matlab数学实验复习题(有标准答案)

合集下载

matlab复习题标准答案

matlab复习题标准答案

matlab复习题标准答案# MATLAB复习题标准答案一、选择题1. MATLAB中的矩阵默认是按什么顺序存储的?- A. 行主序- B. 列主序- C. 随机序- D. 行主序2. 下列哪个函数用于计算矩阵的行列式?- A. `det`- B. `diag`- C. `trace`- A. `det`3. MATLAB中如何创建一个5x5的单位矩阵?- A. `eye(5,5)`- B. `zeros(5,5)`- C. `ones(5,5)`- A. `eye(5,5)`4. 下列哪个命令用于生成0到1之间的随机数?- A. `rand()`- B. `randi()`- C. `randn()`- A. `rand()`5. MATLAB中如何计算向量的范数?- A. `norm(vector)`- B. `abs(vector)`- C. `sum(vector)`- A. `norm(vector)`二、填空题1. MATLAB中的`%`符号用于______。

- 答案:注释2. 要创建一个从10到1的递减向量,可以使用______。

- 答案:`1:-1:10`3. MATLAB中,`zeros(3,4)`会生成一个______。

- 答案:3行4列的全零矩阵4. 函数`max(A)`会返回矩阵A中的______。

- 答案:最大值5. `plot(x,y)`函数在MATLAB中用于______。

- 答案:绘制x和y的数据点的图形三、简答题1. 请简述MATLAB中矩阵的基本操作有哪些?- 答案:矩阵的基本操作包括矩阵的创建、转置、求逆、矩阵乘法、矩阵加法、矩阵减法等。

2. MATLAB中如何实现循环结构?- 答案:MATLAB中实现循环结构主要有两种方式,一种是使用`for`循环,另一种是使用`while`循环。

3. 请解释MATLAB中的函数文件和脚本文件的区别。

- 答案:函数文件通常包含返回值和参数,可以被其他脚本或函数调用;而脚本文件主要用于执行一系列命令,不包含返回值。

(完整版)MATLAB)课后实验答案[1]

(完整版)MATLAB)课后实验答案[1]

(完整版)MATLAB)课后实验答案[1]实验⼀ MATLAB 运算基础1. 先求下列表达式的值,然后显⽰MATLAB ⼯作空间的使⽤情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +??=?- (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--L (4) 2242011122123t t z t t t t t ?≤=-≤,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建⽴⼀个字符串向量,删除其中的⼤写字母。

解:(1) 结果:(2). 建⽴⼀个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验⼆ MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对⾓阵,试通过数值计算验证2 2E R RS A O S +??=。

解: M ⽂件如下;5. 下⾯是⼀个线性⽅程组:1231112340.951110.673450.52111456x x x ??=???(1) 求⽅程的解。

(2) 将⽅程右边向量元素b 3改为0.53再求解,并⽐较b 3的变化和解的相对变化。

(3) 计算系数矩阵A 的条件数并分析结论。

解: M ⽂件如下:123d4e56g9实验三选择结构程序设计1. 求分段函数的值。

2226035605231x x x x y x x x x x x x ?+-<≠-?=-+≤<≠≠??--?且且及其他⽤if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。

解:M ⽂件如下:2. 输⼊⼀个百分制成绩,要求输出成绩等级A、B、C、D、E。

matlab20道试题及解答

matlab20道试题及解答

试题1.“数学黑洞”:任意一个4位自然数,将组成该数的各位数字重新排列,形成一个最大数和一个最小数,之后两数相减,其差仍为一个自然数。

重复进行上述运算,最终会出现一个神秘的数,请编程输出这个神秘的数。

clear;a=input('请输入一个四位正整数:');str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差while (b~=a)a=b;str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差endb试题2.将数字1、2、3、4、5、6填入一个2行3列的表格中,要使得每一列右边的数字比左边的数字大,每一行下面的数字比上面的数字大。

请编写程序求出按此要求可有几种填写方法。

a(1)=1;a(6)=6;count=0; %用来计数b=perms('2345'); %产生2345的全排列[m,n]=size(b);for i=1:mtemp=b(i,:);a(2)=str2double(temp(1));a(3)=str2double(temp(2));a(4)=str2double(temp(3));a(5)=str2double(temp(4));if ((a(4)>a(2))&&(a(4)>a(3))&&(a(5)>a(3)))count=count+1;c=reshape(a,2,3); %将a向量转化为2*3矩阵输出disp(c);endenddisp(['共有',num2str(count),'种填写方法']); %输出填写方法的种数试题3.编写成绩排序程序。

数学实验(matlab版)过程考试试卷及答案完整版

数学实验(matlab版)过程考试试卷及答案完整版

试绘出三种产品产量与季度的三维垂直方向条形图(分组式). >> x=[8,8,9;11,7,8;12,6,9;10,6,10]; bar3(x,'group') 图形如下:
2/2
第一题:编程计算下面问题, x 值由键≥ 1 y = x 2 , −1 ≤ x < 1 2 x − 1, x < −1
>> x=input('输入 x:'); if x>=1 y=x^2+1; end if x<-1 y=x^2-1; end if x>=-1&x<1 y=x^2; end y 输入 x:5 y= 26 第二题:某人做一种材料的伸缩实验,t 为温度(℃),L 为长度(mm),实验数据见下表 t 20 25 30 35 40 L 81 82.3 84 86.8 89
f = x 4 − xy + y 2 ,求
>> syms x y
∂f ∂ 3 f , ∂x ∂y 3
1/1
f=x^4-x*y+y^2; dx=diff(f,x,1) dy3=diff(f,y,3) dx = 4*x^3-y dy3 = 0 第四题:某厂生产三种产品,某年四季度的产量如下 A 产品产量 笫一季度 笫二季度 笫三季度 笫四季度 8 11 12 10 B 产品产量 8 7 6 6 C 产品产量 9 8 9 10
用二阶拟合法,求 L 与 t 的表达式.要求:1.编程;2.写出 L 与 t 的关系式. >> t=[20,25,30,35,40]; L=[81,82.3,84,86.5,89]; k=polyfit(t,L,2) k= 0.0091 -0.1446 80.2114 L=0.0091 t^2 —0.1446t+ 80.2114 第三题:求微分与积分(编程)

MATLAB考试题目及解答

MATLAB考试题目及解答

1.圆盘上有如图所示的二十个数,请找出哪4个相邻数之和最大,并指出它们的位置和数值。

(10分)2011841361015217319716811149125解答:%1.圆盘上有如图所示的二十个数,请找出哪4个相邻数之和最大,并指出它们的位置和数值。

(10分)A=[1 18 4 13 6 10 15 2 17 3 19 7 16 8 11 14 9 12 5 20];% 程序位置规定:从1开始顺时针方向计数;NumA=size(A); Num=NumA(1,2); sum(1)=A(1); for i=1:(Num-3)sum(i)=A(i)+A(i+1)+A(i+2)+A(i+3); endmaxresult=max(sum(:));%找出4个相邻数之和最大值 maxresult %4个相邻数之和最大值 Position=i %四个数起始位置 FourNumber=A(1,i:(i+3)) %四个数的值及顺序 运行结果:maxresult =50Position =17FourNumber =9 12 5 202.甲、乙、丙三人上街买糖果。

