是( ). A. 12 和 10 B. 12 和 13 C. 12 和 12 D. 12 和 146、下列计算正确的是( ).(A) _:: - ■ (B) "J (C ) : (D )-::二一9天共收集121万个签名,将121 A . 1.21 X 106 5B . 12.1 X 10C . 0.121 X 107 51.21 X 10 3、 4、 85 B .r如图,Rt △ ABC 中,/ ACB=90,/ C .A=55°,将其折叠,使点 A 落在边 CB 上A '处,折痕为CD A . 40° B . 30°C . 20°D . 107、如图,点A 是反比例函数y =(> 0)的图象上任意一点,AB// x 轴交反比例函数 y =-的图象于点B, 以AB 为边作平行四边形 ABCD 其中C, D 在x 轴上,则平行四边形 ABCD 勺面积为()A.2B.3C.4D.5 &经过某十字路口的汽车, 它可以继续直行,也可以向左转或向右转. 如果这三种可能性大小相同, 则两辆汽车经过这个十字路口全部继续直行的概率是(1A ._ 29、如图为二次函数 y=ax+bx+c=0(a 丰0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④ 当-1<x<314、如图,已知O O 的直径CD 垂直于弦 AB / ACD=22.5°, 若 CD=6cm 贝U AB的长为时,y>0其中正确的个数为()C. 3个10、如图, 1已知直线.[与双曲线A. (4,2 ) 二、填空题 C 为双曲线lr尸;4°)上一点,且在第一象限内,若 KA0C 面积为6,则点C 坐标为 (本大题包括 11、若 a+b=3, 12、因式分解: 13、当m = B. (2,3 ) C. (3,4 ) D. (2,4 )6小题,共24 分).2 2 ab=2,则 a +b =ab -2ab时,关于x 的方程(m — 2)xm 2 — 2 + 2x — 1 = 0是'X 交于A 、B 两点,点15、如图,已知正方形ABCD勺边长为1,点E在边DC上,AE平分/ DAC EF丄AC,点F为垂足,那么FC= .16、如图,已知点A B、C、D均在以BC为直径的圆上,AD// BC AC平分/ BCD / ADC=120,四三、解答题(共3小题,每小题6分,满分18分)_寺+血7+(兀 _ 1宀I ~ l+yl17、18、解不等式组:x+7Zx <--------- T43(A +1)> 2.19、已知:如图,在直角梯形ABCDL A D/ BC / AB(=90°,DEI AC于点F,交BC于点G,交AB 的延长线于点E,且一工J .边形ABCD的周长为10,则图中阴影部分的面积为(1)求证:n;(2)若一一:」1,求AB的长.四、解答题(共3小题,每小题7分,满分21 分)20、某县政府打算用25 000元用于为某乡福利院购买每台价格为 2 000元的彩电和每台价格为1 800 元的冰箱,并计划恰好全部用完此款.(1)问原计划所购买的彩电和冰箱各多少台;(2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%勺财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法.21、在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同•小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)_________________________________________________ 请估计:当n很大时,摸到白球的频率将会接近_____________________________________________________ ;(精确到0.1 )(2)___________________________________________________________ 若从盒子里随机摸出一只球,则摸到白球的概率的估计值为 __________________________________________ ;(3)试估算盒子里黑、白两种颜色的球各有多少只?22、如图,O O的内接四边形ABCE两组对边的延长线分别交于点E、F.(1)当/ E=Z F 时,则/ ADC= _ ;(2)当/ A=55°,Z E=30°时,求/ F 的度数;(3)若/ E=a ,Z F=3,且a工B .请你用含有a、3的代数式表示/ A的大小.五、解答题(三)(本大题3小题,每小题9分,共27 分)(2)设仆二「.V二”〔匚二,试猜想...小之间的一种关系,并给予证明.24、如图,AB是O 0的直径,C是弧BD的中点,CEL AB垂足为E, BD交CE于点F.(1)求证:丄I'.'';(2)若丄J ,O 0的半径为3,求BC的长.23、如图,把矩形纸片:匸厂.厂沿厶•折叠,使点-落在边丄:上的点J处,点」落在点1处;_3 3.25、已知如图1,抛物线y= - x2- • x+3与x轴交于A和B两点(点A在点B的左侧),与y 轴相交于点C,点D的坐标是(0,- 1),连接BC AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ ADF的面积最大时,有一线段MN= (点M在点N 的左侧)在直线BD上移动,首尾顺次连接点A、M N F构成四边形AMNF请求出四边形AMNF勺周长最小时点N的横坐标;(3)如图3,将厶DBC绕点D逆时针旋转a ° (O v a °v 180°),记旋转中的△ DBC^^ DB' C', 若直线B' C'与直线AC交于点P,直线B' C'与直线DC交于点Q当厶CPQ是等腰三角形时,求CP的值.1、A2、A3、C4、C5、B6、C7、D8、A.9、C10、D11、5 .1 2、2 a(b-1)13、-214、15、V2 -1 .16、V31 317、原式=-•+3 +1-=318、J < x v 1(1)证明::.c—-:_s "于点」,丄.ZW 二£CAB,丁AC二胭:AABC^/XAFE:肪二汀.连接」」,一.咫阳.(2) 解_ ' ■,..AF = -AC^-AEj .__'A —二.I ,..AF 二®•曲二曲二$20、解:(1)设原计划购买彩电x台,冰箱y台,根据题意得:2000x+1800y=25000 ,化简得:10x+9y=125 .•/ x, y均为正整数,••• x=8, y=5,答:原计划购买彩电8台和冰箱5台;(2)该批家电可获财政补贴为:25000 X 13%=3250(元)由于多买的冰箱也可获得13%的财政补贴,实际负担为总价的87% 3250-( 1 - 13% 〜3735.6 >2 X 1800.•••可多买两台冰箱.答:( 2)能多购买两台冰箱.3600 元冰箱我的想法:可以拿财政补贴款3250 元,再借350 元,先购买两台冰箱回来,再从总价的财政补贴468元中拿出350 元用于归还借款,这样不会增加实际负担.21、解:(1)v摸到白球的频率为0.6 ,•••当n很大时,摸到白球的频率将会接近0.6 ,故答案为:0.6;(2)v摸到白球的频率为0.6 ,•假如你摸一次,你摸到白球的概率P (白球)=0.6 ,故答案为:0.6;(3)盒子里黑、白两种颜色的球各有40 - 24=16, 40X 0.6=24 .22、(1)vZ E=Z F,Z DCE2 BCF, / ADC2 E+Z DCE / ABC玄BCF+Z F,•••/ ADC=Z ABC•••四边形ABCD是O O的内接四边形,•Z ADC+Z ABC=180°,•Z ADC=90°.故答案为:90°;(2)v在厶ABE中,Z A=55°Z E=30°,•Z ABE=180 -Z A-Z E=95°,•Z ADF=180 -Z ABE=85 ,•••在厶ADF中,Z F=180° -Z ADF-Z A=40° ;(3)vZ ADC=180 -Z A-Z F,Z ABC=180 -Z A-Z E,vZ ADC+Z ABC=180 ,• 180°-Z A-Z F+180°-Z A-Z E=180°,• 2Z A+Z E+Z F=180ZE+ZF a + B/•Z A= 二= .23、证:(1)由题意得= - ?■',匚__丄;『匚,在矩形—二中,•二 \..Z5r^=ZW...B f F二S?E ..BE = BF .(2) 丁… 三者关系不唯一,有两种可能情况:()匸…三者存在的关系是一;L - 1 . 证:连结丄丄,则山二.由(1 )知丄1匚一「,一—•在—丄[中,■二厂,一二工1二』.:,丄., L厂一■■二•()「",’三者存在的关系是「:;;•「"证:连结丄丄,则■?]二由(1)知」匚—「,〕# —「在—丄]中,丄丨丄』,A aih>c.24、证明:(1)连结AC如图10R••• C是弧BD的中点•••/ BDC/ DBC又/ BD(=Z BAC 在三角形ABC中,/ ACB90° , CELAB / BCE M BAC / BC^Z DBCCF=BF因此,CF=BF.(2)证法一:作CGLAD于点G•••C是弧BD的中点• Z CAG Z BAC , 即AC是Z BAD的角平分线.CE=CG AE=AG在Rt△ BCE与Rt △ DCG中, CE=CG, CB=CD••• Rt △ BC昌Rt △ DCG ••• BE=DG •AE=AB BE=AGADDG即6- BE=2+DG• 2BE=4,即卩BE=2又△ BCE^A BAC•J 」二二丄-亠;(舍去负值)(2)证法二:•/ AB是O O的直径,CE! AB•/BEFj亠I ,在_与——’中,•••丄」丄AD _ AB,则J-—壬即三—匸二, • m*利用勾股定理得:BE = ^BF2-EF2 =2^2EFCE_BE_则一二—「匸,即则二--兰3_ 3_25、解:(1)V抛物线y= - x2- x+3与x轴交于A和B两点,3. 3_■'■ 0=- X2- x+3,/• x=2 或x= - 4,••• A (- 4, 0), B ( 2, 0),•••D (0,- 1),X•直线AD解析式为y=- • x- 1;(2)如图1,过点F作FH丄x轴,交AD于H,_3 _3 1设 F (m,- 卅- m+3 , H (m,- m- 1),3__3 丄_3 _1• FH=- o f- m+3-( - m- 1) = - m - m+42 总丄3 1.2•&ADF=S^AFH+S^DFH F FHX |y D— y A|=2FH=2 (- 吊―兰m+4 =- m - m+8=—(m+ ) 252+2当m=- 3 时,S A ADF最大,2 20二 F (- , )如图2,作点A关于直线BD的对称点A,把A沿平行直线BD方向平移到A,且A2 连接AF,交直线BD于点N,把点N沿直线BD向左平移得点M此时四边形•/ OB=2 OD=11/• tan / OBD= ,•/ AB=6,••• AK=,• AA=2AK= 5 ,12 24在Rt△ ABK中,AH= , A i H= ,• OH=O- AH= ,1 24•- A (- ,- ),过A作AT丄AH,•/ A i A a P=Z ABK•/ AA2= ,• AP=2, A i P=1,2A (- ,-)2 10F (- ,)1072A e F的解析式为y=- 16x -••• B (2, 0), D ( 0, - 1),AMNF勺周长最小.丄•••直线BD 解析式为y=- x - 1②, 2联立①②得,x=- , 2•N 点的横坐标为:-^ .(3)v C (0, 3), B (2, 0), D ( 0,- 1)• CD=4 BC=朋,0B=2BC 边上的高为DH 1根据等面积法得, CDXOB 二4竺 DH =氏:"iJ••• A (- 4, 0), C ( 0, 3), --0A=4 0C=3OA^• tan / ACD=,过点P 作PGL CD,过点D 作DHL PQ■/ tan / ACD=•••设 CG=3a 贝y QG=3a PG=4a PQ=PC=5a --DQ=C[— CQ=4- 6a•/△ PGQ^A DHQ①当PC=PQ 寸,简图如图1,丄 BC X DH=CDX OB W1PG PQ•••4a 5a8^/13 ~4 - 6a2 W13• a= 3 勺10 _ 25/13• PC=5a=②当PC=CQ寸,简图如图2,cG/----JXA() 訂/L•图2过点P作PGL CD,1■/ tan / ACD=•••设CG=3a 则PG=4a --CQ=PC=5a• QG=CQ CG=2a• PQ=2 a ,--DQ=C B CQ=4- 5a•/△PGQ^A DHQ同①的方法得出,PC=4- ■③当QC=PQ寸,简图如图1过点Q作QGL PC,过点C作CNL PQ 设CG=3a 贝y QG=4a PQ=CQ=5a PG=3a--PC=6a--DQ=C B CQ=4- 5a,利用等面积法得,CNX PQ=PC< QG24••• CN=a,•/△CQN^A DQH24 _ 10/13 同①的方法得出PC= '④当PC=CQ寸,简图如图4,过点P作PGL CD,过H作HD丄PQ 设CG=3a 贝U PG=4a CQ=PC=5a • QD=4+5a PQ=4 ,同①方法得出.CP= ■ 10 _ 2S/13 ;4 — 综上所述,PC 的值为: W65上壬1。
2017年广东省东莞市中考数学试卷(含详解)
