week_11__nominal_outcomes_multinomial_logit_updated
FORNELL教授经典的顾客满意度论文1
TOTAL QUALITY MANAGEMENT, VOL. 11, NO. 7, 2000, S869-S882EUGENE W. ANDERSON & CLAES FORNELLNational Quality Research Center, University of Michigan Business School, Ann Arbor,MI 48109-1234, USAABSTRACT How do we know if an economy is performing well? How do we know if a company is performing well? The fact is that we have serious difficulty answering these questions today. The economy—for nations and for corporations—has changed much more than our theories and measurements. The development of national customer satisfaction indices (NCSIs) represents an important step towards addressing the gap between what we know and what we need to know. This paper describes the methodology underlying one such measure, the American Customer Satisfaction Index (ACSI). ACSI represents a uniform system for evaluating, comparing, and—ultimately- enhancing customer satisfaction across ifrms, industries and nations. Other nations are now adopting the same approach. It is argued that a global network of NCSIs based on a common methodology is not simply desirable, but imperative.IntroductionHow do we know if an economy is performing well? How do we know if a company is performing well? The fact is that we have serious difficulty answering these questions today. It is even more difficult to tell where we are going.Why is this? A good part of the explanation is that the economy—for nations and for corporations—has changed much more than our theories and measurements. One can easily make the case that the measures on which we rely for determining corporate and national economic performance have not kept pace. For example, the service sector and information technology play a dominant role in the modern economy. An implication of this change is that economic assets today reside heavily in intangibles—knowledge, systems, customer relationships, etc. (see Fig. 1). The building of shareholder wealth is no longer a matter of the management of ifnancial and physical assets. The same is true with the wealth of nations.As a result, one cannot continue to apply models of measurement and theory developed for a 'tangible' manufacturing economy to the economy we have today. How important is it to know about coal production, rail freight, textile mill or pig-iron production in the modern economy? Such measures are still collected in the US and reported in the media as if theyhad the same importance now as they did over 50 years ago.The problem gets worse when we take all these measures, add them up and draw conclusions. For example, in early 1999, the US stock market set an all time record highCorrespondence: E. W. Anderson, National Quality Research Center, University of Michigan Business School, Ann Arbor, MI 48109-1234, USA. Tel: (313) 763-1566; Fax: (313) 763-9768; E-mail: genea@ISSN 0954-4127 print/ISSN 1360-0613 online/00/07S869-14 0 2000 Taylor & Francis LtdS870 E. W. ANDERSON & C. FORNELLDow Jones Industrials:Price-to-Book Ratios11970 1999Source: Business Week, March 9, 1999Figure 1. Tangible versus intangible sources of value, 1970-99.with the Dow Jones Index passing 11 000 points, unemployment was at record lows, the economy expanded and inflation was almost non-existent. These statistics suggested a strong economy, which was also what was reported in the press and in most commentary by economists. As always, however, the real question is: Are we better off? How well are the actual experiences of people captured by the reported measures? Do the things economists and Governments choose to measure correspond with how people feel about their economic well-being? A closer inspection of the numbers and their underlying statistics reveals a somewhat different picture of the US economy than that typically held up as an example.?Corporate earnings growth for 1997 and 1998 were much lower than in the previous2 years, with a negative growth for 1998.?The major portion of the earnings growth in 1995 and 1996 was due to cost-cutting rather than revenue growth.?The trade deficit in 1999 was at a record high and growing.?Wages have been stagnant in the last 15 years (although there were small increases in 1997 and 1998).?The proportion of stock market capitalization versus GDP was about 150% of GDP in 1998 (the historical average is 48%; the proportion before the 1929 stock market crash was 82%).?Consumer and business debt were high and rising.?Even though many new jobs were created, 70% of those who lost their jobs got new jobs that paid less.?The number of bankruptcies was high and growing.?Worker absenteeism was at record highs.?Household savings were negative.Add the above to the fact that there is a great deal of worker anxiety over job security and lower levels of customer satisfaction than 5 years ago, and the question of whether we areyrFOUNDATIONS OF ACSI S871better off is cast in a different light. How much does it matter if we increase productivity,that the economy is growing or that the stock market is breaking records, if customers arenot satisifed? The basic idea behind a market economy is that businesses exist and competein order to create a satisifed customer. Investors will lfock to the companies that are expectedto do this well. It is not possible to increase economic prosperity without also increasingcustomer satisfaction. In a market economy, where suppliers compete for buyers, but buyersdo not compete for products, customer satisfaction defines the meaning of economic activity,because what matters in the final analysis is not how much we produce or consume, but howwell our economy satisfies its consumers.Together with other economic objectives—such as employment and growth—thequality of what is produced is a part of standard of living and a source of national competitiveness. Like other objectives, it should be subjected to systematic and uniform measurement. This is why there is a need for national indices of customer satisfaction. Anational index of customer satisfaction contributes to a more accurate picture of economicoutput, which in turn leads to better economic policy decisions and improvement of standard ofliving. Neither productivitymeasures nor price indices can be properly calibrated without taking quality into account.It is difficult to conduct