史密斯圆图
史密斯圆图的原理及应用
史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。
它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。
二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。
具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。
2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。
3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。
这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。
4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。
5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。
三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。
通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。
工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。
2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。
通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。
3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。
通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。
4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。
通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。
5. 负载匹配•史密斯圆图也可以应用于负载匹配。
通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。
史密斯圆图简介
史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
(完整word版)史密斯圆图简介
史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
史密斯圆图剖析
z点L 沿等Γ线旋转
20lg 20lg(|V |max / |V |min ) 0 (6)
2
电压驻波最小点距负载 | G | 1/ 3 圆
0.10m
0.2λ
0
zmin 1.55
以|V |m点in 沿ρ=2的圆反时针 (向负载)旋转0.2λ
0.5
zL
zL 1.55 j0.65
j0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:K 1 1 0.4 s 2.5
zin r 0.4
找到A点
逆时针方向旋转
电刻度0.2 得B点 zl 1.67 j1.04
Zl zlZc (1.67 j1.04) 50 (83.5 j52)
例7:一传输线特性阻抗Zc为50Ω,终端负载Zl=(100-j75)Ω, 问:在距终端多么远处向负载看去输入阻抗为Zin=50+jX。
例3 在Z0为50Ω的无耗线上测得 VSWR为5,电压驻波最小点 出现在距负载λ/3处,求负 载阻抗值。
解:电压驻波最小点:
rmin K 1/VSWR 1/ 5 0.2 在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的 圆反时针旋转转λ/3得到 zL 0.77 j1.48 , 故得负载阻抗为 ZL 38.5 j74()
GIm GR x
2
1 x
2
GIm
上式为归一化电抗的轨迹
方程,当x等于常数时,
GRe
其轨迹为一簇圆弧;
圆心坐标 1, 1
x
在 Gre 的1直线上
半径 1
x
x =∞;圆心(1,0)半径=0
x =+1;圆心(1,1)半径=1
史密斯圆图
B
2
zA
zB
4
zB
zA
4
l
即(线zA上) A、(BzB两)e点j处A 的B反 射系(z数B )关e系j4为 l
若认为B点就是负载则可用距离l取代式中的z得:
Fe j2l 和 F e j2l
2.4.5
2.4.6
为了帮助记忆,将式
(2.4.5)和式(2.4.6)用
图2.8表示出来,在距负载
2.4.11
这是Γ平面上的两个圆的方程。
(a)等电阻圆
'
r 1
r
2
''2
1 1 r
2
2.4.10
z 式(2.4.10)表明, 平面的等r直线映射为Γ平面的等r圆,
是一个以归一化阻抗实部为参变量,其圆心在在实轴上,点
r 1
r
,
0
处
,半径为
1 的等r圆方程。 1 r
圆心+半径
由于
r 1 r
若 zA (zB A离负载近,B离信源近),则从B到A相角增大,圆图中
应逆时针旋转,即从信号源向负载方向移动时,Γ逆时针旋转。
为了使用方便,有的圆图上标有两个方向的波长数数值,
如图所示。向负载方向移动读里圈读数,向波源方向移动读外
圈读数。 等相位线并不画出。这一点很重要,要牢记,否则很
容易将计算结果搞错。
z 1 2.4.1, z 1 2.4.2
1
