卫星、飞船变轨问题

合集下载

卫星变轨问题知识点总结

卫星变轨问题知识点总结

卫星变轨问题知识点总结
卫星变轨是指卫星在轨道上偏离原有轨道进行调整的过程,用于满足不同的需求,如太阳同步轨道、地球静止轨道等。

以下是卫星变轨问题的几个知识点总结:
1. 变轨方式:变轨主要有化学推进剂变轨和电推进剂变轨两种方式。

前者通常采用火箭发动机进行推进,后者则利用电磁力进行推进。

2. 变轨方法:变轨方法通常包括单次变轨、多次变轨、连续变轨等几种。

其中单次变轨是指通过一次加速或减速达到目标轨道;多次变轨是分数次进行变轨,实现最终目标轨道;连续变轨则是通过对卫星进行定期推进来维持轨道的稳定。

3. 变轨技术:变轨技术主要包括贴近飞行、引力助推、轨道选择等。

贴近飞行需要精确掌握卫星的运动状态,以便在飞行过程中进行微调;引力助推则是利用行星或月球等天体的引力来实现变轨;轨道选择则是根据具体任务需求选择不同的轨道。

4. 变轨误差:变轨过程中存在着各种误差,如发动机性能波动、气象条件变化等。

这些误差会影响卫星的运行轨迹,需要对其进行修正和控制。

5. 动力学方程:卫星的运动状态可以通过动力学方程描述。

动力学方程包括万有引力、空气阻力、电磁效应等多个因素,并可通过数值积分方法求解得到卫星的运动状态。

总之,卫星变轨是卫星运行中重要的环节之一,需要精确掌握
变轨技术和动力学方程,保证卫星能够按照预定轨道稳定运行,实现各种任务目标。

变轨问题

变轨问题

五.宇宙飞船与空间站的对接 空间站实际上就是一个载有人的人造卫星,那么,地球上的人 到空间站,空间站上的人返回地面等活动都需要通过宇宙飞船 来完成,这就存在一个宇宙飞船与空间站对接的问题。
空间站
(1)低轨道飞船与高轨道空间站对接
低轨道飞船通过合理加速沿椭圆轨 道追上高轨道空间站与其完成对接
飞船
(2)同一轨道飞船与空间站对接 后面的飞船先减速降低高度再加速提升高度,通过适当控制, 使飞船追上空间站时恰好具有相同速度 空间站
mM F引 G 2 r
v F 向 m r
2
1. F 圆周运动 向 引 F
向 向心运动 引 F 2. F 向 离心运动 引 F 3. F
卫星在某轨道内运行时由于某种原因(开启或关闭发动机,空气 阻力等)突然改变速度,从而脱离原来的轨道进入新的轨道运行; 卫星的发射和回收就是利用这一原理
二.同步卫星的发射 发射同步卫星要先把卫星送到到离地 面高度200km--300km的圆形近地轨道 上,之后卫星该如何进入同步(预定) 轨道? P ③
2 4
三.卫星的回收 卫星回收是卫星从高轨 道变轨至低轨道的过程
它是卫星发射变轨的逆 过程
圆轨道与椭圆轨道的互变:
A
B
A点: 圆→ 加速 →椭圆 近地点 椭圆→减速 →圆 B点: 圆→ 减速 →椭圆 远地点 椭圆→加速 →圆
四.变轨过程中速度的大小关系 第一次变轨:
内侧轨道点火加速:v2>v1
变轨问题
卫星运行过程中改变运行轨道的过程称为变轨,人造卫星、宇 宙飞船在运行的过程中,常常需要通过变轨来到达预定轨道或 目的地
“嫦娥一号”奔月轨道
如图所示为某卫星轨道图,②轨道 为预定轨道,卫星从P发射,运动至 Q时通过改变速度进入②轨道 卫星从Q点进入②轨道时需要加速还 是减速? P

高中物理必修二科学思维系列(一)——卫星变轨及飞船对接问题

高中物理必修二科学思维系列(一)——卫星变轨及飞船对接问题

核心素养提升微课堂科学思维系列(一)——卫星变轨及飞船对接问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足GMm r2=m v2r即v=GMr.以此为依据可分析卫星在两个不同圆轨道上的速度大小.②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMmr2<m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMmr2>m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n=Fm=G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是()A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B 错误;“嫦娥三号”在从远月点P 向近月点Q 运动的过程中所受万有引力逐渐增大,故加速度变大,C 正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P 点的速度小于Q 点的速度,D 错误.【答案】 C变式训练1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P 处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r ,周期为T ,已知引力常量为G ,下列说法正确的是( )A .由题中(含图中)信息可求得月球的质量B .由题中(含图中)信息可求得月球的第一宇宙速度C .“嫦娥三号”在P 处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R ,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是()A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是()A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 k m/s,而在远地点P的速度一定小于7.9 km/sD .卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式GMm r 2=m v 2r 解得v =GMr ,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km/s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GMr ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来。