2017年广东省东莞市中考数学试卷一、选择题(本大题共 小题,每小题 分,共 分). 的相反数是(). . .﹣ .﹣. 一带一路 倡议提出三年以来,广东企业到 一带一路 国家投资越来越活跃,据商务部门发布的数据显示, 年广东省对沿线国家的实际投资额超过 美元,将 用科学记数法表示为() . × . × . × . ×.已知∠ ,则∠ 的补角为(). . . ..如果 是方程 ﹣ 的一个根,则常数 的值为(). . .﹣ .﹣.在学校举行 阳光少年,励志青春 的演讲比赛中,五位评委给选手小明的平分分别为: , , , , ,则这组数据的众数是(). . . ..下列所述图形中,既是轴对称图形又是中心对称图形的是().等边三角形 .平行四边形 .正五边形 .圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2).下列运算正确的是(). . .( ) ..如图,四边形 内接于⊙ , ,∠ ,则∠ 的大小为(). . . ..如图,已知正方形 ,点 是 边的中点, 与 相交于点 ,连接 ,下列结论:①△△;② △ △ ;③ △ △ ;④△△,其中正确的是().①③ .②③ .①④ .②④二、填空题(本大题共 小题,每小题 分,共 分).分解因式: ..一个 边形的内角和是 ,则 ..已知实数 , 在数轴上的对应点的位置如图所示,则 .(填 > , < 或 ).在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为 , , , , ,随机摸出一个小球,摸出的小球标号为偶数的概率是 ..已知 ,则整式 ﹣ 的值为 ..如图,矩形纸片 中, , ,先按图( )操作:将矩形纸片 沿过点 的直线折叠,使点 落在边 上的点 处,折痕为 ;再按图( )操作,沿过点 的直线折叠,使点 落在 上的点 处,折痕为 ,则 、 两点间的距离为 .三、解答题(本大题共 小题,每小题 分,共 分).计算: ﹣ ﹣( ﹣ ) ()﹣ .18.先化简,再求值:(+)•(x2﹣4),其中x=..学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理 本,女生每人整理 本,共能整理 本;若男生每人整理 本,女生每人整理 本,共能整理 本.求男生、女生志愿者各有多少人?四、解答题(本大题共 小题,每小题 分,共 分).如图,在△ 中,∠ >∠ .( )作边 的垂直平分线 ,与 , 分别相交于点 , (用尺规作图,保留作图痕迹,不要求写作法);( )在( )的条件下,连接 ,若∠ ,求∠ 的度数..如图所示,已知四边形 , 都是菱形,∠ ∠ ,∠ 为锐角.( )求证: ⊥ ;( )若 ,求∠ 的度数..某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)≤<≤<≤<≤<≤<( )填空:① (直接写出结果);②在扇形统计图中, 组所在扇形的圆心角的度数等于 度;( )如果该校九年级有 名学生,请估算九年级体重低于 千克的学生大约有多少人?五、解答题(本大题共 小题,每小题 分,共 分).如图,在平面直角坐标系中,抛物线 ﹣ 交 轴于 ( , ), ( , )两点,点 是抛物线上在第一象限内的一点,直线 与 轴相交于点 .( )求抛物线 ﹣ 的解析式;( )当点 是线段 的中点时,求点 的坐标;( )在( )的条件下,求 ∠ 的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留p)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.年参考答案与试题解析一、选择题(本大题共 小题,每小题 分,共 分). 的相反数是(). . .﹣ .﹣【考点】 :相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有: 的相反数是﹣ .故选: .. 一带一路 倡议提出三年以来,广东企业到 一带一路 国家投资越来越活跃,据商务部门发布的数据显示, 年广东省对沿线国家的实际投资额超过 美元,将 用科学记数法表示为() . × . × . × . ×【考点】 :科学记数法 表示较大的数.【分析】科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值大于 时, 是正数;当原数的绝对值小于 时, 是负数.【解答】解: × .故选: ..已知∠ ,则∠ 的补角为(). . . .【考点】 :余角和补角.【分析】由∠ 的度数求出其补角即可.【解答】解:∵∠ ,∴∠ 的补角为 ,故选.如果 是方程 ﹣ 的一个根,则常数 的值为(). . .﹣ .﹣【考点】 :一元二次方程的解.【分析】把 代入已知方程列出关于 的新方程,通过解方程来求 的值.【解答】解:∵ 是一元二次方程 ﹣ 的一个根,∴ ﹣ × ,解得, .故选: ..在学校举行 阳光少年,励志青春 的演讲比赛中,五位评委给选手小明的平分分别为: , , , , ,则这组数据的众数是(). . . .【考点】 :众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据 出现了两次,次数最多,所以这组数据的众数是 .故选 ..下列所述图形中,既是轴对称图形又是中心对称图形的是().等边三角形 .平行四边形 .正五边形 .圆【考点】 :中心对称图形; :轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选 ..如图,在同一平面直角坐标系中,直线 ( ≠ )与双曲线 ( ≠ )相交于 , 两点,已知点 的坐标为( , ),则点 的坐标为().(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ ,﹣ )【考点】 :反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点 与 关于原点对称,∴ 点的坐标为(﹣ ,﹣ ).故选: ..下列运算正确的是(). . .( ) .【考点】 :幂的乘方与积的乘方; :合并同类项; :同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解: 、 ,此选项错误;、 ,此选项正确;、( ) ,此选项错误;、 与 不是同类项,不能合并,此选项错误;故选: ..如图,四边形 内接于⊙ , ,∠ ,则∠ 的大小为(). . . .【考点】 :圆内接四边形的性质.【分析】先根据补角的性质求出∠ 的度数,再由圆内接四边形的性质求出∠ 的度数,由等腰三角形的性质求得∠ 的度数.【解答】解:∵∠ ,∴∠ ﹣∠ ﹣ ,∵四边形 为⊙ 的内接四边形,∴∠ ﹣∠ ﹣ ,∵ ,∴∠ ,故选 ..如图,已知正方形 ,点 是 边的中点, 与 相交于点 ,连接 ,下列结论:①△△;② △ △ ;③ △ △ ;④△△,其中正确的是().①③ .②③ .①④ .②④【考点】 :正方形的性质.【分析】由△ ≌△ ,即可推出△△,故①正确,由, ∥ ,推出 ,可得△△,△△, △ △ ,故②③错误④正确,由此即可判断.【解答】解:∵四边形 是正方形,∴ ∥ , ,∠ ∠ ,在△ 和△ 中,,∴△ ≌△ ,∴△△,故①正确,∵ , ∥ ,∴ ,∴△△, △ △ , △ △ ,故②③错误④正确,故选 .二、填空题(本大题共 小题,每小题 分,共 分).分解因式: ( ).【考点】 :因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解: ( ).故答案为: ( )..一个 边形的内角和是 ,则 .【考点】 :多边形内角与外角.【分析】多边形的内角和可以表示成( ﹣ ) ,依此列方程可求解.【解答】解:设所求正 边形边数为 ,则( ﹣ ) ,解得 ..已知实数 , 在数轴上的对应点的位置如图所示,则 < .(填 > , < 或 )【考点】 :实数大小比较; :实数与数轴.【分析】首先根据数轴判断出 、 的符号和二者绝对值的大小,根据 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值 来解答即可.【解答】解:∵ 在原点左边, 在原点右边,∴ < < ,∵ 离开原点的距离比 离开原点的距离大,∴ > ,∴ < .故答案为:<..在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为 , , , , ,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】 :概率公式.【分析】确定出偶数有 个,然后根据概率公式列式计算即可得解.【解答】解:∵ 个小球中,标号为偶数的有 、 这 个,∴摸出的小球标号为偶数的概率是,故答案为:.已知 ,则整式 ﹣ 的值为﹣ .【考点】 :代数式求值.【分析】先求出 的值,然后整体代入进行计算即可得解.【解答】解:∵ ,∴ ,﹣ ﹣ ﹣ ;故答案为:﹣ ..如图,矩形纸片 中, , ,先按图( )操作:将矩形纸片 沿过点 的直线折叠,使点 落在边 上的点 处,折痕为 ;再按图( )操作,沿过点 的直线折叠,使点 落在 上的点 处,折痕为 ,则 、 两点间的距离为.【考点】 :翻折变换(折叠问题); :矩形的性质.【分析】如图 中,连接 .由题意可知在 △ 中, , ﹣ ﹣ ,根据 ,计算即可.【解答】解:如图 中,连接 .由题意可知在 △ 中, , ﹣ ﹣ ,∴ ,故答案为.东莞市虎门铧师培训中心有限公司 咨询电话三、解答题(本大题共 小题,每小题 分,共 分).计算: ﹣ ﹣( ﹣ ) ()﹣ .【考点】 :实数的运算; :零指数幂; :负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式 ﹣ ..先化简,再求值:( ) ( ﹣ ),其中 .【考点】 :分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将 的值代入求解可得.【解答】解:原式 ( )( ﹣ )( )( ﹣ ),当 时,原式 ..学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理 本,女生每人整理 本,共能整理 本;若男生每人整理 本,女生每人整理 本,共能整理 本.求男生、女生志愿者各有多少人?【考点】 :二元一次方程组的应用.【分析】设男生志愿者有 人,女生志愿者有 人,根据 若男生每人整理 本,女生每人整理 本,共能整理 本;若男生每人整理 本,女生每人整理 本,共能整理 本 ,即可得出关于 、 的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有 人,女生志愿者有 人,根据题意得:,解得:.答:男生志愿者有 人,女生志愿者有 人.四、解答题(本大题共 小题,每小题 分,共 分).如图,在△ 中,∠ >∠ .( )作边 的垂直平分线 ,与 , 分别相交于点 , (用尺规作图,保留作图痕迹,不要求写作法);( )在( )的条件下,连接 ,若∠ ,求∠ 的度数.【考点】 :作图 基本作图; :线段垂直平分线的性质.【分析】( )根据题意作出图形即可;( )由于 是 的垂直平分线,得到 ,根据等腰三角形的性质得到∠ ∠ ,由三角形的外角的性质即可得到结论.【解答】解:( )如图所示;( )∵ 是 的垂直平分线,∴ ,∴∠ ∠ ,∴∠ ∠ ∠ ..如图所示,已知四边形 , 都是菱形,∠ ∠ ,∠ 为锐角.( )求证: ⊥ ;( )若 ,求∠ 的度数.【考点】 :菱形的性质.【分析】( )连结 、 .根据菱形四边相等得出 ,再利用 证明△ ≌△ ,得出 ,那么 在线段 的垂直平分线上,又 ,即 在线段 的垂直平分线上,进而证明 ⊥ ;( )设 ⊥ 于 ,作 ⊥ 于 ,证明 .在直角△ 中得出∠ ,再根据平行线的性质即可求出∠ ﹣∠ .【解答】( )证明:如图,连结 、 .∵四边形 , 都是菱形,∴ , .在△ 与△ 中,,∴△ ≌△ ,∴ ,∴ 在线段 的垂直平分线上,∵ ,∴ 在线段 的垂直平分线上,∴ 是线段 的垂直平分线,∴ ⊥ ;( )如图,设 ⊥ 于 ,作 ⊥ 于 ,则四边形 是矩形,∴ .∵ , ,∴ .在直角△ 中,∵∠ , ,∴∠ ,∵ ∥ ,∴∠ ﹣∠ ..某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)≤<≤<≤<≤<≤<( )填空:① (直接写出结果);②在扇形统计图中, 组所在扇形的圆心角的度数等于 度;( )如果该校九年级有 名学生,请估算九年级体重低于 千克的学生大约有多少人?【考点】 :扇形统计图; :用样本估计总体; :频数(率)分布表.【分析】( )①根据 组的人数及百分比进行计算即可得到 的值;②根据 组的百分比即可得到所在扇形的圆心角的度数;( )根据体重低于 千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于 千克的学生数量.【解答】解:( )①调查的人数为: ÷ (人),∴ ﹣ ﹣ ﹣ ﹣ ;② 组所在扇形的圆心角的度数为× ;故答案为: , ;( )九年级体重低于 千克的学生大约有× (人).五、解答题(本大题共 小题,每小题 分,共 分).如图,在平面直角坐标系中,抛物线 ﹣ 交 轴于 ( , ), ( , )两点,点 是抛物线上在第一象限内的一点,直线 与 轴相交于点 .( )求抛物线 ﹣ 的解析式;( )当点 是线段 的中点时,求点 的坐标;( )在( )的条件下,求 ∠ 的值.【考点】 :抛物线与 轴的交点; :待定系数法求二次函数解析式; :解直角三角形.【分析】( )将点 、 代入抛物线 ﹣ ,解得 , 可得解析式;( )由 点横坐标为 可得 点横坐标,将 点横坐标代入( )中抛物线解析式,易得 点坐标;( )由 点的坐标可得 点坐标, 、 、 的坐标,利用勾股定理可得 长,利用 ∠ 可得结果.【解答】解:( )将点 、 代入抛物线 ﹣ 可得,,解得, , ﹣ ,∴抛物线的解析式为: ﹣ ﹣ ;( )∵点 在 轴上,所以 点横坐标 ,∵点 是线段 的中点,∴点 横坐标 ,∵点 在抛物线 ﹣ ﹣ 上,∴ ﹣ ,∴点 的坐标为(,);( )∵点 的坐标为(,),点 是线段 的中点,∴点 的纵坐标为 ×﹣ ,∴点 的坐标为( ,),∴ ,∴ ∠ ..如图, 是⊙ 的直径, ,点 为线段 上一点(不与 , 重合),作 ⊥ ,交⊙ 于点 ,垂足为点 ,作直径 ,过点 的切线交 的延长线于点 , ⊥ 于点 ,连接 .( )求证: 是∠ 的平分线;( )求证: ;( )当 时,求劣弧的长度(结果保留 )【考点】 :相似三角形的判定与性质; :垂径定理; :切线的性质; :弧长的计算.【分析】( )根据等角的余角相等证明即可;( )欲证明 ,只要证明△ ≌△ 即可;( )作 ⊥ 于 .则 ,设 , , ,利用相似三角形的性质求出 ,求出 ∠ 的值即可解决问题;【解答】( )证明:∵ ,∴∠ ∠ ,∵ 是⊙ 的切线, ⊥ ,∴∠ ∠ ,∴∠ ∠ ,∠ ∠ ,∴∠ ∠ ,∴ 平分∠ .( )证明:连接 .∵ 是直径,∴∠ ,∴∠ ∠ ,∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ,∵∠ ∠ , ,∴△ ≌△ ,∴ .东莞市虎门铧师培训中心有限公司 咨询电话( )解:作 ⊥ 于 .则 ,设 , , ,∵△ ∽△ ,∴ ,∴ ,∴ ,∴ ∠ ,∴∠ ,∴∠ ∠ ∠ ,∴的长 ..如图,在平面直角坐标系中, 为原点,四边形 是矩形,点 , 的坐标分别是 ( , )和 ( , ),点 是对角线 上一动点(不与 , 重合),连结 ,作 ⊥ ,交 轴于点 ,以线段 , 为邻边作矩形 .( )填空:点 的坐标为( , );( )是否存在这样的点 ,使得△ 是等腰三角形?若存在,请求出 的长度;若不存在,请说明理由;( )①求证: ;②设 ,矩形 的面积为 ,求 关于 的函数关系式(可利用①的结论),并求出 的最小值.【考点】 :相似形综合题.【分析】( )求出 、 的长即可解决问题;( )存在.连接 ,取 的中点 ,连接 、 .首先证明 、 、 、 四点共圆,可得∠ ∠ ,∠ ∠ ,由 ∠ ,推出∠ ,∠ 由△ 是等腰三角形,观察图象可知,只有 ,推出∠ ∠ ∠ ∠ ,推出∠ ∠ ,可得△ 是等边三角形,推出 ,由此即可解决问题;( )①由( )可知, 、 、 、 四点共圆,推出∠ ∠ ,由此即可解决问题;②作 ⊥ 于 .想办法用 表示 、 的长,构建二次函数即可解决问题;【解答】解:( )∵四边形 是矩形,∴ , ,∠ ∠ ,∴ ( , ).故答案为( , ).( )存在.理由如下:连接 ,取 的中点 ,连接 、 .∵∠ ∠ ,∴ ,∴ 、 、 、 四点共圆,∴∠ ∠ ,∠ ∠ ,∵ ∠ ,∴∠ ,∠①如图 中,△ 是等腰三角形,观察图象可知,只有 ,∴∠ ∠ ∠ ∠ ,∴∠ ∠ ,∴△ 是等边三角形,∴ ,在 △ 中,∵∠ , ,∴ ,∴ ﹣ ﹣ .∴当 时,△ 是等腰三角形.②如图 中,∵△ 是等腰三角形,易知 ,∠ ∠ ∠ ,∴∠ ∠ ,∴ ,综上所述,满足条件的 的值为 或 .( )①由( )可知, 、 、 、 四点共圆,∴∠ ∠ ,∴ ∠ ,∴ .②如图 中,作 ⊥ 于 .在 △ 中,∵ ,∠ ∠ ,∴ , ,∴ ﹣ ,在 △ 中, ,∴ ,∴矩形 的面积为 ( ﹣ ),即 ﹣ ,∴ ( ﹣ ) ,∵> , ∴ 时, 有最小值。