z 1
现将反射系数 Γ 分为实部和虚部两部分,Γ=Γ′+jΓ″,其中Γ′
为实部,jΓ″为虚部,那么式(2.4.1)可改写为
1 ' j''
r jx
(完整word版)smith史密斯圆图(个人总结),推荐文档
smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。
主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。
Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。
史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。
当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。
当中向上发散的是正数,向下发散的是负数。
圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。
圆图的边缘代表其反射系数的幅度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)。
有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
圆图中的每一点代表在该点阻抗下的反射系数。
该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。
同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。
由反射系数可以得到电压驻波比和回波损耗。
第3章 Smith圆图
量子力学中的波函数
电磁学中的麦克斯韦方程
光学中的干涉和衍射
量子力学中的薛定谔方程
确定化学键类型: 通过Smith圆图 可以确定分子中 的化学键类型, 如单键、双键和
三键等。
预测化学反应: Smith圆图可 以预测某些化 学反应能否发 生以及反应的 产物。
确定分子在分子中的排
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
Smith圆图是一种用于表示复数平 面上的点的方法
Smith圆图是一种方便的图形化表 示方法,可以直观地展示复数的几 何意义
添加标题
添加标题
添加标题
添加标题
它通过极坐标形式将复数表示为点, 其中实部为极径,虚部为极角
在Smith圆图中,每个点都对应一 个唯一的复数,反之亦然
改进算法:优化 Smith圆图的算法, 提高计算效率和准 确性
拓展应用场景:将 Smith圆图应用于更 多场景,如数据分 析、可视化等领域
推广普及:加强 Smith圆图的推广和 普及工作,提高公众 认知度和应用水平
物理学:Smith圆图 可用于描述量子力学 中的波函数和角动量, 以及在量子计算中实 现量子门操作。
信号处理:Smith圆图 可用于分析信号的频率 和相位响应,以及在通 信系统中实现调制和解 调。
控制系统:Smith圆图 可用于分析和设计控制 系统,帮助工程师更好 地理解和优化系统的性 能。
直观性:Smith圆图以图形的方式表示了复数平面,使得数据的表示更加直观。
方便性:Smith圆图可以方便地表示复数的模和幅角,并且可以通过旋转和缩放等操 作来方便地观察和分析数据。
高效性:Smith圆图可以有效地利用空间,将多个复数数据以紧凑的方式表示在同一 个平面上。
史密斯圆图
导纳圆图的特点
' jG b
B 0.5
G 0.5
(0,0) 开路点
(1,0)
匹配点
电流波节 Gmin=K B 0.5
B0
导纳圆图使用原则: 容性 同一张圆图,既可以当 作阻抗圆图来用,也 B 1 可以当作导纳圆图来 G 1 G (,) 用,但是在进行每一 短路点 次操作时,若作为阻 B 1 抗圆图用则不能作为 电流波腹 Gmax=S 导纳圆图。
例3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
圆反时针旋转转λ /3得到 zL 0.77 j1.48 , 故得负载阻抗为 Z 38.5 j 74() L
| G | 1/ 3 圆
0
zmin 1.55
0.5
zL
zL 1.55 j 0.65
j 0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:zL 2 j0.6
180度,得 yL 0.45 j0.15
zL 点沿等Γ线旋转
8
例2 已知: Z 0 50
Z L 100 j50
0.24
ZL
求:距离负载0.24波长处ห้องสมุดไป่ตู้Zin.
解
ZL zL 2 j Z0
l 0.213
查史密斯圆图,其对应的 电波长数为
向电源顺时针旋转0.24(等半径)
zin 0.42 j0.25
史密斯圆图及应用课件
CONTENTS
目录
• 史密斯圆图简介 • 史密斯圆图的应用 • 如何绘制史密斯圆图 • 史密斯圆图的优缺点 • 史密斯圆图的发展趋势 • 史密斯圆图的实际应用案例
CHAPTER
01
史密斯圆图简介
史密斯圆图的起源
史密斯圆图起源于20世纪初,由英国 工程师罗伯特·史密斯(Robert Smith)发明。
THANKS
感谢观看
通过旋转和缩放史密斯圆图,可以方便地找到不同频率和阻抗条件下的匹配点。
史密斯圆图的特点
史密斯圆图具有直观、易用的 特点,使得阻抗匹配变得简单 快捷。
通过在史密斯圆图上旋转和缩 放,可以快速找到最佳的阻抗 匹配点,提高信号传输效率。
史密斯圆图不仅可以用于阻抗 匹配,还可以用于分析信号的 频率、相位等特性。
射电信号处理
