大学物理热学答案
大学物理热力学基础习题与解答
1T2 T1
[D]
p a
b b
T1
d c c T2 V
填空题
1. 要使一热力学系统的内能增加,可以通过 做功 或 传热 两种方式,或者两种
方式兼用来完成。理想气体的状态发生变 化时,其内能的增量只决定于
温度的变化 ,而与 过程 无关。
2 .一气缸内储有 10 mol 单原子分子理想气体,
在压缩过程中,外力做功 209 J,气体温度升高 1
大学物理
热力学基础
选择题
1. 有两个相同的容器,容积不变,一个盛有氦气, 另一个盛有氢气(均可看成刚性分子),它们的压 强和温度都相等。现将5J 的热量传给氢气,使氢
气温度升高,如果使氦气也升高同样的温度,则 应向氦气传递的热量是
(A) 6 J (C) 3 J
(B) 5 J (D) 2 J
[C]
ΔQ M mCvΔT
3. 对于室温下的双原子分子理想气体,在等压
膨胀的情况下,系统对外所作的功与从外
界吸收的热量之比W / Q 等于:
(A)1 / 3
(B)1 / 4
(C)2 / 5
(D)2 / 7
(D )
WpΔVmRΔT M
QΔEWm5ΔTmRΔT7mRΔT
M2 M
2M
4.热力学第一定律表明: (A)系统对外所作的功小于吸收的热量; (B)系统内能的增量小于吸收的热量; (C)热机的效率小于1; (D)第一类永动机是不可能实现的。
(P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环
过程中系统对外做的功 A 和吸收的热量 Q .
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理-热学习题课和答案解析
2V
D)n 相同,(EK / V )相同,ρ相同。 nm 不同
8、给定理想气体,从标准状态( P0 V0 T0 )开始作绝热膨胀,
体积增大到3倍,膨胀后温度T, 压强P与标准状态时T0 、
P0的关系为:
√ A)T
(1) 3
T0
P
(1) 3
1
P0
B)T
(
1 3
)
1T0
P
(1) 3
P0
C)T
( 1 ) 3
了。则 根据热力学定律可以断定:
① 理想气体系统在此过程中吸了热。
② 在此过程中外界对理想气体系统作了功。 ③ 理想气体系统的内能增加了。 ④ 理想气体系统既从外界吸了热,又对外作了功。
√ A) ① ③ B) ② ③ C) ③ D) ③ ④ E) ④
7、两瓶不同种类的理想气体,它们的温度和压强都相同,但
i RT
2 ( E )
(Q) p Cp,mRT
(Q )T
RT
ln
V2 V1
( A)
Q0
E CV ,mT
pV
RT
CV ,m
iR 2
CP,m
CV ,m
R
i2 2
R
循环过程:
热机效率
卡诺热机效率
A Q吸 Q放 1 Q放
Q吸
Q吸
Q吸
卡 诺
A Q吸
1 Q放 Q吸
1 T2 T1
卡诺致冷系数
2kT m
2RT M mol
平均速率:
v 8kT 8RT
m
M mol
4、能量均分原理: 每一个自由度的平均动能为: 一个分子的总平均动能为: mol 理想气体的内能:
大学物理(第四版)答案热学
题6.1:如果将1.0⨯103kg 的水均匀地分布在地球表面上,则单位面积上将约有多少个水分子?题6.1分析:l mol 的任何物质均含有相同的分子个数,即阿伏伽德罗常数 N A 。
由此,可以求出kg 100.13-⨯水的水分子数。
而地球表面积可视为球面作近似计算,通常取地球半径R =6.37⨯106 m 。
解:水的摩尔质量1m ol kg 018.0-⋅=M ,则kg 100.13-⨯=m 水中所含分子数M mN N A /=,则单位面积上的水分子数为272A m 1056.64//-⨯===MR mN S N n π题6.2:设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的。
若此理想气体的压强为Pa 1035.114⨯。
试估计太阳的温度。