30卫星、飞船变轨问题

30卫星、飞船变轨问题

Mm 2 G 2 =mr r Mm 2 2 G 2 =mr ( ) r T
GM 3 r
周期T:
4 r T GM
2 3
2、一星球的质量为M,半径为R,已知万有引力 恒量为G,试计算: (1) 该星球的第一宇宙速度为 多大? (2) 一质量为m的卫星在距离该星球表面距 离为h的轨道上 运行的周期为多大? 解:(1)设卫星的质量为m,万有引力提供向心力 2 Mm v GM G 2 m v 可得: R R R
r
增大到和该位置的万有引力相等,这样就能使卫 星进入同步轨道Ⅲ而做匀速圆周运动。 结论是:要使卫星由较低的圆轨道进入较高的圆 轨道,即增大轨道半径(增大轨道高度h),一 定要给卫星加速增加能量。
例2 人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km的的椭圆轨道,在飞行第五圈的时候, 飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如 图所示,试处理下面几个问题(地球的半径R=6370km, g=9.8m/s2): (1)飞船在椭圆轨道1上运行,Q为近地点,P为远地 点,当飞船运动 到P点时点火,使飞船沿圆轨道2运行,以下说法正确 的是 BC A.飞船在Q点的万有引力大于该点所需的向心力 B.飞船在P点的万有引力大于该点所需的向心力 C.飞船在轨道1上P的速度小于在轨道2上P的速度 D.飞船在轨道1上P的加速度大于在轨道2上P的加速度
线速度v: 角速度ω: 周期T: 加速度a
小结:人造地球卫星的线速度v、角速度ω、周期 T、加速度a都与 r 相匹配。 r、v、ω、T
Mm v G 2 =m r r Mm 2 G 2 =mr r Mm 2 2 G 2 =mr ( ) r T Mm G 2 =F向 =ma向 r
2
GM v r GM 3 r 2 3 4 r T GM

关于人造卫星与宇宙飞船变轨对接问题

关于人造卫星与宇宙飞船变轨对接问题


在 △ AD  ̄ A B E 中 , E C
・ .
・ D—B , A一 , A D一≤ A C B A E 标飞器l爵 3 凌晨实现刚性连接, 形成组合 做圆周运动才将离心, Mmr一 即G , / z
体, 中国载人 航 天首次 空间交会 对接 试验 m l / <m Q / , 口 r z r 有 Q < ∞ 在 轨
三、 要注意图形的多种情况
例3 已 A C k ,,, “ 舟 号 飞 处 停 状 照 { t 有引 过 才能 椭 知A B ABC中, 神 八 ” 船 于 靠 态 接 墨 ≤ 韵万 力 大 是 A — , ,C A , DAD分别; 合体 行1天 右 将 行 二 交 圆, / m pr z/ B A , : , , 、', BA C 如A 组 飞 2 左 进 第 次 会 即 寻 < r 2 / 2,
2 2 第1 0年 期 1
错 证 : △ADC和 △ B D 中 , 在 C


● 课 解读
‘ A = B , C — D C , 2一 1, D

。 .
△ ADC 坌△ BC D.
’ . .
△ ADC 一 △ DEC 一 △ BC D
△ DEC,
即△ ADE 盆△ BC E.
. t B  ̄ tABD. . AA D RA ' , R ,
・ . .
0 下面研窍有关“ 神舟八号” 天宫一0 与“ 空间站的对接・ 1 如 所示, 宇宙飞船
号” 交会对接涉及的问 题・
一、 的变轨 问题
BD— B, , D

欲 进入轨道空间站实现对荦 飞船为
了追上 空 间站 , 航天 员 进入 轨 道空 使

新教材高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册

新教材高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册

新教材高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法. ①卫星做匀速圆周运动经过某一点时,其速度满足GMm r 2=mv 2r即v =GM r.以此为依据可分析卫星在两个不同圆轨道上的速度大小. ②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMm r 2<mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMm r 2>mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n =F m =G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是( )A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B错误;“嫦娥三号”在从远月点P向近月点Q运动的过程中所受万有引力逐渐增大,故加速度变大,C正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P点的速度小于Q 点的速度,D错误.【答案】 C变式训练 1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r,周期为T,已知引力常量为G,下列说法正确的是( )A.由题中(含图中)信息可求得月球的质量B.由题中(含图中)信息可求得月球的第一宇宙速度C.“嫦娥三号”在P处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是( )A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是( )A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P 分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 km/s,而在远地点P的速度一定小于7.9 km/sD.卫星在椭圆轨道2上经过P点时的加速度一定等于它在圆轨道3上经过P点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式G Mm r 2=m v 2r 解得v =GM r,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km /s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GM r ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故B 正确;当c 加速时,c 受的万有引力F <m v 2c r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v 2b r b,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故C 错误;对a 卫星,当它的轨道半径缓慢减小时,由v =GM r 可知,v 逐渐增大,故D 正确.答案:BD。

宇宙飞船变轨原理

宇宙飞船变轨原理

宇宙飞船变轨原理随着我国“神舟”号宇宙飞船的四次发射和回收成功,宇宙飞船和人造地球卫生问题再度成为中学物理教学以及青少年科普知识中的一个亮点,相信它也将成为“3+X”高考的一个热点。