史密斯圆图在射电天文学中用于射电信号的处理和分析,通过圆图可以直观地 了解射电信号的频率、幅度和相位特性,为后续的天体物理研究提供重要依据 。
在其他领域的应用
微波测量
史密斯圆图在微波测量领域中也有广泛应用,可以用于测量微波元件的性能参数 和传输特性。
电子工程
史密斯圆图在电子工程领域中常用于分析ቤተ መጻሕፍቲ ባይዱ络的阻抗特性和匹配问题,是电子工 程师必备的工具之一。
CHAPTER
02
史密斯圆图的应用
在通信系统中的应用
信号传输
史密斯圆图用于通信系统中信号的传 输,通过圆图可以方便地调整信号的 幅度和相位,确保信号在传输过程中 的质量。
阻抗匹配
史密斯圆图在通信系统中用于阻抗匹 配,通过调整电路元件的参数,使得 信号源和负载之间的阻抗达到最佳匹 配状态,提高信号传输效率。
史密斯圆图基本原理及应用
第一章 均匀传输线理论之史密斯圆图及其应用
结论:阻抗圆图上的重要点、线、面
上半圆电感性
x=+1电抗圆弧
r=1的纯电阻圆 开路点 匹配点
纯电阻线 短路点
纯电抗圆
x=-1电抗圆弧
下半圆电容性
微波工程基础
10
第一章 均匀传输线理论之史密斯圆图及其应用
结论
在阻抗圆图的上半圆内的电抗为x>0呈感性;下半圆内的 电抗为x<0呈容性; 实轴上的点代表纯电阻点,左半轴上的点为电压波节点, 其上的刻度既代表rmin ,又代表行波系数K,右半轴上的点 为电压波腹点,其上的刻度既代表rmax ,又代表驻波比; 圆图旋转一周为/2; =1的圆周上的点代表纯电抗点; 实轴左端点为短路点,右端点为开路点;中心点处有r=1、 x=0,是匹配点; 在传输线上由负载向电源方向移动时,在圆图上应顺时针 旋转;反之,由电源向负载方向移动时,应逆时针旋转。
作为图形设计工具,通过比较
SMITH圆图中等驻波比圆的半 径,可以直观地观测传输线和附 载阻抗之间的失配程度。
终端负载决定了无耗传输线反
射系数大小 微波工程基础
16
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-3]已知传输线的特性阻抗Z0=50。假设传输线的负 载阻抗为Zl=25+j25 ,求离负载z=0.2处的等效阻抗。
微波工程基础
14
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-1]已知传输线的特性阻抗Z0=50Ω,终端 接有下列负载阻抗,将其用反射系数表示 ~ Z a L 1 a Z L 0 ZL L Z0 b L 1 b Z L ~
(c ) Z L 50 ( d ) Z L (16.67 j16.67) (e) Z L (50 j 50)
史密斯圆图
求:距离负载0.24波长处的Zin.
解: z L
ZL 2 j Z0
查史密斯圆图,其对应的向 电源波长数为 l 0.213 向电源顺时针旋转0.24(等半径) 则此处的输入阻抗为:
zin 0.42 j0.25
Z in zin Z 0 21 j12.5
z
¢
z
b.G复平面上的归一化阻抗圆 Z G= GRe + jGIm z r jx Z0
代入 可得
Z (zⅱ ) 1+ Γ( z ) z( z ¢ )= = Z0 1- Γ ( z ¢ )
r 1 2 GRe GIm 1 r 1 r 1 1 GRe 1 GIm x x
OA线上, 0 ¢ G( z ⅱ ) = G( z ) e jf ( z ) = G( z )
U (zⅱ ) = U + (1+ G( z )) = U + (1+ G( z ) ) = U max
此时
1+ G 1+ G z= r= = = VSWR 1- G 1- G
rmax = VSWR,
) 的大圆周上,
r 0,
开路点
z jx
对应传输线上为纯驻波状态。
纯电抗圆与正实轴的交点A
1,VSWR ,z
对应电压驻波腹点
短路点
电抗圆与负实轴的交点B
1,VSWR ,z 0 对应电压驻波节点
B
A
l
纯电阻线与Umax和Umin线:
实轴AOB是纯电阻线 x 0, z r
纯电阻线
Vmax线(电压最大线)
(完整版)史密斯圆图及应用
(z) u jv
Z(z) 1 (z) 1 (z)
Z (z) 1 u jv 1 u jv
1 (u2
2 v
)
j
2u
(1 u )2 v2 (1 u )2 v2
r jx
阻抗圆图----等阻抗圆
r 1 (u2 v2 ) (1 u )2 v2
x
2u
(1 u )2 v2
(u
r
r )2 1
– 已知负载阻抗ZL,确定传输线上第一个电 压波腹点与波节点距离负载的距离;
– 已知驻波系数VSWR及距离负载电压波节 点的位置,确定负载阻抗ZL
阻抗圆图的应用----阻抗变换
一个典型的包含有长度为d、特性阻抗为Z0、终端 负载为ZL的传输线的电路,采用Smith圆图分析 其阻抗特性,可以按以下步骤进行:
两个旋转方向
– 顺时针向源 – 逆时针向负载
阻抗圆图----特点
Smith圆图可以直接提供如下信息
– 直接给出归一化输入阻抗值zin ,乘以特性 阻抗即为实际值;
– 直接给出反射系数的模值||及其相位; – 根据反射系数模值计算出驻波系数的值
阻抗圆图的应用
应用于下列问题的计算
– 已知负载阻抗ZL,确定传输线上的驻波系 数或反射系数和输入阻抗Zin;
jX
ji
4
2
0.5
1
2
1 x=0.5
x=-0.5
0.2 RC
4 D r
-1
-0.2
-4
-2
-2
-0.5 -1
-4
(b)
阻抗圆图----等电抗圆
||1,因此只有单位圆内的部分才有物理意义 等电抗圆都相切于点,即D点x=0时,圆的半 径为无限大对应于复平面上的实轴即直线CD 当x时,电抗圆缩为一个点,D点
史密斯圆图
9.旋转方向:圆图还注明了顺时针旋转为向始端(信号源端)方向移
动,逆时针旋转为向终端(负载端)方向移动。 10.