广东省东莞市2017届中考数学第三次模拟题附答案
广东省东莞市 2017 届中考数学第三次模拟试题附答案广东省东莞市2017 届九年级数学第三次模拟试题说明:把答案填涂在答题卡上,满分共120 分,考试时间100 分钟 .一、选择题 ( 本大题包含 10 小题,共 30分) .1. -3 的相反数是() .A. -3B. 3 C .1D.1 332.我国的垂钓岛面积约为4400000m2, 用科学记数法表示为() .A. 4.4 ×106B. 44× 105C. 4× 106D. 0.44 ×1073.以下图形中,既是轴对称图形,又是中心对称图形的是().A .B.C.D.4.如图,已知直线a//b,现将向来角三角板的直角极点放在直线若∠ 3=50°,则以下结论错误的选项是().b 上,A.∠ 1=50°B. ∠ 2=50°C. ∠ 4=130°D. ∠ 5=30°5.以下说法正确的选项是().A.要检查人们对“低碳生活”的认识程度,宜采纳普查方式;第 4 题图B.一组数据 3, 4, 4, 6,8, 5 的众数和中位数都是 3;C.必定事件的概率是 100%,随机事件的概率是 50%;D.若甲组数据的方差S甲2,乙组数据的方差S乙2,则乙组数据比甲组数据稳固6.以下运算正确的选项是().A. 3a 2b 5abB. a3a2 a 6C. a3 a 3 1D.3a23a27.在下边左图的几何体中,它的左视图是().8.把抛物线 yx 2 向右平移 1 个单位,而后向上平移 3 个单位,则平移后抛物线的分析式为( ).A . y( x 1)2 3 B . y(x 1)23 C . y( x 1)23 D . y(x 1)239.一个不透明的布袋里装有若干个只有颜色不一样的红球和白球,此中3 个红球,且从布袋中随机摸出一个球,摸出的球是红球的概率是1,则白球的个数是() . 23A . 6 B.7C . 8D . 910.如图,六边形 ABCDEF 是正六边形,曲线 FK 1 K 2 K 3 K 4 K 5 K 6 K 7 ,, 叫做“正六边形的渐开线”, 此中弧 FK 1,弧 K 1 K 2 ,弧 K 2 K 3 ,弧 K 3 K 4 ,弧 K 4 K 5 ,弧 K 5 K 6 , ,,的圆心挨次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为 L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , ,,. 当 AB =1 时, L 2016 等于 () .A. 2016; B.2016 ; C.2016 ; D.2016 .2346二、填空题(本大题包含 6 小题,共 24 分) .11.若 y1x建立,则 x 的取值范围是 .第 10 题图x12.分解因式: 9 x x 3=.13.对于 x 的方程x 22x k0 有实数根 ,则 k 的取值范围是.....14. 如图,菱形 ABCD 中,对角线 AC 、BD 订交于点 O ,H 为 AD 边中点,菱形 ABCD 的周长为 24,则的长等于.OH第 16 题图第 15 题图第 14 题图15.如图,矩形纸片ABCD中, AB2cm ,点E 在 BC上,且 AEEC.若将纸片沿 AE 折叠,点B 恰巧与AC上的点B 重合,则AC.16.如图,在△ ABC 中,∠ ACB=90°,∠ ABC=60°, AB=12cm ,将△ ABC 以点 B 为中心顺时针旋转, 使点 C 旋转到 AB 边延伸线上的点 D 处,则 AC 边扫过的图形 ( 暗影部分 ) 的面积是cm 2 。
2017东莞中考模拟试题一
2017年广东省中考数学模拟试卷(一)一、选择题(本大题10小题.每小题3分,共30分)1.下列各数中,与3互为相反数的是()A.B.﹣3 C.3﹣1D.﹣2.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.83.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=x C.x3•x﹣2=x﹣5D.x3÷x2=x4.若x,y为实数,且|x+4|+=0,则()2015的值为()A.1 B.﹣1 C.4 D.﹣45.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58° B.59° C.61° D.62°6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲B.乙C.丙D.丁7.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°8.用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=49.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A.B.C.D.10.若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题6小题.每小题4分.共24分)11.化简:=.12.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.13.八边形的内角和等于度.14.如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为.15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为.16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.三、解答题(本大题3小题,每小期6分.共18分)17.解不等式组:.18.先化简,再求值:÷+,其中x=.19.如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.四、解答题(二)(本大题3小题.每小兹7分,共21分)20.在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员 4 0.08文明劝导员10义务小警卫8 0.16环境小卫士0.32小小活雷锋12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.21.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.22.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?五、解答題(三)(本大题3小题.每小题9分,共27分)23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.24.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.25.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=cm2;当x=s时,y=cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.时x的值.(3)当动点P在线段BC上运动时,求出S梯形AB C D(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.2016年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题.每小题3分,共30分)1.下列各数中,与3互为相反数的是()A.B.﹣3 C.3﹣1D.﹣【考点】相反数;负整数指数幂.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣3与3互为相反数,故B正确;故选:B.2.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据主视图以及左视图可得出该小正方形共有两行搭成,俯视图可确定几何体中小正方形的列数.【解答】解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1;左视图有两列,每列的方块数分别是:1,2;俯视图有三列,每列的方块数分别是:2,1,2;因此总个数为1+2+1+1+1=6个,故选B.3.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=x C.x3•x﹣2=x﹣5D.x3÷x2=x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;负整数指数幂.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.若x,y为实数,且|x+4|+=0,则()2015的值为()A.1 B.﹣1 C.4 D.﹣4【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得x+4=0,y﹣4=0,解得x=﹣4,y=4,则()2015=﹣1.故选:B.5.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58° B.59° C.61° D.62°【考点】平行线的性质.【分析】得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质即可得到结论.【解答】解:延长DC到F,∵EC⊥CD,∴∠DCE=90°,∵∠2=29°,∴∠3=61°,∵AB∥CD,∴∠1=∠361°,故选C.6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25,∴S乙2>S甲2>S丁2>S丙2,∴三月份苹果价格最稳定的超市是丙;故选C.7.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】根据全等三角形的性质得到∠ACB=∠A′C′B′,根据角的和差计算得到答案.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′C′B′,∴∠ACB﹣∠A′CB=∠A′C′B′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选:B.8.用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=4【考点】解一元二次方程-配方法.【分析】先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.【解答】解:x2﹣6x+9=4,(x﹣3)2=4.故选D.9.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1的长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.10.若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据mn<0,可得m和n异号,然后对m的符号进行讨论,根据正比例函数和反比例函数的性质判断.【解答】解:∵mn<0,∴当m>0时,n<0,此时正比例函数y=mx经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象;当m<0时,n>0,此时正比例函数y=mx经过第二、四象限,反比例函数图象经过一、三象限,B符合条件.故选B.二、填空题(本大题6小题.每小题4分.共24分)11.化简:=1.【考点】分式的加减法.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.12.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 3.8×108公里.【考点】科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大与10时,n是正整数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意380 000 000公里=3.8×108公里.13.八边形的内角和等于1080度.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(8﹣2)×180°=1080°.故答案为:1080°.14.如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为(4,2)或(﹣4,﹣2).【考点】位似变换;坐标与图形性质.【分析】利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行求解.【解答】解:∵以O为位似中心,按比例尺1:2,把△AOB放大,∴点A的对应点A′的坐标为(2×2,2×1)或(﹣2×2,﹣2×1),即(4,2)或(﹣4,﹣2).故答案为(4,2)或(﹣4,﹣2).15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为0<x<3.【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线y1=k1x+b在直线y2=k2x+b上方且直线y2=k2x+b在x 轴上方所对应的自变量的范围即可.【解答】解:当x=﹣1时,y1=k1x+b=0,则x>﹣1时,y1=k1x+b>0,当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,因为x>0时,y1>y2,所以当0<x<3时,k1x+b>k2x+b>0,即不等式组k1x+b>k2x+b>0的解集为0<x<3.