economic policy without accurate and comprehensive measures. Customer satisfaction is of considerable value as a complement to the traditional measures.This is true for both macro and micro levels. Because it is derived from consumption data(as opposed to production) it is also a leading indicator of future proifts. Customer satisfactionleads to greater customer loyalty (Anderson & Sullivan, 1993; Bearden & Teel, 1983; Bolton& Drew, 1991; Boulding et al., 1993; Fornell, 1992; LaBarbera & Mazurski, 1983; Oliver,1980; Oliver & Swan, 1989; Yi, 1991). Through increasing loyalty, customer satisfactionsecures future revenues (Bolton, 1998; Fornell, 1992; Rust et al., 1994, 1995), reduces thecost of future transactions (Reichheld & Sasser, 1990), decreases price elasticities (Anderson,1996), and minimizes the likelihood customers will defect if quality falters (Anderson & Sullivan, 1993). Word-of-mouth from satisifed customers lowers the cost of attracting new customers and enhances the firm's overall reputation, while that of dissatisifed customersnaturally has the opposite effect (Anderson, 1998; Fornell, 1992). For all these reasons, it isnot surprising that empirical work indicates that ifrms providing superior quality enjoy higher economic returns (Aaker & Jacobson, 1994; Anderson et al., 1994, 1997; Bolton, 1998;Capon et al., 1990).Satisfied customers can therefore be considered an asset to the ifrm and should be acknowledged as such on the balance sheet. Current accounting-based measures are probablymore lagging than leading—they say more about past decisions than they do about tomorrow's performance (Kaplan & Norton, 1992). If corporations did incorporate customer satisfactionas a measurable asset, we would have a better accounting of the relationship between theenterprise's current condition and its future capacity to produce wealth.If customer satisfaction is so important, how should it be measured? It is too complicatedand too important to be casually implemented via standard market research surveys. The remainder of this article describes the methodology underlying the American Customer Satisfaction Index (ACSI) and discusses many of the key ifndings from this approach.Nature of the American Customer Satisfaction IndexACSI measures the quality of goods and services as experienced by those that consume them.An individual ifrm's customer satisfaction index (CSI) represents its served market's—its customers'—overall evaluation of total purchase and consumption experience, both actualand anticipated (Anderson et al., 1994; Fonrell, 1992; Johnson & Fornell, 1991).S872 E. W. ANDERSON & C. FORNELLThe basic premise of ACSI, a measure of overall customer satisfaction that is uniform and comparable, requires a methodology with two fundamental properties. (For a complete description of the ACSI methodology, please see the 'American Customer Staisfaction Index: Methodology Report' available from the American Society for Quailty Control, Milwaukee, WI.) First, the methodology must recognize that CSI is a customer evaluation that cannot be measured directly. Second, as an overall measure of customer satisfaction, CSI must be measured in a way that not only accounts for consumption experience, but is also forward-looking.Direct measurement of customer satisfaction: observability with errorEconomists have long expressed reservations about whether an individual's satisfaction or utility can be measured, compared, or aggregated (Hicks, 1934, 1939a,b, 1941; Pareto, 1906; Ricardo, 1817; Samuelson, 1947). Early economists who believed it was possible to produce a 'cardinal' measure of utility (Bentham, 1802; Marshall, 1890; Pigou, 1920) have been replaced by ordinalist economists who argue that the structure and implications of utility-maximizing economics can be retained while relaxing the cardinal assumption. How_ ever, cardinal or direct measurement of such judgements and evaluations is common in other social sciences. For example, in marketing, conjoint analysis is used to measure individual utilities (Green & Srinivasan, 1978, 1990; Green & Tull, 1975).Based on what Kenneth Boulding (1972) referred to as Katona's Law (the summation of ignorance can produce knowledge due to the self-canceling of random factors), the recent advances in latent variable modeling and the call from economists such as the late Jan Tinbergen (1991) for economic science to address better what is required for economic policy, scholars are once again focusing on the measurement of subjective (experience) utility. The challenge is not to arrive at a measurement system according to a universal system of axioms, but rather one where fallibility is recognized and error is admitted (Johnson & Fornell, 1991) .The ACSI draws upon considerable advances in measurement technology over the past 75 years. In the 1950s, formalized systems for prediction and explanation (in terms of accounting for variation around the mean of a variable) started to appear. Before then, research was essentially descriptive, although the single correlation was used to depict the degree of a relationship between two variables. Unfortunately, the correlation coefficient was otfen (and still is) misinterpreted and used to infer much more than what is permissible. Even though it provides very little information about the nature of a relationship (any given value of the correlation coefficient is consistent with an inifnite number of linear relationships), it was sometimes inferred as having both predictive and causal properties. The latter was not achieved until the 1980s with the advent of the second generation of multivariate analysisand associated sotfware (e.g. Lisrel).It was not until very recently, however, that causal networks could be applied to customer satisfaction data. What makes customer satisfaction data difficult to analyze via traditional methods is that they are associated with two aspects that play havoc with most statistical estimation techniques: (1) distributional skewness; and (2) multicollinearity. Both are extreme in this type of data. Fortunately, there has been methodological progress on both fronts particularly from the field of chemometrics, where the focus has been on robust estimation with small sample sizes and many variables.Not only is it now feasible