r 值的标注: r 值标注在纯电阻线上,开路点为 ,短路点为0,
匹配点为1。
11.X值的标注:标注在 1 大圆的内侧等X线与 1 大圆的交点处。
Zb zb Zc (105 j50)
作业:用Smith圆图完成以下作业
特性阻抗为 Z0 50 ,负载阻抗为Z L (50 j100) ,
l 0.2 ,求输入阻抗 Z in 。
1.等反射系数图
均匀无耗线上任一处的反射系数 ( z ) 可以表示为
( z) 2 e
j (2 2 z )
在极坐标中其曲线是一个以原点为圆心、 2 为半径的 圆。在一段终端接以某负载、无分支的无耗线上,其 的值由长线的特性阻抗 Z0 和负载阻抗 Z L 所决定,而沿 线各处的 2 与 是相同的,只是反射相位将随位置的 改变而改变,故称此圆为等反射系数图。因为反射系数 的模与驻波比 是一一对应的,故又称为等驻波比圆。
Smith圆图(极坐标圆图)
构成圆图的依据是长线理论中的一些基本公式(沿线Z坐标原点均选在终端)
Z in ( z ) 1 ( z ) Z (z) Z0 1 ( z)
L 1 2 Z 1 2
(z) 1 Z (z) (z) 1 Z
( z ) 2e
u
的直线上。圆心的纵坐标等于圆半径。故所有等 X 圆也全相切于点 (1,0)。
圆、等 将等 R X 圆绘制在同一复平面 u j v 上便得到如下所示的等 阻抗图。
史密斯圆图即为等反射系数圆与等阻抗圆的重叠图
史密斯圆图ppt课件
z z
Z
z z0
1 (z) 1 (z)
y(z)
1 / zz
Y(z)/ z0
1 1
(z ) (z )
带入用实部和虚部表示的反射系数:
z z
1 1
Γr Γr
jΓi jΓi
1 Γr2 Γi2 (1 i2
•
可得实部(电阻)和虚部(电抗)分别为:
驻波比、反射系数、损耗
加上反射系数圆
史密斯圆图有多种
• 见pdf文件 • 不是越复杂越好,要根据解题的需要 • 学习和工作中会逐渐深入掌握,目前要掌握最重要的基本操作方法
串联电抗的图上操作
并联电抗的图上操作
史密斯圆图上的电抗及其与电阻的串并联关系
等感抗线上,位于第一象限的弧线表示与电 阻串联的感抗,第二象限的弧线表示与电阻 并联的感抗
此点落在圆图的左半实轴上,从rmin=0.2点 沿等ρ的圆逆时针(向负载方向)转λ/3,即
转动角度为:
3
2
2
2400
得到归一化负载为 zl 0.77 j1.48
故负载阻抗为:Zl 0.77 j1.48 50 38.5 j74
Smith圆图
匹配无法实现的情况
• 如上图,当串、并联电感沿红、紫线方向转动时而串、并联电容沿蓝、绿 线方向转动,结果相互抵消,就无法实现阻抗匹配了。
[例3] 已知传输线如图所示。若负载阻抗为Zl=25+j25Ω,求距离负载 0.2λ处的等效阻抗。
解:
•先求出归一化负载阻抗 zl 0.5 j0.5,
•在圆图上找出与此相对应的点P1。因为虚部是 正的,应在横轴以上,又因为实部小于1,该 点应在第二象限
•以圆图中心点O为中心,以OP1为半径,顺时 针 ( 向 电 源 方 向 ) 旋 转 0.2λ 到 达 P2 点 , 即 : (0.2λ/0.5λ)*2π=0.8 π
史密斯圆导纳
史密斯圆导纳
史密斯圆图是一种用于表示阻抗和导纳的图,其实质就是Z平面和反射系数平面两个复平面之间的映射。
在史密斯圆图中,阻抗和导纳的实部和虚部分别表示在复平面上,而圆周上的点则表示阻抗和导纳的值。
通过旋转这个圆,可以得到不同阻抗和导纳值的表示。
史密斯圆图可以帮助工程师快速查找到不同频率下的阻抗和导纳值,因此在无线电和微波工程中得到了广泛应用。
导纳是阻抗的倒数,因此在史密斯圆图中,导纳圆图就是阻抗圆图的镜像。