故答案为0<x<3.16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是﹣1.【考点】正方形的性质;旋转的性质.【分析】连接D′C,根据旋转的性质及正方形的性质分别求得△ABC与△CD′E的面积,从而不难求得重叠部分的面积.【解答】解:连接D′C,∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.故答案为:﹣1.三、解答题(本大题3小题,每小期6分.共18分)17.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出不等式组中两个一元一次不等式的解集,然后根据同大取大,同小取小,大小小大取中间,大大小小无解的法则,即可求出原不等式组的解集.【解答】解:解不等式4x﹣8<0,得x<2;解不等式,得2x+2﹣6<3x,即x>﹣4,所以,这个不等式组的解集是﹣4<x<2.18.先化简,再求值:÷+,其中x=.【考点】分式的化简求值.【分析】先把分子分母因式分解和把除法运算化为乘法运算,然后约分后进行同分母的加法运算,再把x的值代入计算即可.【解答】解:原式=•+=+=,当x=时,原式==.19.如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.【考点】菱形的判定;全等三角形的判定.【分析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB即可.【解答】解:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.四、解答题(二)(本大题3小题.每小兹7分,共21分)20.在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员 4 0.08文明劝导员10义务小警卫8 0.16环境小卫士0.32小小活雷锋12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据总数=频数÷频率进行计算总人数;(2)首先根据各小组的频数和等于总数以及各小组的频率和等于1或频率=频数÷总数进行计算,然后正确补全即可;(3)根据样本中文明劝导员所占的频率来估算总体.【解答】解:(1)总人数=4÷0.08=50;(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:服务类别频数频率文明宣传员 4 0.08文明劝导员10 0.2义务小警卫8 0.16环境小卫士16 0.32小小活雷锋12 0.24(3)参加文明劝导的学生人数=900×0.2=180人.21.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.【考点】解直角三角形的应用-仰角俯角问题.【分析】在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,tanA=,∴AD==90×=90.在Rt△BCD中,∠CDB=90°,tanB=,∴DB==30.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.22.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【考点】分式方程的应用.【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.五、解答題(三)(本大题3小题.每小题9分,共27分)23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【考点】切线的判定与性质.【分析】(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.24.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【考点】二次函数综合题.【分析】(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=S△AB O+S+S△DFE,代入数值可得答案;梯形B O FD(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.【解答】解:(1)∵抛物线与y轴交于点(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0)根据题意,得,解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.由顶点坐标公式得顶点坐标为D(1,4)设对称轴与x轴的交点为F∴四边形ABDE的面积=S△AB O+S+S△DFE梯形B O FD=AO•BO+(BO+DF)•OF+EF•DF=×1×3+×(3+4)×1+×2×4=9;(3)相似,如图,BD=;∴BE=DE=∴BD2+BE2=20,DE2=20即:BD2+BE2=DE2,所以△BDE是直角三角形∴∠AOB=∠DBE=90°,且,∴△AOB∽△DBE.25.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=2cm2;当x=s时,y=9cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.时x的值.(3)当动点P在线段BC上运动时,求出S梯形AB C D(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.【考点】二次函数综合题.【分析】(1)当x=2s时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y的值,当x=s时,三角形PAQ的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14 时,求y与x之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.,然后根据条件求出y值,代入当5≤x≤9时的解析(3)可以由已知条件求出S梯形AB C D式就可以求出x的值.(4)利用相似三角形的性质,相似三角形的对应线段成比例就可以求出对应的x的值.【解答】解:(1)当x=2s时,AP=2,BQ=2,∴y==2当x=s时,AP=4.5,Q点在EC上∴y==9故答案为:2;9(2)当5≤x≤9时(如图1)y=S﹣S△AB P﹣S△PC Q=(5+x﹣4)×4×5(x﹣5)(9﹣x)(x﹣4)梯形AB C Qy=x2﹣7x+当9<x≤13时(如图2)y=(x﹣9+4)(14﹣x)y=﹣x2+x﹣35当13<x≤14时(如图3)y=×8(14﹣x)y=﹣4x+56;(3)当动点P在线段BC上运动时,∵S=×(4+8)×5=8梯形AB C D∴8=x2﹣7x+,即x2﹣14x+49=0,解得:x1=x2=7∴当x=7时,S梯形AB C D(4)设运动时间为x秒,当PQ∥AC时,BP=5﹣x,BQ=x,此时△BPQ∽△BAC,故=,即=,解得x=;当PQ∥BE时,PC=9﹣x,QC=x﹣4,此时△PCQ∽△BCE,故=,即=,解得x=;当PQ∥BE时,EP=14﹣x,EQ=x﹣9,此时△PEQ∽△BAE,故=,即=,解得x=.综上所述x的值为:x=、或.2016年7月3日。
广东省2017届九年级初中学业考试数学押题试题(2)及答案
2017年广东中考数学押题卷(二)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3,﹣1,0,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.32.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.43.下列各式中,正确的是()A.2a+3b=5ab B.﹣2xy﹣3xy=﹣xy C.﹣2(a﹣6)=﹣2a+6 D.5a﹣7=﹣(7﹣5a)4.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b(a+b)25.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°6.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.87.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是()A.AF=CE B.AE=CF C.∠BAE=∠FCD D.∠BEA=∠FCE8.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠09.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.110.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣二、填空题(本大题共6小题,每小题4分,共24分)11.据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为.12.不等式5x﹣3<3x+5的所有正整数解的和是.13.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.16.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.三、解答题(本大题共3小题,每题6分共18分)17.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.18.先化简,再求值:÷(﹣),其中a=.19.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.四、解答题(本大题共3小题,每题7分共21分)20.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.21.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)22.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.五、解答题(本大题共3小题,每题9分共27分)23.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN 是平行四边形,求M点的坐标.24.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.25.Rt△ABC与Rt△DEF的位置如图所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射线CB以每秒1个单位长度的速度向右运动,射线DE、DF与射线AB分别交于N、M两点,运动时间为t,当点E运动到与点B重合时停止运动.(1)当Rt△DEF在起始时,求∠AMF的度数;(2)设BC的中点的为P,当△PBM为等腰三角形时,求t的值;(3)若两个三角形重叠部分的面积为S,写出S与t的函数关系式和相应的自变量的取值范围.2017年广东中考数学押题卷(二)参考答案与试题解析一.选择题(共10小题)1.在3,﹣1,0,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:3>0>﹣2>﹣1,故选:D.【点评】本题考查了有理数大小比较,正数大于0,0大于负数是解题关键.2.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.下列各式中,正确的是()A.2a+3b=5ab B.﹣2xy﹣3xy=﹣xy C.﹣2(a﹣6)=﹣2a+6 D.5a﹣7=﹣(7﹣5a)【分析】根据合并同类项的法则判断A与B,根据去括号法则判断C,根据添括号法则判断D.【解答】解:A、2a与3b不是同类项,不能合并成一项,故本选项错误;B、﹣2xy﹣3xy=﹣5xy,故本选项错误;C、﹣2(a﹣6)=﹣2a+12,故本选项错误;D、5a﹣7=﹣(7﹣5a),故本选项正确;故选D.【点评】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.也考查了添括号.4.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b(a+b)2【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.6.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选D.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.7.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是()A.AF=CE B.AE=CF C.∠BAE=∠FCD D.∠BEA=∠FCE【分析】根据平行四边形的性质和判定即可解决问题.【解答】解:A、错误.∵四边形ABCD是平行四边形,∴AF∥EC,∵AF=EC,∴四边形AECF是平行四边形.∴选项A错误.B、正确.根据AE=CF,所以四边形AECF可能是平行四边形,有可能是等腰梯形,故选项B正确.C、错误.由∠BAE=∠FCD,∠B=∠D,AB=CD可以推出△ABE≌△CDF,∴BE=DF,∵AD=BC,∴AF=EC,∵AF∥EC,∴四边形AECF是平行四边形.故选项C错误.D、错误.∵∠BEA=∠FCE,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形.故选项D错误.故选B.【点评】此题考查了平行四边形的性质与判定.解题的关键是选择适宜的证明方法,需要熟练掌握平行四边形的判定方法,属于中考常考题型.8.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0【分析】由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.9.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【解答】解:根据三角形的三边关系可得:AB﹣BC<AC<AB+BC,∵AB=6,BC=4,∴6﹣4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.