三人都买好后,甲对乙、丙说,我可以按你们现有的糖果数再送你们每人一份。

甲送给乙、丙后,乙也按甲、丙现有的糖果数,送给甲、丙每人各一份糖果。

丙也如此送了甲、乙各一份。

互相赠送后,每人恰好各有64颗糖果。

问甲、乙、丙原来各买了多少糖果?(10分)解答:%由代数关系构造矩阵 a=[1 -1 -1;0 2 0;0 0 2]; b=a([2 1 3],:); b=b(:,[2 1 3]); c=a([2 3 1],:); c=c(:,[2 3 1]); d=64*ones(3,1); result=a\(b\(c\d))运行结果:result=104 56 323.求n S a aa aaa aaa a =++++ 的值。

a 的值为1~9之间的一个整数,n S 中每一项aaa a 共有n 位。

MATLAb与数学实验 第五章习题解答

MATLAb与数学实验 第五章习题解答
i=
1 3 2 4 1 3 5 2 4 3 5
j=
1 1 2 2 3 3
3 4 4 5 5
s=
1 3 1 3 2 1 3 2 1 2 1 A1 =
10200 01020 30102 03010 00301 (2) n=nnz(A)
n=
13 ans =
1 2 -1 3 -2 4 1 -3 5 2
-4 3 -5
>> nx=nzmax(A)
nx =
35
>> [i,j,s]=find(A)
i=
1 2 1 3 2 4 1 3 5 2 4 3 5
j=
1 2 3 3 4 4 5 5 5 6 6 7 7
s=
1 2 -1 3 -2 4 1 -3 5 2 -4 3 -5
A1 =
1 0 -1 0 1 0 0
0 2 0 -2 0 2 0
C=
11 11 11
>> B=[3 5 7;0 1 0]
B=
357 010
>> D=[0 0 0;0 0 0]
D=
000 000
2.随机生成:(1)一个含有五个元素的列向量. (2)一个数值在 0~100 之间的三行四列的矩阵.
答 (1) rand(5,1)
ans =
0.9501
0.2311 0.6068 0.4860 0.8913
0 0 3 0 -3 0 3
0 3 0 1 0
0 0 0
4
0
4
0

0 0 3 0 1
0 0 0 0 5 0 5
答(1) n=nnz(A)
n=
11
>> nonzeros(A)

MATLAB数学实验第二版课后练习题含答案

MATLAB数学实验第二版课后练习题含答案

MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。

北京科技大学-MATLAB数学实验期末考试题目及答案

北京科技大学-MATLAB数学实验期末考试题目及答案

第1张1.figure(1)x=-pi:pi/50:pi;y=cos(2*(x.^2));plot(x,y,'r-.')figure(2)x=-pi:pi;y=cos(2*(x.^2));xi=-pi:pi/8:pi;yi1=interp1(x,y,xi,'*nearest');yi2=interp1(x,y,xi,'*linear');yi3=interp1(x,y,xi,'*spline');yi4=interp1(x,y,xi,'*cubic');plot(x,y,'ro',xi,yi1,'--',xi,yi2,'-',xi,yi3,'k.-',xi,yi4,'m:')2.function xdot=exf(t,x)u=t^3;xdot=[0 1;-5 0]*x+[0 3]'*u;clf,t0=0;tf=10;x0t=[1;2];[t,x]=ode23('exf',[t0,tf],x0t) y1=x(:,1),y2=x(:,2);plot(t,y1,'-',t,y2,'o')第2张1.第一张dsolve('D2y+4*y=t*cos(t)','y(0)=1,Dy(0)=1','t')第二张function xdot=exf(t,x)u=t*cos(t);xdot=[0 1;-4 0]*x+[0 1]'*u;第三张t0=0;tf=10;x0t=[1;1];[t,x]=ode23('exf',[t0,tf],x0t)y1=x(:,1)y2=cos(2*t) + (2*sin(2*t))./9 - cos(2*t).*(sin(3*t)/36 +sin(t)./4 - (t.*cos(3*t))./12 - (t.*cos(t))./4) +sin(2*t).*(cos(3*t)./36 + cos(t)./4 + (t.*sin(3*t))./12 + (t.*sin(t))./4)plot(x,y1,'b-',x,y2,'r-.')legend('y的图像','y的一阶导图像')2.x=0:2*pi/9:2*pi;y=(sin(2*x)).^2p3=polyfit(x,y,3);p5=polyfit(x,y,5);p7=polyfit(x,y,7);disp('三阶拟合函数'),f3=poly2str(p3,'x')disp('五阶拟合函数'),f5=poly2str(p5,'x')disp('七阶拟合函数'),f7=poly2str(p7,'x')x1=0:pi/50:2*pi;y3=polyval(p3,x1);y5=polyval(p5,x1);y7=polyval(p7,x1);plot(x,y,'rp',x1,y3,'--',x1,y5,'k-',x1,y7,'-');legend('拟合点','三阶拟合','五阶拟合','七阶拟合')第3张1.t1=-pi:pi/4:pi;x1=cos(t1);y1=sin(t1);z1=t1;subplot(1,2,1),plot3(x1,y1,z1)t2=-4:0.25:4[x2,y2]=meshgrid(t2);z2=sin(x2+y2);subplot(1,2,2),surf(x2,y2,z2),title('sin(x+y)')2.function xdot=exf(t,x)u=0;xdot=[0 1;-17/4 -1]*x+[0 0]'*u;clf,t0=0;tf=8;x0t=[-1;2];[t,x]=ode23('exf',[t0,tf],x0t)y1=x(:,1)y2=x(:,2)plot(t,y1,'b-',t,y2,'r-.')legend('y的图像','y的一阶导图像')第4张1、figure(1)[x,y]=meshgrid(-2:.5:2);z=x.^2+y.^2+3;[x1,y1]=meshgrid(-2:.1:2);z1=x1.^2+y1.^2+3;subplot(1,2,1),mesh(x,y,z),title('数据点') subplot(1,2,2),mesh(x1,y1,z1),title('函数图象') [xi,yi]=meshgrid(-2:.125:2);zi1=interp2(x,y,z,xi,yi,'*nearest');zi2=interp2(x,y,z,xi,yi,'*linear');zi3=interp2(x,y,z,xi,yi,'*spline');zi4=interp2(x,y,z,xi,yi,'*cubic');figure(2)subplot(221),mesh(xi,yi,zi1),title('最近点插值') subplot(222),mesh(xi,yi,zi2),title('线性插值') subplot(223),mesh(xi,yi,zi3),title('样条插值') subplot(224),mesh(xi,yi,zi4),title('立方插值')2、function xdot=exf(t,x)u=t;xdot=[0 1;-2,2]*x+[0 1]'*u;t0=0;tf=4;x0t=[1;pi];[t,x]=ode23('exf',[t0,tf],x0t); y1=x(:,1);y2=x(:,2);plot(t,y1,'r-',t,y2,'b-')legend('y','y一阶导数')第5张1.x=-5:0.01:0;y=3.*exp(sin(x)).*cos(x)+x.^(-2); plot(x,y,'r.')hold onx=0:0.01:5;y=3.*exp(sin(x)).*cos(x)+x.^(-2); plot(x,y,'g.')2.function xdot=exf(t,x)u=t.*tan(t);xdot=[0 1;-4 0]*x+[0 1]'*u; clf,t0=0;tf=10;x0t=[1;2];[t,x]=ode23('exf',[t0,tf],x0t)y1=x(:,1),y2=x(:,2);plot(t,y1,'-',t,y2,'o')第6张1.t=0:pi/50:2*pi;x=2*cos(t);y=2*sin(t);subplot(1,1,1),plot(x,y,'b-')2.function xdot=exf(t,x)u=1-t^2;xdot=[0 1;0 t]*x+[0 1]'*u;clft0=0;tf=2;x0t=[0.1;0.2];[t,x]=ode23('exf',[t0,tf],x0t) y1=x(:,1),y2=x(:,2);plot(t,y1,'r.',t,y2,'b-')第7张1.t1=-8:0.1:8;[x1,y1]=meshgrid(t1);z1=x1.^2/16-y1.^2/9; subplot(1,2,1),mesh(x1,y1,z1)t2=0:pi/50:2.*pi;x2=3*cos(t2);y2=2*sin(t2);subplot(1,2,2),plot(x2,y2)2.for n=1:40p0(n)=prod(100:-1:100-n+1)/100^n;p1(n)=1-p0(n);endn=1:40;plot(n,p0,n,p1,'-')xlabel('人数'),ylabel('概率')legend('房间各不同的概率','至少两人相同的概率') axis([0 40 -0.1 1.1]),grid on。