to measure that which cannot be observed, it is also possible to incorporate these unobservables into systems of equations. The implication is that the conventional argument for limiting measurement to that which is numerical is no longer allFOUNDATIONS OF ACSI S873that compelling. Likewise, simply because consumer choice, as opposed to experience, is publicly observable does not mean that it must be the sole basis for utility measurement. Such reasoning only diminishes the influence of economic science in economic policy (Tinbergen 1991).Hence, even though experience may be a private matter, it does not follow that it is inaccessible to measurement or irrelevant for scientific inquiry, for cardinalist comparisons of utility are not mandatory for meaningful interpretation. For something to be 'meaningful,' it does not have to be 'flawless' or free of error. Even though (experience) utility or customer satisfaction cannot be directly observed, it is possible to employ proxies (fallible indicators) to capture empirically the construct. In the ifnal analysis, success or failure will depend on how well we explain and predict.Forward-looking measurement of customer satisfaction: explanation and predictionFor ACSI to be forward-looking, it must be embedded in a system of cause-and-effect relationships as shown in Fig. 2, making CSI the centerpiece in a chain of relationships running from the antecedents of customer satisfaction —expectations, perceived quality and value —to its consequences —voice and loyalty. The primary objective in estimating this system or model is to explain customer loyalty. It is through this design that ACSI captures the served market's evaluation of the ifrm's offering in a manner that is both backward- and forward-looking.Customer satisfaction (ACSI) has three antecedents: perceived quality, perceived value and customer expectations. Perceived quality or performance, the served market's evaluation of recent consumption experience, is expected to have a direct and positive effect on customer satisfaction. The second determinant of customer satisfaction is perceived value, or the perceived level of product quality relative to the price paid. Adding perceived value incorpo-rates price information into the model and increases the comparability of the results across ifrms, industries and sectors. The third determinant, the served market's expectations, represents both the served market's prior consumption experience with the firm's offeringCustomization Complaints to Complaints toinagement PersonnelPriceü GivenQualityQualityGivenPrice DelepurchasePrice Likelihood ToleranceCustomization Reliability O v e r a l l Figure 2. The American Customer Satisfaction Index model.S874 E. W. ANDERSON & C. FORNELLincluding non-experiential information available through sources such as advertising and word-of-mouth—and a forecast of the supplier's ability to deliver quality in the future.Following Hirschman's (1970) exit-voice theory, the immediate consequences of increased customer satisfaction are decreased customer complaints and increased customer loyalty (Fornell & Wemerfelt, 1988). When dissatisifed, customers have the option of exiting (e.g. going to a competitor) or voicing their complaints. An increase in satisfaction should decrease the incidence of complaints. Increased satisfaction should also increase customer loyalty. Loyalty is the ultimate dependent variable in the model because of its value as aproxy for profitability (Reichheld & Sasser, 1990).ACSI and the other constructs are latent variables that cannot be measured directly, each is assessed by multiple measures, as indicated in Fig. 1. To estimate the model requires data from recent customers on each of these 15 manifest variables (for an extended discussion of the survey design, see Fomell et al., 1996). Based on the survey data, ACSI is estimated as shown in Appendix B.Customer satisfaction index properties: the case of the American Customer Satisfaction IndexAt the most basic level the ACSI uses the only direct way to ifnd out how satisifed or dissatisifed customers are—that is, to ask them. Customers are asked to evaluate products and services that they have purchased and used. A straightforward summary of what customers say in their responses to the questions may have certain simplistic appeal, but such an approach will fall short on any other criterion. For the index to be useful, it must meet criteria related to its objectives. If the ACSI is to contribute to more accurate and comprehen-sive measurement of economic output, predict economic returns, provide useful information for economic policy and become an indicator of economic health, it must satisfy certain properties in measurement. These are: precision; validity; reliability; predictive power; coverage; simplicity; diagnostics; and comparability.PrecisionPrecision refers to the degree of certainty of the estimated value of the ACSI. ACSI results show that the 90% confidence interval (on a 0-100 scale) for the national index is ± 0.2 points throughout its first 4 years of measurement. For each of the six measured private sectors, it is an average ± 0.5 points and for the public administration/government sector, it is + 1.3 points. For industries, the conifdence interval is an average ±1.0 points for manufacturing industries, + 1.7 points for service industries and ± 2.5 points for government agencies. For the typical company, it is an average ± 2.0 points for manufacturing ifrms and 2.6 points for service companies and agencies. This level of precision is obtained as a result of great care in data collection, careful variable speciifcation and latent variable modeling. Latent variable modeling produces an average improvement of 22% in precision over use of responses from a single question, according to ACSI research.ValidityValidity refers to the ability of the individual measures to represent the underlying construct customer satisfaction (ACSI) and to relate effects and consequences in an expected manner. Discriminant validity, which is the degree to which a measured construct differs from other measured constructs, is also evidenced. For example, there is not only an importanto-FOUNDATIONS OF ACSI S875 conceptual distinction between perceived quality and customer