【点评】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.10.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.二.填空题(共6小题)11.据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为 2.12×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2.12亿=212000000=2.12×108,故答案为:2.12×108.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.不等式5x﹣3<3x+5的所有正整数解的和是6.【分析】先根据不等式的性质求出不等式的解集,再根据不等式的解集找出所有正整数解即可.【解答】解:移项,得:5x﹣3x<5+3,合并同类项,得:2x<8,系数化为1,得:x<4,∴不等式所有正整数解得和为:1+2+3=6,故答案为:6.【点评】本题考查了不等式的性质,解一元一次不等式,一元一次不等式的整数解的应用,解此题的关键是求出不等式的解集.13.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是231.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.【点评】此题考查的知识点是代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于30度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为1.【分析】观察可发现所有分数的分子都是奇数,分母都是质数,所以可将第一个1化为,第二个1化为,再观察其规律即可.【解答】解:把整数1化为,得,,,(),,,…可以发现分子为连续奇数,分母为连续质数,所以,第4个数的分子是7,分母是7,故答案为:1.【点评】此题主要考查数列的规律探索,把整数统一为分数,观察找出存在的规律是解题的关键.16.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B′OC′=60°,△BCO=△B′C′O , ∴∠B′OC=60°,∠C′B′O=30°, ∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=, ∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∵∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;故答案为:π.【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.三.解答题17.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.18.先化简,再求值:÷(﹣),其中a=.【分析】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可.【解答】解:原式=÷[﹣]=÷=•=(a﹣2)2,∵a=,∴原式=(﹣2)2=6﹣4【点评】本题考查分式的混合运算化简求值,熟练掌握分式的混合运算法则是解题的关键,通分时学会确定最简公分母,能先约分的先约分化简,属于中考常考题型.19.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.【分析】(1)直接利用线段垂直平分线的性质得出符合题意的图形;(2)直接利用等腰三角形的性质结合三角形内角和定理得出答案.【解答】解:(1)如图所示:(2)设∠A=x,∵AD=BD,∴∠DBA=∠A=x,在△ABD中∠BDC=∠A+∠DBA=2x,又∵BD=BC,∴∠C=∠BDC=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,∴x=36°.【点评】此题主要考查了基本作图、等腰三角形的性质以及三角形内角和定理,正确掌握线段垂直平分线的性质是解题关键.四.解答题20.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.【分析】求速度,路程已知,根据时间来列等量关系.关键描述语为:“一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达”,根据等量关系列出方程.【解答】解:设骑车学生的速度为x千米/小时,汽车的速度为2x千米/小时,可得:,解得:x=15,经检验x=15是原方程的解,2x=2×15=30,答:骑车学生的速度和汽车的速度分别是每小时15km,30km.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,得到合适的等量关系是解决问题的关键.21.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)【分析】根据锐角三角函数关系,得出cos∠ACB=,得出AC的长即可;利用锐角三角函数关系,得出tan∠ADE=,求出AE即可.【解答】解:在Rt△ABC中,∠ACB=35°,BC=80m,∴cos∠ACB=,∴AC=80cos35°,在Rt△ADE中,tan∠ADE=,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE为(80cos35°+30)tan50°m.【点评】此题主要考查了解直角三角形的应用,根据已知正确得出锐角三角函数关系是解题关键.22.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五.解答题23.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN 是平行四边形,求M点的坐标.【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.【解答】解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=;(3)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,).【点评】此题属于反比例函数综合题,考查了菱形的性质与判定、待定系数法求函数的解析式以及平行四边形的性质.注意掌握坐标与图形的关系是关键.24.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.【分析】(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB 于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,而tan∠D==;(3)由(2)可知,AC2=AE•AD,所以可求出AE和AC的长度,由(1)可知,△OFB∽△ABC,所以,然后利用勾股定理即可求得AB的长度.【解答】(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.【点评】本题考查圆的综合问题,解题的关键是证明△ACE∽△ADC.本题涉及勾股定理,解方程,圆的切线判定知识,内容比较综合,需要学生构造辅助线才能解决问题,对学生综合能力要求较高.25.Rt△ABC与Rt△DEF的位置如图所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射线CB以每秒1个单位长度的速度向右运动,射线DE、DF与射线AB分别交于N、M两点,运动时间为t,当点E运动到与点B重合时停止运动.(1)当Rt△DEF在起始时,求∠AMF的度数;(2)设BC的中点的为P,当△PBM为等腰三角形时,求t的值;(3)若两个三角形重叠部分的面积为S,写出S与t的函数关系式和相应的自变量的取值范围.【分析】(1)根据题意可以求得∠B的度数,∠DFC的度数,从而可以求得∠AME 的度数;(2)根据题意可以分两种情况,一种是DM与线段AB相交,一种是DF与AB 的延长线相交,分别针对两种情况再讨论,画出相应的图形,求出相应的t的值;(3)根据题意可以分两种情况,一种是DM与线段AB相交,一种是DF与AB 的延长线相交,然后根据题意可以分别求出两种情况下S与t的函数关系式.【解答】解:(1)在Rt△ABC中,tan∠B===,∴∠B=30°,在Rt△DEF中,∠D=30°,∴∠DFC=60°,∴∠FMB=∠DFC﹣∠B=30°,∴∠AMF=180°﹣∠FMB=150°;(2)∵BC=6,点P为线段BC的中点,∴BP=3,(ⅰ)若点M在线段AB上,①当PB=PM时,PB=PM=3,∵DE=3,∠D=30°,∴EF=DE•tan30°=3,∴此时t=0;②如右图(1)所示当BP=BM时,BP=BM=3,∵∠B=30°,∠DFE=60°,∴∠FMB=30°,∴△BMF为等腰三角形.过点F作FH⊥MB于H,则BH=BM=,在Rt△BHF中,∠B=30°,∴BF=,∴t=3﹣;③如右图(2)所示,当MP=MB时,∠MPB=∠B=30∵∠MFP=60°,∴PM⊥MF,∠BMF=30°∴FB=FM,设FB=x,则FM=x,PF=2x.∴3x=3,x=1∴t=2;(ⅱ)若点M 在射线AB 上, 如右图(3)所示, ∵∠PBM=150°∴当△PBM 为等腰三角形时,有BP=BM=3 ∵△BFM 为等腰三角形,∴过点F 作FH ⊥BM 于H ,则BH=BM=, 在Rt △BHF 中,∠FBH=30° ∴BF=, ∴t=3+,综上所述,t 的值为0,3﹣,2,3+. (3)当0<t ≤3时,BE=6﹣t ,NE=(6﹣t ),∴=,过点F 作FH ⊥MB 于H ,如右图(1)所示, ∵FB=3﹣t∴HF=(3﹣t ),HB=(3﹣t ),MB=(3﹣t ),∴=,∴S=S △BEN ﹣S △BMF ==,当3<t ≤6时,BE=6﹣t ,NE=(6﹣t ),如右图(4)所示,∴S==,由上可得,当0<t ≤3时,S=,当3<t ≤6时,S=,即S=.【点评】本题考查三角形综合题,解题的关键是明确题意,画出相应的图形,找出所求问题需要的条件,利用数形结合的思想、特殊角的三角函数值、分类讨论的数学思想解答本题.。
2017届广东省九年级初中学业考试数学押题试题三含详解
2017年中考数学押题卷(三)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣|﹣2|的倒数是()A.2 B.C.D.﹣22.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1093.下列计算正确的是()A.()﹣2=9 B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=24.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.5.分解因式(2x+3)2﹣x2的结果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)6.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b27.不等式组的解集在数轴上表示为()A.B.C.D.8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°9.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.510.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5 B.12 C.10070 D.10080二、填空题(本大题共6小题,每小题4分,共24分)11.方程组的解是.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.13.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为.14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.15.如图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D 在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.第15题图16.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.三、解答题(本大题共3小题,每题6分共18分)17.计算:(+π)0﹣2|1﹣sin30°|+()﹣1.18.先化简,再求值:÷(1﹣)其中x=.19.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.四、解答题(本大题共3小题,每题7分共21分)20.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).21.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.22.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分=4,别交OA、AB于点C和点D,连结OD,若S△BOD(1)求反比例函数解析式;(2)求C点坐标.五、解答题(本大题共3小题,每题9分共27分)23.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.24.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.2017年中考数学押题卷(三)参考答案与试题解析一.选择题(共10小题)1.﹣|﹣2|的倒数是()A.2 B.C.D.﹣2【分析】先根据绝对值的性质计算出﹣|﹣2|的值,再根据倒数的定义求解即可.【解答】解:因为﹣|﹣2|=﹣2,(﹣2)×(﹣)=1,所以﹣|﹣2|的倒数是﹣.故选C.【点评】此题主要考查了倒数的定义及绝对值的性质:(1)若两个数的乘积是1,我们就称这两个数互为倒数.(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.()﹣2=9 B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2【分析】根据负整数指数幂、二次根式的化简、零指数幂、绝对值的性质逐一判断即可.【解答】解:A.