MATLAB数学实验 练习题(附答案)教学教材

MATLAB数学实验  练习题(附答案)教学教材
===============================================================
%2、求100~999之间的水仙花数 clear all; clc; for n=100:999 n1=floor(n/100); %取出百位数字n1 n2=mod(floor(n/10),10); %取出十位数字n2 n3=mod(n,10) ; %取出个位数字n3 if n1^3+n2^3+n3^3==n
MATLAB数学实验 练习题(附答 案)
4.作yoz面上的曲线z=sin(y)+1绕z轴旋转所得到的图形。
5.作xoy面上的曲线(x-a)2+y2=r2绕z轴旋转所得到的图形 (0<r<a),取r=1,a=2. 6. 作x2/2-y2/3=2z图形. 7. 作x2/2+字符,若输入一个大写字母,则输出其对应的小写字母,若输入一个 小写字母,则输出其对应的大写字母;若为其它字符,则原样输出。 clear all,clc; ch=input('请输入一个字符:','s'); if ch>='A' && ch<='Z'%判断条件 ch=char(ch+32);%大写字母与小写字母ASCII值相差32 else ch=char(ch); end ch
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
%6. 作x2/2-y2/3=2z图形. clear,clf,clc; [X,Y,Z]=meshgrid(-1:0.1:1); V=X.^2./2+Y.^2./2-2*Z; fv=isosurface(X,Y,Z,V,0);%显示V=0等值面 p=patch(fv); set(p,'FaceColor','blue','EdgeColor','none');%设置图形的相关属性 view(3) hold on camlight

数学实验(matlab)样题及参考解答

数学实验(matlab)样题及参考解答

东华大学高等数学实验试题A考试时间:90分钟(附参考解答)班级 学号 姓名 得分 上机考试说明:1. 开考前可将准备程序拷到硬盘, 开考后不允许用移动盘,也不允许上网;2. 领座考生试卷不同,开卷,可利用自己备用的书和其他资料,但不允许讨论,也不允许借用其他考生的书和资料。

3. 解答(指令行,答案等)全部用笔写在考卷上。

一、 计算题(70分)要求:写出M 函数(如果需要的话)、MATLAB 指令和计算结果。

1. 解线性方程组⎪⎪⎩⎪⎪⎨⎧-=+=+--=-+=-+14235231543421431321x x x x x x x x x x x 并求系数矩阵的行列式。

指令行:A=[5 1 –1 0;1 0 3 –1;-1 –1 0 5;0 0 2 4];b=[1;2;3;-1]; x=A\b,d=det(A) 结果:x 1=1.4, x 2= -5.9, x 3=0.1, x 4= -0.3. 行列式=70.2. 设 f(x,y) = 4 sin (x 3y),求 3,22==∂∂∂y x y x f 。

指令行:syms x y; f=diff(4*sin(x^3*y),x); f=diff(f,y); f=subs(f,x,2); f=subs(f,y,3)结果:1063.63. 求方程 3x 4+4x 3-20x+5 = 0 的所有解。

指令行:roots([3 4 0 –20 5])结果:-1.5003 - 1.5470i, -1.5003 + 1.5470i, 1.4134, 0.25394. 使用两种方法求积分dx e x 210221-⎰π的近似值。

方法一:指令行:syms x; s=int(1/sqrt(2*pi)*exp(-x^2/2),0,1); vpa(s,5)结果:0.34135方法二:指令行:x=0:0.01:1; y=1/sqrt(2*pi)*exp(-x.^2/2);trapz(x,y)结果:0.3413方法三:M 函数ex4fun.mfunction f=ex4fun(x)f=1/sqrt(2*pi)*exp(-x.^2/2);指令行:s=quadl(@ex4fun,0,1)结果:0.34135. 求函数 f(x,y) = 3x 2+10y 2+3xy-3x +2y 在原点附近的一个极小值点和极小值。

matlab数学实验复习题(有答案)

matlab数学实验复习题(有答案)

matlab数学实验复习题(有答案)复习题1、写出3个常用的绘图函数命令2、inv (A )表示A 的逆矩阵;3、在命令窗口健入clc4、在命令窗口健入clear 5、在命令窗口健入6、x=-1:0.2:17、det (A )表示计算A 的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。

9、若A=123456789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则fliplr (A )=321654987⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A-3=210123456--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A .^2=149162536496481⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦tril (A )=100450789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ triu (A ,-1)=123456089⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦diag (A )=100050009⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A(:,2),=258A(3,:)=369 10、normcdf (1,1,2)=0.5%正态分布mu=1,sigma=2,x=1处的概率[t,x]=ode45(@f,[a,b],x0),中参数的涵义是@fun 是求解方程的函数M 文件,[a,b]是输入向量即自变量的范围a 为初值,x0为函数的初值,t function 开头;1721、设x )的功能是作出将X 十等分的直方图22、interp1([1,2,3],[3,4,5],2.5)Ans=4.523、建立一阶微分方程组⎩⎨⎧+='-='yx t y y x t x 34)(3)(2的函数M 文件。