satisfaction, but also anempirical distinction. That is, the covariance between the questions measuring the ACSI ishigher than the covariances between the ACSI and any other construct in the system.The nomological validity of the ACSI model can be checked by two measures: (1) latentvariable covariance explained; and (2) multiple correlations (R'). On average, 94% of thelatent variable covariance structure is explained by the structural model. The average R2ofthe customer satisfaction equation in the model is 0.75. In addition, all coefficients relatingthe variables of the model have the expected sign. All but a few are statistically signiifcant.In measures of customer satisfaction, there are several threats to validity. The most seriousof these is the skewness of the frequency distributions. Customers tend disproportionately touse the high scores on a scale to express satisfaction. Skewness is addressed by using a fairlyhigh number of scale categories (1-10) and by using a multiple indicator approach (Fornell,1992, 1995). It is a well established fact that vaildity typically increases with the use of more categories (Andrews, 1984), and it is particularly so when the respondent has good knowledgeabout the subject matter and when the distribution of responses is highly skewed. An indexof satisfaction is much to be preferred over a categorization of respondents as either 'satisfied'or 'dissatisfied'. Satisfaction is a matter of degree—it is not a binary concept. If measured asbinary, precision is low, validity is suspect and predictive power is poor.ReliabilityReliability of a measure is determined by its signal-to-noise ratio. That is, the extent to whichthe variation of the measure is due to the 'true' underlying phenomenon versus randomeffects. High reliability is evident if a measure is stable over time or equivalent with identicalmeasures (Fonrell, 1992). Signal-to-noise in the items that make up the index (in terms of variances) is about 4 to 1.Predictive power and financial implications of ACSIAn important part of the ACSI is its ability to predict economic returns. The model, ofwhich the ACSI is a part, uses two proxies for economic returns as criterion variables: (1)customer retention (estimated from a non-linear transformation of a measure of repurchase likelihood); and (2) price tolerance (reservation price). The items included in the index areweighted in such a way that the proxies and the ACSI are maximally correlated (subject tocertain constraints). Unless such weighting is done, the index is more likely to include mattersthat may be satisfying to the customer, but for which he or she is not willing to pay.The empirical evidence for predictive power is available from both the Swedish data andthe ACSI data. Using data from the Swedish Barometer, a one-point increase in the SCSBeach year over 5 years yields, on the average, a 6.6% increase in current return-on-investment (Anderson et al., 1994). Of the firms traded on the Stockholm Stock Market Exchange, it isalso evident that changes in the SCSB have been predictive of stock returns.A basic tenet underlying the ACSI is that satisifed customers represent a real, albeit intangible, economic asset to a ifrm. By deifnition, an economic asset generates future incomestreams to the owner of that asset. Therefore, if customer satisfaction is indeed an economicasset, it should be possible to use the ACSI for prediction of company ifnancial results. It is,of course, of considerable importance that the ifnancial consequences of the ACSI arespecified and documented. If it can be shown that the ACSI is related to ifnancial returns,then the index demonstrates external validity.The University of Michigan Business School faculty have done considerable research onS876 E. W. ANDERSON & C. FORNELLthe linkage between ACSI and economic returns, analyzing both accounting and stock market returns from measured companies. The pattern from all of these studies suggests a statistically strong and positive relationship. Speciifcally:?There is a positive and significant relationship between ACSI and accounting return_ on-assets (Fornell et al., 1995).?There is a positive and signiifcant relationship between the ACSI and the market valueof common equity (Ittner & Larcker, 1996). When controlling for accounting book values of total assets and liabilities, a one-unit change (on the 0-100-point scale used for the ACSI) is associated with an average of US$646 million increase in market value. There are also significant and positive relationships between ACSI and market-to-book values and price/earnings ratios. There is a negative relationship between ACSI and risk measures, implying that firms with high loyalty and customersatisfactionhave less variability and stronger financial positions.?There is a positive and significant relationship between the ACSI and the long-term adjusted financial performance of companies. Tobin's Q is generally accepted as the best measure of long-term performance. It is deifned as the ratio of a firm's present value of expected cash lfows to the replacement costs of its assets. Controlling for other factors, ACSI has a significant relationship to Tobin's Q (Mazvancheryl et al.,1999).?Since 1994, changes in the ACSI have correlated with the stock market (Martin,1998). The current market value of any security is the market's estimate of the discounted present value of the future income stream that the underlying asset will generate. If the most important asset is the satisfaction of the customer base, changes in ACSI should be related to changes in stock price. Until 1997, the stock market went up, whereas ACSI went down. However, in quarters following a sharp drop in ACSI, the stock market has slowed. Conversely, when the ACSI has gone down only slightly, the following quarter's stock market has gone up substantially. For the 6 years of ACSI measurement, the correlation between changes in the ACSI and changes in the Dow Jones industrial average has been quite strong. The interpretation of this relationship suggests that stock prices have responded to downsizing, cost cutting and productivity improvements, and that the deterioration in quality (particularly in the service sectors) has not been large enough to offset the positive effects. It also suggests that