MAX6316LUK45CW-T中文资料

合集下载

MAX5401EKA-T中文资料

MAX5401EKA-T中文资料
________________________Applications
Mechanical Potentiometer Replacement
Low-Drift PGAs
Adjustable Voltage References
Features
o Miniature 8-Pin SOT23 (3mm x 3mm) o 256 Tap Positions o Ultra-Low 0.1µA Supply Current o Single-Supply Operation: +2.7V to +5.5V o Low Ratiometric Temperature Coefficient:
元器件交易网
19-1848; Rev 0; 10/00
MAX5400/MAX5401
256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23
General Description
The MAX5400/MAX5401 digital potentiometers offer 256-tap SOT-PoT™ digitally controlled variable resistors in tiny 8-pin SOT23 packages. Each device functions as a mechanical potentiometer, consisting of a fixed resistor string with a digitally controlled wiper contact. They operate from +2.7V to +5.5V single-supply voltages and use an ultra-low supply current of 0.1µA. These devices also provide glitchless switching between resistor taps, as well as a convenient poweron reset that sets the wiper to the midscale position at power-up. A low 5ppm/°C ratiometric temperature coefficient makes it ideal for applications requiring low drift.

MAX6163AESA-T中文资料

MAX6163AESA-T中文资料

General DescriptionThe MAX6161–MAX6168 are precision, low-dropout,micropower voltage references. These three-terminal devices operate with an input voltage range from (V OUT + 200mV) to 12.6V and are available with output volt-age options of 1.25V, 1.8V, 2.048V, 2.5V, 3V, 4.096V,4.5V, and 5V. They feature a proprietary curvature-cor-rection circuit and laser-trimmed thin-film resistors that result in a very low temperature coefficient of 5ppm/°C (max) and an initial accuracy of ±2mV (max).Specifications apply to the extended temperature range (-40°C to +85°C).The MAX6161–MAX6168 typically draw only 100µA of supply current and can source 5mA (4mA for MAX6161) or sink 2mA of load current. Unlike conven-tional shunt-mode (two-terminal) references that waste supply current and require an external resistor, these devices offer a supply current that is virtually indepen-dent of the supply voltage (8µA/V variation) and do not require an external resistor. Additionally, the internally compensated devices do not require an external com-pensation capacitor. Eliminating the external compen-sation capacitor saves valuable board area in space-critical applications. A low-dropout voltage and a supply-independent, ultra-low supply current make these devices ideal for battery-operated, high-perfor-mance, low-voltage systems.The MAX6161–MAX6168 are available in 8-pin SO packages.________________________ApplicationsAnalog-to-Digital Converters (ADCs)Portable Battery-Powered Systems Notebook Computers PDAs, GPS, DMMs Cellular PhonesPrecision +3V/+5V Systems____________________________Features♦±2mV (max) Initial Accuracy♦5ppm/°C (max) Temperature Coefficient ♦5mA Source Current at 0.9mV/mA ♦2mA Sink Current at 2.5mV/mA ♦Stable with 1µF Capacitive Loads ♦No External Capacitor Required ♦100µA (typ) Quiescent Supply Current ♦200mV (max) Dropout at 1mA Load Current ♦Output Voltage Options: 1.25V, 1.8V, 2.048V, 2.5V,3V, 4.096V, 4.5V, 5V19-1650; Rev 3; 8/05MAX6161–MAX6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References________________________________________________________________Maxim Integrated Products 1___________________Pin Configuration*Insert the code for the desired initial accuracy and temperature coefficient (from the Selector Guide) in the blank to complete the part number.Typical Operating Circuit and Selector Guide appear at end of data sheet.Ordering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 6161–M A X 6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltages Referenced to GNDIN …………............................................................-0.3 to +13.5V OUT………………........................................-0.3V to (V IN + 0.3V)Output Short-Circuit Duration to GND or IN (V IN ≤6V)...Continuous Output Short-Circuit Duration to GND or IN (V IN > 6V)…...........60sContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range………….…………-65°C to +150°C Lead Temperature (soldering, 10s)……………………….+300°CELECTRICAL CHARACTERISTICS—MAX6161 (V OUT = 1.25V)MAX6161–MAX6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—MAX6168 (V OUT = 1.800V)M A X 6161–M A X 6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX6162 (V OUT = 2.048V)MAX6161–MAX6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References_______________________________________________________________________________________5ELECTRICAL CHARACTERISTICS—MAX6166 (V OUT = 2.500V)M A X 6161–M A X 6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS —MAX6163 (V OUT = 3.000V)MAX6161–MAX6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References_______________________________________________________________________________________7ELECTRICAL CHARACTERISTICS—MAX6164 (V OUT = 4.096V)M A X 6161–M A X 6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References 8_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS —MAX6167 (V OUT = 4.500V)MAX6161–MAX6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References_______________________________________________________________________________________9ELECTRICAL CHARACTERISTICS—MAX6165 (V OUT = 5.000V)Note 2:Temperature Coefficient is specified by the “box” method; i.e., the maximum ΔV OUT is divided by the maximum ΔT.Note 3:Thermal Hysteresis is defined as the change in T A = +25°C output voltage before and after temperature cycling of thedevice (from T A = T MIN to T MAX ). Initial measurement at T A = +25°C is followed by temperature cycling the device to T A = +85°C then to T A = -40°C, and another measurement at T A = +25°C is compared to the original measurement at T A = +25°C.Note 4:Dropout voltage is the minimum input voltage at which V OUT changes ≤0.2% from V OUT at V IN = 5.0V (V IN = 5.5V forMAX6165).M A X 6161–M A X 6168Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References 10______________________________________________________________________________________Typical Operating Characteristics(V IN = +5V for MAX6161–MAX6168, V IN = +5.5V for MAX6165, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)MAX6161OUTPUT VOLTAGE TEMPERATURE DRIFTTEMPERATURE (°C)O U T P U T V O L T A G E (V )70552540-1010-251.24961.24971.24981.24991.25001.25011.25021.25031.25041.25051.2495-4085MAX6165OUTPUT VOLTAGE TEMPERATURE DRIFTTEMPERATURE (°C)O U T P U T V O L T A G E (V )7055-25-102510404.99854.99904.99955.00005.00055.00105.00155.00204.9980-4085MAX6161LONG-TERM DRIFTM A X 6161/68 t o c 03TIME (hrs)D R I F T (p p m )768192384576-30-20-100102030405060-40960MAX6165LONG-TERM DRIFTM A X 6161/68 t o c 04TIME (hrs)D R I F T (p p m )768192384576-90-80-70-60-50-40-30-20-100-100960-300-200-100010020030024681012MAX6161LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (μV )-1200-600-800-1000-400-20002005971113MAX6165LINE REGULATIONINPUT VOLTAGE (V)O U T P U T V O L T A G E C H A N G E (μV )-310-1-22345-4-224LOAD CURRENT (mA)O U T P U T V O L T A G E C H A N G E (m V)MAX6161LOAD REGULATION-620-2-44861012-6-2-4246LOAD CURRENT (mA)O U T P U T V O L T A G E C H A N G E (m V )MAX6165LOAD REGULATION0.100.050.200.150.250.30021345MAX6166DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)D R O P O U T V O L T A GE (V )MAX6161–MAX6168Output-Current, SO-8 Voltage References______________________________________________________________________________________11Typical Operating Characteristics (continued)(V IN = +5V for MAX6161–MAX6168, V IN = +5.5V for MAX6165, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)00.050.150.100.200.2521345LOAD CURRENT (mA)D R O P O U T V O L T A GE (V )MAX6165DROPOUT VOLTAGE vs. LOAD CURRENTM A X 6161/68 t o c 11FREQUENCY (kHz)P S R R (d B )0-10-20-30-40-50-60-70-80-900.0011101000.010.11000MAX6161POWER-SUPPLY REJECTION RATIOvs. FREQUENCY-70-800.001101000-60-50-40-30-20-100FREQUENCY (kHz)P S R R (d B )0.1MAX6165POWER-SUPPLY REJECTION RATIOvs. FREQUENCYM A X 6161/68 t c 12MAX6161SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (μA )1210864108116124132140148156164172180100214MAX6165SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (μA )1312101178969610210811412012613213814415090514MAX6161SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )603510-15108116124132140148156164172180100-4085MAX6165SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )603510-159610210811412012613213814415090-408500.00110100040206080100140120160180200220M A X 6161/68 t o c 17FREQUENCY (kHz)O U T P U T I M P E D A N C E (Ω)0.1MAX6161OUTPUT IMPEDANCE vs. FREQUENCY1800.00110100040206010080120140160M A X 6161/68 t o c 18FREQUENCY (kHz)O U T P U T I M P E D A N C E (Ω)0.1MAX6165OUTPUT IMPEDANCE vs. FREQUENCYM A X 6161–M A X 6168Output-Current, SO-8 Voltage References 12______________________________________________________________________________________Typical Operating Characteristics (continued)(V IN = +5V for MAX6161–MAX6168, V IN = +5.5V for MAX6165, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)V OUT 10μV/div 1s/div MAX61610.1Hz TO 10Hz OUTPUT NOISEM A X 6161/68 t o c 19V OUT 10μV/div1s/divMAX6165NOISEM A X 6161/68 t o c 20V OUT 500mV/divV IN 5V/div10μs/divMAX6161TURN-ON TRANSIENT(C L = 50pF)M A X 6161/68 t o c 21V OUT 2V/divV IN 5V/div40μs/divMAX6165TURN-ON TRANSIENT(C L = 50pF)M A X 6161/67 t o c 22I OUT 500μA/divV OUTAC-COUPLED 100mV/div400μs/div MAX6161LOAD TRANSIENT(I OUT = ±250μA, V IN = 5.0, C L = 0)+250μA -250μAMAX6161/68 toc23I OUT 500μA/divV OUTAC-COUPLED50mV/div400μs/divMAX6165LOAD TRANSIENT(I OUT = ±250μA, C L = 0, V IN = 5.5V)+250μA -250μAMAX6161/68 toc24MAX6161–MAX6168Output-Current, SO-8 Voltage References______________________________________________________________________________________13I OUT 5mA/divV OUTAC-COUPLED50mV/div400μs/divMAX6165LOAD TRANSIENT(C L = 0, I OUT = ±2mA, V IN = 5.5V)+2mA -2mAMAX6161/68 toc28I OUT 5mA/divV OUTAC-COUPLED 100mV/div 400μs/div MAX6161LOAD TRANSIENT(V IN = 5.0V, C L = 0, I OUT = ±2mA)+2mA-2mAMAX6161/68 toc27I OUT 5mA/divV OUTAC-COUPLED50mV/div400μs/divMAX6161LOAD TRANSIENT(V IN = 5.0V, C L = 1μF, I OUT = ±2mA)+2mA-2mAMAX6161/68 toc29I OUT 5mA/divV OUTAC-COUPLED20mV/div400μs/divMAX6165LOAD TRANSIENT(C L = 1μF, I OUT = ±2mA, V IN = 5.5V)+2mA-2mAMAX6161/68 toc30I OUT 500μA/divV OUTAC-COUPLED10mV/div 400μs/div MAX6161LOAD TRANSIENT(I OUT = ±250μA, V IN = 5.0V, C L = 1μF)+250μA -250μAMAX6161/68 toc25I OUT 500μA/divV OUTAC-COUPLED20mV/div400μs/divMAX6165LOAD TRANSIENT(I OUT = ±250μA, C L = 1μF, V IN = 5.5V)+250μA-250μAMAX6161/68 toc26Typical Operating Characteristics (continued)(V IN = +5V for MAX6161–MAX6168, V IN = +5.5V for MAX6165, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)M A X 6161–M A X 6168Output-Current, SO-8 Voltage References 14______________________________________________________________________________________I OUT 5mA/divV OUTAC-COUPLED50mV/div 400μs/div MAX6161LOAD TRANSIENT(V IN = 5.0V, C L = 1μF, I OUT = ±4mA)+4mA-4mAMAX6161/68 toc33I OUT 5mA/divV OUTAC-COUPLED50mV/div400μs/divMAX6165LOAD TRANSIENT(I OUT = ±5mA, C L = 1μF, V IN = 5.5V)+5mA-5mAMAX6161/68 toc34V IN500mV/divV OUTAC-COUPLED20mV/div 40μs/div MAX6161LINE TRANSIENT(C L = 0)+0.25V-0.25VMAX6161/68 toc35V IN500mV/divV OUTAC-COUPLED20mV/div40μs/divMAX6165LINE TRANSIENT(C L = 0)+0.25V -0.25VMAX6161/68 toc36Note 5:Many of the Typical Operating Characteristics of the MAX6161 family are extremely similar. The extremes of these characteristicsare found in the MAX6161 (1.25V output) and the MAX6165 (5.0V output). The Typical Operating Characteristics of the remain-der of the MAX6161 family typically lie between these two extremes and can be estimated based on their output voltages.Typical Operating Characteristics (continued)(V IN = +5V for MAX6161–MAX6168, V IN = +5.5V for MAX6165, I OUT = 0, T A = +25°C, unless otherwise noted.) (Note 5)I OUT 5mA/divV OUTAC-COUPLED 200mV/div400μs/div MAX6161LOAD TRANSIENT(V IN = 5.0V, C L = 0, I OUT = ±4mA)+4mA-4mAMAX6161/68 toc31I OUT 5mA/divV OUTAC-COUPLED 100mV/div400μs/divMAX6165LOAD TRANSIENT(I OUT = ±5mA, C L = 0, V IN = 5.5V)+5mA-5mAMAX6161/68 toc32MAX6161–MAX6168Output-Current, SO-8 Voltage References______________________________________________________________________________________15Applications InformationInput BypassingF or the best line-transient performance, decouple the input with a 0.1µF ceramic capacitor as shown in the Typical Operating Circuit . Locate the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.Output/Load CapacitanceDevices in the MAX6161 family do not require an output capacitor for frequency stability. In applications where the load or the supply can experience step changes,an output capacitor of at least 0.1µF will reduce the amount of overshoot (undershoot) and improve the cir-cuit’s transient response. Many applications do not require an external capacitor, and the MAX6161 family can offer a significant advantage in applications when board space is critical.Supply CurrentThe quiescent supply current of the series-mode MAX6161 family is typically 100µA and is virtually inde-pendent of the supply voltage, with only an 8µA/V (max) variation with supply voltage. Unlike series refer-ences, shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load cur-rent, even if the load current is not present at the time.In the MAX6161 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissi-pation and extends battery life.When the supply voltage is below the minimum speci-fied input voltage (as during turn-on), the devices can draw up to 400µA beyond the nominal supply current.The input voltage source must be capable of providing this current to ensure reliable turn-on.Output Voltage HysteresisOutput voltage hysteresis is the change in the input voltage at T A = +25°C before and after the device is cycled over its entire operating temperature range.Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 125ppm.Turn-On TimeThese devices typically turn on and settle to within 0.1% of their final value in 50µs to 300µs, depending on the output voltage (see electrical table of part used).The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.Typical Operating Circuit__________________________Chip Information TRANSISTOR COUNT: 117PROCESS: BiCMOSPin DescriptionPIN NAME FUNCTIONNo Connection. Not internally connected.N.C.1, 3, 5, 7, 82IN Input Voltage GroundGND 46OUTReference OutputM A X 6161–M A X 6168Output-Current, SO-8 Voltage References 16______________________________________________________________________________________Selector GuideMAX6161–MAX6168Maxim cannot assume responsibility f or use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600_____________________17©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.S O I C N .E P SOutput-Current, SO-8 Voltage ReferencesPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

MAX4636中文资料

MAX4636中文资料

元器件交易网
Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switches MAX4635/MAX4636
ABSOLUTE MAXIMUM RATINGS
(Voltages Referenced to GND) V+, IN_ .....................................................................-0.3V to +6V COM_, NC_, NO_ (Note 1) .......................... -0.3V to (V+ + 0.3V) Continuous Current into Any Terminal .............................±30mA Peak Current into COM_, NC_, NO_ (pulsed at 1ms, 10% duty cycle).................................±100mA Continuous Power Dissipation (TA = +70°C) 10-Pin µMAX (derate 4.7mW/°C above +70°C) ............330mW 10-Pin Thin QFN (derate 24.4mW/°C above +70°C) ..1951mW Operating Temperature Range .......................... -40°C to +85°C Storage Temperature Range ........................... -65°C to +150°C Lead Temperature (soldering, 10s) ............................... +300°C

MAX4466EXK中文资料

MAX4466EXK中文资料
OUT Shorted to GND or VCC .................................Continuous Continuous Power Dissipation (TA = +70°C)
5-Pin SC70 (derate 2.5mW/°C above +70°C) .............200mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
ELECTRICAL CHARACTERISTICS
(VCC = +5V, VCM = 0, VOUT = VCC/2, RL = ∞ to VCC/2, SHDN = GND (MAX4467/MAX4468 only). TA = TMIN to TMAX, unless otherwise noted. Typical values specified at TA = +25°C.) (Note 1)
TOP VIEW
IN+ 1
5 VCC
MAX4465 GND 2 MAX4466
IN- 3
4 OUT
SC70/SOT23 Pin Configurations continued at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Features
o +2.4V to +5.5V Supply Voltage Operation
o Versions with 5nA Complete Shutdown Available (MAX4467/MAX4468)

MAX706中文资料_数据手册_参数

MAX706中文资料_数据手册_参数
__________Typical Operating Circuit
UNREGULATED DC
MAX667 +5V DC LINEAR
REGULATOR
PUSHBUTTON SWITCH
VCC
RESMR
MAX706 MAX813L
PFO
µP
VCC RESET I/O LINE NMI INTERRUPT
___________________________Features
o Available in Tiny µMAX Package
o Guaranteed RESET Valid at VCC = 1V o Precision Supply-Voltage Monitor
4.65V in MAX705/MAX707/MAX813L 4.40V in MAX706/MAX708
Output Current (all outputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Continuous Power Dissipation (TA = +70°C)
Plastic DIP (derate 9.09mW/°C above +70°C) . . . . . . . 727mW SO (derate 5.88mW/°C above +70°C) . . . . . . . . . . . . . . . 471mW µMAX (derate 4.10mW/°C above +70°C) . . . . . . . . . . . . 330mW
3) A 1.25V threshold detector for power-fail warning, low-battery detection, or for monitoring a power supply other than +5V.