(做不出来)二、写出运行结果:1、>>eye(3,4)=1000010000102、>>size([1,2,3])=1;33、设b=round (unifrnd (-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x=-5;m=4,[x,n]=sort(b)-5 2 3 5 4 3 1 2mean(b)=1.25,median (b )=2.5,range (b )=104、向量b 如上题,则>>any(b),all(b<2),all(b<6)Ans=1 0 15、>>[5 6;7 8]>[7 8;5 6]=00116、若1234B ⎡⎤=⎢⎥⎣⎦,则 7、>>diag(diag(B))=10048、>>[4:-2:1].*[-1,6]=-4 129、>>acos(0.5),atan(1)ans=1.047197551196598ans=0.78539816339744810、>>norm([1,2,3])Ans=3.74165738677394111、>>length([1,3,-1])=312、>>x=0:0.4:2;plot(x,2*x,’k*’)13、>>zeros(3,1);ans=14、>>ones(3)=111111111,vander([2,3,5])=421931255116、>>floor(1:0.3:3)=1 1 1 12 2 218、>>subplot(2,2,1); fplot('sin',[0,2*pi]);subplot(2,2,2);plot([1,2,-1]);>>x=linspace(0,6*pi);subplot(2,2,3);plot3(cos(x),sin(x),x);>>subplot(2,2,4);polar(x,5*sin(4*x/3));19、>>t=linespace(0,2,11)0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.020、>>[a,b]=binostat(15,0.2)a=3 b=2.4>>y1=binopdf(5,10,0.7)=0.1029,y2=binocdf(5,10,0.7)=0.15031 1 1 11 1 1 1>>y=-poissrnd(8,2,4)-16 -10 8 -7-7 -8 -6 -9>>sign(y)-1 -1 -1 -1-1 -1 -1 -135、>>[a1,b1]=binostat(20,0.4) a1=8 b1=4.8 >>[a2,b2]=poisstat(8)ans=8,8>>[a3,b3]=chi2stat(15)ans=[15 30]36、运行M文件:chi2fign=5;a=0.9;xa=chi2inv(a,n);x=0:0.1:15;y=chi2pdf(x,n);plot(x,y,'b');hold on;xf=0:0.1:xa;yf=chi2pdf(xf,n);fill([xf,xa],[yf,0],'g');text(xa*1.01,0.005,num2str(xa));text(2.5,0.05,'alpha=0.9','fontsize',20); text(9,0.09,'X~{\chi}^2(4)','fontsize',16);37、>>t=linspace(0,2*pi);>>polar(t,3*t,’g*’)38、>>quadl(’exp(2*x).*log(3*x)’,1,3)ans =398.635239、x0=0:2*pi/6:2*pi;y0=sin(x0).*cos(x0);x=[linspace(0,2*pi,100)];y=sin(x).*cos(x);y1=spline(x0,y0,x); [x;y;y1]'plot(x,y,'k',x,y1,'b-')注:此处省略100组数据40、>>A=round(unifrnd(0,100,3,3));>>[L,U]=lu(A)L =0.9897 0.4699 1.00000.1649 1.0000 01.0000 0 0U =97.0000 80.0000 92.00000 35.8041 26.82470 0 -89.656841、a=sparse([1 3 3],[2 3 5],[1 2 3],4,5);s=full(a)s =0 1 0 0 00 0 0 0 00 0 2 0 30 0 0 0 0三、编程1、 分别用矩形公式、梯形公式、辛普森公式、Gauss-Lobatto 公式及随机模拟方法计算数值积分/230sin 2x e xdx π⎰,并与符号运算计算的结果进行比较。

MatLab考试题题库(必做题)(带答案)

MatLab考试题题库(必做题)(带答案)

MatLab考试题题库(必做题)(带答案)一,1.请登陆美国MathWork公司的网站,查看看现在大概有多少本MATLAB-baedbook(以MATLAB为基本软件,来说明各个专业领域的教科书或工具书)。

哪一个领域的MATLAB-baedbook最多中文书共有几本答:1612本,数学方面的最多,中文书共有37本。

2.请在MATLAB中直接输入下列常数,看它们的值是多少:a.ib.jc.epd.infe.nanf.pig.realma某h.realmin依次解为:an=0+an=0+an=an=Infan=NaNan=an=+308an=3.试写一函数regPolygon(n),其功能为画出一个圆心在(0,0)、半径为1的圆,并在圆内画出一个内接正n边形,其中一顶点位于(0,1)。

例如regPolygon(8)可以画出如下之正八边型:解:新建文件如下:functiony=regPolyfon(n)n=8;%要画的n边形R=1;%圆的半径t=0::2某pi;某=R某co(t);y=R某in(t);m=linpace(pi/2,5/2某pi,n+1);某z=R某co(m);yz=R某in(m);holdonplot(某,y,某z,yz);a某i'equal';4.一条参数式的曲线可由下列方程式表示:某=in(t),y=1-co(t)+t/10当t由0变化到4某pi时,请写一个MATLAB的脚本,画出此曲线在某Y平面的轨迹。

解:新建:t=linpace(0,4某pi);某=in(t);y=1-co(t)+t/10;plot(某,y,'-o');5.当一个小圆轮沿着一条曲线行进时,轮缘任一点的轨迹就会产生变化丰富的摆线。

假设小圆轮的半径r=2。

a.当小圆轮绕着一个大圆(半径R=5)的外部滚动时,请画此「圆轮摆线」或「外花瓣线」。

b.重复上小题,但改成在大圆的内部滚动,请画出此「内花瓣线」。

matlab复习题答案(仅供参考)

matlab复习题答案(仅供参考)

matlab复习题答案(仅供参考)本份答案,由数名才子所做,仅供参考1) 求()()sin *cos 2y x x =在区间(0,10)之间所有零点对应的横坐标。

for x=0:0.01:10if (sin(x).*cos(2*x)).*(sin(x+0.01).*cos(2*x+0.02))<0x+0.005endend2) 找出在数组10:3:300t =之间能被28整除的所有数,并说明其对应的列数.a=10:3:300for i=1:length(a)if mod(a(i),28)==0a(i)iendend3) 计算矩阵[]3164A =--中每一个元素的三次实数根。

A=[3,-1,-64]for i=1for j=1:3if A(i,j)>=0B(i,j)=(A(i,j))^(1/3);elseB(i,j)=-(-A(i,j))^(1/3);endendendB4) 编程实现,判断方程()33sin 2y x x =+-在区间()0,1上是否有解,并用二分法求解。

for x=0:0.001:1if(x.^3+3*sin(x)-2).*((x+0.001).^3+3*sin(x+0.001)-2)<0i=1;x+0.0005elsei=0;endend5) 编程求函数()1sin y x =与()2cos y x =在区间)2/,3/(ππ上围成的面积。

s=0;for x=pi/3:0.001:pi/2y=abs(sin(x)-cos(x));s=s+y*0.001;ends6) 件实现函数()()()12f n f n f n =-+-,其中()()1122f f ==,。

function f=fab(n)if (n==1)f = 1;elseif (n==2)f =2;elsef = fab(n-1) + fab(n-2);end7) 编程实现从键盘输入直角坐标转换为极坐标。