在采用归一化阻抗和归一化导纳之后,将复平面上的阻抗圆图旋转180°,就可以得到导纳圆图。
导纳圆图与阻抗圆图旋转180°相同。
史密斯圆图中的导纳圆图与阻抗圆图具有相似的特性,例如反射系数圆图、阻抗/导纳圆图等。
在导纳圆图中,导纳值可以通过将圆周上的点与原点相连并测量连线长度的方式获得。
此外,通过在导纳圆图上旋转一个特定的角度,可以找到特定频率下的导纳值。
总之,史密斯圆图是一种非常有用的工具,可以帮助工程师快速查找到不同频率下的阻抗和导纳值,从而更好地进行电路设计和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.3l到0.328l,此处即
为yin=1.18-j0.9
Yin=yin/250=0.00472-j0.0036(S)
例2.5-4 在Zo为50W开槽线终端接入一未知负载时 测得|V|min出现在距负载0.10m\0.35m\0.6m和0.85m处; 而当终端以短路器代替未知负载时测得|V|min出现在 0\0.25m\0.50m和0.75m处,试求工作频率和未知负载 3 108 阻抗。l / 2 0.25m或者l 0.50m, f 600( MH Z )
圆图的构成:
均匀传输线特性:
归一化阻抗(实部、虚部) 反射系数(模、复角)
Z ( z ) 1 ( z ) Z (d ) 1 (d ) z( z) 或:z (d ) Z0 1 ( z ) Z0 1 (d) (z) 1 ZL 1 存在一一 也可解为:( z) Z 或: L Z (z)+1 ZL +1 对应关系
2 1 2 jIm Re Im = 2 2 1-Re Im
r
2 1 - Re Im 2 2 im 2 Re
2 1 2 Re Im
b) 复平面上归一化阻抗圆(续一)
(r+1) (r+1) -2r Re 1 r
2 r 1 r r 1 2 im Re = 2 2 r 1 r 1 r 1 r 1 2
x
1- Re
2
j 2 Im
2
2 Im
2 (1 Re ) Im Im 0 x
2
2.5-3 为园心在(r/(1+r),0) 等电阻园 2.5-4 为园心在(1,1/x) 等电抗阻园
1 1 (1 Re ) Im 2 x x
圆图的应用(续四)
例2.5-5 已知双导线的特性阻抗为250W,负载阻 抗为500j 150W,线长4.8l,求输入导纳。
• 归一化阻抗:zL=(500-j150)/250=2-j6
• 以zL沿等圆转180o得到yL=0.45+j0.15;
(对应电波长数为0.028)
• 以yL沿等圆顺时针转
这是一组=常数的同心圆。
若将相位参数(F=0)定于 右端(波长计数于左端) 则随d增大(向电源)相位 变小——顺时针 反之向负载——逆时针
b) 复平面上归一化阻抗圆
用 z Z / Z0 r jx 和 Re jIm带入:
1 (d )Biblioteka Z= 1 ( d )1 Re j Im 1 Re j Im 1- Re+j Im r jx = 2 2 1- Re-jIm 1 - Re Im
由|Vmax|=0dB,|Vmin|=-6dB 查表得VSWR=2,则K=0.5 (r=|vmax|/|Vmin|) 实际负载电压最小点距负载 电长度为0.1/0.5=0.2l 从zmin沿等=2圆反时针转 0.2l即可得zL=1.55-j0.65 ZL=zL×50=77.5-j32.5
0.5
圆图的应用(续三)
圆图的应用(续二) 例2.5-3 在Zo为50W的无耗线上测得为VSWR=5, 电压驻波最小点出现在距负载l/3处,求负载阻抗值.