MAX6355TYUT中文资料

MAX6355TYUT中文资料

Dual/Triple-Voltage µP Supervisory Circuits MAX6351–MAX6360
ABSOLUTE MAXIMUM RATINGS
VCC1, VCC2 to GND .................................................-0.3V to +6V RST (MAX6352/MAX6355/MAX6358)...................... -0.3V to +6V RST, MR, WDI, RST1, RSTIN (MAX6351/MAX6353/ MAX6356/MAX6359) ..............................-0.3V to (VCC1 + 0.3V) RST, RST2 (MAX6351/MAX6354/ MAX6357/MAX6360) ..............................-0.3V to (VCC2 + 0.3V) Input/Output Current, All Pins .............................................20mA Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Pin SOT23 (derate 8.7mW/°C above +70°C)............695mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range .............................-65°C to +150°C

MAX6316LUK48DW-T中文资料

MAX6316LUK48DW-T中文资料

___________________________________________________________________Selector Guide________________General DescriptionThe MAX6316–MAX6322 family of microprocessor (µP)supervisory circuits monitors power supplies and microprocessor activity in digital systems. It offers sev-eral combinations of push/pull, open-drain, and bidirec-tional (such as Motorola 68HC11) reset outputs, along with watchdog and manual reset features. The Selector Guide below lists the specific functions available from each device. These devices are specifically designed to ignore fast negative transients on V CC . Resets are guaranteed valid for V CC down to 1V.These devices are available in 26 factory-trimmed reset threshold voltages (from 2.5V to 5V, in 100mV incre-ments), featuring four minimum power-on reset timeout periods (from 1ms to 1.12s), and four watchdog timeout periods (from 6.3ms to 25.6s). Thirteen standard ver-sions are available with an order increment requirement of 2500 pieces (see Standard Versions table); contact the factory for availability of other versions, which have an order increment requirement of 10,000 pieces.The MAX6316–MAX6322 are offered in a miniature 5-pin SOT23 package.________________________ApplicationsPortable Computers Computers ControllersIntelligent InstrumentsPortable/Battery-Powered Equipment Embedded Control Systems____________________________Features♦Small 5-Pin SOT23 Package♦Available in 26 Reset Threshold Voltages2.5V to 5V, in 100mV Increments ♦Four Reset Timeout Periods1ms, 20ms, 140ms, or 1.12s (min)♦Four Watchdog Timeout Periods6.3ms, 102ms, 1.6s, or 25.6s (typ) ♦Four Reset Output StagesActive-High, Push/Pull Active-Low, Push/Pull Active-Low, Open-Drain Active-Low, Bidirectional♦Guaranteed Reset Valid to V CC = 1V♦Immune to Short Negative V CC Transients ♦Low Cost♦No External ComponentsMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset________________________________________________________________Maxim Integrated Products 119-0496; Rev 7; 11/07_______________Ordering InformationOrdering Information continued at end of data sheet.*The MAX6318/MAX6319/MAX6321/MAX6322 feature two types of reset output on each device.Typical Operating Circuit and Pin Configurations appear at end of data sheet.For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Specify lead-free by replacing “-T” with “+T” when ordering.ELECTRICAL CHARACTERISTICS(V CC = 2.5V to 5.5V, T A = -40°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V CC ......................................................................-0.3V to +6V RESET (MAX6320/MAX6321/MAX6322 only)...... -0.3V to +6V All Other Pins.........................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mAContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...............571mW Operating Temperature Range..........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range..............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CTH available in 100mV increments from 2.5V to 5V (see Table 1 at end of data sheet).Note 3:Guaranteed by design.MAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________3Note 5:Measured from RESET V OL to (0.8 x V CC ), R LOAD = ∞.Note 6:WDI is internally serviced within the watchdog period if WDI is left unconnected.Note 7:The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is designed for a three-stated-output device with a 10µA maximum leakage current and capable of driving a maximum capac-itive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.ELECTRICAL CHARACTERISTICS (continued)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)021*********-4020-20406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )302010504090807060100-40-20020406080100V CC FALLING TO RESET PROPAGATIONDELAY vs. TEMPERATURETEMPERATURE (°C)R E S E T P R O P A G A T I O N D E L A Y (μs )140180160240220200300280260320-40020-20406080100MAX6316/MAX6317/MAX6319/MAX6320/MAX6322MANUAL RESET TO RESETPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATUREM A X 6316t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321NORMALIZED WATCHDOG TIMEOUTPERIOD vs. TEMPERATUREM A X 6316t o c 05TEMPERATURE (°C)N O R M A L I Z E D W A T C H D O G T I M E O U T P E R I O D800101001000MAXIMUM V CC TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE2010RESET THRESHOLD OVERDRIVE (mV) V RST - V CCT RA N S I E N T D U R A T I O N (μs )3050604070200ns/divMAX6316M/6318MH/6319MHBIDIRECTIONALPULLUP CHARACTERISTICSMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 6______________________________________________________________________________________________________Detailed DescriptionA microprocessor’s (µP) reset input starts or restarts the µP in a known state. The reset output of the MAX6316–MAX6322 µP supervisory circuits interfaces with the reset input of the µP, preventing code-execution errors during power-up, power-down, and brownout condi-tions (see the Typical Operating Circuit ). The MAX6316/MAX6317/MAX6318/MAX6320/MAX6321 are also capa-ble of asserting a reset should the µP become stuck in an infinite loop.Reset OutputThe MAX6316L/MAX6318LH/MAX6319LH feature an active-low reset output, while the MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP feature an active-high reset output. RESET is guaran-teed to be a logic low and RESET is guaranteed to be a logic high for V CC down to 1V.The MAX6316–MAX6322 assert reset when V CC is below the reset threshold (V RST ), when MR is pulled low (MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP only), or if the WDI pin is not serviced withinthe watchdog timeout period (t WD ). Reset remains assert-ed for the specified reset active timeout period (t RP ) after V CC rises above the reset threshold, after MR transitions low to high, or after the watchdog timer asserts the reset (MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP). After the reset active timeout period (t RP )expires, the reset output deasserts, and the watchdog timer restarts from zero (Figure 2).Figure 1. Functional DiagramFigure 2. Reset Timing DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________7Bidirectional R E S E T OutputThe MAX6316M/MAX6318MH/MAX6319MH are designed to interface with µPs that have bidirectional reset pins,such as the Motorola 68HC11. Like an open-drain output,these devices allow the µP or other devices to pull the bidirectional reset (RESET ) low and assert a reset condi-tion. However, unlike a standard open-drain output, it includes the commonly specified 4.7k Ωpullup resistor with a P-channel active pullup in parallel.This configuration allows the MAX6316M/MAX6318MH/MAX6319MH to solve a problem associated with µPs that have bidirectional reset pins in systems where sev-eral devices connect to RESET (F igure 3). These µPs can often determine if a reset was asserted by an exter-nal device (i.e., the supervisor IC) or by the µP itself (due to a watchdog fault, clock error, or other source),and then jump to a vector appropriate for the source of the reset. However, if the µP does assert reset, it does not retain the information, but must determine the cause after the reset has occurred.The following procedure describes how this is done in the Motorola 68HC11. In all cases of reset, the µP pulls RESET low for about four external-clock cycles. It then releases RESET , waits for two external-clock cycles,then checks RESET ’s state. If RESET is still low, the µP concludes that the source of the reset was external and, when RESET eventually reaches the high state, it jumps to the normal reset vector. In this case, stored-state information is erased and processing begins fromscratch. If, on the other hand, RESET is high after a delay of two external-clock cycles, the processor knows that it caused the reset itself and can jump to a different vector and use stored-state information to determine what caused the reset.A problem occurs with faster µPs; two external-clock cycles are only 500ns at 4MHz. When there are several devices on the reset line, and only a passive pullup resis-tor is used, the input capacitance and stray capacitance can prevent RESET from reaching the logic high state (0.8✕V CC ) in the time allowed. If this happens, all resets will be interpreted as external. The µP output stage is guaran-teed to sink 1.6mA, so the rise time can not be reduced considerably by decreasing the 4.7k Ωinternal pullup resistance. See Bidirectional Pullup Characteristics in the Typical Operating Characteristics .The MAX6316M/MAX6318MH/MAX6319MH overcome this problem with an active pullup FET in parallel with the 4.7k Ωresistor (F igures 4 and 5). The pullup transistor holds RESET high until the µP reset I/O or the supervisory circuit itself forces the line low. Once RESET goes below V PTH , a comparator sets the transition edge flip-flop, indi-cating that the next transition for RESET will be low to high. When RESET is released, the 4.7k Ωresistor pulls RESET up toward V CC . Once RESET rises above V PTH but is below (0.85 x V CC ), the active P-channel pullup turns on. Once RESET rises above (0.85 x V CC ) or the 2µs one-shot times out, the active pullup turns off. The parallel combination of the 4.7k Ωpullup and theFigure 3. MAX6316M/MAX6318MH/MAX6319MH Supports Additional Devices on the Reset BusM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 8_______________________________________________________________________________________Figure 4. MAX6316/MAX6318MH/MAX6319MH Bidirectional Reset Output Functional DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________9P-channel transistor on-resistance quickly charges stray capacitance on the reset line, allowing RESET to transition from low to high within the required two elec-tronic-clock cycles, even with several devices on the reset line. This process occurs regardless of whether the reset was caused by V CC dipping below the reset threshold, the watchdog timing out, MR being asserted,or the µP or other device asserting RESET . The parts do not require an external pullup. To minimize supply cur-rent consumption, the internal 4.7k Ωpullup resistor dis-connects from the supply whenever the MAX6316M/MAX6318MH/MAX6319MH assert reset.Open-Drain R E S E T OutputThe MAX6320P/MAX6321HP/MAX6322HP have an active-low, open-drain reset output. This output struc-ture will sink current when RESET is asserted. Connect a pullup resistor from RESET to any supply voltage up to 6V (Figure 6). Select a resistor value large enough toregister a logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A 10k Ωpullup is sufficient in most applications.Manual-Reset InputThe MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP feature a manual reset input. A logic low on MR asserts a reset. After MR transitions low to high, reset remains asserted for the duration of the reset timeout peri-od (t RP ). The MR input is connected to V CC through an internal 52k Ωpullup resistor and therefore can be left unconnected when not in use. MR can be driven with TTL-logic levels in 5V systems, with CMOS-logic levels in 3V systems, or with open-drain or open-collector output devices. A normally-open momentary switch from MR to ground can also be used; it requires no external debouncing circuitry. MR is designed to reject fast, negative-going transients (typically 100ns pulses). A 0.1µF capacitor from MR to ground provides additional noise immunity.The MR input pin is equipped with internal ESD-protection circuitry that may become forward biased. Should MR be driven by voltages higher than V CC , excessive current would be drawn, which would damage the part. F or example, assume that MR is driven by a +5V supply other than V CC . If V CC drops lower than +4.7V, MR ’s absolute maximum rating is violated [-0.3V to (V CC + 0.3V)], and undesirable current flows through the ESD structure from MR to V CC . To avoid this, use the same supply for MR as the supply monitored by V CC . This guarantees that the voltage at MR will never exceed V CC .Watchdog InputThe MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP feature a watchdog circuit that monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within the watchdog timeout period (t WD ),reset asserts. The internal watchdog timer is cleared by reset or by a transition at WDI (which can detect pulses as short as 50ns). The watchdog timer remains cleared while reset is asserted. Once reset is released, the timer begins counting again (Figure 7).The WDI input is designed for a three-stated output device with a 10µA maximum leakage current and the capability of driving a maximum capacitive load of 200pF.The three-state device must be able to source and sink at least 200µA when active. Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. When the watchdog timer is left open circuited, the timer is cleared internally at intervals equal to 7/8 of the watchdog period.Figure 6. MAX6320P/MAX6321HP/MAX6322HP Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 5. Bidirectional RESET Timing DiagramM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 10______________________________________________________________________________________Applications InformationWatchdog Input CurrentThe WDI input is internally driven through a buffer and series resistor from the watchdog counter. For minimum watchdog input current (minimum overall power con-sumption), leave WDI low for the majority of the watch-dog timeout period. When high, WDI can draw as much as 160µA. Pulsing WDI high at a low duty cycle will reduce the effect of the large input current. When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain.Negative-Going V CC TransientsThese supervisors are immune to short-duration, nega-tive-going V CC transients (glitches), which usually do not require the entire system to shut down. Typically,200ns large-amplitude pulses (from ground to V CC ) on the supply will not cause a reset. Lower amplitude puls-es result in greater immunity. Typically, a V CC transient that goes 100mV under the reset threshold and lasts less than 4µs will not trigger a reset. An optional 0.1µF bypass capacitor mounted close to V CC provides addi-tional transient immunity.Ensuring Valid Reset OutputsDown to V CC = 0The MAX6316_/MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0, a pulldown resistor to active-low outputs (push/pull and bidirectional only,F igure 8) and a pullup resistor to active-high outputs(push/pull only, Figure 9) will ensure that the reset line is valid while the reset output can no longer sink orsource current. This scheme does not work with the open-drain outputs of the MAX6320/MAX6321/MAX6322.The resistor value used is not critical, but it must be large enough not to load the reset output when V CC is above the reset threshold. F or most applications,100k Ωis adequate.Watchdog Software Considerations(MAX6316/MAX6317/MAX6318/MAX6320/MAX6321)One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.Figure 7. Watchdog Timing RelationshipFigure 9. Ensuring RESET Valid to V CC = 0 on Active-High Push/Pull OutputsFigure 8. Ensuring RESET Valid to V CC = 0 on Active-Low Push/Pull and Bidirectional OutputsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________11F igure 10 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the end of every subroutine or loop, then set high again when the pro-gram returns to the beginning. If the program should hang in any subroutine, the problem would be quickly corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the Watchdog Input Current section, this scheme results in higher time average WDI current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.Figure 10. Watchdog Flow Diagram__________________Pin ConfigurationsTypical Operating CircuitTable 2. Standard VersionsTable 1. Factory-Trimmed Reset ThresholdsM A X 6316–M A X 6322Watchdog and Manual ResetTable 3. Reset/Watchdog Timeout PeriodsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________13__Ordering Information (continued)a watchdog feature (see Selector Guide) are factory-trimmed to one of four watchdog timeout periods. Insert the letter corre-sponding to the desired watchdog timeout period (W, X, Y, or Z from Table 3) into the blank following the reset timeout suffix.TRANSISTOR COUNT: 191SUBSTRATE IS INTERNALLY CONNECTED TO V+Chip Informationdard versions only. The required order increment for nonstandard versions is 10,000 pieces. Contact factory for availability.M A X 6316–M A X 6322Watchdog and Manual Reset 14______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6316–MAX6322 Watchdog and Manual ResetRevision History。