=9,故本项正确;B.,故本项错误;C.(﹣2)0=1,故本项错误;D.|﹣5﹣3|=|﹣8|=8,股本项错误,故选:A.【点评】本题考查了负整数指数幂、求算术平方根、零指数幂、绝对值的性质,熟练掌握运算法则及性质是解题的关键.4.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.分解因式(2x+3)2﹣x2的结果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:(2x+3)2﹣x2=(2x+3﹣x)(2x+3+x)=(x+3)(3x+3)=3(x+3)(x+1).故选:D.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.6.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.7.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∠2=∠1=60°,∠4=180°﹣∠3=180°﹣60°=120°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣60°=30°.故选D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.9.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是:[(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5 B.12 C.10070 D.10080【分析】由图象可知点B2016在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2016在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB===,∴B2(10,4),B4(20,4),B6(30,4),…∴B2016(10080,4).∴点B2016纵坐标为10080.故选D.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.二.填空题(共8小题)11.方程组的解是.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.13.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为.【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再求出不等式的非负整数解,即可得出答案.【解答】解:3x﹣2≥4(x﹣1),3x﹣2≥4x﹣4,x≤2,所以不等式的非负整数解为0,1,2,0+1+2=3,故答案为:3.【点评】本题考查了解一元一次不等式,不等式的非负整数解的应用,解此题的关键是能求出不等式的非负整数解,难度适中.14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.15.如图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D 在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.第15题图15.216.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.三.解答题(共3小题)17.计算:(+π)0﹣2|1﹣sin30°|+()﹣1.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+2=2。
广东省东莞市中考数学试卷含详解
2017 年广东省东莞市中考数学试卷一、选择题(本大题共10 小题,每题 3 分,共 30 分)1. 5 的相反数是()A .B.5 C.﹣D.﹣ 52.“一带一路”提议提出三年以来,广东公司到“一带一路”国家投资愈来愈活跃,据商务部门公布的数据显示,2016 年广东省对沿线国家的实质投资额超出4000000000 美元,将4000000000 用科学记数法表示为()A .×109B.×1010C.4×109D.4×10103.已知∠ A=70°,则∠ A 的补角为()A .110°B. 70°C.30°D.20°4.假如 22﹣3x k=0 的一个根,则常数 k 的值为()是方程 x +A .1 B.2C.﹣ 1 D.﹣ 25.在学校举行“阳光少年,励志青春”的演讲竞赛中,五位评委给选手小明的均分分别为:90,85,90,80,95,则这组数据的众数是()A .95 B.90 C.85D. 806.以下所述图形中,既是轴对称图形又是中心对称图形的是()A .等边三角形B .平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)订交于 A, B 两点,已知点 A 的坐标为( 1, 2),则点 B 的坐标为()A.(﹣ 1,﹣ 2)B.(﹣ 2,﹣ 1)C.(﹣ 1,﹣ 1)D.(﹣ 2,﹣ 2)8.以下运算正确的选项是()23254269.如图,四边形ABCD 内接于⊙ O,DA=DC ,∠ CBE=50°,则∠ DAC 的大小为()A .130°B. 100°C. 65°D.50°10.如图,已知正方形ABCD ,点 E 是 BC 边的中点, DE 与 AC 订交于点 F,连结 BF,下列结论:① S△ABF =S△ADF;②S△CDF =4S△CEF;③S△ADF =2S△CEF;④S△ADF =2S△CDF,此中正确的选项是()A .①③B.②③C.①④D.②④二、填空题(本大题共 6 小题,每题 4 分,共 24 分)11.分解因式: a2+a=.12.一个 n 边形的内角和是720°,则 n=.13.已知实数 a,b 在数轴上的对应点的地点以下图,则a+b0.(填“>”,“<”或“ =)”14.在一个不透明的盒子中,有五个完好同样的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知 4a+3b=1,则整式 8a+6b﹣3 的值为.16.如图,矩形纸片ABCD 中, AB=5 ,BC=3,先按图( 2)操作:将矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在边 AB 上的点 E 处,折痕为 AF ;再按图( 3)操作,沿过点 F 的直线折叠,使点 C 落在 EF 上的点 H 处,折痕为 FG,则 A、 H 两点间的距离为.三、解答题(本大题共 3 小题,每题 6 分,共 18 分)17.计算: | ﹣7| ﹣( 1﹣π)0+()﹣1.18.先化简,再求值:(+)?(x2﹣4),此中x=.19.学校团委组织志愿者到图书室整理一批新进的图书.若男生每人整理30 本,女生每人整理20 本,共能整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1240 本.求男生、女生志愿者各有多少人?四、解答题(本大题共 3 小题,每题 7 分,共 21 分)20.如图,在△ ABC 中,∠ A >∠ B.(1)作边 AB 的垂直均分线 DE,与 AB ,BC 分别订交于点D,E(用尺规作图,保存作图印迹,不要求写作法);(2)在( 1)的条件下,连结AE ,若∠ B=50°,求∠ AEC 的度数.21.以下图,已知四边形ABCD , ADEF 都是菱形,∠ BAD= ∠FAD,∠ BAD 为锐角.(1)求证: AD ⊥BF;(2)若 BF=BC,求∠ ADC 的度数.22.某校为认识九年级学生的体重状况,随机抽取了九年级部分学生进行检查,将抽取学生的体重状况绘制以下不完好的统计图表,如图表所示,请依据图标信息回答以下问题:体重频数散布表组边体重(千人数克)A 45≤x <50 12B 50≤x <55 mC 55≤x <60 80D 60≤x <65 40E 65≤x <70 16(1)填空:① m=(直接写出结果);②在扇形统计图中, C 组所在扇形的圆心角的度数等于度;(2)假如该校九年级有1000 名学生,请估量九年级体重低于60 千克的学生大概有多少人?五、解答题(本大题共 3 小题,每题 9 分,共27 分)23.如图,在平面直角坐标系中,抛物线2ax b 交 x 轴于 A(1,0),B(3,0)两点,y=﹣x + +点 P 是抛物线上在第一象限内的一点,直线BP 与 y 轴订交于点 C.(1)求抛物线 y=﹣x 2 ax b 的分析式;+ +(2)当点 P 是线段 BC 的中点时,求点P 的坐标;(3)在( 2)的条件下,求sin∠ OCB 的值.24.如图,AB 是⊙ O 的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙ O 于点 C,垂足为点 E,作直径 CD,过点 C 的切线交 DB 的延伸线于点 P,AF⊥PC于点 F,连结 CB.(1)求证: CB是∠ ECP的均分线;(2)求证: CF=CE;(3)当 = 时,求劣弧的长度(结果保存 p)25.如图,在平面直角坐标系中,O 为原点,四边形ABCO是矩形,点A, C 的坐标分别是 A(0,2)和 C( 2,0),点D是对角线AC上一动点(不与A, C 重合),连结 BD,作 DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形BDEF.(1)填空:点 B 的坐标为;(2)能否存在这样的点 D,使得△ DEC是等腰三角形?若存在,恳求出 AD 的长度;若不存在,请说明原因;(3)①求证:=;②设 AD=x,矩形 BDEF的面积为 y,求 y 对于 x 的函数关系式(可利用①的结论),并求出 y 的最小值.25.如图,在平面直角坐标系中,O 为原点,四边形ABCO是矩形,点A, C 的坐标分别是 A(0,2)和 C( 2,0),点D是对角线AC上一动点(不与A, C 重合),连结 BD,作 DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形BDEF.(1)填空:点 B 的坐标为;(2)能否存在这样的点 D,使得△ DEC是等腰三角形?若存在,恳求出 AD 的长度;若不存在,请说明原因;(3)①求证:=;②设 AD=x,矩形 BDEF的面积为 y,求 y 对于 x 的函数关系式(可利用①的结论),并求出 y 的最小值.2017 年参照答案与试题分析一、选择题(本大题共 10 小题,每题 3 分,共 30 分)1. 5 的相反数是( )A .B .5C .﹣D .﹣ 5【考点】 14:相反数.【剖析】 依据相反数的观点解答即可.【解答】 解:依据相反数的定义有: 5 的相反数是﹣ 5.应选: D .2. “一带一路 ”提议提出三年以来,广东公司到 “一带一路 ”国家投资愈来愈活跃,据商务部门公布的数据显示,2016 年广东省对沿线国家的实质投资额超出4000000000 美元,将4000000000 用科学记数法表示为( )A .×109B .×1010C .4×109D .4×1010【考点】 1I :科学记数法 —表示较大的数.【剖析】 科学记数法的表示形式为 a × 10n的形式,此中 1≤ a <10, n 为整数.确立 n 的值| |时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】 解: 4000000000=4× 109.应选: C .3.已知∠ A=70°,则∠ A 的补角为()A .110°B . 70°C .30°D .20°【考点】 IL :余角和补角.【剖析】 由∠ A 的度数求出其补角即可.【解答】 解:∵∠ A=70°,∴∠ A 的补角为 110°,应选 A.假如 2 是方程 x 2﹣3x+k=0 的一个根,则常数 k 的值为()4A .1B .2C .﹣ 1D .﹣ 2【考点】 A3:一元二次方程的解.【剖析】把 x=2 代入已知方程列出对于 k 的新方程,经过解方程来求 k 的值.【解答】解:∵ 2 是一元二次方程 x2﹣ 3x+k=0 的一个根,∴22﹣3×2+k=0,解得, k=2.应选: B.5.在学校举行“阳光少年,励志青春”的演讲竞赛中,五位评委给选手小明的均分分别为:90,85,90,80,95,则这组数据的众数是()A .95 B.90 C.85D. 80【考点】 W5 :众数.【剖析】众数指一组数据中出现次数最多的数据,依据众数的定义就能够求解.【解答】解:数据 90 出现了两次,次数最多,因此这组数据的众数是90.应选 B.6.以下所述图形中,既是轴对称图形又是中心对称图形的是()A .等边三角形B .平行四边形C.正五边形D.圆【考点】 R5:中心对称图形; P3:轴对称图形.【剖析】依据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.应选 D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线 y=(k2≠ 0)订交于A,B 两点,已知点 A 的坐标为( 1,2),则点 B 的坐标为()A .(﹣ 1,﹣ 2)B.(﹣ 2,﹣ 1)C.(﹣ 1,﹣ 1)D.(﹣ 2,﹣ 2)8称.【解答】解:∵点 A 与 B 对于原点对称,∴B 点的坐标为(﹣ 1,﹣ 2).应选: A.8.以下运算正确的选项是()A .a+2a=3a2B.a3?a2=a5 C .( a4)2=a6D.a4+a2=a4【考点】 47:幂的乘方与积的乘方;35:归并同类项; 46:同底数幂的乘法.【剖析】依据整式的加法和幂的运算法例逐个判断即可.【解答】解: A 、 a+2a=3a,此选项错误;B、 a3?a2=a5,此选项正确;C、( a4)2=a8,此选项错误;D、a4与 a2不是同类项,不可以归并,此选项错误;应选: B.9.如图,四边形ABCD 内接于⊙ O,DA=DC ,∠ CBE=50°,则∠ DAC 的大小为()A .130°B. 100°C. 65°D.50°【考点】 M6 :圆内接四边形的性质.【剖析】先依据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠ADC 的度数,由等腰三角形的性质求得∠DAC 的度数.【解答】解:∵∠ CBE=50°,∴∠ ABC=180° ﹣∠ CBE=180°﹣50°=130°,∵四边形 ABCD 为⊙ O 的内接四边形,∴∠ D=180°﹣∠ ABC=180° ﹣130°=50°,∵DA=DC ,∴∠ DAC==65°,应选 C.10.如图,已知正方形ABCD ,点 E 是 BC 边的中点, DE 与 AC 订交于点 F,连结 BF,下列结论:① S△ABF =S△ADF;②S△CDF =4S△CEF;③S△ADF =2S△CEF;④S△ADF =2S△CDF,此中正确的选项是()A .