飞船和卫星的发射和回收过程中存在着绕地球做匀速圆轨道运行和以地球为一个焦点的椭圆轨道运行,如何用中学所学物理知识来分析飞船(卫星)沿轨道运动和变轨问题?要正确分析这类问题,就必须掌握卫星在不同轨道上运行时的受力与运动的关系。

1、飞船(卫星)绕地心做匀速圆周运动飞船绕地心做匀速圆周运动,地球对飞船的万有引力恰好提供飞船做圆周运动所需要的向心力,万有引力的方向与线速度方向垂直,若卫星的轨道平面在地球的赤道平面上且卫星做匀速圆周运动的周期与地球的自转周期相同,绕行方向与地球自转方向也相同(从地球上看是自西向东),则这种卫星就是地球同步卫星,它距地面的高度是一个定值。

2、飞船(卫星)绕地球在椭圆轨道上运行飞船(卫星)绕地球在椭圆轨道上运行时,由开普勒第一定律可知,地球位于卫星椭圆轨道的一个焦点上(如右图所示)。

飞船在轨道上的两个特殊位置A、B(A为近地点,B为远地点)所受万有引力的方向虽然与飞船线速度的方向垂直,但均不满足万有引力等于该点所需向心力的条件;飞船在椭圆轨道上的其它各个位置(如C位置)所受的万有引力方向既不与线速度方向垂直,也不满足万有引力等于该点所需向心力的条件,故飞船在椭圆轨道上运行时线速度的大小和方向均不断发生变化。

在近地点A处,由开普勒第二定律知,飞船的速度较大,地球对飞船的万有引力小于飞船做半径为Ra的圆周运动所需的向心力,故飞船做离心运动,轨迹是椭圆,随着到地心的距离增大,万有引力减小,飞船克服万有引力做功,引力势能增大,动能减小,速度减小。

飞船由远点B向近地点A运动时,地球对飞船的万有引力大于它绕地球做半径为Rb的圆周运动时所需向心力,飞船做向心运动。

飞船运动到椭圆轨道上的一般位置(如C处)时,所受万有引力的方向与速度方向不垂直,可将万有引力分解为沿速度方向的切向分力和垂直于速度方向上的法向分力,切向分力使飞船加速或减速,法向分力使飞船速度方向改变。

飞船变轨问题剖析(用最新)

飞船变轨问题剖析(用最新)

例1.(2012全国理综卷)某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K2误区警示 本题中由于阻力作用会误因为2v <1v ,错选D 。

深刻理解速度是由高度决定的,加深“越高越慢”的印象,才能走出误区。

解析 由于阻力使卫星高度降低,故r 1>r 2,由r GM=υ知变轨后卫星速度变大,动能变大E K1<E K2,也可理解为卫星在做向心运动时引力做功大于克服阻力做功,故动能增加大,故B 正确。

例2(2011年全国理综卷 人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动 到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道1上P 的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度 解析 飞船在轨道1上运行,在近地点Q 处飞船速度较大,相对于以近地点到地球球心的距离为半径的轨道做离心运动,说明飞船在该点所受的万有引力小于在该点所需的向心力;在远地点P 处飞船的速度较小,相对于以远地点到地球球心为半径的轨道飞船做向心运动,说明飞船在该点所受的万有引力大于在该点所需的向心力;当飞船在轨道1上运动到P 点时,飞船向后喷气使飞船加速,万有引力提供飞船绕地球做圆周运动的向心力不足,飞船将沿椭圆轨道做离心运动,运行到轨道2上,反之亦然,当飞船在轨道2上的p 点向前喷气使飞船减速,万有引力提供向心力有余,飞船将做向心运动回到轨道1上,所以飞船在轨道1上P 的速度小于在轨道2上P 的速度;飞船运行到P 点,不论在轨道1还是在轨道2上,所受的万有引力大小相等,且方向均于线速度垂直,故飞船在两轨道上的点加速度等大。

卫星变轨问题(推荐完整)

卫星变轨问题(推荐完整)

地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次
点火,将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2
、3相切于P点,如图所示。则当卫星分别在1、2、3轨道
上正常运行时,以下说法正确的是:
( BD )
A.卫星在轨道3上的速率大于在轨道1上的速率
B.卫星在轨道3上的角速度小于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上
(2)a、v 、ω、T 均与卫星的质量无关,只由轨道半径 r 和中 心天体质量共同决定。
(3)卫星变轨时半径的变化,根据万有引力和所需向心力的大
小关系判断;稳定在新轨道上的运行速度变化由 v = GrM判断。
(4)卫星在不同轨பைடு நூலகம்上运行时机械能不同,轨道半径越大,机 械能越大。
(5)卫星经过不同轨道相交的同一点时加速度相等,外轨道的 速度大于内轨道的速度。
卫星由低轨道进入高轨道后,重力势能增 加,动能减少,机械能增加 反之,卫星由高轨道进入低轨道后,重力 势能减少,动能增加,机械能减少 总结:1、势能的变化比动能变化快
2、轨道半径变大机械能增加,轨道 半径变小机械能减小,卫星在同一轨道上 运动,机械能不变。
(课标全国卷)发射地球同步卫星时,先将卫星发射至近
• 不行,因为飞船加速后做离心运动会偏离原来的圆 轨道而无法与空间站对接。
对接方法:
• 飞船首先在比空间站低的轨 道运行,当运行到适当位置 时,再加速运行到一个椭圆 轨道。
• 通过控制轨道使飞船跟空间 站恰好同时运行到两轨道的 相切点,此时飞船适当减速, 便可实现对接,如图示。
飞船
空间站
例:在太空中有两飞行器a、b,它们在绕地 球的同一圆形轨道上同向运行,a在前b在后,