there is a limit beyond which it is unlikely that customers will tolerate further decreases in satisfaction. Once that limit is reached (which is now estimated to be approximately —1.4% quarterly decline in ACSI), the stock market will not go up further.ACSI scores of approximately 130 publicly traded companies display a statistically positive relationship with the traditional performance measures used by firms and security analysts (i.e. return-on-assets, return-on-equity, price—earnings ratio and the market-to-book ratio). In addition, the companies with the higher ACSI scores display stock price returns above the market adjusted average (Ittner & Larcker, 1996). The ACSI is also positively correlated with 'market value added'. This evidence indicates that the ACSI methodology produces a reliable and valid measure for customer satisfaction that is forward-looking and relevant to a company's economic performance.CoverageThe ACSI measures a substantial portion of the US economy. In terms of sales dollars, it is approximately 30% of the GDP. The measured companies produce over 40%, but the ACSIFOUNDATIONS OF ACSI S877measures only the sales of these companies to household consumers in the domestic market. The economic sectors and industries covered are discussed in Chapter III. Within each industry, the number of companies measured varies from 2 to 22.The national index and the indices for each industry and sector are relfective of the total value (quality times sales) of products and services provided by the ifrms at each respective level of aggregation. Relative sales are used to determine each company's or agency's contribution to its respective industry index. In turn, relative sales by each industry are used to determine each industry's contribution to its respective sector index. To calculate the national index, the percentage contributions of each sector to the GDP are used to top-weight the sector indices. Mathematically, this is deifned as:Index for industry i in sector s at time t = ES f i;If _S S ,, S I Index for sector s at time t =I g = E ,whereSr…, = sales by ifrm f, industry i, sector s at time t= index for firm f, industry i, sector s at time tandSit = E S,, = total sales for industry i at time tS, = E S i , = total sales for sector s at time t ,The index is updated on a quarterly basis. For each quarter, new indices are estimated for one or two sectors with total replacement of all data annually at the end of the third calendar quarter. The national index is comprised of the most recent estimate for each sectorT S National index at time t — ____________ E 4, V s9t t =T -3 s W,13where I s , = 0 for all t in which the index for a sector is not estimated, and I = I for all ,, quarters in which an index is estimated. In this way, the national index represents company, industry and sector indices for the prior year.SimplicityGiven the complexity of model estimation, the ACSI maintains reasonable simpilcity. It is calibrated on a 0-100 scale. Whereas the absolute values of the ACSI are of interest, much of the index's value, as with most other economic indicators, is found in changes over time, which can be expressed as percentages.DiagnosticsThe ACSI methodology estimates the relationships between customer satisfaction and its causes as seen by the customer: customer expectations, perceived quality and perceived value. Also estimated are the relationships between the ACSI, customer loyalty (as measured by customer retention and price tolerance (reservation prices)) and customer complaints. The。
计量经济学导论_对外经济贸易大学中国大学mooc课后章节答案期末考试题库2023年
计量经济学导论_对外经济贸易大学中国大学mooc课后章节答案期末考试题库2023年1.关于n个个体,T期时间的面板数据回归中,下面哪一个说法是错误的:答案:如果T=2,可以通过前后两期数据做差分来消除时间固定效应2.在二值因变量模型中,对Probit模型描述不正确的有:答案:可以用拟合优度R方来评价模型的拟合效果3.下边哪个说法可以很好地描述ARMA(2,1)的特点?答案:拖尾的自相关函数,拖尾的偏自相关函数。
4.关于单位根过程错误的说法是答案:均值一定随时间变化5. TGARCH 模型模型如下:如果希望检验波动率的非对称性,需要对哪个参数进行检验?答案:6. 使用表下边的临界值,判断哪个序列不是I(1)的 序列名称水平变量的单位根检验 差分后变量的单位根检验 A -1.3 -7.2 B -0.8 -4.6 C -1.1 -5.9 D-3.7-9.75%显著水平下,对水平变量的临界值-3.41,差分后变量的临界值-2.86D7.在不完全多重共线性下答案:两个或两个以上的自变量高度相关8.如果y,x,z是I(1)的,那么y做被解释变量,x,z做解释变量建立多元线性回归模型可能是伪回归。
答案:正确9.满足如下模型:y的无条件均值为?0.510.两阶段最小二乘中,第二阶段需要用到工具变量的哪条性质?答案:外生性11.在其他条件相同的情况下,自变量观测值的变差越大,斜率估计量的方差越大。
答案:错误12.白噪声过程是平稳随机过程。
答案:正确13.为了研究教育回报率的性别差异,某研究者用了一组男性工人和女性工人的数据得到如下方程:其中LnWage是工人的对数小时工资;edu是教育年限;二元变量Female 当个体性别为女时取值1,否则为0;exp 是工作经验。
则对于受教育年限都是16年的男性工人和女性工人,男性比女性的工资高() %。
答案:5.814.对于一个带常数项的一元线性回归方程,下列哪些代数性质是成立的?答案:残差和为0。
计量经济学中英文对照词汇
计量经济学中英文对照词汇(总21页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除计量经济学中英对照词汇Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Z-transformation, Z变换。
学术论文指导 06讲 问卷调查研究方法
•2.开放式。 •这种句卷不设置固定的答案,让回卷者自由发挥。
•3.半结构式。 •这种问卷介乎于结构式和开放式两者之间,问题的答案既有 固定的、标准的,也有让回卷者自由发挥的。
---------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
问卷调查
---------------------------------------------------------------------------------------------------------------------
•问卷的类型,可以从不同角度进行划分。如按问题答案划分, 可以分为结构式、半结构式、开放式3种;
•研究者将所要研究的问题编制成 问题表格,以邮寄方式、电子邮 件、网页链接、当面作答或者追 踪访问方式填答,从而了解被试 对某一现象或问题的看法和意见, 所以又称问题表格法。
分层生长曲线模型stata
分层生长曲线模型stata
分层生长曲线模型(HLM)是一种统计模型,常用于分析个体在
时间上的变化,特别是在教育、心理学和医学研究中。
这种模型允
许我们考虑数据的层次结构,比如个体观测数据嵌套在群体数据中。
在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型。
首先,我们需要准备数据,确保数据集中包含了个体的多次观
测数据以及个体所属的群体信息。
接下来,我们可以使用Stata中
的mixed命令来拟合分层生长曲线模型。
该命令的语法通常为:
mixed outcome_var time_var || group_var: time_var, covstruct(covariance_structure)。
在这个命令中,我们需要指定因变量(outcome_var)和时间变
量(time_var),并用两个竖线(||)将时间变量和群体变量(group_var)分隔开来。
在后面的部分,我们可以指定时间变量与
群体变量的交互项,以及指定协变量结构
(covariance_structure)。
在拟合了模型之后,我们可以使用Stata的命令来检验模型的
拟合程度、参数估计的显著性以及模型的预测能力等。
同时,我们也可以进行模型诊断,比如检验模型的假设是否成立,以及检验模型的残差是否符合正态分布等。
总之,在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型,并通过一系列的统计检验和诊断来评估模型的质量和适用性。
希望这个回答能够帮助你更好地理解在Stata中如何进行分层生长曲线模型的分析。
multinominal logistic 解读
multinominal logistic 解读多项式逻辑斯蒂回归(Multinomial Logistic Regression)是一种常用的分类算法,广泛应用于机器学习和统计分析中。
它是逻辑斯蒂回归在多分类问题中的扩展,能够预测多个离散的类别。
在多项式逻辑斯蒂回归中,目标变量可以有两个或多个离散的类别。
与二元逻辑斯蒂回归不同的是,多项式逻辑斯蒂回归使用了多个二元逻辑斯蒂回归模型来进行分类。
模型的输出是每个类别的概率。
具体地说,对于每个类别,模型计算一个线性函数的概率,然后对这些概率进行归一化,以确保它们的总和为1。
最终,模型将观测值分配给具有最高概率的类别。
多项式逻辑斯蒂回归可以使用最大似然估计方法来估计模型参数。
估计的参数可以用于预测新的观测值的类别。
在实际应用中,多项式逻辑斯蒂回归常用于文本分类、医疗诊断、人脸识别等领域。
例如,在文本分类任务中,可以使用多项式逻辑斯蒂回归将不同的文档分配到预定义的类别中。
在医疗诊断中,可以使用多项式逻辑斯蒂回归来预测一位患者属于哪个疾病类型。
在人脸识别任务中,多项式逻辑斯蒂回归可用于将人脸图像识别为不同的人物。
尽管多项式逻辑斯蒂回归在许多领域中表现出色,但它也有一些限制。