matlab部分实验题答案

matlab部分实验题答案

这些答案不一定正确,大家可以参考参考,还有部分没完成的,希望有人能快点做出来。

实验一1、(1)>> z1=(2*sin(85*pi/180))/(1+exp(2))z1 =0.2375(2)>> x=[2,1+2i;-0.45,5]x =2.0000 1.0000 + 2.0000i-0.4500 5.0000>> z2=1/2*log(1+sqrt(1+x^2))z2 =0.5738 - 0.0333i 0.7952 + 0.2117i0.2869 + 0.4861i 0.9005 - 0.0073i2、>> A=[12,34,-4;34,7,87;3,65,7]A =12 34 -434 7 873 65 7>> B=[1,3,-1;2,0,3;3,-2,7]B =1 3 -12 0 33 -2 7>> I=eye(3)I =1 0 00 1 00 0 1>> A+6*Bans =18 52 -1046 7 10521 53 49>> A-B+Ians =12 31 -332 8 840 67 1>> A*Bans =68 44 62309 -72 596154 -5 241>> A.*Bans =12 102 468 0 2619 -130 49>> A^3ans =37226 233824 48604247370 149188 60076678688 454142 118820>> A.^3ans =1728 39304 -6439304 343 65850327 274625 343 >> A/Bans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000>> B\Aans =109.4000 -131.2000 322.8000-53.0000 85.0000 -171.0000-61.6000 89.8000 -186.2000>> [A,B]ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7 >> [A([1,3],:);B^2]ans =12 34 -43 65 74 5 111 0 1920 -5 40>>3、>> A=[1,2,3,4,5;6,7,8,9,10;11,12,13,14,15;16,17,18,19,20;21,22,23,24,25]A =1 2 3 4 56 7 8 9 1011 12 13 14 1516 17 18 19 2021 22 23 24 25>> B=[3,0,16;17,-6,9;0,23,-4;9,7,0;4,13,11]B =3 0 1617 -6 90 23 -49 7 04 13 11>> C=A*BC =93 150 77258 335 237423 520 397588 705 557753 890 717>> D=C(3:5,2:3)D =520 397705 557890 717实验二2、(1)>> syms xs=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(sin(x)^3) Lsk=limit(s,x,0)s =(x*(exp(sin(x)) + 1) - 2*exp(tan(x)) + 2)/sin(x)^3 Lsk =-1/2(2)>> syms a t x>> A=[a^x,t^3;t*cos(x),log(x)]A =[ a^x, t^3][ t*cos(x), log(x)]>> df=diff(A)dfdt2=diff(A,t,2)dfdxdt=diff(diff(A,x),t)df =[ a^x*log(a), 0][ -t*sin(x), 1/x]dfdt2 =[ 0, 6*t][ 0, 0]dfdxdt =[ 0, 0][ -sin(x), 0]>>实验三1、(3)>> a=-3.0:0.1:3.0z3=exp(0.3*a).*sin(a+0.3)a =Columns 1 through 8-3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000Columns 9 through 16-2.2000 -2.1000 -2.0000 -1.9000 -1.8000 -1.7000 -1.6000 -1.5000Columns 17 through 24-1.4000 -1.3000 -1.2000 -1.1000 -1.0000 -0.9000 -0.8000 -0.7000Columns 25 through 32-0.6000 -0.5000 -0.4000 -0.3000 -0.2000 -0.1000 0 0.1000Columns 33 through 400.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000Columns 41 through 481.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000Columns 49 through 561.8000 1.90002.0000 2.1000 2.2000 2.3000 2.40002.5000Columns 57 through 612.6000 2.7000 2.8000 2.90003.0000z3 =Columns 1 through 8-0.1738 -0.2160 -0.2584 -0.3005 -0.3418 -0.3819 -0.4202 -0.4561Columns 9 through 16-0.4891 -0.5187 -0.5442 -0.5653 -0.5813 -0.5918 -0.5962 -0.5943Columns 17 through 24-0.5856 -0.5697 -0.5465 -0.5157 -0.4772 -0.4310 -0.3771 -0.3157Columns 25 through 32-0.2468 -0.1710 -0.0885 0.0000 0.0940 0.1928 0.2955 0.4013Columns 33 through 400.5091 0.6178 0.7264 0.8334 0.9378 1.0381 1.13291.2209Columns 41 through 481.3007 1.3707 1.4297 1.4764 1.5093 1.5273 1.5293 1.5142Columns 49 through 561.4813 1.4296 1.3588 1.2683 1.1579 1.0278 0.8780 0.7092Columns 57 through 610.5219 0.3172 0.0963 -0.1393 -0.3880>>(4)>> syms tt=0:0.5:2.5if t>=0t<1z4=t.^2;elseif t>=1t<2z4=t.^2-1;elseif t>=2t<3z4=t.^2-2.*t+1;endt =0 0.5000 1.0000 1.5000 2.0000 2.5000 ans =1 1 0 0 0 0>>4(1)>> m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2)>> M=100+magic(5)M =117 124 101 108 115123 105 107 114 116104 106 113 120 122110 112 119 121 103111 118 125 102 109实验四1、>> x=rand(1,30000); mu=mean(x)sig=std(x)[max_num,weizhi1]=max(x) [min_num,weizhi2]=min(x)y=length(find(x>0.5));p=y/30000mu =0.5020sig =0.2893max_num =1.0000weizhi1 =731min_num =1.2354e-004weizhi2 =9617p =0.5017>>2、>> t=45+50*rand(100,5);P=fix(t);[x,l]=max(P)[y,k]=min(P)mu=mean(P)sig=std(P)s=sum(P,2)[X,m]=max(s)[Y,n]=min(s)[zcj,xsxh]=sort(s)x =94 94 94 92 94l =12 25 6 17 42y =45 45 45 45 45k =1 24 18 80 46mu =68.1300 70.4700 69.1900 67.1900 70.6800 sig =14.7290 14.5806 15.2532 13.8285 13.2702 s =326 342 338 376 375 333 394 339 317 359 338 380 302 379 369 391 378 342 366 363 315 348 383 303 335 313 334 302 296 370 319 350 329 322 365 399 326 391 318 328 335 374 305352 293 363 380 348 336 353 364 342 381 369 349 285 398 344 379 373 359 324 356 332 327 294 311 319 361 357 379 353 366 318 351 327 330 390 329 329 292 348 360 323 297 349335371323372358343363336393332337354 X =399 m =36 Y =285 n =57 zcj =285292293294296297302303 305 311 313 315 317 318 318 319 319 322 323 323 324 326 326 327 327 328 329 329 329 330 332 332 333 334 335 335 335 336 336 337 338 338 339 342 342 342 343 344 345 347348 348 349 349 350 351 352 353 353 354 356 357 358 359 359 360 361 363 363 363 364 365 366 366 369 369 370 371 372 373 374 375 376 378 379 379 379 380 380 381 383 390 391393394398399 xsxh =578246672986132824436826219397531693485916313766774033808178659862741 89 50 96 99 3 11 8 2 18 53 94 59 88 44 22 49 83 56 87 32 76 45 51 73 100 64 71 93 10 62 84 70 20 47 95 52 35 19 74 15 55 309261425417146072124854237916389775836>>3、>> A=randn(10,5)mu=mean(A)sig=std(A)m=max(A)n=min(A)p=sum(A,2)sum(p)A =-0.3316 -1.9682 -0.9379 0.0635 -0.19361.2900 0.8745 -0.3664 0.3067 -0.3796-0.3743 1.2308 -0.9529 1.2654 -0.0922 -0.8671 -0.3518 0.1797 0.9860 1.26620.7588 0.5268 0.1264 -1.2862 -0.0425-1.9617 1.0806 0.2758 1.0919 -2.9548 -0.3597 -0.3459 1.0738 1.0266 -0.44910.1221 -0.1111 0.4171 -0.9018 0.8893-1.5787 -0.1213 0.4899 0.8433 -0.5266-1.5737 1.2627 -1.3792 -1.2064 -0.3800 mu =-0.4876 0.2077 -0.1074 0.2189 -0.2863 sig =1.0449 1.0018 0.7746 1.0040 1.1116 m =1.2900 1.2627 1.0738 1.2654 1.2662 n =-1.9617 -1.9682 -1.3792 -1.2862 -2.9548 p =-3.36781.72511.07681.21300.0832-2.46820.94570.4156-0.8935-3.2766ans =-4.5466>>4、>> x=0:15*pi/180:pi/2;>> sin(x)ans =0 0.2588 0.5000 0.7071 0.8660 0.9659 1.0000>> tan(x)ans =1.0e+016 *0 0.0000 0.0000 0.0000 0.0000 0.0000 1.6331>> format long>> interp1(x,sin(x),'spline')ans =Columns 1 through 4-0.261799387799149 -0.194040720240549 -0.130899693899575 -0.076679265375884Columns 5 through 7-0.035074467269872 -0.008920597817284 0>> interp1(x,tan(x),'spline')ans =1.0e+032 *Columns 1 through 4-0.000000000000000 -0.000000000000000 -0.000000000000000 -0.000000000000000Columns 5 through 70.000000000000000 0.000000000000000 7.2536888214463725、>> N=[1 4 9 16 25 36 49 64 81 100]N =1 4 9 16 25 36 49 64 81 100>> n=sqrt(N)n =1 2 3 4 5 6 7 8 9 10>> format long>> interp1(N,n,'cubic')ans =1 4 9 16 25 36 49 64 81 100>>6(1)>> syms x>> y=(sin(x))^2+(cos(x))^2;>> dy=diff(y);>> x=[pi/6,pi/4,pi/3,pi/2];>> eval(dy)ans =(2)>> syms x>> y=sqrt(1+x^2);>> dy=diff(y);>> x=1x =1>> eval(dy)ans =0.7071 >> x=2x =2>> eval(dy) ans =0.8944 >> x=3x =3>> eval(dy) ans =0.9487 >>实验五1、>> x1=-2:0.1:2;y1=exp(x1);x2=0.1:0.1:5;y2=log(x2);plot(x1,y1,'r',x2,y2,'g');title('二维图');legend('y=exp(x)','y=logx');xlabel('X轴数据');ylabel('Y轴数据'); grid on;>>3、>> t=-pi:pi/100:pi;x=t.*cos(3*t);y=t.*sin(t).*sin(t);plot(x,y);title(date);legend(strvcat('x=tcos(3t)','y=tsin2t')); xlabel('T轴数据');ylabel('X,Y轴数据'); >>。