2019_2020学年高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册

2019_2020学年高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册

科学思维系列(一)——卫星变轨及飞船对接问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法. ①卫星做匀速圆周运动经过某一点时,其速度满足GMm r 2=mv 2r即v =GM r.以此为依据可分析卫星在两个不同圆轨道上的速度大小. ②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMm r 2<mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMm r 2>mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n =F m =G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是( )A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B错误;“嫦娥三号”在从远月点P向近月点Q运动的过程中所受万有引力逐渐增大,故加速度变大,C正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P点的速度小于Q 点的速度,D错误.【答案】 C变式训练 1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r,周期为T,已知引力常量为G,下列说法正确的是( )A.由题中(含图中)信息可求得月球的质量B.由题中(含图中)信息可求得月球的第一宇宙速度C.“嫦娥三号”在P处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是( )A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是( )A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P 分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 km/s,而在远地点P的速度一定小于7.9 km/sD.卫星在椭圆轨道2上经过P点时的加速度一定等于它在圆轨道3上经过P点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式G Mm r 2=m v 2r 解得v =GM r,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km /s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GM r ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故B 正确;当c 加速时,c 受的万有引力F <m v 2c r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v 2b r b,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故C 错误;对a 卫星,当它的轨道半径缓慢减小时,由v =GM r 可知,v 逐渐增大,故D 正确.答案:BD。

例谈卫星变轨问题

例谈卫星变轨问题

摘要:飞速发展的航天事业,已大大提高了中国的国际地位和影响力。

因此在物理上这些与航天航空、星际探索相关知识点应给引起高度重视,成为高考命题的热点。

本文通过以下几个实例对卫星变轨问题进行了分析。

关键词:卫星变轨一、变轨前后卫星在圆周轨道上的稳定状态稳定状态就是指卫星进入预定轨道(可近似为圆周)正常运行状态,靠万有引力来充当向心力。

由万有引力公式与向心力四种表达式建立如下等量关系:g■=ma向=■=mrω2=m■r。

推导得出:向心加速度a=■、线速度v=■、角速度ω=■、周期t=2π■。

对环绕同一中心天体的卫星来讲,轨道半径越大,周期越大,而向心加速度、线速度、角速度越小。

这个规律适用于轨道是圆周人造卫星问题,不适用于轨道是椭圆卫星问题。

二、卫星的缓慢变轨例1 人造地球卫星在运行过程中由于受到微小的阻力,轨道半径将缓慢减小。

在此运动过程中,卫星所受万有引力大小将________(填“减小”或“增大”);其动能将________(填“减小”或“增大”)。

解析:本题考查万有引力定律及人造地球卫星。

根据万有引力定律可知,人造地球卫星离地球越近,受到的万有引力越大,故轨道半径缓慢减小时,万有引力大小会增大。

由公式可知,速度与轨道半径成反比,故轨道半径缓慢减小时,卫星的速度越来越大,故动能将增大。

三、卫星的快速变轨卫星变轨就是通过调整卫星的线速度,使卫星进入半径较大或较小的新轨道运行。

具体有以下两种情况:1.当万有引力不足以提供卫星所需要的向心力时,卫星做离心(轨道半径增大)运动。

从而使卫星由切点进入到半径较大的轨道运行。

2.当万有引力大于卫星所需要的向心力时,卫星做向心(轨道半径减小)运动,从而使卫星由切点进入到半径较小的轨道运行。

例2 2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在a点从圆形轨道ⅰ进入椭圆轨道ⅱ,b为轨道ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有()。

a.在轨道ⅱ上经过a的速度小于经过b的速度b.在轨道ⅱ上经过a的动能小于在轨道ⅰ上经过a的动能c.在轨道ⅱ上运动的周期小于在轨道ⅰ上运动的周期d.在轨道ⅱ上经过a的加速度小于在轨道ⅰ上经过a的加速度解析:a选项考查的是稳定轨道ⅱ上的情况,根据开普勒定律,近地点的速度大于远地点的速度,a正确。