MAX6305中文资料

MAX6305中文资料

For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.General DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply. Ideal for monitoring both 5V and 3.3V in personal computer systems, these devicesFeatureso Small 5-Pin SOT23 Packageo Precision Factory-Set V CC Reset Thresholds;Available in 0.1V Increments from 2.5V to 5V o Immune to Short V TransientsMAX6305–MAX63135-Pin, Multiple-Input,Programmable Reset ICs________________________________________________________________Maxim Integrated Products 119-1145; Rev 1; 8/98M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSV CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313; T A = 0°C to +70°C; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ...........................................................................-0.3V to +6V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mA Rate of Rise, V CC ............................................................100V/µsContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C).................571mW Operating Temperature Range...............................0°C to +70°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313; T A = 0°C to +70°C; unless otherwise noted. Typical values are at T A = +25°C.)Note 1: The MAX6305/MAX6308/MAX6311 switch from undervoltage reset to normal operation between 1.5V < V CC < 2.5V.Note 2: The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 monitor V CC through an internal factory-trimmed voltagedivider, which programs the nominal reset threshold. Factory-trimmed reset thresholds are available in approximately 100mV increments from 2.5V to 5V (Table 1).M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)5.05.56.06.57.07.58.08.59.09.5-60-40-2020406080100SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )01020304050607080-60-40-2020406080100V CC FALLING PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )010203040506070-60-40-20020406080100OVRST IN RISING PROPAGATION DELAY vs. TEMPERATURE (OVERVOLTAGE RESET INPUT)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )020406080100120-60-40-2020406080100RST IN_ FALLING PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)R S T I N _ P R O P A G A T I O N D E L A Y (n s )104001200800MAXIMUM TRANSIENT DURATION vs.V CC RESET THRESHOLD OVERDRIVE10OVERDRIVE, V TH - V CC (mV)T R A N S I E N T D U R A T I O N (µs )100100010,0000.900.920.940.960.981.001.021.041.061.081.10-60-40-20020406080100RESET TIMEOUT vs. TEMPERATURE6305 T O C 05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T0.9900.9920.9940.9960.9981.0001.0021.0041.0061.0081.010-60-40-2020406080100RESET THRESHOLD vs. TEMPERATURE6305 T O C 06TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D (V /V )104001200800MAXIMUM TRANSIENT DURATION vs.OVRST IN THRESHOLD OVERDRIVE10OVERDRIVE, V OVRST IN - V REF (mV)T R A N S I E N T D U R A T I O N (µs )100100010,000104001200800MAXIMUM TRANSIENT DURATION vs.RST IN_ THRESHOLD OVERDRIVE10OVERDRIVE, V REF - V RST IN (mV)T R A N S I E N T D U R A T I O N (µs )100100010,000_______________Detailed DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply and issue a system reset when any monitored supply falls out of regulation. The MAX6305/MAX6308/MAX6311 have two adjustable undervoltage reset inputs (RST IN1 and RST IN2). The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 mon-itor V CC through an internal, factory-trimmed voltage divider. The MAX6306/MAX6309/MAX6312 have, in addition, an adjustable undervoltage reset input and a manual-reset input. The internal voltage divider sets the reset threshold as specified in the device part number (Table 1). The MAX6307/MAX6310/ MAX6313 feature an adjustable undervoltage reset input (RST IN) and an adjustable overvoltage reset input (OVRST IN) in addition to the factory-trimmed reset threshold on the V CC moni-tor. Program the adjustable reset inputs with an external resistor divider (see Adjustable Reset Inputs section).Reset OutputsA µP’s reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions.RESET (MAX6305–MAX6310) and RESET (MAX6311/MAX6312/MAX6313) are guaranteed to be asserted at a valid logic level for V CC > 1V (see Electrical Characteristics ). Once all monitored voltages exceed their programmed reset thresholds, an internal timer keeps reset asserted for the reset timeout period (t RP );after this interval, reset deasserts.If a brownout condition occurs (any or all monitored volt-ages dip outside their programmed reset threshold),reset asserts (RESET goes high; RESET goes low). Any time any of the monitored voltages dip below their reset threshold, the internal timer resets to zero and reset asserts. The internal timer starts when all of the moni-tored voltages return above their reset thresholds, and reset remains asserted for a reset timeout period. The MAX6305/MAX6306/MAX6307 feature an active-low,MAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6305–M A X 6313open-drain, N-channel output. The MAX6308/MAX6309/MAX6310 feature an active-low, complementary output structure that both sinks and sources current, and the MAX6311/MAX6312/MAX6313 have an active-high com-plementary reset output.The MAX6305/MAX6308/MAX6311 switch from under-voltage lockout operation to normal operation between 1.5V < V CC < 2.5V. Below 1.5V, V CC undervoltage-lockout mode asserts RESET . Above 2.5V, V CC normal-operation mode asserts reset if RST IN_ falls below the RST IN_ threshold.Manual-Reset Input(MAX6306/MAX6309/MAX6312)Many µP-based products require manual-reset capability,allowing an operator or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for a reset active timeout period (t RP ) after MR returns high. This input has an inter-nal 63.5k Ωpull-up resistor, so it can be left open if it is not used. MR can be driven with TTL-logic levels in 5V sys-tems, with CMOS-logic levels in 3V systems, or with open-drain/collector output devices. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required.If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.The MR pin has internal ESD-protection circuitry that may be forward biased under certain conditions, drawing excessive current. For example, assume the circuitry driv-ing MR uses a +5V supply other than V CC . If V CC drops or browns out lower than +4.7V, MR ’s absolute maximum rat-ing is violated (-0.3V to (V CC + 0.3V)), and undesirable current flows through the ESD structure from MR to V CC .To avoid this, it is recommended that the supply for the MR pin be the same as the supply monitored by V CC . In this way, the voltage at MR will not exceed V CC .Adjustable Reset InputsThe MAX6305–MAX6313 each have one or more reset inputs (RST IN_ /OVRST IN). These inputs are com-pared to the internal reference voltage (Figure 1).Connect a resistor voltage divider to RST IN_ such that V RST IN_falls below V RSTH (1.23V) when the monitored voltage (V IN ) falls below the desired reset threshold (V TH ) (Figure 2). Calculate the desired reset voltage with the following formula:R1 + R2V TH = ________x V RSTHR25-Pin, Multiple-Input, Programmable Reset ICs 6_______________________________________________________________________________________Figure 1. Functional DiagramMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________7The ±25nA max input leakage current allows resistors on the order of megohms. Choose the pull-up resistor in the divider to minimize the error due to the input leakage cur-rent. The error term in the calculated threshold is simply:±25nA x R1If you choose R1 to be 1M Ω, the resulting error is ±25 x 10-9x 1 x 106= ±25mV.Like the V CC voltage monitors on the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313, the RST IN_inputs (when used with a voltage divider) are designed to ignore fast voltage transients. Increase the noise immunity by connecting a capacitor on the order of 0.1µF between RST IN and GND (Figure 2). This creates a single-pole lowpass filter with a corner frequency given by:f = (1/2π) / (R1 + R2)(R1 x R2 x C)For example, if R1 = 1M Ωand R2 = 1.6M Ω, adding a 0.1µF capacitor from RST IN_ to ground results in a lowpass corner frequency of f = 2.59Hz. Note that adding capacitance to RST IN slows the circuit’s overall response time.__________Applications InformationInterfacing to µPs with Bidirectional Reset PinsSince the RESET output on the MAX6305/MAX6306/MAX6307 is open drain, these devices interface easily with µPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the µP supervisor’s RESET output directly to the microcontroller’s RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).Negative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maximum Transient Duration vs. V CC Reset Threshold Overdrive, for which reset pulses are not generated.The graph was produced using negative-going pulses,starting at V TH max, and ending below the pro-grammed reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maxi-mum pulse width that a negative-going V CC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e.,goes farther below the reset threshold), the maximum allowable pulse width decreases.RST IN_/OVRST IN are also immune to negative/positive-going transients (see Typical Operating Characteristics ).A 0.1µF bypass capacitor mounted close to the RST IN_,OVRST IN, and/or the V CC pin provides additional tran-sient immunity.Ensuring a Valid RESET /RESETOutput Down to V CC = 0VWhen V CC falls below 1V, push/pull structured RESET /RESET current sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applica-tions, since most µPs and other circuitry do not operate with V CC below 1V. In those applications where RESET must be valid down to 0V, adding a pull-down resistor between RESET and ground sinks any stray leakageFigure 2. Increasing Noise ImmunityFigure 3. Interfacing to µPs with Bidirectional Reset I/Ocurrents, holding RESET low (Figure 4). The pull-down resistor’s value is not critical; 100k Ωis large enough not to load RESET and small enough to pull RESET to ground. For applications where RESET must be valid to V CC , a 100k Ωpull-up resistor between RESET and V CC will hold RESET high when V CC falls below 1V (Figure 5).Since the MAX6305/MAX6306/MAX6307 have open-drain, active-low outputs, they typically use a pull-up resistor. With these devices and under these conditions (V CC < 1V), RESET will most likely not maintain an active condition, but will drift toward a nonactive level due to the pull-up resistor and the RESET output’s reduction in sinking capability. These devices are not recommended for applications that require a valid RESET output below 1V.* Factory-trimmed reset thresholds are available in approximately 100mV increments with a ±1.5% room-temperature variance.M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 8_______________________________________________________________________________________Figure 4. Ensuring RESET Valid to V CC = 0VFigure 5. Ensuring RESET Valid to V CC = 0VTable 1. Factory-Trimmed Reset Thresholds *MAX6305UK00D1-T ABAK MAX6306UK41D3-T ABCA MAX6306UK30D1-T ABDQ MAX6307UK46D3-T ABFG MAX6305UK00D2-T ABAL MAX6306UK41D4-T ABCB MAX6306UK30D2-T ABDR MAX6307UK46D4-T ABFH MAX6305UK00D3-T ABAM MAX6306UK40D1-T ABCC MAX6306UK30D3-T ABDS MAX6307UK45D1-T ABFI MAX6305UK00D4-T ABAN MAX6306UK40D2-T ABCD MAX6306UK30D4-T ABDT MAX6307UK45D2-T ABFJ MAX6306UK50D1-T ABAO MAX6306UK40D3-T ABCE MAX6306UK29D1-T ABDU MAX6307UK45D3-T ABFK MAX6306UK50D2-T ABAP MAX6306UK40D4-T ABCF MAX6306UK29D2-T ABDV MAX6307UK45D4-T ABFL MAX6306UK50D3-T ABAQ MAX6306UK39D1-T ABCG MAX6306UK29D3-T ABDW MAX6307UK44D1-T ABFM MAX6306UK50D4-T ABAR MAX6306UK39D2-T ABCH MAX6306UK29D4-T ABDX MAX6307UK44D2-T ABFN MAX6306UK49D1-T ABAS MAX6306UK39D3-T ABCI MAX6306UK28D1-T ABDY MAX6307UK44D3-T ABFO MAX6306UK49D2-T ABAT MAX6306UK39D4-T ABCJ MAX6306UK28D2-T ABDZ MAX6307UK44D4-T ABFP MAX6306UK49D3-T ABAU MAX6306UK38D1-T ABCK MAX6306UK28D3-T ABEA MAX6307UK43D1-T ABFQ MAX6306UK49D4-T ABAV MAX6306UK38D2-T ABCL MAX6306UK28D4-T ABEB MAX6307UK43D2-T ABFR MAX6306UK48D1-T ABAW MAX6306UK38D3-T ABCM MAX6306UK27D1-T ABEC MAX6307UK43D3-T ABFS MAX6306UK48D2-T ABAX MAX6306UK38D4-T ABCN MAX6306UK27D2-T ABED MAX6307UK43D4-T ABFT MAX6306UK48D3-T ABAY MAX6306UK37D1-T ABCO MAX6306UK27D3-T ABEE MAX6307UK42D1-T ABFU MAX6306UK48D4-T ABAZ MAX6306UK37D2-T ABCP MAX6306UK27D4-T ABEF MAX6307UK42D2-T ABFV MAX6306UK47D1-T ABBA MAX6306UK37D3-T ABCQ MAX6306UK26D1-T ABEG MAX6307UK42D3-T ABFW MAX6306UK47D2-T ABBB MAX6306UK37D4-T ABCR MAX6306UK26D2-T ABEH MAX6307UK42D4-T ABFX MAX6306UK47D3-T ABBC MAX6306UK36D1-T