首先,它要求观测值之间是独立的。
其次,它假设观测值的分布是多项式的。
这意味着它对于连续变量的建模能力有限。
此外,多项式逻辑斯蒂回归也可能受到过度拟合的问题。
为了提高模型的性能,可以使用一些技术和方法。
例如,特征选择可以帮助排除一些不相关的特征,以减少模型的复杂度。
此外,交叉验证可以用于评估模型的性能和避免过拟合。
另外,通过增加训练样本量和调整模型的正则化参数,也可以提高模型的鲁棒性。
总结来说,多项式逻辑斯蒂回归是一种常用的多分类算法,在机器学习和统计分析中有着广泛的应用。
它适用于文本分类、医疗诊断、人脸识别等领域。
尽管存在一些局限性,但通过使用合适的技术和方法,可以提高模型的性能和稳定性。
随即效应模型
随机效应模型引言随机效应模型是一种用于分析面板数据(panel data)的统计模型。
面板数据是指在时间上对同一组体或个体进行多次观测的数据,例如经济学中的跨国公司的财务数据、医学研究中的病人的长期随访数据等。
随机效应模型能够通过考虑个体间的异质性和时间间的相关性,提供更准确的估计和推断。
一、面板数据的特点面板数据相较于传统的横截面数据(cross-sectional data)和时间序列数据(time series data),具有以下几个特点:1.个体异质性:面板数据中的个体之间可能存在差异,例如不同公司的经营策略、不同病人的基线特征等。
2.时间相关性:面板数据中的观测值在时间上是相关的,例如经济学中的季度数据、医学研究中的长期随访数据等。
3.个体固定效应:个体固定效应是指个体固有的不可观测的特征,例如公司的管理能力、病人的遗传基因等。
4.时间固定效应:时间固定效应是指时间固有的不可观测的特征,例如季节性变化、政策变化等。
面板数据的分析需要考虑上述特点,以充分利用数据并得出准确的结论。
二、随机效应模型的基本原理随机效应模型是一种通过将个体固定效应和时间固定效应引入线性回归模型中,来解决面板数据分析中存在的个体异质性和时间相关性的方法。
随机效应模型的基本形式如下:y it=α+X itβ+c i+λt+ϵit其中,y it表示第i个个体在第t个时间点的观测值,X it表示解释变量矩阵,β表示解释变量的系数,c i表示个体固定效应,λt表示时间固定效应,ϵit表示随机误差项。
个体固定效应c i是与个体相关的不可观测因素,它可以通过引入个体虚拟变量来捕捉。
时间固定效应λt是与时间相关的不可观测因素,它可以通过引入时间虚拟变量来捕捉。
三、随机效应模型的估计方法随机效应模型的估计方法有多种,常用的有最小二乘法(OLS)估计法、差分法(first difference)估计法和最大似然法(maximum likelihood)估计法。
AMOS词句中英文对照
AMOS词句中英⽂对照AMOS词句中英⽂对照王超整理Covariance 协⽅差(共变关系)Data Files 数据⽂件的连结设定File Manager ⽂件管理Interface Properties 界⾯属性Analysis Properties 分析属性Object Properties 对象属性Variables in Model 模型中的变量Variables in Dataset 数据⽂件中的变量Parameters 参数Diagram 绘图Draw Observed 描绘观察变量Draw Unobserved 描绘潜在变量Draw Path 描绘单向路径图Draw Covariance 描绘双向协⽅差图Figure Caption 图⽰标题(图形标题)Draw Indicator Variable 描绘指标变量Draw Unique Variable 描绘误差变量Zoom In 放⼤图⽰Zoom Out 缩⼩图⽰Loupe 放⼤镜检视Redraw diagram 重新绘制图形Identified 被识别unidentified ⽆法识别undo 撤销redo 恢复(重做)Copy to clipboafd 复制到剪切板Deselect all 解除选取全部对象Duplicate 复制对象Erase 删除对象Move Parameter 移动参数位置Reflect 映射指标变量Rotate 旋转指标变量Shape of Object 改变对象形状Space Horizontally 调整选取对象的⽔平距离Space Vertically调整选取对象的垂直距离Drag Properties 拖动对象属性Fit to Page 适合页⾯Touch up 模型图最适接触Model-Fit 模型适配度Calculate Estimates 计算估计值Stop Calculate Estimates停⽌计算估计值程序Manage Groups 管理群组/ 多群组设定Manage Models 管理模型/ 多重模型设定Modeling Lab 模型实验室Toggle Observed / Unobserved 改变观察变量/潜在变量Degree of Freedom ⾃由度的信息Specification Search 模型界定的搜寻Multiple-Group Analysis 多群组分析Bayesian estimation 适⽤于⼩样本的贝⽒估计法Data imputation 缺失值数据替代法List Font 字型Smart 对称性Outline 呈现路径图的线条Square 以⽅型⽐例绘图Golden 以黄⾦分割⽐例绘图Customize 定制功能列Seed Manager 种⼦管理Draw Covariances 描绘协⽅差双箭头图Growth Curve Model 增长曲线模型Name Parameters 增列参数名称Name Unobserved Variables 增列潜在变量名称Resize Observed Variables 重新设定观察变量⼤⼩Standardized RMR 增列标准化RMR值Plugins 增列Commands 命令Categories 分类Parameter Formats 参数格式Computation Summary 计算摘要Files in current directory ⽬前⽬录中的⽂件Standardized estimates 标准化估计Unstandardized estimates 未标准化估计View the input path diagram-Model specification显⽰输⼊的路径图View the output path diagram 显⽰输出结果的路径图Default model 预设模型Saturated model 饱和模型Independent model 独⽴模型1 variable is unnamed ⼀个变量没有名称Nonpositive definite matrices ⾮正定矩阵Portrait 肖像照⽚格式(纵向式的长⽅形:⾼⽐宽的长度长)Landscape 风景照⽚格式(横向式长⽅形:宽⽐⾼的长度长)Page Layout 页⾯配置Orientation ⽅向Apply 应⽤Latent variables 潜在变量Latent independent潜在⾃变量(因变量)Exogenous variables外因变量Latent dependent潜在依变量(果变量)Endogenous variables内因变量Draw a latent variable or add an indicator to a latent variable 描绘潜在变量或增画潜在变量的指标变量Rotate the indicators of a latent variable 旋转潜在变量的指标变量Error variable 误差变量Draw paths-single headed arrows 描绘单向箭头的路径Draw covariances-double headed arrows 描绘协⽅差(双向箭头)的路径Add a unique variable to an existing variable 增列误差变量到已有的变量中Residual variables 残差变量(误差变量)Minimization history 极⼩化过程的统计量Squared multiple correlations 多元相关平⽅/复相关系数平分Indirect, direct & Total effects 间接效果、直接效果与总效果Sample moments样本协⽅差矩阵或称样本动差Implied moments 隐含协⽅差矩阵或称隐含动差Residual moments 残差矩阵或称残差动差Modification indices 修正指标Factor score weights 因素分数加权值Covariance estimates 协⽅差估计值Critical ratios for difference差异值的临界⽐值/ 差异值的Z检验Test for normality and outliers正态性与极端值的检验Observed information matrix 观察的信息矩阵Threshold for modification indices修正指标临界值的界定Means and intercepts 平均数与截距Page Setpage 设定打印格式Decimails⼩数点位数Column spacing 表格栏宽度Maximum number of table columns 表格字段的最⼤值Table Rules 表格范例Table Border 表格边框线Analysis Summary 分析摘要表Notes for Group 组别注解Fill color 形状背景的颜⾊Line width 边框线条的粗度Very Thin ⾮常细Very Thick ⾮常粗Fill style 填充样式Transparent 颜⾊透明Solid 完全填满Regular 正常字型Italic 斜体字型Bold 粗体字型Bold Italic粗斜体字型Set Default 设为默认值Set Default Object Properties 预设对象属性Pen width 对象框线Fill style 对象内样式Parameter orientation 参数呈现⽅向The path diagram 绘制的路径图中Normal template AMOS内定的⼀般样板格式中Visibility 可见性:显⽰设定项⽬在路径图上Use visibility setting 使⽤可见设置Show picture 显⽰图形对象Drag properties from object to object 将对象的属性在对象间拖动Height ⾼度X coordinate X坐标-⽔平位置Y coordinate Y坐标-垂直位置Parameter constraints 参数标签名称Preserve symmetries 保留对称性Zoom in on an area that you select 扩⼤选取的区域View a smaller area of the path diagram 将路径图的区域放⼤View a larger area of the path diagram 将路径图的区域缩⼩Show the entire page on the screen 将路径图整页显⽰在屏幕上Resize the path diagram to fit on a page 重新调整路径图的⼤⼩以符合编辑画⾯(路径图呈现于编辑窗⼝页⾯内)Examine the path diagram with the loupe 以放⼤镜检核路径图Multiple-Group Analysis 多群体的分析Specification Search 模型界定的搜寻Select one object at a time ⼀次选取单⼀对象Iteration 8 迭代次数为8Pairwise Parameter Comparisons 成对参数⽐较Varance-Covariance Matrix of Estimates 估计值间⽅差协⽅差矩阵Output输出结果标签钮Minimization history 最⼩化过程Standardized estimates 标准化的估计值Squared multiple estimates 多元相关的平⽅Indirect, direct & total effects间接效果、直接效果与总效果Sample moments 观察样本协⽅差矩阵Implied moments 隐含协⽅差矩阵Residual moments 残差矩阵Modification indices 修正指标Tests for normality and outlies 检验正态性与异常值AMOS的五种选项估计法:Maximum likelihood 极⼤似然法,简称ML法Generalized least squares ⼀般化最⼩平⽅法,简称GLS法Unweighted least squares 未加权最⼩平⽅法,简称ULS法Scale-free least squares 尺度⾃由最⼩平⽅法,简称SFLS法Asymptotically distribution free 渐近分布⾃由法,简称ADF法“错误提⽰”部分:An error occurred while checking for missing data in the group, Group number 1.You have not supplied enough information to allow computing the sample variances and covariances. You must supply exactly one of the following: 没有提供⾜够的信息,因⽽⽆法计算样本的⽅差与协⽅差,使⽤者必须正确提供:a. The sample variance-covariance matrix. a. 样本⽅差-协⽅差矩阵b. The sample correlation matrix and the sample standard deviations b.样本相关矩阵与样本的标准差;c. Raw data. c.原始资料。
三、Mlllon临床多轴问卷(millon clinical multiaxial inventory,简称MCMI)
三、Mlllon临床多轴问卷(millon clinical multiaxial inventory,简称MCMI)该问卷由Millon编制而成,主要用于各种人格障碍的评估。
MCMI被认为是对MMPI具有挑战意义的人格测验。
首先,MCMI是根据Mition的病理心理学理论编制而成,而Mition的病理心理学理论对DSM-Ⅲ中人格障碍分类起着重要作用,MCMI的各量表构成是DSM-Ⅲ人格障碍类别有着一致的关系。