Matlab考试题库及答案(教师出卷参考专用)

Matlab考试题库及答案(教师出卷参考专用)

Matlab考试题库及答案(教师出卷参考专用)一、选择题1.以下哪个函数用于在Matlab中创建一个图形窗口?A. figureB. plotC. graphD. window答案:A2.在Matlab中,以下哪个选项可以用来定义一个矩阵?A. A = [1 2 3; 4 5 6]B. A = (1, 2, 3, 4, 5, 6)C. A = {1, 2, 3, 4, 5, 6}D. A = 1 2 3; 4 5 6答案:A3.以下哪个函数用于求解线性方程组Ax=b?A. solveB. linsolveC. solve(A, b)D. linsolve(A, b)答案:D4.在Matlab中,如何计算矩阵A和矩阵B的乘积?A. A BB. A \ BC. A . BD. A .\ B答案:A5.以下哪个函数用于在Matlab中绘制三维散点图?A. scatterB. scatter3C. plot3D. bar3答案:B二、填空题1.在Matlab中,要创建一个名为"myfig"的图形窗口,可以使用______函数。

答案:figure('Name', 'myfig')2.在Matlab中,要计算矩阵A的行列式,可以使用______函数。

答案:det(A)3.在Matlab中,若要计算变量x的平方,可以使用______运算符。

答案:.^24.在Matlab中,若要计算矩阵A的逆矩阵,可以使用______函数。

答案:inv(A)5.在Matlab中,要绘制一个正弦波形,可以使用______函数。

答案:plot(sin(x))三、判断题1.在Matlab中,矩阵的索引从1开始计数。

()答案:正确2.在Matlab中,可以使用逻辑运算符"&&"和"||"。

()答案:错误3.在Matlab中,矩阵乘法满足交换律。

MATLAB考试试题及答案

MATLAB考试试题及答案

MATLAB考试试题及答案一、选择题(每题5分,共25分)1. 在MATLAB中,下列哪个命令用于创建一个行向量?A. v = [1; 2; 3]B. v = [1 2 3]C. v = [1, 2, 3]D. v = (1, 2, 3)答案:B2. 在MATLAB中,下列哪个命令用于计算矩阵A的行列式?A. det(A)B. det(A')C. det(inv(A))D. det(A^2)答案:A3. 在MATLAB中,下列哪个命令用于计算矩阵A的逆?A. inv(A)B. A^(-1)C. pinv(A)D. A\B答案:A4. 在MATLAB中,下列哪个命令用于求解线性方程组Ax= b?A. A\bB. A/BC. B/AD. A^-1b答案:A5. 在MATLAB中,下列哪个命令用于绘制二维图形?A. plot(x, y)B. scatter(x, y)C. bar(x, y)D. pie(x, y)答案:A二、填空题(每题5分,共25分)6. 在MATLAB中,可以使用______命令创建一个等差数列。

答案:linspace7. 在MATLAB中,可以使用______命令创建一个等比数列。

答案:logspace8. 在MATLAB中,可以使用______命令计算矩阵A的特征值。

答案:eig(A)9. 在MATLAB中,可以使用______命令计算矩阵A的特征向量。

答案:eigenvector(A)10. 在MATLAB中,可以使用______命令计算矩阵A的奇异值。

答案:svd(A)三、解答题(每题25分,共75分)11. 编写MATLAB程序,求解以下线性方程组:2x + 3y - z = 1x - y + 2z = 03x + 2y - 4z = -3答案:```A = [2 3 -1; 1 -1 2; 3 2 -4];b = [1; 0; -3];x = A\b;disp('解为:');disp(x);```12. 编写MATLAB程序,绘制以下函数的图形:y = sin(x) + cos(x),x ∈ [0, 2π]答案:```x = linspace(0, 2pi, 100);y = sin(x) + cos(x);plot(x, y);title('y = sin(x) + cos(x)');xlabel('x');ylabel('y');grid on;```13. 编写MATLAB程序,计算以下矩阵的特征值和特征向量:A = [1 2 3; 4 5 6; 7 8 9]答案:```A = [1 2 3; 4 5 6; 7 8 9];[V, D] = eig(A);disp('特征值:');disp(diag(D));disp('特征向量:');disp(V);```14. 编写MATLAB程序,使用牛顿迭代法求解方程f(x) = x^3 - 4x + 2 = 0在x = 1附近的根。

MATLAB复习题(含答案)

MATLAB复习题(含答案)