卫星变轨问题——方法指导

卫星变轨问题——方法指导
1.卫星由低轨道 高轨道的运行分析
轨道I
轨道II
当卫星的速度突然增加时 Mm v2
G r2 <m r 即万有引力不足以提供向心力,卫星 将做离心运动,脱离原来的圆轨道, 轨道半径变大,当卫星进入新的轨道
稳定运行时由 v= GrM可知其运行 速度比原轨道时减小。
2.卫星由高轨道 低轨道的运行分析
B 轨道II
轨道I A
当卫星的速度突然减小时: Mm v2
G r2 >m r 即万有引力大于所需要的向心力,
卫星将做近心运动,脱离原来的圆
轨道,轨道半径变小,当卫星进入
新的轨道稳定运行时由 v=
GM r
可知其运行速度比原轨道时增大。
卫星的发射和回收就是利用这一原
理。反思总结Fra bibliotek解题模板
规律方法 有关变轨问题的几个突破点
(1)判定卫星(或航天器)变轨时半径的变化,根据万有引 力和所需向心力的大小关系判断;稳定在新轨道上的运 行速度变化由 v= GrM判断. (2)卫星(或航天器)在不同轨道上运行时机械能不同,轨 道半径越大,机械能越大.
(3)卫星(或航天器)经过不同轨道相交的同一点时加速度 相等,外轨道的速度大于内轨道的速度.

2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题

2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题

卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。

(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。

(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。

2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。

(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。

2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。

卫星变轨问题(附知识点及相关习题的答案)

卫星变轨问题(附知识点及相关习题的答案)

人造卫星变轨问题专题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对GM、周期T 2r 3、向心加速度 a GM应的卫星线速度 v 也都是确定的。

如果卫星r 2rGM的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小) ,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功, 使卫星速度减小, 所需要的向心力m v 2减r小了,而万有引力大小GMm没有变,因此卫星将做向心运动,即半径r 将减小。

r 2由㈠中结论可知:卫星线速度 v 将增大,周期 T 将减小,向心加速度三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在 P 点点火加速,在短时间内将速率由 v 1 增加到 v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点 Q 时的速率为 v 3,此时进行第二次点火加速, 在短时间内将速率由 v 3 增加到 v 4,使卫星进入同步轨道Ⅲ, 绕地球做匀速圆周运动。

a 将增大。

v 3ⅢQ v 4v 1 Ⅱ Ⅰ Pv 2第一次加速:卫星需要的向心力mv 2 增大了,但万有引力 GMm 没变,因此卫星将开始做rr 2离心运动,进入椭圆形的转移轨道Ⅱ。

卫星变轨问题、双星模型(解析版)

卫星变轨问题、双星模型(解析版)

万有引力与宇宙航行卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。

2.掌握双星、多星系统,会解决相关问题。

3.会应用万有引力定律解决星球“瓦解”和黑洞问题。

1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。

对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅰ运动到B 处与天和核心舱对接,轨道Ⅰ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅰ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅰ上B 点处的加速度大于轨道Ⅰ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能大 【答案】A【解析】A .飞船从轨道Ⅰ变轨到轨道Ⅰ需要加速,所以经过A 点时21v v >圆轨道时,根据22GMm v m r r= 所以13v v >综合得213v v v >>故A 正确;B .根据开普勒第三定律,轨道半长轴越大,周期越大,故B 错误;C .根据2GMmma r= 则同一点处的加速度应该相等,故C 错误;D .根据变轨原理可知,从低轨道到高轨道应点火加速,外力做正功,则卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能小,故D 错误。

故选A 。

考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。

(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mmr 22=m v B ′2r 2,进入圆轨道Ⅲ。

(完整版)卫星变轨问题分析

(完整版)卫星变轨问题分析

卫星变轨问题分析一:理论说明:卫星变轨问题“四个”物理量的规律分析1.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.2.加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.二、基础训练1、[变轨中运行参量和能量分析](多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用2、[变轨中运行参量的分析](多选)如图所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km,周期为118 min 的工作轨道,开始对月球进行探测.下列说法正确的是()A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大C.卫星在轨道Ⅲ上运动周期比在轨道Ⅰ上短D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上多3、[变轨中运行参量的分析]2013年12月2日凌晨1时30分,嫦娥三号月球探测器搭载长征三号乙火箭发射升空.这是继2007年嫦娥一号、2010年嫦娥二号之后,我国发射的第3颗月球探测器,也是首颗月球软着陆探测器.嫦娥三号携带有一台无人月球车,重3吨多,是我国设计的最复杂的航天器.如图5所示为其飞行轨道示意图,则下列说法正确的是()A.嫦娥三号的发射速度应该大于11.2 km/sB.嫦娥三号在环月轨道1上P点的加速度大于在环月轨道2上P点的加速度C.嫦娥三号在环月轨道2上运动周期比在环月轨道1上运行周期小D.嫦娥三号在动力下降段中一直处于完全失重状态4.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星1和2均绕地心O做匀速圆周运动,轨道半径均为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置,如图5所示.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.以下判断正确的是().A.两颗卫星的向心加速度大小相等,均为R2g r2B.两颗卫星所受的向心力大小一定相等C.卫星1由位置A运动到位置B所需的时间可能为7πr3RrgD.如果要使卫星1追上卫星2,一定要使卫星1加速5、(多选)在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有()A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度6.2013年6月13日13时8分,搭载聂海胜、张晓光、王亚平3名航天员的“神舟十号”飞船与“天宫一号”目标飞行器在离地面343 km的近圆轨道上成功进行了我国载人空间交会对接.对接轨道所在空间存在极其稀薄的大气,下列说法正确的是()A.为实现对接,两者运行速度的大小都应等于第一宇宙速度B.对接前,“神舟十号”欲追上“天宫一号”,必须在同一轨道上点火加速C.由于稀薄空气,如果不加干预,天宫一号将靠近地球D.当航天员王亚平站在“天宫一号”内讲课不动时,她受平衡力作用。