其次,MCMI的条目简要,仅175条,费时少,易于完成。
MC-MI正式发表于1977年,适用于17岁以上者及成人。
现有两个版本MCMI-I和MCMI-Ⅱ。
(一)内容MCMI是由175个问题组成的自评量表,让受试者根据自己情况对每个问题回答是或否。
这些问题进一步组合成5个方面25个分量表,分别如下:第一个方面是反映受测者态度和测验有效性的3个修正量表或修正指数(modifier index),即:①暴露程度量表(disclosure)。
②愿望程度量表(desirability)。
③贬低程度量表(debasement)。
第二个方面是评估临床人格障碍类型(clinical personalitypattern),包括10个分量表:①分裂性人格量表(schizokd)。
②逃避性人格量表(avoidant)。
③依赖性人格量表(dependant)。
④癔病性人格量表(histronic)。
⑤自恋性人格量表(narcissistic)。
⑥反社会性人格量表(antisocial)。
⑦攻击/虐待性人格量表(ag-gressive/sadistic)。
⑧强迫性人格量表(compulsive)。
⑨被动/攻击性人格量表(passive/aggressive)。
⑩自我失败性人格量表(sel- defeating)。
第三个方面评估严重的人格变态(severe personalitypathlogy),包括3个分量表:①分裂型人格(schizotypal)。
计量经济学英文解释
计量经济学英文解释English:Econometrics is a branch of economics that applies statistical methods and mathematical models to analyze and quantify the relationships between economic variables. It aims to provide empirical evidence and test economic theories by using real-world data. By employing various econometric techniques, such as regression analysis, time series analysis, and panel data analysis, econometricians are able to estimate and measure the parameters of economic models, assess the significance of different factors, and make predictions or forecasts about future economic outcomes. Econometrics plays a crucial role in several areas of economics, including macroeconomics, microeconomics, finance, and labor economics, as it helps in understanding economic phenomena, formulating economic policies, and making informed decisions. In addition to its theoretical applications, econometrics also has practical applications in business, government, and research institutions where data-driven decision-making is important. Overall, econometrics provides a systematic and quantitative approach toeconomics, allowing economists to study and analyze economic behavior and relationships in a rigorous and scientific manner.中文翻译:计量经济学是经济学的一个分支,它应用统计方法和数学模型来分析和量化经济变量之间的关系。
pythont检验 假定等方差
pythont检验假定等方差在统计学中,用于检验两组或多组数据的方差是否相等的方法被称为方差齐性检验。
在Python中,我们可以使用统计学库中的方法来进行假定等方差的检验。
常用的方法包括Levene检验和Bartlett检验。
Levene检验是一种非参数检验方法,用于检验两组或多组数据的方差是否相等。
在Python中,我们可以使用`scipy.stats.levene`函数来进行Levene检验。
该函数的使用方法如下:python.from scipy.stats import levene.levene_test_statistic, p_value = levene(data1, data2, data3, ..., center='median')。
其中`data1, data2, data3, ...`代表要进行方差齐性检验的数据,`center`参数用于指定计算方差时所采用的中心方法,可以选择"mean"或"median"。
函数将返回Levene检验的统计量和对应的p值。
另一种常用的方差齐性检验方法是Bartlett检验,它也可以用于检验两组或多组数据的方差是否相等。
在Python中,我们可以使用`scipy.stats.bartlett`函数来进行Bartlett检验。
使用方法如下:python.from scipy.stats import bartlett.bartlett_test_statistic, p_value = bartlett(data1, data2, data3, ...)。
同样,`data1, data2, data3, ...`代表要进行方差齐性检验的数据。
函数将返回Bartlett检验的统计量和对应的p值。
除了Levene检验和Bartlett检验外,我们还可以使用ANOVA (方差分析)来进行方差齐性检验。
计量经济学伍德里奇课后题stata的命令
计量经济学伍德里奇课后题stata的命令计量经济学是经济学中一种重要的研究方法,它将统计学的理论与经济学的实践相结合,旨在通过收集和分析数据来解决经济问题。
而伍德里奇是计量经济学中的重要书籍之一,该书的作者是英国经济学家大卫·伍德里奇,该书系统介绍了计量经济学的基本理论和实践方法,被广泛应用于经济学研究中。
在学习计量经济学的过程中,除了理论知识外,掌握数据处理和分析工具也是必不可少的。
而Stata就是计量经济学研究中非常常用的数据处理和分析软件之一,下面将介绍伍德里奇书中的一些课后题,并介绍如何使用Stata进行数据处理和分析。
课后题1在Stata中,运行以下命令将数据集mydata.dta导入到Stata中:import delimited "mydata.csv", clear该命令将csv格式的数据文件mydata.csv导入到Stata中,clear选项表示在导入数据之前,清除当前Stata工作区中的所有数据。
课后题2有一个包含两个变量y和x的数据集,其中y是连续的,x是二元的,值为0或1。
请使用Stata计算x=1时 y的平均值与x=0时y的平均值,并解释结果的意义。
运行以下命令,我们可以计算x=1时y的平均值:summarize y if x==1运行以下命令,我们可以计算x=0时y的平均值:summarize y if x==0这里的if表示只对满足条件的数据进行求和,其中x==1表示筛选x等于1的数据,x==0表示筛选x等于0的数据。
通过求和之后,我们初步得到y的平均值,进一步对结果进行解释和分析,可以了解x为二元变量时,y的平均值在x=0和x=1时的差异情况。
课后题3有一个包含3个变量y,x和z的数据集,请使用Stata分别计算y关于x的回归系数和y关于x和z的回归系数,并解释两者之间的差异。
对于y关于x的回归系数,我们可以使用以下命令:regress y x该命令运行回归模型regress,将x作为自变量,y作为因变量。
stata 净重新分类指数nri 结果解读
stata 净重新分类指数nri 结果解读【实用版】目录1.Stata 简介2.净重新分类指数 (NRI) 的定义和计算方法3.NRI 结果的解读4.应用实例正文1.Stata 简介Stata 是一款广泛应用于社会科学、经济学、生物统计学和医疗研究领域的数据分析软件。
它不仅具有强大的数据处理功能,还能进行各种统计分析和建模。
对于研究者来说,Stata 是一个非常有用的工具,可以帮助他们更好地理解数据和揭示研究现象之间的关系。
2.净重新分类指数 (NRI) 的定义和计算方法净重新分类指数(Net Reclassification Index,简称 NRI)是一种评估模型预测效果的指标,主要用于二元分类模型。
它可以衡量模型对某一类别的预测效果是否好于基准模型。
NRI 的计算方法为:RI = (灵敏度 - 基线灵敏度) / (1 - 灵敏度)其中,灵敏度是指模型预测为阳性的样本中实际为阳性的比例,基线灵敏度是指基准模型预测为阳性的样本中实际为阳性的比例。
3.NRI 结果的解读RI 的结果可以分为三个区间:NRI > 0,表示模型的预测效果优于基准模型;NRI = 0,表示模型的预测效果与基准模型相同;NRI < 0,表示模型的预测效果不如基准模型。
研究者可以根据 NRI 的结果来选择最佳的预测模型。
4.应用实例以某医院的病人数据为例,研究者希望对病人的疾病风险进行预测,从而提前采取干预措施。
首先,研究者使用 Stata 计算了不同模型的 NRI 值,然后比较了这些值。
结果显示,逻辑回归模型的 NRI 值最高,因此研究者可以认为逻辑回归模型对病人疾病风险的预测效果最好,并据此制定干预措施。
总之,Stata 中的净重新分类指数 (NRI) 是一种评估模型预测效果的重要指标。
multinomial logistic regression 结构方程模型
多元逻辑回归模型(Multinomial Logistic Regression)和结构方程模型(Structural Equation Model, SEM)**是两种不同的统计方法,它们各自有独特的结构和应用。
多元逻辑回归模型(Multinomial Logistic Regression):
多元逻辑回归模型是一种用于处理分类变量的回归模型。
它用于预测一个或多个分类结果,而不是连续的数值结果。
在这种模型中,自变量和因变量之间的关系是通过逻辑函数来描述的,即一个转换函数将线性回归的结果转化为概率。
多元逻辑回归可以用于探索多个自变量与一个或多个因变量之间的关系,例如,预测疾病的风险因素,或者预测用户对产品或服务的响应类型。
结构方程模型(Structural Equation Model, SEM):
结构方程模型是一种更复杂的统计方法,它允许研究者测试一组关于特定变量间关系的假设。
SEM结合了因素分析、多元回归分析和多元协方差分析等多种统计技术。
它允许研究者检验一组关于变量间关系的假设,并评估这些假设与观察数据的一致性。
SEM通常用于探索复杂的心理、社会或经济现象,例如,研究心理特质如何影响行为,或者评估经济政策对多个经济指标的影响。
总结:多元逻辑回归和结构方程模型在目标和实现方式上有所不同。
多元逻辑回归主要用于分类预测,而结构方程模型则更适用于检验一组复杂的假设关系。
Themultinomiallogisticregressionmodel
log
Pr supermarket Pr supermarket'
=
α
β1 salary
β 2 caruse
where supermarket' is the reference supermarket.
Equation 3
Computing and interpreting model parameters
3.098 -0.006 -1.468
0.778 0.002 0.793
0.994 0.230
The parameters for the model shown in Table 1 are interpreted as follows. For a unit increase in salary whilst controlling for car use, the log odds of a consumer selecting Solo as opposed to Sainsburys decreases by 0.007. This equates to an odds ratio of 0.993 (e-0.007). For a unit increase in salary, a consumer is less likely to choose Solo. Whilst this might appear to be a very small change in probability, a unit increase in salary is a small measure and consumers' salaries may differ by large amounts (for example, what are the odds of someone selecting Solo whose salary is 3,000 units larger?). Car use has been dummy coded using treatment coding, which means that the identified category (car user; hence the (T.yes) designation in the table) is compared to the reference. The log odds of a car user selecting Solo compared to Sainsburys is -3.789, which equates to an odds ratio of 0.023 (e-3.789). Car users are therefore much more likely to select Sainsburys than Solo even after controlling for salary.