ABCS MAX6306UK26D3-T ABEI MAX6307UK41D1-T ABFY MAX6306UK47D4-T ABBD MAX6306UK36D2-T ABCT MAX6306UK26D4-T ABEJ MAX6307UK41D2-T ABFZ MAX6306UK46D1-T ABBE MAX6306UK36D3-T ABCU MAX6306UK25D1-T ABEK MAX6307UK41D3-T ABGA MAX6306UK46D2-T ABBF MAX6306UK36D4-T ABCV MAX6306UK25D2-T ABEL MAX6307UK41D4-T ABGB MAX6306UK46D3-T ABBG MAX6306UK35D1-T ABCW MAX6306UK25D3-T ABEM MAX6307UK40D1-T ABGC MAX6306UK46D4-T ABBH MAX6306UK35D2-T ABCX MAX6306UK25D4-T ABEN MAX6307UK40D2-T ABGD MAX6306UK45D1-T ABBI MAX6306UK35D3-T ABCY MAX6307UK50D1-T ABEO MAX6307UK40D3-T ABGE MAX6306UK45D2-T ABBJ MAX6306UK35D4-T ABCZ MAX6307UK50D2-T ABEP MAX6307UK40D4-T ABGF MAX6306UK45D3-T ABBK MAX6306UK34D1-T ABDA MAX6307UK50D3-T ABEQ MAX6307UK39D1-T ABGG MAX6306UK45D4-T ABBL MAX6306UK34D2-T ABDB MAX6307UK50D4-T ABER MAX6307UK39D2-T ABGH MAX6306UK44D1-T ABBM MAX6306UK34D3-T ABDC MAX6307UK49D1-T ABES MAX6307UK39D3-T ABGI MAX6306UK44D2-T ABBN MAX6306UK34D4-T ABDD MAX6307UK49D2-T ABET MAX6307UK39D4-T ABGJ MAX6306UK44D3-T ABBO MAX6306UK33D1-T ABDE MAX6307UK49D3-T ABEU MAX6307UK38D1-T ABGK MAX6306UK44D4-T ABBP MAX6306UK33D2-T ABDF MAX6307UK49D4-T ABEV MAX6307UK38D2-T ABGL MAX6306UK43D1-T ABBQ MAX6306UK33D3-T ABDG MAX6307UK48D1-T ABEW MAX6307UK38D3-T ABGM MAX6306UK43D2-T ABBR MAX6306UK33D4-T ABDH MAX6307UK48D2-T ABEX MAX6307UK38D4-T ABGN MAX6306UK43D3-T ABBS MAX6306UK32D1-T ABDI MAX6307UK48D3-T ABEY MAX6307UK37D1-T ABGO MAX6306UK43D4-T ABBT MAX6306UK32D2-T ABDJ MAX6307UK48D4-T ABEZ MAX6307UK37D2-T ABGP MAX6306UK42D1-T ABBU MAX6306UK32D3-T ABDK MAX6307UK47D1-T ABFA MAX6307UK37D3-T ABGQ MAX6306UK42D2-T ABBV MAX6306UK32D4-T ABDL MAX6307UK47D2-T ABFB MAX6307UK37D4-T ABGR MAX6306UK42D3-T ABBW MAX6306UK31D1-T ABDM MAX6307UK47D3-T ABFC MAX6307UK36D1-T ABGS MAX6306UK42D4-T ABBX MAX6306UK31D2-T ABDN MAX6307UK47D4-T ABFD MAX6307UK36D2-T ABGT MAX6306UK41D1-T ABBY MAX6306UK31D3-T ABDO MAX6307UK46D1-T ABFE MAX6307UK36D3-T ABGU MAX6306UK41D2-TABBZMAX6306UK31D4-TABDPMAX6307UK46D2-TABFFMAX6307UK36D4-TABGVMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________9Table 2. Device Marking CodesDEVICECODE DEVICECODE DEVICECODE DEVICECODEM A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 10______________________________________________________________________________________Table 2. Device Marking Codes (continued)MAX6307UK35D1-T ABGW MAX6307UK25D3-T ABIM MAX6309UK41D1-T ABKC MAX6309UK31D3-T ABLS MAX6307UK35D2-T ABGX MAX6307UK25D4-T ABIN MAX6309UK41D2-T ABKD MAX6309UK31D4-T ABLT MAX6307UK35D3-T ABGY MAX6308UK00D1-T ABIO MAX6309UK41D3-T ABKE MAX6309UK30D1-T ABLU MAX6307UK35D4-T ABGZ MAX6308UK00D2-T ABIP MAX6309UK41D4-T ABKF MAX6309UK30D2-T ABLV MAX6307UK34D1-T ABHA MAX6308UK00D3-T ABIQ MAX6309UK40D1-T ABKG MAX6309UK30D3-T ABLW MAX6307UK34D2-T ABHB MAX6308UK00D4-T ABIR MAX6309UK40D2-T ABKH MAX6309UK30D4-T ABLX MAX6307UK34D3-T ABHC MAX6309UK50D1-T ABIS MAX6309UK40D3-T ABKI MAX6309UK29D1-T ABLY MAX6307UK34D4-T ABHD MAX6309UK50D2-T ABIT MAX6309UK40D4-T ABKJ MAX6309UK29D2-T ABLZ MAX6307UK33D1-T ABHE MAX6309UK50D3-T ABIU MAX6309UK39D1-T ABKK MAX6309UK29D3-T ABMA MAX6307UK33D2-T ABHF MAX6309UK50D4-T ABIV MAX6309UK39D2-T ABKL MAX6309UK29D4-T ABMB MAX6307UK33D3-T ABHG MAX6309UK49D1-T ABIW MAX6309UK39D3-T ABKM MAX6309UK28D1-T ABMC MAX6307UK33D4-T ABHH MAX6309UK49D2-T ABIX MAX6309UK39D4-T ABKN MAX6309UK28D2-T ABMD MAX6307UK32D1-T ABHI MAX6309UK49D3-T ABIY MAX6309UK38D1-T ABKO MAX6309UK28D3-T ABME MAX6307UK32D2-T ABHJ MAX6309UK49D4-T ABIZ MAX6309UK38D2-T ABKP MAX6309UK28D4-T ABMF MAX6307UK32D3-T ABHK MAX6309UK48D1-T ABJA MAX6309UK38D3-T ABKQ MAX6309UK27D1-T ABMG MAX6307UK32D4-T ABHL MAX6309UK48D2-T ABJB MAX6309UK38D4-T ABKR MAX6309UK27D2-T ABMH MAX6307UK31D1-T ABHM MAX6309UK48D3-T ABJC MAX6309UK37D1-T ABKS MAX6309UK27D3-T ABMI MAX6307UK31D2-T ABHN MAX6309UK48D4-T ABJD MAX6309UK37D2-T ABKT MAX6309UK27D4-T ABMJ MAX6307UK31D3-T ABHO MAX6309UK47D1-T ABJE MAX6309UK37D3-T ABKU MAX6309UK26D1-T ABMK MAX6307UK31D4-T ABHP MAX6309UK47D2-T ABJF MAX6309UK37D4-T ABKV MAX6309UK26D2-T ABML MAX6307UK30D1-T ABHQ MAX6309UK47D3-T ABJG MAX6309UK36D1-T ABKW MAX6309UK26D3-T ABMM MAX6307UK30D2-T ABHR MAX6309UK47D4-T ABJH MAX6309UK36D2-T ABKX MAX6309UK26D4-T ABMN MAX6307UK30D3-T ABHS MAX6309UK46D1-T ABJI MAX6309UK36D3-T ABKY MAX6309UK25D1-T ABMO MAX6307UK30D4-T ABHT MAX6309UK46D2-T ABJJ MAX6309UK36D4-T ABKZ MAX6309UK25D2-T ABMP MAX6307UK29D1-T ABHU MAX6309UK46D3-T ABJK MAX6309UK35D1-T ABLA MAX6309UK25D3-T ABMQ MAX6307UK29D2-T ABHV MAX6309UK46D4-T ABJL MAX6309UK35D2-T ABLB MAX6309UK25D4-T ABMR MAX6307UK29D3-T ABHW MAX6309UK45D1-T ABJM MAX6309UK35D3-T ABLC MAX6310UK50D1-T ABMS MAX6307UK29D4-T ABHX MAX6309UK45D2-T ABJN MAX6309UK35D4-T ABLD MAX6310UK50D2-T ABMT MAX6307UK28D1-T ABHY MAX6309UK45D3-T ABJO MAX6309UK34D1-T ABLE MAX6310UK50D3-T ABMU MAX6307UK28D2-T ABHZ MAX6309UK45D4-T ABJP MAX6309UK34D2-T ABLF MAX6310UK50D4-T ABMV MAX6307UK28D3-T ABIA MAX6309UK44D1-T ABJQ MAX6309UK34D3-T ABLG MAX6310UK49D1-T ABMW MAX6307UK28D4-T ABIB MAX6309UK44D2-T ABJR MAX6309UK34D4-T ABLH MAX6310UK49D2-T ABMX MAX6307UK27D1-T ABIC MAX6309UK44D3-T ABJS MAX6309UK33D1-T ABLI MAX6310UK49D3-T ABMY MAX6307UK27D2-T ABID MAX6309UK44D4-T ABJT MAX6309UK33D2-T ABLJ MAX6310UK49D4-T ABMZ MAX6307UK27D3-T ABIE MAX6309UK43D1-T ABJU MAX6309UK33D3-T ABLK MAX6310UK48D1-T ABNA MAX6307UK27D4-T ABIF MAX6309UK43D2-T ABJV MAX6309UK33D4-T ABLL MAX6310UK48D2-T ABNB MAX6307UK26D1-T ABIG MAX6309UK43D3-T ABJW MAX6309UK32D1-T ABLM MAX6310UK48D3-T ABNC MAX6307UK26D2-T ABIH MAX6309UK43D4-T ABJX MAX6309UK32D2-T ABLN MAX6310UK48D4-T ABND MAX6307UK26D3-T ABII MAX6309UK42D1-T ABJY MAX6309UK32D3-T ABLO MAX6310UK47D1-T ABNE MAX6307UK26D4-T ABIJ MAX6309UK42D2-T ABJZ MAX6309UK32D4-T ABLP MAX6310UK47D2-T ABNF MAX6307UK25D1-T ABIK MAX6309UK42D3-T ABKA MAX6309UK31D1-T ABLQ MAX6310UK47D3-T ABNG MAX6307UK25D2-TABILMAX6309UK42D4-TABKBMAX6309UK31D2-TABLRMAX6310UK47D4-TABNHDEVICECODE DEVICECODE DEVICECODE DEVICECODEMAX6305–MAX6313Programmable Reset ICs______________________________________________________________________________________11Table 2. Device Marking Codes (continued)MAX6310UK46D1-T ABNI MAX6310UK36D3-T ABOY MAX6310UK25D1-T ABQO MAX6312UK42D3-T ABSE MAX6310UK46D2-T ABNJ MAX6310UK36D4-T ABOZ MAX6310UK25D2-T ABQP MAX6312UK42D4-T ABSF MAX6310UK46D3-T ABNK MAX6310UK35D1-T ABPA MAX6310UK25D3-T ABQQ MAX6312UK41D1-T ABSG MAX6310UK46D4-T ABNL MAX6310UK35D2-T ABPB MAX6310UK25D4-T ABQR MAX6312UK41D2-T ABSH MAX6310UK45D1-T ABNM MAX6310UK35D3-T ABPC MAX6311UK00D1-T ABQS MAX6312UK41D3-T ABSI MAX6310UK45D2-T ABNN MAX6310UK35D4-T ABPD MAX6311UK00D2-T ABQT MAX6312UK41D4-T ABSJ MAX6310UK45D3-T ABNO MAX6310UK34D1-T ABPE MAX6311UK00D3-T ABQU MAX6312UK40D1-T ABSK MAX6310UK45D4-T ABNP MAX6310UK34D2-T ABPF MAX6311UK00D4-T ABQV MAX6312UK40D2-T ABSL MAX6310UK44D1-T ABNQ MAX6310UK34D3-T ABPG MAX6311UK50D1-T ABQW MAX6312UK40D3-T ABSM MAX6310UK44D2-T ABNR MAX6310UK34D4-T ABPH MAX6312UK50D2-T ABQX MAX6312UK40D4-T ABSN MAX6310UK44D3-T ABNS MAX6310UK33D1-T ABPI MAX6312UK50D3-T ABQY MAX6312UK39D1-T ABSO MAX6310UK44D4-T ABNT MAX6310UK33D2-T ABPJ MAX6312UK50D4-T ABQZ MAX6312UK39D2-T ABSP MAX6310UK43D1-T ABNU MAX6310UK33D3-T ABPK MAX6312UK49D1-T ABRA MAX6312UK39D3-T ABSQ MAX6310UK43D2-T ABNV MAX6310UK33D4-T ABPL MAX6312UK49D2-T ABRB MAX6312UK39D4-T ABSR MAX6310UK43D3-T ABNW MAX6310UK32D1-T ABPM MAX6312UK49D3-T ABRC MAX6312UK38D1-T ABSS MAX6310UK43D4-T ABNX MAX6310UK32D2-T ABPN MAX6312UK49D4-T ABRD MAX6312UK38D2-T ABST MAX6310UK42D1-T ABNY MAX6310UK32D3-T ABPO MAX6312UK48D1-T ABRE MAX6312UK38D3-T ABSU MAX6310UK42D2-T ABNZ MAX6310UK32D4-T ABPP MAX6312UK48D2-T ABRF MAX6312UK38D4-T ABSV MAX6310UK42D3-T ABOA MAX6310UK31D1-T ABPQ MAX6312UK48D3-T ABRG MAX6312UK37D1-T ABSW MAX6310UK42D4-T ABOB MAX6310UK31D2-T ABPR MAX6312UK48D4-T ABRH MAX6312UK37D2-T ABSX MAX6310UK41D1-T ABOC MAX6310UK31D3-T ABPS MAX6312UK47D1-T ABRI MAX6312UK37D3-T ABSY MAX6310UK41D2-T ABOD MAX6310UK31D4-T ABPT MAX6312UK47D2-T ABRJ MAX6312UK37D4-T ABSZ MAX6310UK41D3-T ABOE MAX6310UK30D1-T ABPU MAX6312UK47D3-T ABRK MAX6312UK36D1-T ABTA MAX6310UK41D4-T ABOF MAX6310UK30D2-T ABPV MAX6312UK47D4-T ABRL MAX6312UK36D2-T ABTB MAX6310UK40D1-T ABOG MAX6310UK30D3-T ABPW MAX6312UK46D1-T ABRM MAX6312UK36D3-T ABTC MAX6310UK40D2-T ABOH MAX6310UK30D4-T ABPX MAX6312UK46D2-T ABRN MAX6312UK36D4-T ABTD MAX6310UK40D3-T ABOI MAX6310UK29D1-T ABPY MAX6312UK46D3-T ABRO MAX6312UK35D1-T ABTE MAX6310UK40D4-T ABOJ MAX6310UK29D2-T ABPZ MAX6312UK46D4-T ABRP MAX6312UK35D2-T ABTF MAX6310UK39D1-T ABOK MAX6310UK29D3-T ABQA MAX6312UK45D1-T ABRQ MAX6312UK35D3-T ABTG MAX6310UK39D2-T ABOL MAX6310UK29D4-T ABQB MAX6312UK45D2-T ABRR MAX6312UK35D4-T ABTH MAX6310UK39D3-T ABOM MAX6310UK28D1-T ABQC MAX6312UK45D3-T ABRS MAX6312UK34D1-T ABTI MAX6310UK39D4-T ABON MAX6310UK28D2-T ABQD MAX6312UK45D4-T ABRT MAX6312UK34D2-T ABTJ MAX6310UK38D1-T ABOO MAX6310UK28D3-T ABQE MAX6312UK44D1-T ABRU MAX6312UK34D3-T ABTK MAX6310UK38D2-T ABOP MAX6310UK28D4-T ABQF MAX6312UK44D2-T ABRV MAX6312UK34D4-T ABTL MAX6310UK38D3-T ABOQ MAX6310UK27D1-T ABQG MAX6312UK44D3-T ABRW MAX6312UK33D1-T ABTM MAX6310UK38D4-T ABOR MAX6310UK27D2-T ABQH MAX6312UK44D4-T ABRX MAX6312UK33D2-T ABTN MAX6310UK37D1-T ABOS MAX6310UK27D3-T ABQI MAX6312UK43D1-T ABRY MAX6312UK33D3-T ABTO MAX6310UK37D2-T ABOT MAX6310UK27D4-T ABQJ MAX6312UK43D2-T ABRZ MAX6312UK33D4-T ABTP MAX6310UK37D3-T ABOU MAX6310UK26D1-T ABQK MAX6312UK43D3-T ABSA MAX6312UK32D1-T ABTQ MAX6310UK37D4-T ABOV MAX6310UK26D2-T ABQL MAX6312UK43D4-T ABSB MAX6312UK32D2-T ABTR MAX6310UK36D1-T ABOW MAX6310UK26D3-T ABQM MAX6312UK42D1-T ABSC MAX6312UK32D3-T ABTS MAX6310UK36D2-TABOXMAX6310UK26D4-TABQNMAX6312UK42D2-TABSDMAX6312UK32D4-TABTTDEVICECODE DEVICECODE DEVICECODE DEVICECODEM A X 6305–M A X 6313Programmable Reset ICs 12______________________________________________________________________________________Table 2. Device Marking Codes (continued)MAX6313UK49D2-T ABVB MAX6313UK49D3-T ABVC MAX6313UK49D4-T ABVD MAX6313UK48D1-T ABVE MAX6313UK48D2-T ABVF MAX6313UK48D3-T ABVG MAX6313UK48D4-T ABVH MAX6313UK47D1-T ABVI MAX6313UK47D2-T ABVJ MAX6313UK47D3-T ABVK MAX6313UK47D4-T ABVL MAX6313UK46D1-T ABVM MAX6313UK46D2-T ABVN MAX6313UK46D3-T ABVO MAX6313UK46D4-T ABVP MAX6313UK45D1-T ABVQ MAX6313UK45D2-T ABVR MAX6313UK45D3-T ABVS MAX6313UK45D4-T ABVT MAX6313UK44D1-T ABVU MAX6313UK44D2-T ABVV MAX6313UK44D3-T ABVW MAX6313UK44D4-T ABVX MAX6313UK43D1-T ABVY MAX6313UK43D2-T ABVZ MAX6313UK43D3-T ABWA MAX6313UK43D4-T ABWB MAX6313UK42D1-T ABWC MAX6313UK42D2-T ABWD MAX6313UK42D3-T ABWE MAX6313UK42D4-T ABWF MAX6313UK41D1-T ABWG MAX6313UK41D2-TABWHDEVICECODE DEVICECODE DEVICECODE DEVICECODE MAX6313UK33D4-T ABXP MAX6313UK32D1-T ABXQ MAX6313UK32D2-T ABXR MAX6313UK32D3-T ABXS MAX6313UK32D4-T ABXT MAX6313UK31D1-T ABXU MAX6313UK31D2-T ABXV MAX6313UK31D3-T ABXW MAX6313UK31D4-T ABXX MAX6313UK30D1-T ABXY MAX6313UK30D2-T ABXZ MAX6313UK30D3-T ABYA MAX6313UK30D4-T ABYB MAX6313UK29D1-T ABYC MAX6313UK29D2-T ABYD MAX6313UK29D3-T ABYE MAX6313UK29D4-T ABYF MAX6313UK28D1-T ABYG MAX6313UK28D2-T ABYH MAX6313UK28D3-T ABYI MAX6313UK28D4-T ABYJ MAX6313UK27D1-T ABYK MAX6313UK27D2-T ABYL MAX6313UK27D3-T ABYM MAX6313UK27D4-T ABYN MAX6313UK26D1-T ABYO MAX6313UK26D2-T ABYP MAX6313UK26D3-T ABYQ MAX6313UK26D4-T ABYR MAX6313UK25D1-T ABYS MAX6313UK25D2-T ABYT MAX6313UK25D3-T ABYU MAX6313UK25D4-TABYVMAX6313UK41D3-T ABWI MAX6313UK41D4-T ABWJ MAX6313UK40D1-T ABWK MAX6313UK40D2-T ABWL MAX6313UK40D3-T ABWM MAX6313UK40D4-T ABWN MAX6313UK39D1-T ABWO MAX6313UK39D2-T ABWP MAX6313UK39D3-T ABWQ MAX6313UK39D4-T ABWR MAX6313UK38D1-T ABWS MAX6313UK38D2-T ABWT MAX6313UK38D3-T ABWU MAX6313UK38D4-T ABWV MAX6313UK37D1-T ABWW MAX6313UK37D2-T ABWX MAX6313UK37D3-T ABWY MAX6313UK37D4-T ABWZ MAX6313UK36D1-T ABXA MAX6313UK36D2-T ABXB MAX6313UK36D3-T ABXC MAX6313UK36D4-T ABXD MAX6313UK35D1-T ABXE MAX6313UK35D2-T ABXF MAX6313UK35D3-T ABXG MAX6313UK35D4-T ABXH MAX6313UK34D1-T ABXI MAX6313UK34D2-T ABXJ MAX6313UK34D3-T ABXK MAX6313UK34D4-T ABXL MAX6313UK33D1-T ABXM MAX6313UK33D2-T ABXN MAX6313UK33D3-TABXOMAX6312UK31D1-T ABTU MAX6312UK31D2-T ABTV MAX6312UK31D3-T ABTW MAX6312UK31D4-T ABTX MAX6312UK30D1-T ABTY MAX6312UK30D2-T ABTZ MAX6312UK30D3-T ABUA MAX6312UK30D4-T ABUB MAX6312UK29D1-T ABUC MAX6312UK29D2-T ABUD MAX6312UK29D3-T ABUE MAX6312UK29D4-T ABUF MAX6312UK28D1-T ABUG MAX6312UK28D2-T ABUH MAX6312UK28D3-T ABUI MAX6312UK28D4-T ABUJ MAX6312UK27D1-T ABUK MAX6312UK27D2-T ABUL MAX6312UK27D3-T ABUM MAX6312UK27D4-T ABUN MAX6312UK26D1-T ABUO MAX6312UK26D2-T ABUP MAX6312UK26D3-T ABUQ MAX6312UK26D4-T ABUR MAX6312UK25D1-T ABUS MAX6312UK25D2-T ABUT MAX6312UK25D3-T ABUU MAX6312UK25D4-T ABUV MAX6313UK50D1-T ABUW MAX6313UK50D2-T ABUX MAX6313UK50D3-T ABUY MAX6313UK50D4-T ABUZ MAX6313UK49D1-TABVA。