(已知氢原子的质量kg 1067.127H -⨯=m ,太阳半径m 1096.68S ⨯=R ,太阳质量kg 1099.130S ⨯=m )题6.2分析:本题可直接运用物态方程nkT p =进行计算。
解:氢原子的数密度可表示为()⎪⎭⎫ ⎝⎛⋅==3S H S S H S 34R m m V m m n π根据题给条件,由nkT p =可得太阳的温度为)K 1016.1347S 3SH ⨯===k m R pm nk p T π 说明:实际上太阳结构并非本题中所设想的理想化模型。
因此,计算所得的太阳温度与实际的温度相差较大。
题6.3:一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27 ℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间均匀等距排列)题6.3分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
大学物理热学练习题及答案
大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。
第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。
求该金属材料所吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。
第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。
大学物理C-04热学练习题答案
练 习 四 热 学一、填空题1.质量为M ,摩尔质量为mol M ,分子数密度为n 的理想气体,处于平衡态时,状态方程为___RT M MpV mol=___,状态方程的另一形式为___nkT p =___,其中k 称为____玻尔兹曼___常数。
2.两种不同种类的理想气体,其分子的平均平动动能相等,但分子数密度不同,则它们的温度 相同 ,压强 不同 ;如果它们的温度、压强相同,但体积不同,则它们的分子数密度 相同 ,单位体积的气体质量 不同 ,单位体积的分子平动动能 相同 。
(填“相同”或“不同”)。
3. 宏观量温度T 与气体分子的平均平动动能ω的关系为ω=___kT 23_,因此,气体的温度是__气体分子的平均平动动能__的量度。
4.设氮气为刚性分子组成的理想气体,其分子的平动自由度数为__3___,转动自由度为___2___。
5.2mol 氢气,在温度为27℃时,它的分子平动动能为 7479J ,分子转动动能为 4986J 。
6.1mol 氧气和2mol 氮气组成混合气体,在标准状态下,氧分子的平均能量为__211042.9-⨯__,氮分子的平均能量为_211042.9-⨯__;氧气与氮气的内能之比为__1:2__。
7.)(v f 为麦克斯韦速率分布函数,⎰∞pv dv v f )(的物理意义是__速率在p υ以上的分子数占总分子数的百分比__,⎰∞02)(2dv v f mv 的物理意义是____分子平均平动动能___,速率分布函数归一化条件的数学表达式为____1d )(0=⎰∞υυf ____,其物理意义是__速率在∞~0内的分子数占总分子数的百分之百____。
8.同一温度下的氢气和氧气的速率分布曲线如右图所示,其中曲线1为__氧气_的速率分布曲线,___氢气___的最概然速率较大(填“氢气”或“氧气”)。
若图中曲线表示同一种气体不同温度时的速率分布曲线,温度分别为T 1和T 2且T 1<T 2;则曲线1代表温度为__ T 1__的分布曲线(填T 1或T 2)。
大学物理热学题库及答案