①③B.②③C.①④D.②④【考点】 LE:正方形的性质.【剖析】由△ AFD ≌△ AFB ,即可推出 S△ABF =S△ADF,故①正确,由 BE=EC= BC=AD ,AD ∥EC,推出= = =,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形 ABCD 是正方形,∴AD ∥CB,AD=BC=AB ,∠ FAD=∠FAB,在△ AFD 和△ AFB 中,,∴△ AFD ≌△ AFB ,∴S△ABF =S△ADF,故①正确,∵BE=EC= BC=AD , AD ∥ EC,∴= = = ,∴S△CDF=2S△CEF, S△ADF =4S△CEF, S△ADF =2S△CDF,故②③错误④正确,应选 C.二、填空题(本大题共 6 小题,每题 4 分,共 24 分)11.分解因式: a2+a= a(a+1).【考点】 53:因式分解﹣提公因式法.【剖析】直接提取公因式分解因式得出即可.【解答】解: a2 +a=a(a+1).故答案为: a(a+1).12.一个 n 边形的内角和是720°,则 n= 6.【考点】 L3:多边形内角与外角.【剖析】多边形的内角和能够表示成(n﹣2)?180°,依此列方程可求解.【解答】解:设所求正 n 边形边数为 n,则( n﹣2)?180°=720,°解得 n=6.13.已知实数 a,b 在数轴上的对应点的地点以下图,则a+b<0.(填“>”,“<”或“ =)”【考点】 2A:实数大小比较; 29:实数与数轴.【剖析】第一依据数轴判断出 a、b 的符号和两者绝对值的大小,依据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵ a 在原点左侧, b 在原点右侧,∴a<0< b,∵a 走开原点的距离比 b 走开原点的距离大,∴| a| >| b| ,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完好同样的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】 X4:概率公式.【剖析】确立出偶数有 2 个,而后依据概率公式列式计算即可得解.【解答】解:∵ 5 个小球中,标号为偶数的有2、4 这 2 个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知 4a+3b=1,则整式 8a+6b﹣3 的值为﹣1.【考点】 33:代数式求值.【剖析】先求出 8a+6b 的值,而后整体代入进行计算即可得解.【解答】解:∵ 4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣ 1.16.如图,矩形纸片ABCD 中, AB=5 ,BC=3,先按图( 2)操作:将矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在边 AB 上的点 E 处,折痕为 AF ;再按图( 3)操作,沿过点 F 的直线折叠,使点 C 落在 EF 上的点 H 处,折痕为 FG,则 A、 H 两点间的距离为.【考点】 PB:翻折变换(折叠问题);LB :矩形的性质.【剖析】如图 3 中,连结 AH .由题意可知在 Rt△ AEH 中,AE=AD=3 ,EH=EF﹣HF=3﹣ 2=1,依据 AH=,计算即可.【解答】解:如图 3 中,连结 AH .由题意可知在 Rt△AEH 中, AE=AD=3 ,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心有限公司咨询电话 0769-8598 8066三、解答题(本大题共 3 小题,每题 6 分,共 18 分)17.计算: | ﹣7| ﹣( 1﹣π)0+()﹣1.【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【剖析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式 =7﹣1+3=9.18.先化简,再求值:(+ ) ?( x2﹣4),此中 x= .【考点】 6D:分式的化简求值.【剖析】先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.【解答】解:原式 =[ + ] ?(x+2)( x ﹣2)= ?(x+2)( x﹣ 2)=2x ,当x= 时,原式 =2 .19.学校团委组织志愿者到图书室整理一批新进的图书.若男生每人整理30 本,女生每人整理20 本,共能整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1240本.求男生、女生志愿者各有多少人?【考点】 9A:二元一次方程组的应用.【剖析】设男生志愿者有x 人,女生志愿者有y 人,依据“若男生每人整理30 本,女生每人整理 20 本,共能整理680 本;若男生每人整理50 本,女生每人整理40 本,共能整理1240 本”,即可得出对于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x 人,女生志愿者有y 人,依据题意得:,解得:.答:男生志愿者有12 人,女生志愿者有16 人.四、解答题(本大题共 3 小题,每题 7 分,共 21 分)20.如图,在△ ABC 中,∠ A >∠ B.(1)作边 AB 的垂直均分线 DE,与 AB ,BC 分别订交于点D,E(用尺规作图,保存作图印迹,不要求写作法);(2)在( 1)的条件下,连结AE ,若∠ B=50°,求∠ AEC 的度数.【考点】 N2:作图—基本作图; KG :线段垂直均分线的性质.【剖析】(1)依据题意作出图形即可;(2)因为 DE 是 AB 的垂直均分线,获得AE=BE ,依据等腰三角形的性质获得∠EAB= ∠B=50°,由三角形的外角的性质即可获得结论.【解答】解:( 1)以下图;(2)∵ DE 是 AB 的垂直均分线,∴AE=BE ,∴∠ EAB= ∠ B=50°,∴∠ AEC= ∠EAB+∠ B=100°.21.以下图,已知四边形ABCD , ADEF 都是菱形,∠ BAD= ∠FAD,∠ BAD 为锐角.(1)求证: AD ⊥BF;(2)若 BF=BC,求∠ ADC 的度数.【考点】 L8:菱形的性质.【剖析】(1)连结 DB 、DF.依据菱形四边相等得出AB=AD=FA ,再利用 SAS 证明△ BAD ≌△ FAD ,得出 DB=DF ,那么 D 在线段 BF 的垂直均分线上,又 AB=AF ,即 A 在线段 BF的垂直均分线上,从而证明 AD ⊥BF;(2)设 AD ⊥ BF 于 H,作 DG⊥BC 于 G,证明 DG= CD .在直角△ CDG 中得出∠ C=30°,再依据平行线的性质即可求出∠ADC=180° ﹣∠ C=150°.【解答】(1)证明:如图,连结DB 、DF.∵四边形 ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA , AD=DE=EF=FA .在△ BAD 与△ FAD 中,,∴△ BAD ≌△ FAD,∴DB=DF ,∴D 在线段 BF 的垂直均分线上,∵AB=AF ,∴A 在线段 BF 的垂直均分线上,∴AD 是线段 BF 的垂直均分线,∴AD ⊥BF;(2)如图,设 AD ⊥ BF 于 H,作 DG⊥BC 于 G,则四边形 BGDH 是矩形,∴DG=BH= BF.∵BF=BC, BC=CD ,∴DG= CD.在直角△ CDG 中,∵∠ CGD=90°,DG= CD,∴∠ C=30°,∵BC∥AD ,∴∠ ADC=180° ﹣∠ C=150°.22.某校为认识九年级学生的体重状况,随机抽取了九年级部分学生进行检查,将抽取学生的体重状况绘制以下不完好的统计图表,如图表所示,请依据图标信息回答以下问题:体重频数散布表组边体重(千人数克)A45≤x <5012B50≤x <55mC55≤x <6080D60≤x <6540E65≤x <7016(1)填空:① m= 52(直接写出结果);②在扇形统计图中, C 组所在扇形的圆心角的度数等于144度;(2)假如该校九年级有1000 名学生,请估量九年级体重低于60 千克的学生大概有多少人?【考点】 VB :扇形统计图; V5 :用样本预计整体; V7 :频数(率)散布表.【剖析】(1)①依据 D 组的人数及百分比进行计算即可获得 m 的值;②依据 C 组的百分比即可获得所在扇形的圆心角的度数;(2)依据体重低于60 千克的学生的百分比乘上九年级学生总数,即可获得九年级体重低于60千克的学生数目.【解答】解:( 1)①检查的人数为: 40÷20%=200(人),∴m=200﹣12﹣ 80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为×360°=144°;故答案为: 52, 144;(2)九年级体重低于60 千克的学生大概有× 1000=720(人).五、解答题(本大题共 3 小题,每题9 分,共 27 分)23.如图,在平面直角坐标系中,抛物线2 ax b 交 x 轴于 A(1,0),B(3,0)两点,y=﹣x + +点 P 是抛物线上在第一象限内的一点,直线BP 与 y 轴订交于点 C.(1)求抛物线 y=﹣x2+ax+b 的分析式;(2)当点 P 是线段 BC 的中点时,求点P 的坐标;(3)在( 2)的条件下,求sin∠ OCB 的值.【考点】 HA :抛物线与 x 轴的交点; H8:待定系数法求二次函数分析式; T7:解直角三角形.【剖析】(1)将点 A 、B 代入抛物线 y=﹣x2+ax+b,解得 a, b 可得分析式;(2)由 C 点横坐标为 0 可得 P 点横坐标,将 P 点横坐标代入( 1)中抛物线分析式,易得P 点坐标;(3)由 P 点的坐标可得 C 点坐标, A 、B、 C 的坐标,利用勾股定理可得BC 长,利用 sin∠OCB=可得结果.【解答】解:( 1)将点 A 、B 代入抛物线 y=﹣ x2+ax+b 可得,,解得, a=4,b=﹣ 3,2∴抛物线的分析式为: y=﹣x +4x﹣3;因此 C 点横坐标 x=0,∵点 P 是线段 BC 的中点,∴点 P 横坐标 x P= ,=∵点 P 在抛物线 y=﹣x2 4x﹣3 上,+∴ y P= ﹣3= ,∴点 P 的坐标为(,);(3)∵点 P 的坐标为(,),点 P 是线段 BC 的中点,∴点 C 的纵坐标为 2×﹣0= ,∴点 C 的坐标为( 0,),∴BC==,∴s in∠OCB= == .24.如图, AB 是⊙ O 的直径, AB=4 ,点 E 为线段 OB 上一点(不与 O,B 重合),作 CE ⊥OB,交⊙ O 于点 C,垂足为点 E,作直径 CD,过点 C 的切线交 DB 的延伸线于点 P, AF ⊥PC 于点 F,连结 CB.(1)求证: CB 是∠ ECP 的均分线;(2)求证: CF=CE;3 =时,求劣弧π()当的长度(结果保存)【考点】 S9:相像三角形的判断与性质; M2 :垂径定理; MC :切线的性质; MN :弧长的计算.【剖析】(1)依据等角的余角相等证明即可;(2)欲证明 CF=CE,只需证明△ ACF ≌△ ACE 即可;(3)作 BM ⊥PF 于 M .则 CE=CM=CF ,设 CE=CM=CF=4a,PC=4a,PM=a,利用相像三角形的性质求出 BM ,求出 tan∠BCM 的值即可解决问题;【解答】(1)证明:∵ OC=OB,∴∠ OCB=∠OBC ,∵PF 是⊙ O 的切线, CE⊥ AB ,∴∠ OCP=∠CEB=90°,∴∠ PCB+∠ OCB=90°,∠ BCE+∠OBC=90°,∴∠ BCE=∠ BCP,∴BC 均分∠ PCE.(2)证明:连结 AC .∵AB 是直径,∴∠ ACB=90°,∴∠ BCP+∠ ACF=90°,∠ ACE+∠BCE=90°,∵∠ BCP=∠BCE,∴∠ ACF= ∠ACE,∵∠ F=∠AEC=90°, AC=AC ,∴△ ACF ≌△ ACE ,∴CF=CE.东莞市虎门铧师培训中心有限公司咨询电话 0769-8598 8066(3)解:作 BM ⊥ PF 于 M .则 CE=CM=CF ,设 CE=CM=CF=4a,PC=4a,PM=a,∵△ BMC ∽△ PMB ,∴= ,∴BM 2=CM?PM=3a2,∴BM=a,∴t an∠BCM= = ,∴∠ BCM=30°,∴∠ OCB=∠OBC=∠ BOC=60°,∴的长 ==π.25.如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点 A ,C 的坐标分别是A (0,2)和 C( 2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥ DB,交 x 轴于点 E,以线段 DE,DB 为邻边作矩形 BDEF .(1)填空:点 B 的坐标为(2,2);(2)能否存在这样的点D,使得△ DEC 是等腰三角形?若存在,恳求出AD 的长度;若不存在,请说明原因;(3)①求证:=;②设 AD=x ,矩形 BDEF 的面积为 y,求 y 对于 x 的函数关系式(可利用①的结论),并求出y的最小值.【考点】 SO:相像形综合题.【剖析】(1)求出 AB 、BC 的长即可解决问题;(2)存在.连结 BE,取 BE 的中点 K ,连结 DK 、KC .第一证明 B、D、E、 C 四点共圆,可得∠ DBC=∠DCE,∠EDC=∠EBC,由 tan∠ACO==,推出∠ ACO=30° ,∠ACD=60°由△ DEC 是等腰三角形,察看图象可知,只有ED=EC,推出∠ DBC= ∠ DCE=∠ EDC=∠EBC=30°,推出∠ DBC= ∠ BCD=60°,可得△ DBC 是等边三角形,推出DC=BC=2 ,由此即可解决问题;(3)①由( 2)可知, B、D、E、C 四点共圆,推出∠ DBC=∠ DCE=30°,由此即可解决问题;②作 DH⊥ AB 于 H.想方法用 x 表示 BD 、 DE 的长,建立二次函数即可解决问题;2021 / 24【解答】解:( 1)∵四边形 AOCB 是矩形,∴BC=OA=2 ,OC=AB=2,∠ BCO=∠ BAO=90° ,∴B(2,2).故答案为( 2,2).(2)存在.原因以下:连结 BE,取 BE 的中点 K,连结 DK 、KC .∵∠ BDE= ∠ BCE=90°,∴KD=KB=KE=KC ,∴B、D、E、C 四点共圆,∴∠ DBC= ∠DCE,∠ EDC= ∠EBC,∵t an∠ACO= = ,∴∠ ACO=30°,∠ ACB=60°①如图 1 中,△ DEC 是等腰三角形,察看图象可知,只有ED=EC,∴∠ DBC= ∠DCE=∠ EDC=∠EBC=30°,∴∠ DBC= ∠ BCD=60°,∴△ DBC 是等边三角形,∴DC=BC=2 ,在Rt△AOC 中,∵∠ ACO=30°,OA=2,∴AC=2AO=4 ,∴AD=AC ﹣ CD=4﹣2=2.