PT6315-S中文资料

PT6315-S中文资料

VFD Driver/Controller IC PT6315-S DESCRIPTIONPT6315-S is a Vacuum Fluorescent Display (VFD) Controller driven on a 1/4 to 1/8 duty factor. Eight segment output lines, 4 grid output lines, 4 segment/grid output drive lines, one display memory, control circuit, key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip micro computer. Serial data is fed to PT6315-S via a three-line serial interface. It is housed in a 28pins, SOP.FEATURES• CMOS Technology•Low Power Consumption•Key Scanning (8 x 2 matrix)•Multiple Display Modes: (8 Segments, 8 Digits to 12 Segments, 4 Digits)•8-Step Dimming Circuitry•Serial Interface for Clock, Data Input, Data Output, Strobe Pins•No External Resistors Needed for Driver Outputs•Available in 28pins, SOPAPPLICATION•Microcomputer Peripheral DevicesVFD Driver/Controller IC PT6315-SBLOCK DIAGRAMSG1/KS1SG2/KS2SG3/KS3SG4/KS4SG5/KS5SG6/KS6SG7/KS7SG8/KS8SG9/GR8SG10/GR7SG11/GR6GR1GR2GR3GR4VEEGND VDD K2K1OSCRDIN DOUT CLK STBSerial Data InterfaceControlDisplay MemoryTiming GeneratorKey Matrix MemorySegment Driver/Grid Driver/Key Scan OutputGrid DriverDimming CircuitOSCSG12/GR5VFD Driver/Controller IC PT6315-SPIN CONFIGURATIONVEE 1 3 2 5 4 8 7 6 10 9 1211 PT6315-S2826 2724 25 21 22 2319 20 17181413 15 16CLK STB K1K2VSS VDD SG1/KS1SG2/KS2SG3/KS3SG4/KS4SG5/KS5SG6/KS6SG7/KS7SG8/KS8SG9/GR8SG10/GR7DIN DOUT OSC VSS VDD GR1GR2GR3GR4SG12/GR5SG11/GR6VFD Driver/Controller IC PT6315-SPIN DESCRIPTIONPin NameI/ODescriptionPin No. CLK IClock Input Pin This pin reads serial data at the risingedge and outputs data at the falling edge.1 STB I Serial Interface Strobe Pin The data input after the STBhas fallen is processed as a command. When this pin is“HIGH”, CLK is ignored.2 K1 to K2 IKey Data Input Pins The data sent to these pins arelatched at the end of the display cycle.3, 4 VSS - Logic Ground Pin 5, 25 VDD - Logic Power Supply6, 24 SG1/KS1 to SG8/KS8 OHigh Voltage Segment Output Pins Also acts as the KeySource7 to 14 VEE - Pull Down Level15 SG9/GR8 to SG12/GR5 O High Voltage Segment/Grid Output Pins16 to 19GR4 to GR1 O High Voltage Grid Output Pins20 to 23OSC IOscillator Input Pin A resistor is connected to this pin todetermine the oscillation frequency.26 DOUT O Data Output Pin (N-Channel, Open Drain) This pinoutputs serial data at the falling edge of the shift clock(starting from the lower bit).27 DIN IData Input Pin This pin inputs serial data at the risingedge of the shift clock (starting from the lower bits). 28VFD Driver/Controller IC PT6315-S FUNCTION DESCRIPTIONCOMMANDSCommands determine the display mode and status of PT6315-S. A command is the first byte (b0 to b7) inputted to PT6315-S via the DIN Pin after STB Pin has changed from “HIGH” to “LOW” State. If for some reason the STB Pin is set to “HIGH” while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid. COMMAND 1: DISPLAY MODE SETTING COMMANDSPT6315-S provides 4 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to PT6315-S via the DIN Pin when STB is “LOW”. However, for these commands, the bits 5 to 6 (b4 to b5) are ignored, bits 7 & 8 (b6 to b7) are given a value of “0”.The Display Mode Setting Commands determine the number of segments and grids to be used (1/4 to 1/8 duty, 12 to 8 segments). When these commands are executed, the display is forcibly turned off, the key scanning stops. A display “ON” command must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.When Power is turned “ON”, the 8-digit, 8-segment mode is selected.Not Relevant Display Mode Settings:12segmentsdigits,40000:segments11digits,0011:5digits,segments1060100:digits,segments970101:8segments80110:digits,VFD Driver/Controller IC PT6315-SDisplay Mode and RAM AddressData transmitted from an external device to PT6315-S via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of PT6315-S are given below in 8 bits unit.SG1 SG4SG5 SG8SG9 SG12DGT100H 01H 02HDGT203H 04H 05HDGT306H 07H 08HDGT409H 0AH 0BH12H 13H 14HDGT515H 16H 17HDGT6DGT718H 19H 1AHDGT81BH 1CH 1DHb0 b7SG1 SG2 SG3 SG4 X X X Xb0 b7SG5 SG6 SG7 SG8 X X X Xb0 b7 X X SG9 SG10 SG11 SG12 X XNotes: X=ignore this byteVFD Driver/Controller IC PT6315-S COMMAND 2: DATA SETTING COMMANDSThe Data Setting Commands executes the Data Write or Data Read Modes for PT6315-S. The Data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of “1” while bit 8 (b7) is given the value of “0”. Please refer to the diagram below.When power is turned ON, the bit 4 to bit 1 (b3 to b0) are given the value of “0”.toDataDisplayKeyDataKeyDataMode):(DisplaySettingsIncrementModebeenWrittenDataAddressafterhasAddress0:NormalModeOperationMode1:TestVFD Driver/Controller IC PT6315-SPT6315-S Key Matrix & Key Input Data Storage RAMPT6315-S Key Matrix consists of an 8 x 12 array as shown below:K1K2S G 1/K SS G 2/K S S G 3/K S S G 4/K S S G 5/K S 5S G 6/K S S G 7/K S S G 8/K S 8Each data entered by each key is stored as follows. They are read by a READ Command, starting from the last significant bit. When the most significant bit of the data (SG8, b7) has been read, the least significant bit of the next data (SG0, b1) is read.K1…………K1 K1…………K2K1…………K2K1……………K2 SG1/KS1 SG2/KS2 SG3/KS3 SG4/KS4* * * *SG5/KS5 SG6/KS6 SG7/KS7 SG8/KS8 b0………….b1 b2………….b3b4………….b5b6…………….b7ReadingSequenceNote: * = These sections are not relevant but are needed to read the transmission clock.VFD Driver/Controller IC PT6315-SCOMMAND 3: ADDRESS SETTING COMMANDSAddress Setting Commands are used to set the address of the display memory. The address isconsidered valid if it has a value of “00H” to “1DH”. If the address is set to 1EH or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at “00H”.Please refer to the diagram below.width =1/16 width = 2/16 width =4/16 width =10/16 width – 11/16 width =12/16 width =13/16 width = 14/16 0: Display Off (Key scan continues) 1: Display OnVFD Driver/Controller IC PT6315-S SCANNING AND DISPLAY TIMINGThe Key Scanning and display timing diagram is given below. One cycle of key scanning consists of 2 frames. The data of the 8 x 2 matrix is stored in the RAM.Internal Operating Frequency (fosc) = 224/TKey S can DataT=500sDIS P L AYµ1 Frame = T X (n +1)D IS P LAYVFD Driver/Controller IC PT6315-S SERIAL COMMUNICATION FORMATThe following diagram shows the PT6315-S serial communication format. The DOUT Pin is anN-channel, open-drain output pin, therefore, it is highly recommended that an external pull-up resistor (1KΩ to 10KΩ) must be connected to DOUT.RECEPTION (DATA/COMMAND WRITE)ntin u e sD INC L KTRANSMISSION (DATA READ)D INC L KD O U Twhere: twait (waiting time) ≥ 1µsIt must be noted that when the data is read, the waiting time (twait) between the rising of the eighth clock that has set the command and the falling of the first clock that has read the data is greater or equal to 1µs.VFD Driver/Controller IC PT6315-SSWITCHING CHARACTERISTIC WAVEFORMPT6315-S Switching Characteristics Waveform is given below.OSCSTBCLKDINGn90%10%50t TZH2t THZSn90%10%t THZt TZH1DOUTwhere:PW CLK (Clock Pulse Width) ≥ 400ns PW STB (Strobe Pulse Width) ≥ 1us tsetup (Data Setup Time) ≥ 100ns thold (Data Hold Time) ≥ 100ns tCLK-STB (Clock - Strobe Time) ≥ 1us tTHZ (Fall Time) ≤ 150us tTZH2 (Grid Rise Time) ≤ 0.5us (at VDD=5V) tPZL (Propagation Delay Time) ≤ 100ns tTZH2 (Grid Rise Time) ≤ 1.0us (at VDD=3.3V) tPLZ (Propagation DelayTime) ≤ 400ns tTZH1 (Segment Rise Time) ≤ 2.0us (at VDD=5V) fosc = Oscillation Frequency tTZH1 (Segment Rise Time) ≤ 3.0us (at VDD=3.3V)VFD Driver/Controller IC PT6315-S APPLICATIONSDisplay memory is updated by incrementing addresses. Please refer to the following diagram.ST BC L KD IN Co mm and 2Co mm and 3Da ta 1Da ta n Co mm and 1Co mm and 4 Where:Command 1: Display Mode Setting CommandCommand 2: Data Setting CommandCommand 3: Address Setting CommandData 1 to n: Transfer Display Data (24 Bytes max.)Command 4: Display Control CommandThe following diagram shows the waveforms when updating specific addresses.STBCLKDIN Co mm and 2Co mm and 3Da ta Co mm and 3Da taWhere:Command 2: Data Setting CommandCommand 3: Address Setting CommandData: Display DataVFD Driver/Controller IC PT6315-SINITIALSETTINGMAINLOOPNotes:1. Command 1: Display Mode Commands2. Command 2: Data Setting Commands3. Command 3: Address Setting Commands4. Command 4: Display Control Commands5. When IC power is applied for the first time, the contents of the Display RAM are not defined; thus, it is strongly suggested that the contents of the Display RAM be cleared during the initial setting.VFD Driver/Controller IC PT6315-S ABSOLUTE MAXIMUM RATINGS(Unless otherwise stated, Ta=25℃, GND=0V)Parameter Symbol Ratings Unit Logic Supply Voltage VDD -0.5 to +7 V Driver Supply Voltage VEE VDD +0.5 to VDD -40 V Logic Input Voltage VI -0.5 to VDD +0.5 V VFD Driver Output Voltage VO VEE -0.5 to VDD +0.5 VVFD Driver Output Current IOVFD-40 (Grid)-15 (Segment)mAOperating Temperature Topr -40 to +85 ℃Storage Temperature Tstg -65 to +150 ℃RECOMMENDED OPERATING RANGE(Unless otherwise stated, Ta=-25℃, GND=0V)RatingsParameter SymbolMin. Typ. Max.Unit Logic Supply Voltage VDD 3.0 5 5.5 V High-Level Input Voltage VIH 0.7VDD- VDD V Low-Level Input Voltage VIL 0 - 0.3VDD V Driver Supply Voltage VEE VDD -35- 0 VVFD Driver/Controller IC PT6315-SELECTRICAL CHARACTERISTICS(Unless otherwise stated, VDD=5V, GND=0V, VEE=VDD-35V, Ta=25℃)Parameter Symbol Test Condition Min. Typ.Max. UnitLow-Level Output Voltage VOLDOUT DOUT,IOLDOUT=4mA- - 0.4 VHigh-Level Output Current IOHSG VO=VDD -2VSG1/KS1 to SG8/KS8-3 - - mAHigh-Level OutputCurrentIOHGR VO=VDD -2VGR1 to GR4, SG9/GR8 to SG12/GR5-15 - - mAHigh-Level Input Voltage VIH - 0.7VDD - - V Low-Level Input Voltage VIL - - - 0.3VDD V Oscillation Frequency fosc R=100K Ω 350 500 650 KHz Input Current II VI=VDD or VSS - - ±1 µA Dynamic Current Consumption IDDdyn Under no loadDisplay OFF - - 5 mA(Unless otherwise stated, VDD=3.3V, GND=0V, VEE=VDD-35V, Ta=25℃)ParameterSymbolTest Condition Min. Typ.Max. UnitLow-Level Output Voltage VOLDOUT DOUT,IOLDOUT=4mA - - 0.4 VHigh-Level Output CurrentIOHSG VO=VDD -2VSG1/KS1 to SG8/KS8-1.5 - - mAHigh-Level Output CurrentIOHGR VO=VDD -2V GR1 to GR4, SG9/GR8 to SG12/GR5-6 - - mA High-Level Input Voltage VIH - 0.7VDD - VDD V Low-Level Input Voltage VIL - VSS - 0.3VDD V Oscillation Frequency fosc R=100K Ω 350 500 650 KHz Input Current II VI=VDD or VSS - - ±1 µA Dynamic Current Consumption IDDdynUnder no loadDisplay OFF- - 3 mAVFD Driver/Controller IC PT6315-S APPLICATION CIRCUITVFD Driver/Controller IC PT6315-S ORDER INFORMATIONOrder Part Number Package Type Top CodePT6315-S 28 Pins, SOP, 300mil PT6315-SPT6315-S (L) 28 Pins, SOP, 300mil PT6315-SNotes:1. (L), (C) or (S) = Lead Free.2. The Lead Free mark is put in front of the date code.VFD Driver/Controller IC PT6315-S PACKAGE INFORMATION28 PINS, SOP, 300 MILVFD Driver/Controller IC PT6315-S Symbol Min. Nom. Max.A 2.35 2.65A1 0.10 0.30B 0.33 0.51C 0.23 0.32D 17.70 18.10E 7.40 7.60bsc.e 1.27H 10.00 10.65h 0.25 0.75L 0.40 1.27a 0°8°Notes:1. Dimensioning and tolerancing per ANSI Y14.5-1982.2. Dimension “D” does not include mold flash , protrusions or gate burrs. Mold Flash, protrusion or gate burrs shall not exceed 0.15mm (0.006 in) per side.3. Dimension “E” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm (0.010 in) per side.4. The chamfer on the body is optional. It is not present, a visual index feature must be located within the crosshatched area.5. “L” is the length of the terminal for soldering to a substrate.6. “N” is the number of terminal positions. (N=28)7. The lead width “B” as measured 0.36 mm (0.014 in) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.24 in).8. Controlling dimension: MILLIMETER.9. Refer to JEDEC MS-013 Variation AEJEDEC is the trademark of the JEDEC SOLID STATE TECHNOLOGY ASSOCIATION。

MAX6425UK26-T中文资料

MAX6425UK26-T中文资料

General DescriptionThe MAX6340/MAX6421–MAX6426 low-power micro-processor supervisor circuits monitor system voltages from 1.6V to 5V. These devices perform a single function:they assert a reset signal whenever the V CC supply volt-age falls below its reset threshold. The reset output remains asserted for the reset timeout period after V CC rises above the reset threshold. The reset timeout is exter-nally set by a capacitor to provide more flexibility.The MAX6421/MAX6424 have an active-low, push-pull reset output. The MAX6422 has an active-high,push-pull reset output and the MAX6340/MAX6423/MAX6425/MAX6426 have an active-low, open-drain reset output. The MAX6421/MAX6422/MAX6423 are offered in 4-pin SC70 or SOT143 packages. The MAX6340/MAX6424/MAX6425/MAX6426 are available in 5-pin SOT23-5 packages.ApplicationsPortable EquipmentBattery-Powered Computers/Controllers Automotive Medical Equipment Intelligent Instruments Embedded Controllers Critical µP Monitoring Set-Top Boxes ComputersFeatureso Monitor System Voltages from 1.6V to 5V o Capacitor-Adjustable Reset Timeout Period o Low Quiescent Current (1.6µA typ)o Three RESET Output OptionsPush-Pull RESET Push-Pull RESET Open-Drain RESET o Guaranteed Reset Valid to V CC = 1V o Immune to Short V CC Transientso Small 4-Pin SC70, 4-Pin SOT143, and 5-Pin SOT23Packages o MAX6340 Pin Compatible with LP3470o MAX6424/MAX6425 Pin Compatible with NCP300–NCP303, MC33464/MC33465,S807/S808/S809, and RN5VD o MAX6426 Pin Compatible with PST92XXMAX6340/MAX6421–MAX6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay________________________________________________________________Maxim Integrated Products1Ordering InformationPin Configurations19-2440; Rev 2; 10/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Typical Operating Circuit appears at end of data sheet.Selector Guide appears at end of data sheet.Note: The MAX6340/MAX6421–MAX6426 are available with fac-tory-trimmed reset thresholds from 1.575V to 5.0V in approxi-mately 0.1V increments. Insert the desired nominal reset threshold suffix (from Table 1) into the blanks. There are 50 stan-dard versions with a required order increment of 2500 pieces.Sample stock is generally held on standard versions only (see Standard Versions Table). Required order increment is 10,000pieces for nonstandard versions. Contact factory for availability.All devices are available in tape-and-reel only.M A X 6340/M A X 6421–M A X 6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All Voltages Referenced to GNDV CC ........................................................................-0.3V to +6.0V SRT, RESET , RESET (push-pull).................-0.3V to (V CC + 0.3V)RESET (open drain)...............................................-0.3V to +6.0V Input Current (all pins)......................................................±20mA Output Current (RESET , RESET)......................................±20mAContinuous Power Dissipation (T A = +70°C)4-Pin SC70 (derate 3.1mW/°C above +70°C)..............245mW 4-Pin SOT143 (derate 4mW/°C above +70°C).............320mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature......................................................+150°C Lead Temperature (soldering, 10s).................................+300°CMAX6340/MAX6421–MAX6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay_______________________________________________________________________________________300.51.01.52.02.53.03.54.00213456SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )0.1110010100010,0000.0010.10.011101001000RESET TIMEOUT PERIOD vs. C SRTM A X 6421/26 t o c 02C SRT (nF)R E S E T T I M E O U T P E R I O D(m s )4.104.204.154.254.30-50-25255075100125RESET TIMEOUT PERIOD vs. TEMPERATURETEMPERATURE (°C)R E S E T T I M E O U T P E R I O D (m s )RESET TIMEOUT PERIOD vs. TEMPERATURE200250350300500550450400600R E S E T T I M E O U T P E R I O D (µs )-5025-255075100125TEMPERATURE (°C)050251007515012517504002006008001000MAXIMUM TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVERESET THRESHOLD OVERDRIVE (mV)T R A N S I E N T D U R A T I O N (µs )V CCTO RESET DELAYvs. TEMPERATURE (V CC FALLING)8090110100140150130120160V C C T O R E S E T D E L A Y (µs )-5025-255075100125TEMPERATURE (°C)POWER-UP/POWER-DOWNCHARACTERISTIC1V/div1V/div400µs/div0.9940.9980.9961.0021.0001.0041.006-502550-25075100125NORMALIZED RESET THRESHOLDvs. TEMPERATUREM A X 6421/26 t o c 08TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L DTypical Operating Characteristics(V CC = 5V, C SRT = 1500pF, T A = +25°C, unless otherwise noted.)M A X 6340/M A X 6421–M A X 6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay4_______________________________________________________________________________________Detailed DescriptionReset OutputThe reset output is typically connected to the reset input of a µP. A µP ’s reset input starts or restarts the µP in a known state. The MAX6340/MAX6421–MAX6426 µP supervisory circuits provide the reset logic to prevent code-execution errors during power-up, power-down,and brownout conditions (see Typical Operating Characteristics ).RESET changes from high to low whenever V CC drops below the threshold voltage. Once V CC exceeds the threshold voltage, RESET remains low for the capacitor-adjustable reset timeout period.The MAX6422 active-high RESET output is the inverse logic of the active-low RESET output. All device outputs are guaranteed valid for V CC > 1V.The MAX6340/MAX6423/MAX6425/MAX6426 are open-drain RESET outputs. Connect an external pullup resis-tor to any supply from 0 to 5.5V. Select a resistor value large enough to register a logic low when RESET is asserted and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A 10k Ωto 100k Ωpullup is sufficient in most applications.Selecting a Reset CapacitorThe reset timeout period is adjustable to accommodate a variety of µP applications. Adjust the reset timeout period (t RP ) by connecting a capacitor (C SRT ) between SRT and ground. Calculate the reset timeout capacitor as follows:RESET Output Allows Use with Multiple SuppliesMAX6340/MAX6421–MAX6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay_______________________________________________________________________________________5C SRT = (t RP - 275µs) / (2.73 ✕106)where t RP is in seconds and C SRT is in farads.The reset delay time is set by a current/capacitor-con-trolled ramp compared to an internal 0.65V reference.An internal 240nA ramp current source charges the external capacitor. The charge to the capacitor is cleared when a reset condition is detected. Once the reset condition is removed, the voltage on the capacitor ramps according to the formula: dV/dt = I/C. The C SRT capacitor must ramp to 0.65V to deassert the reset.C SRT must be a low-leakage (<10nA) type capacitor;ceramic is recommended.Operating as a Voltage DetectorThe MAX6340/MAX6421–MAX6426 can be operated in a voltage detector mode by floating the SRT pin. The reset delay times for V CC rising above or falling below the threshold are not significantly different. The reset output is deasserted smoothly without false pulses.Applications InformationInterfacing to Other Voltages for LogicCompatibilityThe open-drain outputs of the MAX6340/MAX6423/MAX6425/MAX6426 can be used to interface to µPs with other logic levels. As shown in Figure 1, the open-drain output can be connected to voltages from 0 to 5.5V. This allows for easy logic compatibility to various µPs.Wired-OR ResetTo allow auxiliary circuitry to hold the system in reset,an external open-drain logic signal can be connected to the open-drain RESET of the MAX6340/MAX6423/MAX6425/MAX6426, as shown in Figure 2. This config-uration can reset the µP, but does not provide the reset timeout when the external logic signal is released.Negative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these supervisors are relatively immune to short-duration negative-going transients (glitches). The graph Maximum Transient Duration vs. Reset Threshold Overdrive in the Typical Operating Characteristics shows this relationship.The area below the curve of the graph is the region in which these devices typically do not generate a reset pulse. This graph was generated using a negative-going pulse applied to V CC , starting above the actual reset threshold (V TH ) and ending below it by the magni-tude indicated (reset-threshold overdrive). As the mag-nitude of the transient decreases (farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V CC transient that goes 100mV below the reset threshold and lasts 50µs or less does not cause a reset pulse to be issued.Ensuring a Valid RESET or RESETDown to V CC = 0When V CC falls below 1V, RESET /RESET current-sink-ing (sourcing) capabilities decline drastically. In the case of the MAX6421/MAX6424, high-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problems in most applications, since most µPs and other circuitry do not operate with V CC below 1V.In those applications where RESET must be valid down to zero, adding a pulldown resistor between RESET and ground sinks any stray leakage currents, holding RESET low (Figure 3). The value of the pulldown resis-tor is not critical; 100k Ωis large enough not to load RESET and small enough to pull RESET to ground. For applications using the MAX6422, a 100k Ωpullup resis-M A X 6340/M A X 6421–M A X 6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay6_______________________________________________________________________________________tor between RESET and V CC holds RESET high when V CC falls below 1V (F igure 4). Open-drain RESET ver-sions are not recommended for applications requiring valid logic for V CC down to zero.Layout ConsiderationSRT is a precise current source. When developing the layout for the application, be careful to minimize board capacitance and leakage currents around this pin.Traces connected to SRT should be kept as short as possible. Traces carrying high-speed digital signals and traces with large voltage potentials should be rout-ed as far from SRT as possible. Leakage current and stray capacitance (e.g., a scope probe) at this pin could cause errors in the reset timeout period. When evaluating these parts, use clean prototype boards to ensure accurate reset periods.Figure 3. Ensuring RESET Valid to V CC= 0CCMAX6340/MAX6421–MAX6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay7factory for availability of nonstandard versions.Typical Operating CircuitM A X 6340/M A X 6421–M A X 6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay8_______________________________________________________________________________________Pin Configurations (continued)Chip InformationTRANSISTOR COUNT: 295PROCESS: BiCMOSMAX6340/MAX6421–MAX6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout Delay_______________________________________________________________________________________9Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 6340/M A X 6421–M A X 6426Low-Power, SC70/SOT µP Reset Circuits with Capacitor-Adjustable Reset Timeout DelayMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.10____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2002 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