卫星变轨问题错解分析(典型例题详细解析)

卫星变轨问题错解分析(典型例题详细解析)

卫星变轨问题易错题分析一、不清楚变轨原因导致错解分析变轨问题时,首先要让学生弄明白两个问题:一是物体做圆周运动需要的向心力,二是提供的向心力。

只有当提供的力能满足它需要的向心力时,即“供”与“需”平衡时,物体才能在稳定的轨道上做圆周运动,否则物体将发生变轨现象——物体远离圆心或靠近圆心。

当卫星受到的万有引力不够提供卫星做圆周运动所需的向心力时,卫星将做离心运动,当卫星受到的万有引力大于做圆周运动所需的向心力时卫星将在较低的椭圆轨道上运动,做近心运动。

导致变轨的原因是卫星或飞船在引力之外的外力,如阻力、发动机的推力等作用下,使运行速率发生变化,从而导致“供”与“需”不平衡而导致变轨。

这是卫星或飞船的不稳定运行阶段,不能用公式分析速度变化和轨道变化的关系。

例一:宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是( )A . 飞船加速直到追上空间站,完成对接B . 飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接C . 飞船加速至一个较高轨道再减速追上空间站完成对接D . 无论飞船采取何种措施,均不能与空间站对接错解:选A 。

错误原因分析:不清楚飞船速度变化导致"供"与"需"不平衡而导致出现变轨。

答案:选B 。

分析:先开动飞船上的发动机使飞船减速,此时万有引力大于所需要的向心力,飞船做近心运动,到达较低轨道时,由222()Mm G m r r T π=得32r T GM=知此时飞船运行的周期小于空间站的周期,飞船运行得要比空间站快。

当将要追上空间站时,再开动飞船上的发动机让飞船加速,使万有引力小于所需要的向心力而做离心运动,到达空间站轨道而追上空间站,故B 正确。

如果飞船先加速,它受到的万有引力将不足以提供向心力而做离心运动,到达更高的轨道,这使它的周期变长。

这样它再减速回到空间站所在的轨道时,会看到它离空间站更远了,因此C 错。

卫星变轨问题

卫星变轨问题

卫星变轨问题1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r. (2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.①当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨.2.实例分析(1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).①若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.丙(2)卫星的发射、变轨问题 如图丙,发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r,进入圆轨道3做圆周运动. 【题型1】如图所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度【题型2】如图所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1和v2,加速度大小分别为a1和a2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a3,比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是()A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3【题型3】我国已掌握“半弹道跳跃式高速再入返回技术”,为实现“嫦娥”飞船月地返回任务奠定基础。

关于人造卫星与宇宙飞船变轨对接问题_神舟八号

关于人造卫星与宇宙飞船变轨对接问题_神舟八号

关于人造卫星与宇宙飞船变轨对接问题_神舟八号论文导读::神舟八号”飞船处于停靠状态。

这里就涉及宇宙飞船与轨道空间站的对接。

飞船的变轨问题:。

中国载人航天首次空间交会对接试验获得成功。

论文关键词:神舟八号,天宫一号,人造卫星,宇宙飞船,变轨,对接据中新网北京2011年11月3日电北京航天飞行控制中心最新消息:从对接机构接触开始,经过捕获、缓冲、拉近、锁紧4个步骤,“神舟八号”飞船与“天宫一号”目标飞器3日凌晨实现刚性连接,形成组合体,中国载人航天首次空间交会对接试验获得成功。

这两个航天器组合体飞行段由“天宫一号”目标飞行器负责组合体飞行控制,“神舟八号”飞船处于停靠状态。

按照计划,组合体飞行12天左右,将进行第二次交会对接试验。

“神舟八号”与“天宫一号”交会对接成功,为中国突破和掌握航天器空间交会对接关键技术,初步建立长期无人在轨运行、短期有人照料的载人空间试验平台,开展空间应用、空间科学实验和技术试验,以及建设载人空间站奠定基础、积累经验中国知网论文数据库。

下面研究有关“神舟八号”与“天宫一号”交会对接涉及的问题。

一、飞船的变轨问题:如图所示,宇宙飞船升空后所进入的是据地球表面的高度为200公里的圆轨道1,按预定计划必须变轨,点燃它上面的发动机,在发动机的推动作用下,在飞船飞近至近地点高度的Q点进入近地点为200公里,远地点为340公里的椭圆轨道2神舟八号,再在飞船飞至远地点高度P时,再次点燃发动机将飞船调整到距地表面340公里高的圆形轨道上,进入圆轨道3。