∴当 AD=2 时,△ DEC 是等腰三角形.②如图 2 中,∵△ DCE 是等腰三角形,易知 CD=CE,∠ DBC=∠DEC=∠CDE=15°,∴∠ ABD= ∠ADB=75°,∴AB=AD=2 ,综上所述,知足条件的 AD 的值为 2 或 2 .2122 / 24(3)①由( 2)可知, B、D、E、C 四点共圆,∴∠ DBC= ∠DCE=30°,∴t an∠DBE= ,∴= .②如图 2 中,作 DH ⊥AB 于 H.在Rt△ADH 中,∵ AD=x ,∠ DAH= ∠ ACO=30°,∴DH= AD= x,AH==x,∴BH=2﹣x,在 Rt△BDH 中, BD= = ,∴DE= BD= ? ,∴矩形BDEF 的面积为 y=[ 2=2﹣6x 12),] ( x +即y= x2﹣2 x 4,+∴y= ( x﹣3)2+ ,∵>0,∴x=3时,y有最小值2223 / 24- 23 - 24 / 24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学考前押题卷(一)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 的值等于()A. 4B. ﹣4C. ±4D.【答案】A解:,故选:A.2. 函数y=中,自变量x的取值范围为()A. x>B. x≠C. x≠且x≠0D. x<【答案】B【解析】分式有意义的条件是分母不等于0,故分母2x﹣3≠0,解得x的范围.解:根据题意得:2x﹣3≠0,解得:x≠.故选B.3. 下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】B【解析】试题解析:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4. 下列运算正确的是()A. x4+x2=x6B. x2•x3=x6C. (x2)3=x6D. x2﹣y2=(x﹣y)2【答案】C【解析】试题解析:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;...(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选C.【点睛】本题考查的是合并同类项、同底数幂的乘法、积的乘方和因式分解,掌握合并同类项法则、同底数幂的乘法法则、积的乘方法则和利用平方差公式进行因式分解是解题的关键.5. 若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:因为众数为3,所以,x=3,原数据为:3,3,4,5,6,所以,中位数为4考点:(1)众数的计算;(2)中位数的计算6. 若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的()A. ﹣4B. 0C. 1D. 3【答案】A【解析】试题解析:∵y=kx﹣4的函数值y随x的增大而减小,∴k<0,而四个选项中,只有A符合题意,故选A.【点睛】本题考查了一次函数的性质,要知道,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小.7. 已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是()A. 10B. 8C. 6D. 8或10【答案】A【解析】试题解析:x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,∴x1=2,x2=4.由三角形的三边关系可得:(两边之和大于第三边),∴腰长是4,底边是2,所以周长是:4+4+2=10.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.8. 如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A. 64°B. 58°C. 72°D. 55°【答案】B【解析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.解:∵BC是直径,∠D=32°,∴∠B=∠D=32°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC﹣∠BAO=90°﹣32°=58°.故选B.9. 如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A. 3B. 6C. 3πD. 6π【答案】B【解析】试题分析:已知圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,所以2πr=×2π×10,解得r=6.故选B.考点:圆锥的计算.10. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【答案】A【解析】试题分析:根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象二、填空题(本大题共6小题,每小题4分,共24分)11. 时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为__.【答案】1.62×104【解析】试题解析:将16200用科学记数法表示为:1.62×104.12. 因式分解:m2n﹣6mn+9n=__....【答案】n(m﹣3)2【解析】试题解析:m2n﹣6mn+9n=n(m2﹣6m+9)=n(m﹣3)2.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13. 如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.【答案】10【解析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.【点题】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.14. 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为__m(结果保留根号).【答案】30【解析】试题分析:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,∠ABD=90°,∴AB=AD•sin∠ADB=60×sin60° =60×=30(m).考点:解直角三角形的应用.15. 不等式组的解集是__.【答案】3≤x<4【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解:,由①得:x<4;由②得:x≥3,则不等式组的解集为3≤x<4.故答案为:3≤x<416. 如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF 面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是____.【答案】4【解析】设△ABC面积为S,则△DEF面积为26﹣S,根据题意列方程即可得到结论.解:设△ABC面积为S,则△DEF面积为26﹣S,∵叠部分的面积是△ABC面积的,是△DEF面积的,∴S=(26﹣S),解得:S=14,∴重叠部分面积=×14=4,故答案为:4.三、解答题(本大题共3小题,每题6分共18分)17. 解方程:=5.【答案】x=【解析】观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘x(x+3),得x+3+5x2=5x(x+3),解得x=.检验:把x=代入x(x+3)=≠0.∴原方程的解为:x=.点睛:本题主要考查分式方程的解法.在解分式方程中要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.18. 先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1,.【答案】3a2+4b2,15【解析】试题分析:直接利用多项式乘法运算法则去括号,进而合并同类项,再将已知数据代入求出答案.试题解析:原式=2a2+4ab+a2﹣4ab+4b2=3a2+4b2,当a=1,b=时;原式=3×(﹣1)2+4×()2=15.19. 如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.【答案】(1)作图见解析;(2)....【解析】试题分析:(1)首先以A为圆心,任意长为半径画弧,两弧交AB、AC于M、N两点;再分别以M、N为圆心,大于MN长为半径画弧,两弧交于一点O,画射线BO交AC于D即可.(2)分别计算出S△DAC和S△ABC的面积,作比值即可.试题解析:(1)如图所示:(2)解:∵在Rt△ACD中,∠CAD=30°,∴CD=AD.∴BC=CD+BD=CD+AD=3CD.∴S△DAC=,S△ABC=.∴S△DAC:S△ABC=:=1:3.【点睛】本题主要考查了作一个角的角平分线、直角三角形中30°角所对的直角边时斜边的一半的性质以及三角形面积公式的运用,属于基础性题目.四、解答题(本大题共3小题,每题7分共21分)20. 为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【答案】(1)162°;(2)答案见解析;(3)7440人.(2)首先求出体育成绩“优秀”和“良好”的学生数,再利用表格中数据求出答案;(3)直接利用“优秀”和“良好”学生所占比例得出学生中课外体育锻炼时间不少于4小时的学生人数.解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:...(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),21. 某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【答案】(1)男生27人,女生15人;(2)至少要招录22名男生【解析】试题分析:(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设招录的男生为m名,则招录的女生为(30﹣m)名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.22. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据已知条件易证∠CEB=∠ABD,∠CBE=∠ABD,即可得∠CEB=∠CBE;(2)易证明四边形CEDB是平行四边形,再根据BC=BD判定四边形CEDB是菱形即可.试题解析:证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE....(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.五、解答题(本大题共3小题,每题9分共27分)23. 如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结B C.(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.【答案】(1)y=;(2)﹣1<x<0或x>1;(3)存在,D(﹣1,﹣4).【解析】(1)把A坐标代入一次函数解析式求出m的值,确定出一次函数解析式,把A坐标代入反比例解析式求出k的值,即可确定出反比例函数解析式;(2)由题意,找出一次函数图象位于反比例函数图象上方时x的范围即可;(3)存在,理由为:由四边形ABDC为平行四边形,得到AC=BD,且AC∥BD,由AC与x轴垂直,得到BD与x轴垂直,根据A坐标确定出AC的长,即为BD的长,联立一次函数与反比例函数解析式求出B坐标,即可确定出D坐标.解:(1)把A(1,2)代入y=mx得:m=2,则一次函数解析式是y=2x,把A(1,2)代入y=得:k=2,则反比例解析式是y=;(2)根据图象可得:﹣1<x<0或x>1;(3)存在,理由为:如图所示,四边形ABDC为平行四边形,∴AC=BD,AC∥BD,∵AC⊥x轴,...∴BD⊥x轴,由A(1,2),得到AC=2,∴BD=2,联立得:,消去y得:2x=,即x2=1,解得:x=1或x=﹣1,∵B(﹣1,﹣2),∴D的坐标(﹣1,﹣4).点睛:此题是一道反比例函数综合题,考查的知识有:待定系数法确定一次函数解析式以及反比例函数解析式,一次函数与反比例函数的交点,平行四边形的性质,以及坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24. 如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.[来(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.【答案】(1)证明见解析;(2)证明见解析;(3)4.【解析】试题分析:(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.试题解析:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴,∵PA=AO,∴PA=AO=BO,∴,即,∴PD=4.考点:圆的综合题;综合题.25. 如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(﹣4,0),C(0,2);(2)或;(3)存在,M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣)....【解析】试题分析:(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标,由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.试题解析:(1)令y=0得,∴,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,)或(5,),此时点F(﹣1,),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,),点M2坐标(﹣1,).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,)或(﹣1,).考点:1.二次函数综合题;2.压轴题;3.函数的图象;4.分类讨论.。