MATLAB语言复习大纲1、掌握以下命令行编辑常用的控制键的用法:Del,Esc,Backspace,Ctrl+C。

答:Del是删除光标右边的字符Esc是删除当前行的全部内容Backspace是删除光标左边的字符Ctrl+c是中断一个matlab任务2、在Matlab中,行注释是以什么符号开头的?答:注释是以%开头,后面是注释的内容3、合法的变量名的命名规则是什么?答:是以字母开头,后接字母、数字或下划线的字符序列,最多允许有63个字符4、在Matlab中,矩阵行与行之间,同行元素之间以什么符号分隔开来?若a是一个m*n的矩阵,则求解矩阵a中最小的元素语句是什么?min(min(a))答:同一行的个元素之间用空格或逗号分隔,不同行的元素用分号分隔5、建立一个均值为3,方差为2的10*10的正态分布随机矩阵命令是什么?答:X=3+sqrt(2)*randn(10)6、产生单位矩阵,全零矩阵,全一矩阵的函数是什么?答:eye ones zeroseye(3)ans =1 0 00 1 00 0 1>> ones(3)ans =1 1 11 1 11 1 1>> zeros(3)ans =0 0 00 0 00 0 0>>7、MATLAB的矩阵有哪两种存储方式?函数文件与命令文件的区别是什么?答:完全存储方式和稀疏存储方式区别:56页8、命令plot(x),当x为复数向量时,如何画曲线?掌握plotyy函数的用法,它与plot函数有什么区别?P86答:当x为复数向量时,则分别以向量元素实部和虚部为横、纵坐标绘制一条曲线。

9、最常见绘制网线图函数和最常用绘制曲面图函数分别是什么?如何使用?答:mesh(x,y,a,c),surf(x,y,z,c)10、MATLAB提供哪些函数进行动画制作?答:111页;getframe moviein(n)movie(m,n)11、掌握view函数的使用方法。

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。

补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。

MATLAB数学实验课后答案

MATLAB数学实验课后答案

数学实验MATLAB参考答案(重要部分)P20,ex1(5) 等于[exp(1),exp(2);exp(3),exp(4)](7) 3=1*3, 8=2*4(8) a为各列最小值,b为最小值所在的行号(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture(11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10)(12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10)P20, ex2(1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c相等,但他们不等于b(2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码P20,ex3>> r=2;p=0.5;n=12;>> T=log(r)/n/log(1+0.01*p)T =11.5813P20,ex4>> x=-2:0.05:2;f=x.^4-2.^x;>> [fmin,min_index]=min(f)fmin =-1.3907 %最小值min_index =54 %最小值点编址>> x(min_index)ans =0.6500 %最小值点>> [f1,x1_index]=min(abs(f)) %求近似根--绝对值最小的点f1 =0.0328x1_index =24>> x(x1_index)ans =-0.8500>> x(x1_index)=[];f=x.^4-2.^x; %删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) %求另一近似根--函数绝对值次小的点f2 =0.0630x2_index =65>> x(x2_index)ans =1.2500P20,ex5>> z=magic(10)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6679 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59>> sum(z)ans =505 505 505 505 505 505 505 505 505 505 >> sum(diag(z))ans =505>> z(:,2)/sqrt(3)ans =57.157746.188046.765450.229553.693613.85642.88683.46416.928210.3923>> z(8,:)=z(8,:)+z(3,:)z =92 99 1 8 15 67 74 51 58 40 98 80 7 14 16 73 55 57 64 41 4 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 34 17 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6683 87 101 115 119 83 87 101 115 11910 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59P 40 ex1先在编辑器窗口写下列M函数,保存为eg2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));例如>>x=[81 70 65 51 76 66 90 87 61 77];>>[xbar,s]=ex2_1(x)xbar =72.4000s =12.1124P 40 ex2s=log(1);n=0;while s<=100n=n+1;s=s+log(1+n);endm=n计算结果m=37P 40 ex3clear;F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1); enda,x,k计算至k=21可满足精度P 40 ex4clear;tic;s=0;for i=1:1000000s=s+sqrt(3)/2^i;ends,toctic;s=0;i=1;while i<=1000000s=s+sqrt(3)/2^i;i=i+1;ends,toctic;s=0;i=1:1000000;s=sqrt(3)*sum(1./2.^i);s,tocP 40 ex5t=0:24;c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)P 40 ex6(1)clear;fplot('x^2*sin(x^2-x-2)',[-2,2])x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2]) (2)参数方法t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t); plot(x,y)(3)x=-3:0.1:3;y=x;[x,y]=meshgrid(x,y);z=x.^2+y.^2;surf(x,y,z)(4)x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)(5)t=0:0.01:2*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)(6)theta=linspace(0,2*pi,50);fai=linspace(0,pi/2,20); [theta,fai]=meshgrid(theta,fai);x=2*sin(fai).*cos(theta);y=2*sin(fai).*sin(theta);z=2*cos(fai);surf(x,y,z)(7)x=linspace(0,pi,100);y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)page41, ex7x=-1.5:0.05:1.5;y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)page41,ex8分别使用which trapz, type trapz, dir C:\MATLAB7\toolbox\matlab\datafun\page41,ex9clear;close;x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);a=0.5457;b=0.7575;p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);mesh(x,y,p)page41, ex10lookfor lyapunovhelp lyap>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16]; >> X=lyap(A,C)X =1.0000 -1.0000 -0.0000-1.0000 2.0000 1.0000-0.0000 1.0000 7.0000Chapter 3%Exercise 1>> a=[1,2,3];b=[2,4,3];a./b,a.\b,a/b,a\bans =0.5000 0.5000 1.0000ans =2 2 1ans =0.6552 %一元方程组x[2,4,3]=[1,2,3]的近似解ans =0 0 00 0 00.6667 1.3333 1.0000%矩阵方程[1,2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]的特解Exercise 2(1)>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];>> rank(A), rank([A,b]) %[A,b]为增广矩阵ans =3ans =3 %可见方程组唯一解>> x=A\bx =2.38301.48942.0213Exercise 2(2)>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1]; >> rank(A), rank([A,b])ans =3ans =3 %可见方程组唯一解>> x=A\bx =-0.4706-0.2941Exercise 2(3)>> A=[4 1;3 2;1 -5];b=[1;1;1];>> rank(A), rank([A,b])ans =2ans =3 %可见方程组无解>> x=A\bx =0.3311-0.1219 %最小二乘近似解Exercise 2(4)>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%注意b的写法>> rank(a),rank([a,b])ans =3ans =3 %rank(a)==rank([a,b])<4说明有无穷多解>> a\bans =110 %一个特解Exercise 3>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]'; >> x=null(a),x0=a\bx =-0.62550.6255-0.20850.4170x0 =11%通解kx+x0Exercise 4>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95]; >> x1=a*x, x2=a^2*x, x10=a^10*x >> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> x0=[0.8 0.2]';>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> [v,e]=eig(a)v =0.9806 -0.70710.1961 0.7071e =1.0000 00 0.9400>> v(:,1)./xans =1.17671.1767 %成比例,说明x是最大特征值对应的特征向量Exercise 5%用到公式(3.11)(3.12)>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]';>> C=B/diag(x)C =0.2400 0.4000 0.05000.0900 0.2000 0.01000.1200 0.0400 0.0900>> A=eye(3,3)-CA =0.7600 -0.4000 -0.0500-0.0900 0.8000 -0.0100-0.1200 -0.0400 0.9100>> D=[17 17 17]';x=A\Dx =37.569625.786224.7690%Exercise 6(1)>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766%Exercise 6(2)>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a) ans =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i -0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i%Exercise 6(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> det(A),inv(A), [v,d]=eig(A)ans =1ans =68.0000 -41.0000 -17.0000 10.0000 -41.0000 25.0000 10.0000 -6.0000 -17.0000 10.0000 5.0000 -3.0000 10.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887%Exercise 6(4)、(以n=5为例)%关键是矩阵的定义%方法一(三个for)n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;enda%方法二(一个for)n=5;a=zeros(n,n);a(1,1:2)=[5 6];for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];enda(n,[n-1 n])=[1 5];a%方法三(不用for)n=5;a=diag(5*ones(n,1));b=diag(6*ones(n-1,1));c=diag(ones(n-1,1));a=a+[zeros(n-1,1),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)] %下列计算>> det(a)ans =665>> inv(a)ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286 -0.0075 0.0376 -0.1429 0.4887 -0.5865 0.0015 -0.0075 0.0286 -0.0977 0.3173 >> [v,d]=eig(a)v =-0.7843 -0.7843 -0.9237 0.9860 -0.9237 0.5546 -0.5546 -0.3771 -0.0000 0.3771 -0.2614 -0.2614 0.0000 -0.1643 0.0000 0.0924 -0.0924 0.0628 -0.0000 -0.0628 -0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505%Exercise 7(1)>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a) v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766>> det(v)ans =-0.9255 %v行列式正常, 特征向量线性相关,可对角化>> inv(v)*a*v %验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766>> [v2,d2]=jordan(a) %也可用jordanv2 =0.0798 0.0076 0.91270.1886 -0.3141 0.1256-0.1605 -0.2607 0.4213 %特征向量不同d2 =8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i>> v2\a*v2ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760>> v(:,1)./v2(:,2) %对应相同特征值的特征向量成比例ans =2.44912.44912.4491%Exercise 7(2)>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i>> det(v)ans =-5.0566e-028 -5.1918e-017i %v的行列式接近0, 特征向量线性相关,不可对角化>> [v,d]=jordan(a)v =1 0 11 0 01 -1 0d =1 1 00 1 10 0 1 %jordan标准形不是对角的,所以不可对角化%Exercise 7(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> [v,d]=eig(A)v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887>> inv(v)*A*vans =0.0102 0.0000 -0.0000 0.00000.0000 0.8431 -0.0000 -0.0000-0.0000 0.0000 3.8581 -0.0000-0.0000 -0.0000 0 30.2887%本题用jordan不行, 原因未知%Exercise 7(4)参考6(4)和7(1), 略%Exercise 8 只有(3)对称, 且特征值全部大于零, 所以是正定矩阵. %Exercise 9(1)>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]>> rank(a)ans =3>> rank(a(1:3,:))ans =2>> rank(a([1 2 4],:)) %1,2,4行为最大无关组ans =3>> b=a([1 2 4],:)';c=a([3 5],:)';>> b\c %线性表示的系数ans =0.5000 5.0000-0.5000 1.00000 -5.0000%Exercise 10>> a=[1 -2 2;-2 -2 4;2 4 -2]>> [v,d]=eig(a)v =0.3333 0.9339 -0.12930.6667 -0.3304 -0.6681-0.6667 0.1365 -0.7327d =-7.0000 0 00 2.0000 00 0 2.0000>> v'*vans =1.0000 0.0000 0.00000.0000 1.0000 00.0000 0 1.0000 %v确实是正交矩阵%Exercise 11%设经过6个电阻的电流分别为i1, ..., i6. 列方程组如下%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0; %i1=i3+i4;i5=i2+i3;i6=i4+i5;%计算如下>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0;1 -1 0 0 0 0 -4 0 0;0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3;0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;0 0 0 0 0 0 -1 -1 1];>>b=[20 5 0 0 0 0 0 0 0]'; A\b ans =13.34536.44018.54203.3274-1.18071.60111.72630.42042.1467>> A=[1 2 3;4 5 6;7 8 0];>> left=sum(eig(A)), right=sum(trace(A))left =6.0000right =6>> left=prod(eig(A)), right=det(A) %原题有错, (-1)^n应删去left =27.0000right =27>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3))*(A-p(3)*eye(3,3)) fA =1.0e-012 *0.0853 0.1421 0.02840.1421 0.1421 0-0.0568 -0.1137 0.1705>> norm(fA) %f(A)范数接近0ans =2.9536e-013roots([1 1 1])%Exercise 1(2)roots([3 0 -4 0 2 -1])%Exercise 1(3)p=zeros(1,24);p([1 17 18 22])=[5 -6 8 -5];roots(p)%Exercise 1(4)p1=[2 3];p2=conv(p1, p1);p3=conv(p1, p2);p3(end)=p3(end)-4; %原p3最后一个分量-4roots(p3)%Exercise 2fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x'); fzero(fun,2)】%Exercise 3fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)%Exercise 4fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x]%Exercise 5fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);1 6*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2]','x');[a,b,c]=fsolve(fun,[0 0 0])%Exercise 6fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))]; [a,b,c]=fsolve(fun,[0.5 0.5])%Exercise 7clear; close; t=0:pi/100:2*pi;x1=2+sqrt(5)*cos(t); y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t); y2=6*sin(t);plot(x1,y1,x2,y2); grid on; %作图发现4个解的大致位置,然后分别求解y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 4,-4])%Exercise 8(1)clear;fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on; %作图观察x(1)=-2;x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2feval(fun,x)%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小,x(2)最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习题
1、写出3
2、i nv(A)表示A的逆矩阵;
3、在命令窗口健入
clc,4、在命令窗口健入clea
5、在命令窗口健入6、x=-1:0.2:17、det(A)表示计算A的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。