二、飞船的对接问题:对接也是一个实际问题,宇宙飞船欲进入轨道空间站进行科学实验或维修等,这里就涉及宇宙飞船与轨道空间站的对接。

如图所示,宇宙飞船欲进入轨道空间站实现对接,飞船为了追上空间站,使宇航员进入轨道空间站工作,若2是宇宙飞船,1是轨道空间站,则宇宙飞船从较低轨道上加速后就离心运动轨道半径变大能实现对接,若1是宇宙飞船,2是轨道空间站,有的同学可能还想到,飞船从较高的轨道上减速不也可以吗?由于飞船的速率小周期大,而轨道空间站的速率大周期小,所以在一段时间内不能追上一个角位移,说轨道空间站转几圈后再追上,技术上的控制也是困难的。

飞船及卫星的变轨问题

飞船及卫星的变轨问题

飞船、卫星的变轨问题有关宇宙飞船及卫星的运行及变轨问题再次成为全社会关注的焦点,同时也成为高中物理教学的亮点。

对于卫星在运行中的变轨有两种情况,即离心运动和向心运动。

当有万有引力恰好提供卫星所需向心力时,即GMm/r^2=mv^2/r时,卫星做匀速圆周运动,当某时刻速度发生突变时,轨道半径将发生变化。

(1)速度突然增大时,GMm/r^2(2)速度突然减小时,GMm/r^2>mv^2/r,万有引力大于向心力,做向心运动,卫星轨道半径r减小,线速度v增大。

当飞船、卫星等天体做变轨运动时,轨道半径r发生变化,从而引起v、T及ω的变化。

例1.人造地球卫星在轨道半径较小的轨道A上运行时机械能为EA,它若进入轨道半径较大的轨道B运行时机械能为EB,在轨道变化后这颗卫星( )A.动能减小,势能增加,EB>EAB.动能减小,势能增加,EB=EAC.动能减小,势能增加,EBEA解析:选A。

要使卫星由较低轨道进入较高轨道,必须开动发动机使卫星加速,卫星做离心运动。

在离心运动过程中万有引力对卫星做负功,卫星运行速度的大小不断减小,动能不断减小而势能增大。

由于推力对卫星做了正功,因此卫星机械能变大。

卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,但是到高轨道作圆周运动时速度小于低轨道上的速度。

例2.如果人造飞船首先进入的是距地面高度近地点为200km,远地点为340km的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km,g=9.8m/s^2):(1)飞船在椭圆轨道1上运行,Q为近地点,P为远地点,当飞船运动到P点时点火,使飞船沿圆轨道2运行,以下说法正确的是( )A.飞船在Q点的万有引力大于该点所需的向心力B.飞船在P点的万有引力大于该点所需的向心力C.飞船在轨道1上P的速度小于在轨道2上P的速度D.飞船在轨道1上P的加速度大于在轨道2上P的加速度解析:飞船在轨道1上运行,在近地点Q处飞船速度较大,相对于以近地点到地球球心的距离为半径的轨道做离心运动,说明飞船在该点所受的万有引力小于在该点所需的向心力;在远地点P处飞船的速度较小,相对于以远地点到地球球心为半径的轨道飞船做向心运动,说明飞船在该点所受的万有引力大于在该点所需的向心力;当飞船在轨道1上运动到P点时,飞船向后喷气使飞船加速,万有引力提供飞船绕地球做圆周运动的向心力不足,飞船将沿椭圆轨道做离心运动,运行到轨道2上,反之亦然,当飞船在轨道2上的p点向前喷气使飞船减速,万有引力提供向心力有余,飞船将做向心运动回到轨道1上,所以飞船在轨道1上P的速度小于在轨道2上P的速度;飞船运行到P点,不论在轨道1还是在轨道2上,所受的万有引力大小相等,且方向均于线速度垂直,故飞船在两轨道上的点加速度等大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫星、飞船变轨问题
用万有引力处理天体问题的基本方法是:把天体的运动看成圆周运动,其做圆周运动的向心力有万有引力提供。

由222222()(2)n Mm v G m mr m r m f r ma r r T
πωπ=====得 r GM v =,GM r T 3
2π=, 3r GM =ω 。

当飞船等天体做变轨运动时,轨道半径发生变化,从而引起v 、T 及ω的变化。

例1.(05江苏)某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则
(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K2
误区警示 本题中由于阻力作用会误因为2v <1v ,错选D 。

深刻理解速度是由高度决定的,加深“越高越慢”的印象,才能走出误区。

解析 由于阻力使卫星高度降低,故r 1>r 2,由r GM =
υ知变轨后卫星速度变大,动能变大E K1<E K2,也可理解为卫星在做向心运动时引力做功大于克服阻力做功,故动能增加大,故B 正确。

例2 人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,
试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):
(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动 到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是 A .飞船在Q 点的万有引力大于该点所需的向心力
B .飞船在P 点的万有引力大于该点所需的向心力
C .飞船在轨道1上P 的速度小于在轨道2上P 的速度
D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度
解析 飞船在轨道1上运行,在近地点Q 处飞船速度较大,相对于以近地点到地球球心的距离为半径的轨道做离心运动,说明飞船在该点所受的万有引力小于在该点所需的向心力;在远地点P 处飞船的速度较小,相对于以远地点到地球球心为半径的轨道飞船做向心运动,说明飞船在该点所受的万有引力大于在该点所需的向心力;当飞船在轨道1上运动到P 点时,飞船向后喷气使飞船加速,万有引力提供飞船绕地球做圆周运动的向心力不足,飞船将沿椭圆轨道做离心运动,运行到轨道2上,反之亦然,当飞船在轨道2上的p 点向前喷气使飞船减速,万有引力提供向心力有余,飞船将做向心运动回到轨道1上,所以飞船在轨道1上P 的速度小于在轨道2上P 的速度;飞船运行到P 点,不论在轨道1还是在轨道2上,所受的万有引力大小相等,且方向均于线速度垂直,故飞船在两轨道上的点加速度等大。