nomogram量表代码
nomogram量表代码1. 什么是nomogram量表nomogram量表是一种统计分析方法,用于预测特定结果发生的概率。
它是通过在一张图表上绘制不同变量之间的关系,从而构建出一种简单而直观的评估模型。
nomogram量表常用于医学和流行病学研究中,用于评估患病风险、预测疾病进展或评估治疗效果。
2. nomogram量表的构建方法nomogram量表的构建方法包括以下几个步骤:2.1 选择变量首先,根据研究的目的和需要,选择适当的变量作为构建nomogram量表的输入。
这些变量通常是与目标结果相关的因素,如患者的年龄、性别、病史等。
2.2 数据收集和处理在确定了要使用的变量后,需要收集与这些变量相关的数据。
这些数据可以来自于临床观察、实验室检测、问卷调查等多种途径。
收集到的数据需要进行清洗和处理,确保数据的准确性和完整性。
2.3 建立预测模型接下来,使用收集到的数据建立预测模型。
预测模型可以是线性回归模型、逻辑回归模型、生存分析模型等。
通过对数据进行统计分析和建模,可以得到每个变量对目标结果的影响程度和权重。
2.4 绘制nomogram量表在得到预测模型后,可以使用R语言、Python等编程语言来绘制nomogram量表。
在绘制nomogram量表时,需要将各个变量的权重和影响程度转换为具体的刻度和位置。
绘制nomogram量表时,通常会使用直线、尺子、指针等图形元素。
3. nomogram量表的应用举例nomogram量表的应用非常广泛,以下是几个nomogram量表在医学领域的应用举例:3.1 癌症患者生存预测在癌症治疗中,医生需要评估患者的生存预期,以制定最合适的治疗方案。
通过构建基于癌症类型、患者年龄、肿瘤大小等变量的nomogram量表,可以准确地预测患者的生存期,并帮助医生做出治疗决策。
3.2 心脏病风险评估在心脏病防控中,评估个体的患病风险是非常重要的。
通过构建基于年龄、性别、血脂水平等变量的nomogram量表,可以准确预测个体患心脏病的概率,并帮助制定个体化的防控策略。
临床试验偏倚控制方法
临床试验偏倚控制方法
偏倚(bias)又称偏性,是指在设计临床试验方案、执行临床试验、分析评价临床试验结果时,有关影响因素的系统倾向,致使疗效或安全性评价偏离真值.随机化(randomization)和盲法(blinding)是控制偏倚的重要措施.
随机化(randomization)是使临床试验中的受试者有同等的机会被分配到试验组或对照组中,而不受研究者主观意愿的影响,可以使各处理组的各种影响因素,不论是已知或未知的,分布趋于相似。
随机化包括分组随机和试验顺序随机,与盲法合用,随机化有助于避免在受试者的选择和分组时因处理分配可预测性而导致的可能偏倚。
盲法(blind method)是为了控制在临床试验的过程中以及对结果进行解释时产生有意或无意的偏倚,这些偏倚可能来自于对治疗的了解而对筛选和安排受试者、照顾受试者、受试者对治疗的态度、对终点(end point)的评价、对脱落(drop out)的处理,在分析中剔除数据等等的影响。
临床试验根据设盲的程度分为单盲、双盲和三盲试验。
单盲试验是指研究对象不知自己所接受试验处理还是对照处理;研究对象和给予干预和结局评估的研究人员均不知道试验分组情况;三盲是指在双盲基础上对负责资料收集和数据分析的人员也设盲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tsun-Feng Chiang*
*School of Economics, Henan University, Kaifeng, China
June 9, 2014
Similarly, we can use NB and NC observations to estimate the binary logit and the probabilities of B versus C : Pr (B |X ) = exp(β0,B |C + β1,B |C x ) Pr (C |X ) Then select observations NA and NC for the logit: Pr (A|X ) = exp(β0,A|C + β1,A|C x ) Pr (C |X )
1 / 39
Nominal Outcomes
Nominal Outcomes
When a variable is nominal, the categories cannot be ordered. But models for nominal outcomes are often used when the dependent variable is ordinal. Occupation Commuting: driving a car, taking the bus and walking to the bus stop, taking the bus and driving to the bus stop, carpooling, etc. The choice of a new vehicle: sports car, van, compact, Jeep, convertible, etc. Sometime, it is done to avoid the parallel regression assumption of the ordered model. Other times there may be uncertainty as to whether the dependent variable should be considered as ordinal. For example, the types of cars can be ordered by their prices, but we are not sure whether consumers’ preference move in the order of cars’ prices.
+ x i δ) + δ ])
=
exp(x i [βm + δ ])
J j =1 exp (x i [βj
While the value of the probabilities are unchanged, the original parameters βm have been replaced by different parameters βm + δ . Because δ can be any nonzero vector of parameters, βm + δ can be any nonzero vector of parameters too. To identify the model, we must impose constraints on the β ’s. The most common constraint is β1 = 0 Clearly, if we add a nonzero δ to β1 , the assumption that β1 = 0 is violated.
5 / 39
Nominal Outcomes
The Multinomial Logit Model
The Multinomial Logit Model (MNLM)
There are several methods to derive the MNLM. The MNLM as a Probability Model Suppose y = j and j = 1, 2, · · · , m, · · · , J (the number is a notation, these categories are not assumed to be ordered). Let Pr (y = m|X ) be the probability of observing outcome m given X . Assume that Pr (y = m|X ) is a function of the linear combination X βm where the vector βm = (β0m , · · · , βlm , · · · , βkm ) includes the intercept β0m and the coefficient βl for the effect of xl on outcome m. In contrast to the ordered logit model, βm differs for each outcome. To ensure that the probabilities Pr (y = m|X ) are nonnegative, we take the exponential of X βm : exp(X βm ) > 0. The sum of all exponential functions from exp(X β1 ) to exp(X βJ ) is J j =1 exp (X βj ).
The coefficient β1,A|B can be interpreted as a unit increases in x , the log of the probabilities of A versus B changes β1,A|B . How to justify this statement? Let Ω(X ) = Pr (A|X ) ∂ lnΩ(X ) , so = βl ,A|B Pr (B |X ) ∂ xl
6 / 39
Nominal Outcomes
The Multinomial Logit Model
The MNLM as a Probability Model (Continued) For every observation i , the probability of a category m is exp(x i βm ) divided by the sum, Pr (yi = m|x i ) = Now the probabilities sum to 1, i.e. exp(x i βm )
J j =1 exp (x i βj )
7 / 39
×
exp(x i δ ) exp(x i δ )
Nominal Outcomes
The Multinomial Logit Model
Identification (Continued) = exp(x i βm + x i δ )
J j =1 exp (x i βj
J j =1 exp (x i βj ) J m=1 Pr (yi
(eq .2)
= m|x i ) = 1.
Identification (eq. 2) is unidentified since more than one set of parameters generates the same probabilities of the observed outcomes. To see this, multiply (eq. 2) by exp(x i δ )/exp(x i δ ), Pr (yi = m|x i ) = exp(x i βm )
4 / 39
Nominal Outcomes
Introduction to the Multinomial Logit Model
However, this a binary logit redundant. If you know the probabilities of A versus B, and the probabilities of B versus C, then you can derive the probabilities of A versus C without doing the estimation. To see this, multiply two relative probabilities, Pr (A|X ) Pr (B |X ) Pr (A|X ) × = Pr (B |X ) Pr (C |X ) Pr (C |X ) ⇒ exp(β0,A|B + β0,B |C + (β1,A|B + β1,B |C )x ) = exp(β0,A|C + β1,A|C x ) Therefore, β0,A|B + β0,B |C = β0,A|C ; β1,A|B + β1,B |C = β1,A|C (eq .1) (eq. 1) describes necessary relationships among the parameters in the population. They will not hold with sample estimates from the three binary logits because the observations used in three models are different. In the MNLM, all of the logits are estimated simultaneously, so do the probabilities of one category versus another category.