MAX9635中文资料

MAX9635中文资料

16-BIT ADC
Байду номын сангаас
6-BIT RANGE DIGITAL
CDR, TIM
SIGNAL
CONTROL PROCESSING
16-BIT ADC
方框图
VCC
SDA SCL I2C AO INT
N
GND
________________________________________________________________ Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
平板PC/笔记本电脑 TV/投影仪/显示器
数字照明管理 便携设备
蜂窝电话/智能电话
安全系统
应用
业内功耗最低的 环境光传感器,内置ADC
特性
♦♦0.045流明至188,000流明宽检测范围 ♦♦小尺寸、2mm x 2mm x 0.6mm UTDFN-Opto封装 ♦♦VCC = 1.7V至3.6V ♦♦工作电流ICC = 0.65µA ♦♦-40°C至+85°C工作温度范围
由于能够检测极其微弱的光线,非常适合光线较暗的工作 环境。
片上光电二极管的光谱响应针对人眼对环境光的响应进行优 化,集成红外及紫外线屏蔽功能。自适应增益电路可自动选
择正确的流明范围优化测试(计数值 / 流明)。
IC设计工作在1.7V至3.6V供电范围,满负荷工作时仅 消 耗0.65µA电流。器件采用小尺寸2mm x 2mm x 0.6mm UTDFN-Opto封装。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:。

PT6315中文资料

PT6315中文资料
PT6315
VSS VDD GR1 GR2 GR3 GR4 SG24/GR5 SG23/GR6 SG22/GR7 SG21/GR8 SG20/GR9
LED1
LED2 LED3 LED4 OSC DOUT
DIN CLK STB
K1 K2
SG19/GR10
SG18/GR11 SG17/GR12
VEE SG16/KS16
O
LED Output Pin
1 to 4
OSC
Oscillator Input Pin
I
A resistor is connected to this pin to
5
determine the oscillation frequency
DOUT
Data Output Pin (N-Channel, Open-Drain)
PT6315
SG1/KS1 SG2/KS2 SG3/KS3 SG4/KS4 SG5/KS5 SG6/KS6 SG7/KS7 SG8/KS8 SG9/KS9 SG10/KS10 SG11/KS11 SG12/KS12 SG13/KS13 SG14/KS14 SG15/KS15 SG16/KS16
SG21/GR8 SG22/GR7 SG23/GR6 SG24/GR5
7
bit)
CLK (Schmitt Trigger)
Clock Input Pin
I This pin reads serial data at the rising edge
8
and outputs data at the falling edge.
STB (Schmitt Trigger)
Serial Interface Strobe Pin

MAX5436中文资料

MAX5436中文资料

TSSOP
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX5436–MAX5439
Ordering Information
PART MAX5436EUB TEMP RANGE PINPACKAGE RESISTANCE (kΩ) 50 50 100 100
-40°C to +85°C 10 µMAX 40°C to +85°C 14 TSSOP -40°C to +85°C 10 µMAX -40°C to +85°C 14 TSSOP
元器件交易网
±15V, 128-Tap, Low-Drift Digital Potentiometers MAX5436–MAX5439
ABSOLUTE MAXIMUM RATINGS
VDD to GND, VSS = GND........................................-0.3V to +34V VSS to GND, VDD = GND........................................-34V to +0.3V VDD to VSS ..............................................................-0.3V to +34V VDD to VCC ........................................................-6.3V to +28.75V VCC to VSS ..............................................................-0.3V to +34V VCC to GND ..............................................................-0.3V to +6V DIN, SCLK, CS, SHDN ...............................-0.3V to (VCC + 0.3V) H, L, W, IN+, IN-, OUT .....................(VSS - 0.3V) to (VDD + 0.3V) Maximum Continuous Current into H, L, and W MAX5436–MAX5439.......................................................±1mA Continuous Power Dissipation (TA = +70°C) 10-Pin µMAX (derate 6.94mW/°C above +70°C) .........556mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C

MAX4533CWP中文资料

MAX4533CWP中文资料

Ordering Information
PART MAX4533CAP TEMP. RANGE 0°C to +70°C PIN-PACKAGE 20 SSOP
MAX4533CWP 0°C to +70°C 20 Wide SO Ordering Information continued at end of data sheet.
Typical Operating Circuit
INPUTS V1 V2 OUTPUTS V1 - V2
Pin Configuration/ Functional Diagram
TOP VIEW
IN1 1 NO1 2 20 IN4 19 NO4 18 COM4 17 NC4 16 V+
OSC IN
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
SSOP/SO/DIP/CERDIP
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. † Patent Pending
SWITCHES ARE SHOWN WITH LOGIC "0" INPUT N.C. = NOT INTERNALLY CONNECTED

MAX6307UK50D2-T中文资料

MAX6307UK50D2-T中文资料
nfigurations and Typical Operating Circuit appear at end of data sheet. Ordering Information continued at end of data sheet. Standard Versions Table appears at end of data sheet.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
PARAMETER VCC Range Supply Current ICC SYMBOL VCC = 5.5V MAX6306/MAX6307/ MAX6309/MAX6310/ MAX6312/MAX6313 VTH MAX6306E/MAX6307/ MAX6309E/MAX6310E/ MAX6312E/MAX6313E Reset Threshold Reset Threshold VTH/°C VTH HYST D1 Reset Timeout Period tRP D2 D3 D4 VCC > 4.25V, ISINK = 3.2mA VOL RESET Output Voltage VOH MAX6305–MAX6310 VCC > 2.5V, ISINK = 1.2mA VCC > 1.2V, ISINK = 500µA VCC > 1.0V, ISINK = 50µA VCC > 4.25V, MAX6308/MAX6309/ ISOURCE = 800µA MAX6310 VCC > 2.5V, ISOURCE = 500µA VCC > 4.25V, ISINK = 3.2mA VCC > 2.5V, ISINK = 1.2mA MAX6311/MAX6312/ VCC > 1.8V, MAX6313 ISOURCE = 150µA VCC > 1.0V, ISOURCE = 10µA 0.8 x VCC 0.8 x VCC VCC - 1.5 V 0.8 x VCC 0.4 0.3 V 1.0 20 140 1120 TA = +25°C TA = 0°C to +70°C VTH 1.5% VTH 2.5% VTH 2.5% CONDITIONS TA = -40°C to +85°C (Note 2) MIN 1.0 8 VTH VTH TYP MAX 5.5 16 VTH + 1.5% VTH + 2.5% VTH + 2.5% ppm/°C mV 2.0 40 280 2240 0.4 0.3 0.3 0.3 V ms V UNITS