答案 BC
(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,
则飞船一定是
A .从较低轨道上加速
B .从较高轨道上加速
C .从同一轨道上加速
D .从任意轨道上加速
解析 由(1)题的分析可知,飞船应从低圆规道上加速,做离心运动,由椭圆轨道运行到较高的圆轨道上与飞船对接。

答案 A
例3.发射地球同步卫星时,先将卫星发射到近地圆轨道1,
然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人
同步圆轨道3。

轨道1、2相切于Q 点,轨道2、3相切于P 点,如
图所示,,则当卫星分别在1、2、3轨道上正常运行时,下列说法
中正确的是
A .卫星在轨道3上的速率大于在轨道1上的速率
B .卫星在轨道3上的角速度小于在轨道1上的角速度
C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度
D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度
解析:对卫星来说,万有引力提供向心力,ma mr r m r GMm ===22
2ωυ,得
r GM =υ,3r GM =ω,2r GM a =,而13r r >,即13υυ<,13ωω<,A 不对B 对。

1轨道的Q 点与2轨道的Q 点为同一位置,加速度a 相同。

同理2轨道的P 点与3轨道的P 点a 也相同,C 不对D 对。

答案BD
例4.如下图所示,飞船沿半径为R 的圆周围绕着地球运动,其运行周期为T.如果飞船沿椭圆轨道运行,直至要下落返回地面,可在轨道的某一点A 处将速率降低到适当数值,从而使飞船沿着以地心O 为焦点的椭圆轨道运动,轨道与地球表面相切于B 点。

求飞船由A 点到B 点的时间。

(图中R 0是地球半径)
解析 设飞船的椭圆轨道的半长轴为a ,由图可知a=20R
R +.设飞船沿椭圆轨道运行的
周期为T ′,由开普勒第三定律得:23T R =33T a '.飞船从A 到B 的时间t=2T '
.由以上三式求解

t ==
例5.我国的国土范围在东西方向上大致分布在东经070到东经0135,所以我国发射的
通信卫星一般定点在赤道上空3.6万公里,东经0
100附近,假设某颗通信卫星计划定点在
赤道上空东经0104的位置,经测量刚进入轨道时位于赤道上空3.6万公里,东经0103处,为了把它调整到0
104
处,可以短时间启动卫昨上的小型喷气发动机调整卫星的高度,改变
其周期,使其“漂移”到预定经度后,再短时间启动发动机调整卫星的高度,实现定点,两次调整高度的方向依次是
A 、向下、向上
B 、向上、向下
C 、向上、向上
D 、向下、向下
解析 题目是要求发射同步卫星,向东调整一些,但最后高度和速度均不变,故先向下调低轨道,卫星角速度变大,相对地球向东运动,再向上调高轨道,角速度减小,可与地球相对静止。

答案A
例6.俄罗斯“和平号”轨道空间站因超期服役和缺乏维持继续在轨道运行的资金,俄政府于2000年底作出了将其坠毁的决定,坠毁过程分两个阶段,首先使空间站进人无动力自由运动状态,因受高空稀薄空气阻力的影响,空间站在绕地球运动的同时缓慢向地球靠近,2001年3月,当空间站下降到距地球320km 高度时,再由俄地面控制中心控制其坠毁。

“和平号”空间站已于2001年3月23日顺利坠入南太平洋预定海域。

在空间站自由运动的过程中
①角速度逐渐减小 ②线速度逐渐减小 ③加速度逐渐增大
④周期逐渐减小 ⑤机械能逐渐增大
以上叙述正确的是
A 、①③④
B 、②③④
C 、③④⑤
D 、③④
解析 本题实质考查对卫星等天体变轨运动的动态分析能力。

整体上看,卫星的轨道高度和运行速度发生连续的变化,但微观上,在任一瞬间,卫星还是可以近似看作在圆形轨道上
运动,由2224T mr r Mm G F π==知r 减小时T 亦减小;由221mv E k =,及
r v m r Mm G 2
2=知卫星在轨运行的动能
r Mm
G E k 2=,有2K E >1K E ,但在降低轨道高度时,重力做正功,阻力做负功,故总机械能应是不断减少的。

空间站由远地轨道向近地轨道移动时,受地球引力变大,故加速度增大;由
GM R T R
GM R GM v 3
32,,πω===知v 变大,T 变小而ω变大。

答案 C 总结:人造卫星及天体的运动都近似为匀速圆周运动。

当天体做变轨运动时关键看轨道半径的变化,然后根据公式
GM R T R GM R GM v 3
32,,πω===判断线速度、角速度和周期的变化。

相关文档
最新文档