9、若A=123456789⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦,则fliplr (A)=321654987⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
A-3=210123456--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A .^2=149162536496481⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
tril(A)=100450789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ tri u(A,-1)=123456089⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦diag(A )=100050009⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
A(:,2),=2
58A(3,:)=369
10、nor mcd f(1,1,2)=0.5%正态分布mu=1,s igm a=2,x =1处的概率
e45(@f,[a,b ],x0),中参数的涵义是@fun 是求解方程的函数M 文
件,[a,b ]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输出指定的[a,b],x 为函数值
15、写出下列命令的功能:te xt (1,2,‘y=s in(x)’
hold on 16fun ction 开头;
17
,4)
3,4)
21、设x 是一向量,则)的功能是作出将X十等分的直方图 22、interp 1([1,2,3],[3,4,5],2.5)
Ans=4.5
23、建立一阶微分方程组⎩
⎨⎧+='-='y x t y y x t x 34)(3)(2
的函数M 文件。

(做不出来) 二、写出运行结果:
1、>>ey e(3,4)=1000
01000010
2、>>s ize([1,2,3])=1;3
3、设b=ro und (unifrnd(-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x =-5;m=4
,[x,n ]=sort(b )
-5 2 3 5
4 3 1 2
mea n(b)=1.25,m edian(b)=2.5,range(b)=10
4、向量b如上题,则
>>an y(b),all(b<2),all(b<6)
Ans =1 0 1
5、>>[5 6;7 8]>[7 8;5 6]=00
11
6、若1234B ⎡⎤=⎢⎥⎣⎦
,则 7、>>diag(d iag (B ))=10
04
8、>>[4:-2:1].*[-1,6]=-4 12
9、>>acos(0.5),a tan(1)
ans =
1.6598
ans=。

相关文档
最新文档