Maxim4XX系列选型大全

Maxim4XX系列选型大全

Maxim4XX系列选型大全Maxim型号MAX400 超低失调电压运算放大器MAX4000 2.5GHz、45dB、RF检测控制器MAX4001 2.5GHz、45dB、RF检测控制器MAX4001EVKIT MAX4000、MAX4001、MAX4002评估板MAX4002 2.5GHz、45dB、RF检测控制器MAX4003 100MHz至2500MHz、45dB RF检测器,UCSP封装MAX4003EVKIT MAX4003评估板MAX4004 高精度、高端电流监测,SOT23封装MAX4006 高精度、高端电流监测,SOT23封装MAX4007 高精度、76V、高端电流监测,SOT23封装MAX4008 高精度、76V、高端电流监测,SOT23封装MAX4012 低成本、高速、单电源运算放大器,满摆幅输出MAX4014 低成本、高速、单电源、增益为+2的缓冲器,满摆幅输出,SOT23封装MAX4016 低成本、高速、单电源运算放大器,满摆幅输出MAX4017 低成本、高速、单电源、增益为+2的缓冲器,满摆幅输出,SOT23封装MAX4018 低成本、高速、单电源运算放大器,满摆幅输出MAX4019 低成本、高速、单电源、增益为+2的缓冲器,满摆幅输出,SOT23封装MAX4020 低成本、高速、单电源运算放大器,满摆幅输出MAX4022 低成本、高速、单电源、增益为+2的缓冲器,满摆幅输出,SOT23封装MAX4023 三路和四路、2:1视频多路复用器-放大器,带有固定和可设置增益MAX4024 三路和四路、2:1视频多路复用器-放大器,带有固定和可设置增益MAX4025 三路和四路、2:1视频多路复用器-放大器,带有固定和可设置增益MAX4026 三路和四路、2:1视频多路复用器-放大器,带有固定和可设置增益MAX4027 225MHz、三组、2路视频多路复用器-放大器MAX4028 三路/四路、2:1视频复用器-放大器,具有输入钳位MAX4029 三路/四路、2:1视频复用器-放大器,具有输入钳位MAX4029EVKIT MAX4029评估板MAX4030E 低成本、144MHz、双/三路运算放大器,带有±15kV ESD保护MAX4031E 低成本、144MHz、双/三路运算放大器,带有±15kV ESD保护MAX4032 5V、6dB视频缓冲器,具有同步头钳位、输出下垂纠正和150nA关断电流MAX4036 低IBIAS、+1.4V/800nA、满摆幅运算放大器,带有+1.2V缓冲基准MAX4037 低IBIAS、+1.4V/800nA、满摆幅运算放大器,带有+1.2V缓冲基准MAX4038 低IBIAS、+1.4V/800nA、满摆幅运算放大器,带有+1.2V缓冲基准MAX4039 低IBIAS、+1.4V/800nA、满摆幅运算放大器,带有+1.2V缓冲基准MAX404 视频运算放大器MAX4040 单/双/四路、低成本、SOT23封装、微功耗、满摆幅输入/输出运算放大器MAX4041 单/双/四路、低成本、SOT23封装、微功耗、满摆幅输入/输出运算放大器MAX4042 单/双/四路、低成本、SOT23封装、微功耗、满摆幅输入/输出运算放大器MAX4043 单/双/四路、低成本、SOT23封装、微功耗、满摆幅输入/输出运算放大器MAX4044 单/双/四路、低成本、SOT23封装、微功耗、满摆幅输入/输出运算放大器MAX405 精密视频缓冲放大器MAX4051 低电压、CMOS模拟多路复用器/开关MAX4051A 低电压、CMOS模拟多路复用器/开关MAX4052 低电压、CMOS模拟多路复用器/开关MAX4052A 低电压、CMOS模拟多路复用器/开关MAX4053 低电压、CMOS模拟多路复用器/开关MAX4053A 低电压、CMOS模拟多路复用器/开关MAX406 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4060 差分麦克风前置放大器,内部偏置并可完全关断MAX4060EVKIT MAX4060评估板MAX4061 差分麦克风前置放大器,内部偏置并可完全关断MAX4062 差分麦克风前置放大器,内部偏置并可完全关断MAX4063 差分麦克风前置放大器,内部偏置并可完全关断MAX4063EVKIT MAX4063评估板MAX4066 低成本、低电压、四路、SPST、CMOS模拟开关MAX4066A 低成本、低电压、四路、SPST、CMOS模拟开关MAX4069 双向、高边、电流检测放大器,内置电压基准MAX407 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4070 双向、高边、电流检测放大器,内置电压基准MAX4071 双向、高边、电流检测放大器,内置电压基准MAX4072 双向、高边、电流检测放大器,内置电压基准MAX4073 低成本、SC70封装、电压输出、高端电流检测放大器MAX4073F 低成本、SC70封装、电压输出、高端电流检测放大器MAX4073H 低成本、SC70封装、电压输出、高端电流检测放大器MAX4073T 低成本、SC70封装、电压输出、高端电流检测放大器MAX4074 微功耗、SOT23封装、满摆幅、固定增益、增益放大器和开环增益运算放大器MAX4075 微功耗、SOT23封装、满摆幅、固定增益、增益放大器和开环增益运算放大器MAX4076 微功耗、SOT23封装、满摆幅、固定增益、增益放大器和开环增益运算放大器MAX4077 微功耗、SOT23封装、满摆幅、固定增益、增益放大器和开环增益运算放大器MAX4078 微功耗、SOT23封装、满摆幅、固定增益、增益放大器和开环增益运算放大器MAX4079 完备的音频/视频后端方案MAX4079EVKIT MAX4079评估板MAX408 单/双/四路、高速、快速稳定、高输出电流的运算放大器MAX4080 76V、高边、电流检测放大器,带有电压输出MAX4080EVKIT MAX4080/MAX4081评估板MAX4081 76V、高边、电流检测放大器,带有电压输出MAX409 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4090 3V/5V、6dB视频缓冲器,具有同步头钳位和150nA 关断电流MAX4090A 3V/5V、6dB视频缓冲器,具有同步头钳位和150nA 关断电流MAX4090EVKIT MAX4090评估板MAX4091 单/双/四路、微功耗、单电源、满摆幅运算放大器MAX4092 单/双/四路、微功耗、单电源、满摆幅运算放大器MAX4094 单/双/四路、微功耗、单电源、满摆幅运算放大器MAX410 单/双/四路、28MHz、低噪声、低电压、精密运算放大器MAX4100 500MHz、低功耗运算放大器MAX4101 500MHz、低功耗运算放大器MAX4102 250MHz、广播级质量的、低功耗视频运算放大器MAX4103 250MHz、广播级质量的、低功耗视频运算放大器MAX4104 740MHz、低噪声、低失真运算放大器,SOT23-5封装MAX4104EVKIT MAX4104、MAX4105、MAX4304、MAX4305评估板MAX4105 740MHz、低噪声、低失真运算放大器,SOT23-5封装MAX4106 350MHz、超低噪声运算放大器MAX4107 350MHz、超低噪声运算放大器MAX4108 400MHz、超低失真运算放大器MAX4109 400MHz、超低失真运算放大器MAX4111 330MHz、缓冲驱动视频交叉点开关芯片MAX4112 单/双/四路、400MHz、低功耗、电流反馈放大器MAX4113 单/双/四路、400MHz、低功耗、电流反馈放大器MAX4117 单/双/四路、400MHz、低功耗、电流反馈放大器MAX4118 单/双/四路、400MHz、低功耗、电流反馈放大器MAX4119 单/双/四路、400MHz、低功耗、电流反馈放大器MAX412 单/双/四路、28MHz、低噪声、低电压、精密运算放大器MAX4120 单/双/四路、400MHz、低功耗、电流反馈放大器MAX4121 330MHz、缓冲驱动视频交叉点开关芯片MAX4122 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4123 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4124 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4125 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4126 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4127 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4128 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4129 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4130 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4131 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4132 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4133 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4134 单/双/四路、宽带、低功耗、单电源、满摆幅输入/输出运算放大器MAX4135 1路输入/6路输出、视频分配放大器MAX4136 1路输入/6路输出、视频分配放大器MAX4137 1路输入/4路输出、视频分配放大器MAX4138 1路输入/4路输出、视频分配放大器MAX414 单/双/四路、28MHz、低噪声、低电压、精密运算放大器MAX4141 330MHz、4x1精密视频多路复用器MAX4141EVKIT MAX4141评估板MAX4142 250MHz、低功耗、高输出电流的差分线驱动器MAX4144 高速、低失真、差分线接收器MAX4145 高速、低失真、差分线接收器MAX4146 高速、低失真、差分线接收器MAX4147 300MHz、低功耗、高输出电流、差分线驱动器MAX4158 350MHz/250MHz、2通道视频多路复用器-放大器MAX4159 350MHz/250MHz、2通道视频多路复用器-放大器MAX4159EVKIT MAX4159、MAX4259评估板MAX4162 SOT23封装、微功耗、单电源、满摆幅输入/输出运算放大器MAX4163 SOT23封装、微功耗、单电源、满摆幅输入/输出运算放大器MAX4163EBL SOT23封装、微功耗、单电源、满摆幅输入/输出运算放大器MAX4164 SOT23封装、微功耗、单电源、满摆幅输入/输出运算放大器MAX4165 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4166 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4167 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4168 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4169 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX417 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4172 低成本、精密的、高端电流检测放大器MAX4173 低成本、SOT23封装、电压输出、高端电流检测放大器MAX4173EVKIT MAX4173评估板MAX4173F 低成本、SOT23封装、电压输出、高端电流检测放大器MAX4173H 低成本、SOT23封装、电压输出、高端电流检测放大器MAX4173T 低成本、SOT23封装、电压输出、高端电流检测放大器MAX4174 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4175 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4178 330MHz、增益为+1/+2、闭环缓冲器MAX418 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4180 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4180EVKIT MAX4180、MAX4181评估板MAX4181 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4182 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4183 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4184 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4185 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4186 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4187 单/双/四路、270MHz、1mA、SOT23封装、电流反馈放大器,带有关断MAX4188 单/三路、低毛刺、250MHz、电流反馈放大器,带有高速禁止功能MAX4188EVKIT MAX4188评估板MAX4189 单/三路、低毛刺、250MHz、电流反馈放大器,带有高速禁止功能MAX419 单、双、四路、1.2μA最大静态电流、单电源运算放大器MAX4190 单/三路、低毛刺、250MHz、电流反馈放大器,带有高速禁止功能MAX4193 CMOS、微功耗、升压型开关调节器MAX4194 微功耗、单电源、满摆幅、精密仪表放大器MAX4195 微功耗、单电源、满摆幅、精密仪表放大器MAX4196 微功耗、单电源、满摆幅、精密仪表放大器MAX4197 微功耗、单电源、满摆幅、精密仪表放大器MAX4198 微功耗、单电源、满摆幅、精密差分放大器MAX4199 微功耗、单电源、满摆幅、精密差分放大器MAX420 ±15V斩波自稳零型运算放大器MAX4200 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4201 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4201EVKIT MAX4201评估板MAX4202 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4203 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4204 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4205 超高速、低噪声、低功耗、SOT23封装的开环缓冲器MAX4206 精密的互阻对数放大器,动态范围大于105MAX4206EVKIT MAX4206评估板MAX4207 精密的互阻对数放大器,动态范围大于105MAX4208 超低失调/漂移、高精度仪表放大器,提供REF缓冲器MAX4208EVKIT MAX4208评估板MAX4209 超低失调/漂移、高精度仪表放大器,提供REF缓冲器MAX4209EVKIT MAX4209评估板MAX421 ±15V斩波自稳零型运算放大器MAX4210 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211 高端功率、电流监视器MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4212 微型、300MHz、单电源、满摆幅运算放大器,带有使能端MAX4213 微型、300MHz、单电源、满摆幅运算放大器,带有使能端MAX4213EVKIT MAX4213、MAX4215评估板MAX4214 高速、单电源、增益为+2、闭环、满摆幅缓冲器,带有使能端MAX4215 高速、单电源、增益为+2、闭环、满摆幅缓冲器,带有使能端MAX4216 微型、300MHz、单电源、满摆幅运算放大器,带有使能端MAX4217 高速、单电源、增益为+2、闭环、满摆幅缓冲器,带有使能端MAX4218 微型、300MHz、单电源、满摆幅运算放大器,带有使能端MAX4219 高速、单电源、增益为+2、闭环、满摆幅缓冲器,带有使能端MAX4220 微型、300MHz、单电源、满摆幅运算放大器,带有使能端MAX4221 330MHz、缓冲驱动视频交叉点开关芯片MAX4222 高速、单电源、增益为+2、闭环、满摆幅缓冲器,带有使能端MAX4223 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX4223EVKIT MAX4223、MAX4224评估板MAX4224 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX4225 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX4226 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX4227 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX4228 1GHz、低功耗、SOT23封装、电流反馈放大器,带有关断MAX423 ±15V斩波自稳零型运算放大器MAX4230 高输出驱动、10MHz、10V/μs、满摆幅输入/输出运算放大器,带有关断,SC70封装MAX4231 高输出驱动、10MHz、10V/μs、满摆幅输入/输出运算放大器,带有关断,SC70封装MAX4231EVKIT MAX4336、MAX4231评估板MAX4232 高输出驱动、10MHz、10V/μs、满摆幅输入/输出运算放大器,带有关断,SC70封装MAX4233 高输出驱动、10MHz、10V/μs、满摆幅输入/输出运算放大器,带有关断,SC70封装MAX4233EVKIT MAX4338、MAX4233评估板MAX4234 高输出驱动、10MHz、10V/μs、满摆幅输入/输出运算放大器,带有关断,SC70封装MAX4236 SOT23封装、甚高精密、3V/5V、满摆幅运算放大器MAX4237 SOT23封装、甚高精密、3V/5V、满摆幅运算放大器MAX4238 超低失调/漂移、低噪声、精密的SOT23封装放大器MAX4239 超低失调/漂移、低噪声、精密的SOT23封装放大器MAX4240 单/双/四路、+1.8V/10μA、SOT23封装、超摆幅运算放大器MAX4241 单/双/四路、+1.8V/10μA、SOT23封装、超摆幅运算放大器MAX4242 单/双/四路、+1.8V/10μA、SOT23封装、超摆幅运算放大器MAX4243 单/双/四路、+1.8V/10μA、SOT23封装、超摆幅运算放大器MAX4244 单/双/四路、+1.8V/10μA、SOT23封装、超摆幅运算放大器MAX4245 超小型、满摆幅输入/输出、带有禁止功能、单/双电源供电、低功耗运算放大器MAX4246 超小型、满摆幅输入/输出、带有禁止功能、单/双电源供电、低功耗运算放大器MAX4247 超小型、满摆幅输入/输出、带有禁止功能、单/双电源供电、低功耗运算放大器MAX4249 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4250 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4251 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4252 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4253 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4254 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4255 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4256 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4257 UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器MAX4258 350MHz/250MHz、2通道视频多路复用器-放大器MAX4259 350MHz/250MHz、2通道视频多路复用器-放大器MAX4265 超低失真、单电源、300MHz运算放大器,带有使能端MAX4266 超低失真、单电源、300MHz运算放大器,带有使能端MAX4267 超低失真、单电源、300MHz运算放大器,带有使能端MAX4268 超低失真、单电源、300MHz运算放大器,带有使能端MAX4269 超低失真、单电源、300MHz运算放大器,带有使能端MAX427 低噪声、高精度运算放大器MAX4270 超低失真、单电源、300MHz运算放大器,带有使能端MAX4271 3V至12V、限流型、热插拔控制器,带有自动重试以及DualSpeed/BiLevel故障保护MAX4272 3V至12V、限流型、热插拔控制器,带有自动重试以及DualSpeed/BiLevel故障保护MAX4273 3V至12V、限流型、热插拔控制器,带有自动重试以及DualSpeed/BiLevel故障保护MAX4273EVKIT MAX4273评估板MAX4274 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4275 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4278 330MHz、增益为+1/+2、闭环缓冲器MAX428 单/双/四路、高速、快速稳定、高输出电流的运算放大器MAX4281 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4282 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4284 SOT23封装、满摆幅、固定增益、增益放大器/开环运算放大器MAX4285 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4286 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4287 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4288 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4289 1.0V、微功耗、SOT23封装、运算放大器MAX4291 超小型、+1.8V、微功耗、满摆幅输入/输出运算放大器MAX4292 超小型、+1.8V、微功耗、满摆幅输入/输出运算放大器MAX4294 超小型、+1.8V、微功耗、满摆幅输入/输出运算放大器MAX4295 单声道/立体声、2W、开关模式(D类)音频功率放大器MAX4295EVKIT MAX4295评估板MAX4298 超高PSRR立体声驱动器+ 麦克风放大器+ 100mA 线性稳压器MAX4299 超高PSRR立体声驱动器+ 麦克风放大器+ 100mA 线性稳压器MAX4299EVKIT MAX4299评估板MAX430 ±15V斩波自稳零型运算放大器MAX4304 740MHz、低噪声、低失真运算放大器,SOT23-5封装MAX4305 740MHz、低噪声、低失真运算放大器,SOT23-5封装MAX4308 400MHz、超低失真运算放大器MAX4309 400MHz、超低失真运算放大器MAX4310 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX4311 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX4312 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX4313 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX4313EVKIT MAX4310、MAX4313评估板MAX4314 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX4315 高速、低功耗、单电源、多通道、视频多路复用器-放大器MAX432 ±15V斩波自稳零型运算放大器MAX4321 低成本、低电压、满摆幅输入/输出、SOT23封装5MHz运算放大器MAX4322 单/双/四路、低成本、UCSP/SOT23封装、低功耗、满摆幅输入/输出运算放大器MAX4323 单/双/四路、低成本、UCSP/SOT23封装、低功耗、满摆幅输入/输出运算放大器MAX4326 单/双/四路、低成本、UCSP/SOT23封装、低功耗、满摆幅输入/输出运算放大器MAX4327 单/双/四路、低成本、UCSP/SOT23封装、低功耗、满摆幅输入/输出运算放大器MAX4329 单/双/四路、低成本、UCSP/SOT23封装、低功耗、满摆幅输入/输出运算放大器MAX4330 单/双/四路、低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4331 单/双/四路、低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4332 单/双/四路、低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4333 单/双/四路、低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4334 单/双/四路、低功耗、单电源、满摆幅输入/输出运算放大器,带有关断MAX4335 SC70/SOT23-8封装、50mA输出电流、满摆幅输入/输出运算放大器,带有关断/静音MAX4336 SC70/SOT23-8封装、50mA输出电流、满摆幅输入/输出运算放大器,带有关断/静音MAX4336EVKIT MAX4336、MAX4231评估板MAX4337 SC70/SOT23-8封装、50mA输出电流、满摆幅输入/输出运算放大器,带有关断/静音MAX4338 SC70/SOT23-8封装、50mA输出电流、满摆幅输入/输出运算放大器,带有关断/静音MAX4338EVKIT MAX4338、MAX4233评估板MAX435 250MHz宽带跨导放大器,差分输出MAX4350 超小型、低成本、210MHz、双电源运算放大器,满摆幅输出MAX4351 超小型、低成本、210MHz、双电源运算放大器,满摆幅输出MAX4352 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4353 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4354 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4355 16x16、无阻塞视频交叉点开关,带有输入/输出缓冲器MAX4356 16 x 16、无阻塞视频交叉点开关,带有屏幕显示插入及输入/输出缓冲器MAX4357 32 x 16、无阻塞视频交叉点开关,带有输入/输出缓冲器MAX4358 32 x 16、无阻塞视频交叉点开关,带有屏幕显示及I/O缓冲器MAX4358EVKIT MAX4358评估板MAX4359 低成本4x4、8x4、8x8视频交叉点开关MAX436 250MHz宽带跨导放大器,差分输出MAX4360 低成本4x4、8x4、8x8视频交叉点开关MAX4361 ADSL驱动器/接收器,适用于用户端设备MAX4362 ADSL驱动器/接收器,适用于用户端设备MAX4363 ADSL驱动器/接收器,适用于用户端设备MAX4364 1.4W及1W、超小型、音频功率放大器,带有关断MAX4364EVKIT MAX4364评估板MAX4365 1.4W及1W、超小型、音频功率放大器,带有关断MAX4365EVKIT MAX4365评估板MAX4366 330mW、超小型、音频功率放大器,带有关断MAX4366EVKIT MAX4366、MAX4367、MAX4368评估板MAX4367 330mW、超小型、音频功率放大器,带有关断MAX4368 330mW、超小型、音频功率放大器,带有关断MAX4369 双路、满摆幅、高输出驱动运算放大器,UCSP封装MAX437 低噪声、高精度运算放大器MAX4370 电流调节热插拔控制器,带有DualSpeed/BiLevel故障保护MAX4372 低成本、UCSP/SOT23封装、微功耗、高端电流检测放大器,带有电压输出MAX4372F 低成本、UCSP/SOT23封装、微功耗、高端电流检测放大器,带有电压输出MAX4372H 低成本、UCSP/SOT23封装、微功耗、高端电流检测放大器,带有电压输出MAX4372T 低成本、UCSP/SOT23封装、微功耗、高端电流检测放大器,带有电压输出MAX4373 低成本、微功耗、高端电流检测放大器+ 比较器 + 电压基准ICMAX4374 低成本、微功耗、高端电流检测放大器 + 比较器 + 电压基准ICMAX4375 低成本、微功耗、高端电流检测放大器 + 比较器 + 电压基准ICMAX4376 单/双/四路、高端电流检测放大器,内部设定增益MAX4377 单/双/四路、高端电流检测放大器,内部设定增益MAX4378 单/双/四路、高端电流检测放大器,内部设定增益MAX4380 超小型、低成本、210MHz、单电源运算放大器,带有满摆幅输出及禁止功能MAX4381 超小型、低成本、210MHz、单电源运算放大器,带有满摆幅输出及禁止功能MAX4382 超小型、低成本、210MHz、单电源运算放大器,带有满摆幅输出及禁止功能MAX4383 超小型、低成本、210MHz、单电源运算放大器,带有满摆幅输出及禁止功能MAX4383EVKIT MAX4383评估板MAX4384 超小型、低成本、210MHz、单电源运算放大器,带有满摆幅输出及禁止功能MAX4385E 低成本、230MHz、单/四路运算放大器,带有满摆幅输出及±15kV ESD保护MAX4386E 低成本、230MHz、单/四路运算放大器,带有满摆幅输出及±15kV ESD保护MAX4387 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4388 +3V/+5V、250MHz、SOT23封装ADC缓冲放大器,带有高速禁止功能MAX4389 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4390 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4391 CMOS、微功耗、反相开关型稳压器MAX4392 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4393 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4394 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4395 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4396 超小型、低成本、85MHz运算放大器,带有满摆幅输出及禁止功能MAX4397 用于双SCART连接器的音频/视频开关MAX4397DA 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4397SA 用于双SCART连接器的音频/视频开关MAX4399 用于三SCART连接器的音频/视频开关MAX4399EVCMODU MAX4399评估系统/评估板MAX4399EVKIT MAX4399评估系统/评估板MAX440 8通道、高速、视频多路复用器-放大器MAX4400 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断MAX4401 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断MAX4402 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断MAX4403 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断MAX4409 80mW、DirectDrive、立体声耳机放大器,带有共模检测MAX441 8通道、高速、视频多路复用器-放大器MAX4410 80mW、DirectDrive、立体声耳机驱动器,带有关断MAX4410EVKIT MAX4410评估板MAX4411 80mW、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX4411B 80mW、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX4411EVKIT MAX4411评估板MAX4412 低成本、低功耗、超小型、3V/5V、500MHz单电源运算放大器,满摆幅输出MAX4413 低成本、低功耗、超小型、3V/5V、500MHz单电源运算放大器,满摆幅输出MAX4414 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX4415 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX4416 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX4417 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX4418 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX4419 低功耗、+3V/+5V、400MHz单电源运算放大器,满摆幅输出MAX442 140MHz、2通道、视频多路复用放大器MAX4420 高速、6A MOSFET驱动器(同相)MAX4426 双路、高速、1.5A MOSFET驱动器MAX4427 双路、高速、1.5A MOSFET驱动器MAX4428 双路、高速、1.5A MOSFET驱动器MAX4429 高速、6A MOSFET驱动器(同相)MAX4430 双电源、180MHz、16位准确度、超低失真运算放大器MAX4431 双电源、180MHz、16位准确度、超低失真运算放大器MAX4432 双电源、180MHz、16位准确度、超低失真运算放大器MAX4433 双电源、180MHz、16位准确度、超低失真运算放大器MAX4434 单电源、150MHz、16位精度、超低失真运算放大器MAX4435 单电源、150MHz、16位精度、超低失真运算放大器MAX4436 单电源、150MHz、16位精度、超低失真运算放大器MAX4437 单电源、150MHz、16位精度、超低失真运算放大器MAX4444 超高速、低失真、差分至单端线接收器,带有使能端MAX4444EVKIT MAX4444、MAX4445评估板MAX4445 超高速、低失真、差分至单端线接收器,带有使能端MAX4447 6500V/μs、宽带、高输出电流、单端至差分线驱动器,带有使能端MAX4447EVKIT MAX4447、MAX4448、MAX4449评估板MAX4448 6500V/μs、宽带、高输出电流、单端至差分线驱动器,带有使能端MAX4448EVKIT MAX4447、MAX4448、MAX4449评估板MAX4449 6500V/μs、宽带、高输出电流、单端至差分线驱动器,带有使能端MAX4449EVKIT MAX4447、MAX4448、MAX4449评估板MAX4450 超小型、低成本、210MHz、单电源运算放大器,满摆幅输出MAX4450EVKIT MAX4450评估板MAX4451 超小型、低成本、210MHz、单电源运算放大器,满摆幅输出MAX4452 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4453 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4454 低成本、+3V/+5V、620μA、200MHz、单电源运算放大器,满摆幅输出MAX4455 任意图形随屏显示视频发生器MAX4455EVKIT MAX4455评估板/评估系统MAX4455EVSYS MAX4455评估板/评估系统MAX4456 低成本4x4、8x4、8x8视频交叉点开关MAX4460 SOT23封装、3V/5V、单电源、满摆幅仪表放大器MAX4461 SOT23封装、3V/5V、单电源、满摆幅仪表放大器MAX4462 SOT23封装、3V/5V、单电源、满摆幅仪表放大器MAX4464 单/双/四路、+1.8V/750nA、SC70封装、满摆幅运算放大器MAX4465 低成本、微功耗、SC70/SOT23-8封装、麦克风前置放大器,可完全关断MAX4466 低成本、微功耗、SC70/SOT23-8封装、麦克风前置放大器,可完全关断MAX4467 低成本、微功耗、SC70/SOT23-8封装、麦克风前置放大器,可完全关断MAX4468 低成本、微功耗、SC70/SOT23-8封装、麦克风前置放大器,可完全关断MAX4469 低成本、微功耗、SC70/SOT23-8封装、麦克风前置放大器,可完全关断MAX4470 单/双/四路、+1.8V/750nA、SC70封装、满摆幅运算放大器MAX4471 单/双/四路、+1.8V/750nA、SC70封装、满摆幅运算放大器MAX4472 单/双/四路、+1.8V/750nA、SC70封装、满摆幅运算放大器MAX4473 低成本、低电压、PA功率控制放大器,用于GSM应用MAX4474 单/双/四路、+1.8V/750nA、SC70封装、满摆幅运算放大器MAX4475 SOT23封装、低噪声、低失真、宽带、满摆幅运算放大器MAX4476 SOT23封装、低噪声、低失真、宽带、满摆幅运算放大器MAX4477 SOT23封装、低噪声、低失真、宽带、满摆幅运算放大器MAX4478 SOT23封装、低噪声、低失真、宽带、满摆幅运算放大器MAX448 单/双/四路、高速、快速稳定、高输出电流的运算放大器MAX4480 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断MAX4481 单/双/四路、低成本、单电源、满摆幅运算放大器,带有关断。