解: rmin=1/5=0.2-->zmin在实轴左半(上半部) 反时针(向电源)转l/3得: zL=0.77+j1.48 ZL=zL*50=38.5+j74W 小节: •将已知条件归一化 •画出阻抗(两圆焦点) 波长(阻抗与中心连线) •旋转: 向电源(顺时针) • 向负载(逆时针) •读出结果并还原。
史密斯圆图
• 采用双线性变换,将z复平面上 实部 r=常数和虚部 x=常数 两族正交直线 变化为正交圆并与: 反射系数||=常数和虚部x=常数 套印而成。
A) 复平面上的反射系数圆
无耗线反射系数:
(d ) Re jim L e j (L 2 d ) L e j (d )
上读出。
圆 图
圆图的特点
1. 圆图是由长线公式组合而成,交点代表了联立方 程组的解。 2. 圆图坐标下端点对应=||ejF的F=0点,即电压波 最大点开路z=inf;轴上数据rmax= 圆图坐标上端点对应=||ejF的F=p 点,即电压 波最小点短路z=0。轴上数据rmin=K 圆心z=1,代表阻抗匹配点。 3. 阻抗圆周(=1)右部为感抗正;左部为容抗负 圆图上转一周为l/2 4. d增加——向信号源——顺时针; y g jb 1 r jx d减小——向负载 ——逆时针; jp 0 1 1 e 5. 导纳圆图与阻抗圆图旋转180 相同。
2
2
2.5 4
b) 复平面上归一化阻抗圆(续二)
将两套图套在一起,机构成阻抗圆图
c) 复平面上等衰减园
实际传输线有耗:——反射系数与阻抗
仍然保持一一对应关系,仅多了衰减因子
e-2ad 即:
|(d)|=|L|e-2ad 随d增加而下降,实际数值
可在e-2ad为半径的同心园(圆图左边标尺)
zin=0.42-j0.25
4. Zin=zin*50=21-j12.5
圆图的应用(续一) 例2.5-2由测量得到 Zinsc=+j106W , Zinoc=-j23.6W Zin=25-j70W(终端接实际负载时),求负载阻抗值。
sc oc Z 0 Z in Z in 50(W) 1. 传输线的特性阻抗为: 2. 归一化:并在圆图上标出 zinsc=Zinsc/Zo=j2.12 zinoc=Zinsc/Zo=-j0.472 zin=Zin/Zo=0.5-j1.4 3. 由zinsc得向电源波长为 0.18l,而短路时zL=0,圆图左 端点:传输线长度为0.18l 4. 负载在输入点+传输线长 处:0.157l0.18l0.333l从 zin沿等半径转0.18l得zL ZL=zL*Zo=28.5+j75W
1 1 ejp
圆图的应用
例2.5-1 已知同轴线的特性阻抗为,端接负载阻抗 为,如图2.5-4(a)所示,求距离负载处的输入阻抗.
1.计算归一化负载阻抗 2.连接ozL—向电源波长
100 j 50 zL 2 j1 50
0.23l
3.再以|zL|为半径顺时向
电源 针旋转0.24l得
将二者的归一化 关系画在同一图 j z z (d ) r (d ) jx(d ) z e 上即可 j ( d ) ( d ) ( d ) j ( d ) ( d ) e Re im 从复变函数的概 念,为保角变换
一般z(d),(d)均为复数:
2.5 史密斯圆图
前面讨论的都是求解:
Z L jZ 0tg d Z in (d ) Z 0 Z 0 jZ L tg d Z L Z0 Z L Z0
1 L 1 L
之间关系的问题, 一般均为复数,求 解较为复杂,有耗 时更为困难。 圆图:是一种计算 阻抗、反射系数等 参量的简便图解方 法。