MAX5160中文资料

MAX5160中文资料
H3 GND 4
MAX5160 µMAX
L1
8 VDD 7 CS 6L
H2
5W GND 3
MAX5161
6 VDD 5 INC 4 U/D
SOT23-6
________________________________________________________________ Maxim Integrated Products 1
2 _______________________________________________________________________________________
元器件交易网
MAX5160/MAX5161
Low-Power Digital Potentiometers
For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
元器件交易网
W
U/D
L
Features
o 32 Tap Positions o 50kΩ, 100kΩ, and 200kΩ Resistance Values o 400Ω Wiper Resistance o ±25% Resistance Tolerance o 3-Wire Serial Data Input o ±1LSB DNL o ±0.5LSB INL o 100nA Supply Current o Single-Supply Operation: +2.7V to +5.5V o Power-On Reset: Wiper Goes to Midscale

maxtec maxventuri 用户手册 - 中文(简体)说明书

maxtec maxventuri 用户手册 - 中文(简体)说明书

866.4.Maxtec
I
警告
表示潜在的危险情况,如果不避免,可能导致死亡或严重损伤。
» 本器械不适于与生命支持器械/系统联用。 » 未遵从本手册中的警告或预防措施可能导致仪器损坏并威胁到患者和/或医护人员的福祉。 » 不正确使用本器械可能造成流量和氧气读数不准确,从而导致不正确的治疗、缺氧症或高氧
症、以及其他患者损伤或不适。请遵照本用户手册中概括的流程。
» 请勿在火焰、易燃/易爆物质、蒸气或氛围附近使用本器械。 在上述环境中操作氧气分析器
可能导致火灾或爆炸。 » 请勿在 MRI 环境中使用本器械。 » 本器械整体(包括电极)不适于在易燃麻醉剂混合物存在下或在易爆气体氛围中使用。 在上
述环境中操作氧气分析器可能导致火灾或爆炸。 » 如果 O2% 偏离了设定的水平,请检查患者界面的鼻腔插管未被痰液或鼻中隔堵塞。对回路或
患者界面的流量限制将导致氧气水平的升高。 对喉管的流量限制将不能被流量计检测出。 » 本器械在氧气供应中断时不会发出警报。 » 在调整氧气含量前确保氧气读数稳定。 » 本器械在氧气水平过高或过低时不会发出警报。 » 请勿在患者头部或颈部附近保留过长导管,以避免导致窒息。 » 请仅使用 Maxtec 替换传感器。 使用其他任何传感器将导致保修失效并可能导致产品损坏、
Maxtec 建议控制阀的 o 型环每 2 年更换或保养一次。
本保修不包含常规维护项目,如电池。对因使用后或因设备的滥用、误用、错误应用、改造、疏 忽或意外而造成的购买者或其他人的附带或后果损害,Maxtec 概不负责。
本有限产品保证取代所有其他明示或默示保证,包括但不限于适销性或特定目的适用性的任何默示 保证。
电话 (800) 748.5355 传真 (801) 270.5590 电子邮件:sales@ 网址:

MAXIM MAX3095 MAX3096 说明书

MAXIM MAX3095 MAX3096 说明书

MAX3095/MAX3096
_______________Ordering Information
PART TEMP. RANGE PIN-PACKAGE MAX3095CPE+ 0°C to +70°C 16 Plastic DIP MAX3095CSE+ 0°C to +70°C 16 Narrow SO MAX3095CEE+ 0°C to +70°C 16 QSOP MAX3095EPE+ -40°C to +85°C 16 Plastic DIP MAX3095ESE+ -40°C to +85°C 16 Narrow SO MAX3095EEE+ -40°C to +85°C 16 QSOP MAX3096CPE+ 0°C to +70°C 16 Plastic DIP MAX3096CSE+ 0°C to +70°C 16 Narrow SO MAX3096CEE+ 0°C to +70°C 16 QSOP MAX3096EPE+ -40°C to +85°C 16 Plastic DIP MAX3096ESE+ -40°C to +85°C 16 Narrow SO MAX3096EEE+ -40°C to +85°C 16 QSOP +Denotes a lead(Pb)-free/RoHS-compliant package.
________________Functional Diagram
VCC
G G A1
MAX3095 MAX3096
Y1
Pin Configuration

Osmart塑壳断路器产品介绍

Osmart塑壳断路器产品介绍

塑壳断路器 名称
壳架电流 60: 60A 100: 100A 160: 160A 250: 250A 400: 400A 630: 630A
S
分断能力 (AC380V) E: 7.5kA B: 10kA S: 18kA K: 35kA
3
极数 3: 3P 4: 4P
125
额定电流 015: 15A 020: 20A 025: 25A 030: 30A 040: 40A 050: 50A 060: 60A 075: 75A 080: 80A 100: 100A
NSC60E 3, 4
15,20,25, 30,40,50,60
Ue AC50/60Hz
550
Ui
690
Uimp
6
lcu AC Ics %Icu
机械 电气
220/240V 380V 400V 220/240V 380/400V
10 7.5 7.5 25% 25% A b 8,500 4,000
热保护 磁保护
p GB 14048.1 p GB 14048.2 p 同时符合 NEMA/JIS/CE标准 p 400A以下本体符合EU RoHS指令
污染等级
塑壳断路器的抗污染等级为三级,可在 IEC 60947 标准 (工业环境) 中定义的三 级污染环境中运行。
环境保护
塑壳断路器在生产制造中充分考虑了环保因素,大多数的部件都是可回收的, 400A以下的塑壳断路器本体符合RoHS指令的标准。
系列塑壳断路器介绍
低压配电保护
NSC60/100A NSC160/250A NSC400/630A NSC630A
NSC 断路器 极数 电气特性 额定电流 (A)
额定工作电压 (V) 额定绝缘电压 (V) 额定冲击耐压 (kV) 分断能力 (kA rms) IEC 60947-2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

___________________________________________________________________Selector Guide________________General DescriptionThe MAX6316–MAX6322 family of microprocessor (µP)supervisory circuits monitors power supplies and microprocessor activity in digital systems. It offers sev-eral combinations of push/pull, open-drain, and bidirec-tional (such as Motorola 68HC11) reset outputs, along with watchdog and manual reset features. The Selector Guide below lists the specific functions available from each device. These devices are specifically designed to ignore fast negative transients on V CC . Resets are guaranteed valid for V CC down to 1V.These devices are available in 26 factory-trimmed reset threshold voltages (from 2.5V to 5V, in 100mV incre-ments), featuring four minimum power-on reset timeout periods (from 1ms to 1.12s), and four watchdog timeout periods (from 6.3ms to 25.6s). Thirteen standard ver-sions are available with an order increment requirement of 2500 pieces (see Standard Versions table); contact the factory for availability of other versions, which have an order increment requirement of 10,000 pieces.The MAX6316–MAX6322 are offered in a miniature 5-pin SOT23 package.________________________ApplicationsPortable Computers Computers ControllersIntelligent InstrumentsPortable/Battery-Powered Equipment Embedded Control Systems____________________________Features♦Small 5-Pin SOT23 Package♦Available in 26 Reset Threshold Voltages2.5V to 5V, in 100mV Increments ♦Four Reset Timeout Periods1ms, 20ms, 140ms, or 1.12s (min)♦Four Watchdog Timeout Periods6.3ms, 102ms, 1.6s, or 25.6s (typ) ♦Four Reset Output StagesActive-High, Push/Pull Active-Low, Push/Pull Active-Low, Open-Drain Active-Low, Bidirectional♦Guaranteed Reset Valid to V CC = 1V♦Immune to Short Negative V CC Transients ♦Low Cost♦No External ComponentsMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset________________________________________________________________Maxim Integrated Products 119-0496; Rev 7; 11/07_______________Ordering InformationOrdering Information continued at end of data sheet.*The MAX6318/MAX6319/MAX6321/MAX6322 feature two types of reset output on each device.Typical Operating Circuit and Pin Configurations appear at end of data sheet.For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Specify lead-free by replacing “-T” with “+T” when ordering.ELECTRICAL CHARACTERISTICS(V CC = 2.5V to 5.5V, T A = -40°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V CC ......................................................................-0.3V to +6V RESET (MAX6320/MAX6321/MAX6322 only)...... -0.3V to +6V All Other Pins.........................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mAContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...............571mW Operating Temperature Range..........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range..............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CTH available in 100mV increments from 2.5V to 5V (see Table 1 at end of data sheet).Note 3:Guaranteed by design.MAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________3Note 5:Measured from RESET V OL to (0.8 x V CC ), R LOAD = ∞.Note 6:WDI is internally serviced within the watchdog period if WDI is left unconnected.Note 7:The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is designed for a three-stated-output device with a 10µA maximum leakage current and capable of driving a maximum capac-itive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.ELECTRICAL CHARACTERISTICS (continued)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)021*********-4020-20406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )302010504090807060100-40-20020406080100V CC FALLING TO RESET PROPAGATIONDELAY vs. TEMPERATURETEMPERATURE (°C)R E S E T P R O P A G A T I O N D E L A Y (μs )140180160240220200300280260320-40020-20406080100MAX6316/MAX6317/MAX6319/MAX6320/MAX6322MANUAL RESET TO RESETPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATUREM A X 6316t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321NORMALIZED WATCHDOG TIMEOUTPERIOD vs. TEMPERATUREM A X 6316t o c 05TEMPERATURE (°C)N O R M A L I Z E D W A T C H D O G T I M E O U T P E R I O D800101001000MAXIMUM V CC TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE2010RESET THRESHOLD OVERDRIVE (mV) V RST - V CCT RA N S I E N T D U R A T I O N (μs )3050604070200ns/divMAX6316M/6318MH/6319MHBIDIRECTIONALPULLUP CHARACTERISTICSMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 6______________________________________________________________________________________________________Detailed DescriptionA microprocessor’s (µP) reset input starts or restarts the µP in a known state. The reset output of the MAX6316–MAX6322 µP supervisory circuits interfaces with the reset input of the µP, preventing code-execution errors during power-up, power-down, and brownout condi-tions (see the Typical Operating Circuit ). The MAX6316/MAX6317/MAX6318/MAX6320/MAX6321 are also capa-ble of asserting a reset should the µP become stuck in an infinite loop.Reset OutputThe MAX6316L/MAX6318LH/MAX6319LH feature an active-low reset output, while the MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP feature an active-high reset output. RESET is guaran-teed to be a logic low and RESET is guaranteed to be a logic high for V CC down to 1V.The MAX6316–MAX6322 assert reset when V CC is below the reset threshold (V RST ), when MR is pulled low (MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP only), or if the WDI pin is not serviced withinthe watchdog timeout period (t WD ). Reset remains assert-ed for the specified reset active timeout period (t RP ) after V CC rises above the reset threshold, after MR transitions low to high, or after the watchdog timer asserts the reset (MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP). After the reset active timeout period (t RP )expires, the reset output deasserts, and the watchdog timer restarts from zero (Figure 2).Figure 1. Functional DiagramFigure 2. Reset Timing DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________7Bidirectional R E S E T OutputThe MAX6316M/MAX6318MH/MAX6319MH are designed to interface with µPs that have bidirectional reset pins,such as the Motorola 68HC11. Like an open-drain output,these devices allow the µP or other devices to pull the bidirectional reset (RESET ) low and assert a reset condi-tion. However, unlike a standard open-drain output, it includes the commonly specified 4.7k Ωpullup resistor with a P-channel active pullup in parallel.This configuration allows the MAX6316M/MAX6318MH/MAX6319MH to solve a problem associated with µPs that have bidirectional reset pins in systems where sev-eral devices connect to RESET (F igure 3). These µPs can often determine if a reset was asserted by an exter-nal device (i.e., the supervisor IC) or by the µP itself (due to a watchdog fault, clock error, or other source),and then jump to a vector appropriate for the source of the reset. However, if the µP does assert reset, it does not retain the information, but must determine the cause after the reset has occurred.The following procedure describes how this is done in the Motorola 68HC11. In all cases of reset, the µP pulls RESET low for about four external-clock cycles. It then releases RESET , waits for two external-clock cycles,then checks RESET ’s state. If RESET is still low, the µP concludes that the source of the reset was external and, when RESET eventually reaches the high state, it jumps to the normal reset vector. In this case, stored-state information is erased and processing begins fromscratch. If, on the other hand, RESET is high after a delay of two external-clock cycles, the processor knows that it caused the reset itself and can jump to a different vector and use stored-state information to determine what caused the reset.A problem occurs with faster µPs; two external-clock cycles are only 500ns at 4MHz. When there are several devices on the reset line, and only a passive pullup resis-tor is used, the input capacitance and stray capacitance can prevent RESET from reaching the logic high state (0.8✕V CC ) in the time allowed. If this happens, all resets will be interpreted as external. The µP output stage is guaran-teed to sink 1.6mA, so the rise time can not be reduced considerably by decreasing the 4.7k Ωinternal pullup resistance. See Bidirectional Pullup Characteristics in the Typical Operating Characteristics .The MAX6316M/MAX6318MH/MAX6319MH overcome this problem with an active pullup FET in parallel with the 4.7k Ωresistor (F igures 4 and 5). The pullup transistor holds RESET high until the µP reset I/O or the supervisory circuit itself forces the line low. Once RESET goes below V PTH , a comparator sets the transition edge flip-flop, indi-cating that the next transition for RESET will be low to high. When RESET is released, the 4.7k Ωresistor pulls RESET up toward V CC . Once RESET rises above V PTH but is below (0.85 x V CC ), the active P-channel pullup turns on. Once RESET rises above (0.85 x V CC ) or the 2µs one-shot times out, the active pullup turns off. The parallel combination of the 4.7k Ωpullup and theFigure 3. MAX6316M/MAX6318MH/MAX6319MH Supports Additional Devices on the Reset BusM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 8_______________________________________________________________________________________Figure 4. MAX6316/MAX6318MH/MAX6319MH Bidirectional Reset Output Functional DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________9P-channel transistor on-resistance quickly charges stray capacitance on the reset line, allowing RESET to transition from low to high within the required two elec-tronic-clock cycles, even with several devices on the reset line. This process occurs regardless of whether the reset was caused by V CC dipping below the reset threshold, the watchdog timing out, MR being asserted,or the µP or other device asserting RESET . The parts do not require an external pullup. To minimize supply cur-rent consumption, the internal 4.7k Ωpullup resistor dis-connects from the supply whenever the MAX6316M/MAX6318MH/MAX6319MH assert reset.Open-Drain R E S E T OutputThe MAX6320P/MAX6321HP/MAX6322HP have an active-low, open-drain reset output. This output struc-ture will sink current when RESET is asserted. Connect a pullup resistor from RESET to any supply voltage up to 6V (Figure 6). Select a resistor value large enough toregister a logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A 10k Ωpullup is sufficient in most applications.Manual-Reset InputThe MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP feature a manual reset input. A logic low on MR asserts a reset. After MR transitions low to high, reset remains asserted for the duration of the reset timeout peri-od (t RP ). The MR input is connected to V CC through an internal 52k Ωpullup resistor and therefore can be left unconnected when not in use. MR can be driven with TTL-logic levels in 5V systems, with CMOS-logic levels in 3V systems, or with open-drain or open-collector output devices. A normally-open momentary switch from MR to ground can also be used; it requires no external debouncing circuitry. MR is designed to reject fast, negative-going transients (typically 100ns pulses). A 0.1µF capacitor from MR to ground provides additional noise immunity.The MR input pin is equipped with internal ESD-protection circuitry that may become forward biased. Should MR be driven by voltages higher than V CC , excessive current would be drawn, which would damage the part. F or example, assume that MR is driven by a +5V supply other than V CC . If V CC drops lower than +4.7V, MR ’s absolute maximum rating is violated [-0.3V to (V CC + 0.3V)], and undesirable current flows through the ESD structure from MR to V CC . To avoid this, use the same supply for MR as the supply monitored by V CC . This guarantees that the voltage at MR will never exceed V CC .Watchdog InputThe MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP feature a watchdog circuit that monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within the watchdog timeout period (t WD ),reset asserts. The internal watchdog timer is cleared by reset or by a transition at WDI (which can detect pulses as short as 50ns). The watchdog timer remains cleared while reset is asserted. Once reset is released, the timer begins counting again (Figure 7).The WDI input is designed for a three-stated output device with a 10µA maximum leakage current and the capability of driving a maximum capacitive load of 200pF.The three-state device must be able to source and sink at least 200µA when active. Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. When the watchdog timer is left open circuited, the timer is cleared internally at intervals equal to 7/8 of the watchdog period.Figure 6. MAX6320P/MAX6321HP/MAX6322HP Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 5. Bidirectional RESET Timing DiagramM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 10______________________________________________________________________________________Applications InformationWatchdog Input CurrentThe WDI input is internally driven through a buffer and series resistor from the watchdog counter. For minimum watchdog input current (minimum overall power con-sumption), leave WDI low for the majority of the watch-dog timeout period. When high, WDI can draw as much as 160µA. Pulsing WDI high at a low duty cycle will reduce the effect of the large input current. When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain.Negative-Going V CC TransientsThese supervisors are immune to short-duration, nega-tive-going V CC transients (glitches), which usually do not require the entire system to shut down. Typically,200ns large-amplitude pulses (from ground to V CC ) on the supply will not cause a reset. Lower amplitude puls-es result in greater immunity. Typically, a V CC transient that goes 100mV under the reset threshold and lasts less than 4µs will not trigger a reset. An optional 0.1µF bypass capacitor mounted close to V CC provides addi-tional transient immunity.Ensuring Valid Reset OutputsDown to V CC = 0The MAX6316_/MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0, a pulldown resistor to active-low outputs (push/pull and bidirectional only,F igure 8) and a pullup resistor to active-high outputs(push/pull only, Figure 9) will ensure that the reset line is valid while the reset output can no longer sink orsource current. This scheme does not work with the open-drain outputs of the MAX6320/MAX6321/MAX6322.The resistor value used is not critical, but it must be large enough not to load the reset output when V CC is above the reset threshold. F or most applications,100k Ωis adequate.Watchdog Software Considerations(MAX6316/MAX6317/MAX6318/MAX6320/MAX6321)One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.Figure 7. Watchdog Timing RelationshipFigure 9. Ensuring RESET Valid to V CC = 0 on Active-High Push/Pull OutputsFigure 8. Ensuring RESET Valid to V CC = 0 on Active-Low Push/Pull and Bidirectional OutputsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________11F igure 10 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the end of every subroutine or loop, then set high again when the pro-gram returns to the beginning. If the program should hang in any subroutine, the problem would be quickly corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the Watchdog Input Current section, this scheme results in higher time average WDI current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.Figure 10. Watchdog Flow Diagram__________________Pin ConfigurationsTypical Operating CircuitTable 2. Standard VersionsTable 1. Factory-Trimmed Reset ThresholdsM A X 6316–M A X 6322Watchdog and Manual ResetTable 3. Reset/Watchdog Timeout PeriodsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________13__Ordering Information (continued)a watchdog feature (see Selector Guide) are factory-trimmed to one of four watchdog timeout periods. Insert the letter corre-sponding to the desired watchdog timeout period (W, X, Y, or Z from Table 3) into the blank following the reset timeout suffix.TRANSISTOR COUNT: 191SUBSTRATE IS INTERNALLY CONNECTED TO V+Chip Informationdard versions only. The required order increment for nonstandard versions is 10,000 pieces. Contact factory for availability.M A X 6316–M A X 6322Watchdog and Manual Reset 14______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6316–MAX6322 Watchdog and Manual ResetRevision History。

相关文档
最新文档