⼤学物理热学题库及答案⼀、选择题:(每题3分)1、在⼀密闭容器中,储有A、B、C三种理想⽓体,处于平衡状态.A种⽓体的分⼦数密度为n1,它产⽣的压强为p1,B种⽓体的分⼦数密度为2n1,C种⽓体的分⼦数密度为3 n1,则混合⽓体的压强p为(A) 3 p1. (B) 4 p1.(C) 5 p1. (D) 6 p1.[]2、若理想⽓体的体积为V,压强为p,温度为T,⼀个分⼦的质量为m,k为玻尔兹曼常量,R为普适⽓体常量,则该理想⽓体的分⼦数为:(A) pV / m. (B) pV / (kT).(C) pV/ (RT). (D) pV/ (mT).[]3、有⼀截⾯均匀的封闭圆筒,中间被⼀光滑的活塞分隔成两边,如果其中的⼀边装有0.1 kg某⼀温度的氢⽓,为了使活塞停留在圆筒的正中央,则另⼀边应装⼊同⼀温度的氧⽓的质量为:(A) (1/16) kg. (B) 0.8 kg.(C) 1.6 kg. (D) 3.2kg.[]4、在标准状态下,任何理想⽓体在1 m3中含有的分⼦数都等于(A) 6.02×1023. (B)6.02×1021.(C) 2.69×1025 . (D)2.69×1023.(玻尔兹曼常量k= 1.38×1023J〃K1) []5、⼀定量某理想⽓体按pV2=恒量的规律膨胀,则膨胀后理想⽓体的温度(A) 将升⾼. (B) 将降低.(C) 不变. (D)升⾼还是降低,不能确定.[]6、⼀个容器内贮有1摩尔氢⽓和1摩尔氦⽓,若两种⽓体各⾃对器壁产⽣的压强分别为p1和p2,则两者的⼤⼩关系是:(A) p1> p2. (B) p1< p2.(C) p1=p2. (D)不确定的.[]7、已知氢⽓与氧⽓的温度相同,请判断下列说法哪个正确?(A) 氧分⼦的质量⽐氢分⼦⼤,所以氧⽓的压强⼀定⼤于氢⽓的压强.(B) 氧分⼦的质量⽐氢分⼦⼤,所以氧⽓的密度⼀定⼤于氢⽓的密度.(C) 氧分⼦的质量⽐氢分⼦⼤,所以氢分⼦的速率⼀定⽐氧分⼦的速率⼤.(D) 氧分⼦的质量⽐氢分⼦⼤,所以氢分⼦的⽅均根速率⼀定⽐氧分⼦的均根速率⼤.[]8、已知氢⽓与氧⽓的温度相同,请判断下列说法哪个正确?(A) 氧分⼦的质量⽐氢分⼦⼤,所以氧⽓的压强⼀定⼤于氢⽓的压强.(B) 氧分⼦的质量⽐氢分⼦⼤,所以氧⽓的密度⼀定⼤于氢⽓的密度.(C) 氧分⼦的质量⽐氢分⼦⼤,所以氢分⼦的速率⼀定⽐氧分⼦的速率⼤.(D) 氧分⼦的质量⽐氢分⼦⼤,所以氢分⼦的⽅均根速率⼀定⽐氧分⼦的⽅均根速率⼤.[]9、温度、压强相同的氦⽓和氧⽓,它们分⼦的平均动能ε和平均平动动能w有如下关系: (A) ε和w 都相等. (B) ε相等,⽽w 不相等. (C) w 相等,⽽ε不相等. (D) ε和w 都不相等.[]10、1 mol 刚性双原⼦分⼦理想⽓体,当温度为T 时,其内能为 (A) RT 23. (B) kT 23. (C) RT 25. (D) kT 25.[](式中R 为普适⽓体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想⽓体,它们的温度和压强都相同,但体积不同,则单位体积内的⽓体分⼦数n ,单位体积内的⽓体分⼦的总平动动能(E K /V ),单位体积内的⽓体质量,分别有如下关系:(A) n 不同,(E K /V )不同,不同.(B) n 不同,(E K /V )不同,相同.(C) n 相同,(E K /V )相同,不同.(D) n 相同,(E K /V )相同,相同.[]12、有容积不同的A 、B 两个容器,A 中装有单原⼦分⼦理想⽓体,B 中装有双原⼦分⼦理想⽓体,若两种⽓体的压强相同,那么,这两种⽓体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定.[]13、两个相同的容器,⼀个盛氢⽓,⼀个盛氦⽓(均视为刚性分⼦理想⽓体),开始时它们的压强和温度都相等,现将 6 J 热量传给氦⽓,使之升⾼到⼀定温度.若使氢⽓也升⾼同样温度,则应向氢⽓传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5J .[]14、压强为p 、体积为V 的氢⽓(视为刚性分⼦理想⽓体)的内能为:(A)25pV . (B) 23pV . (C) pV . (D) 21pV .[]15、下列各式中哪⼀式表⽰⽓体分⼦的平均平动动能?(式中M 为⽓体的质量,m 为⽓体分⼦质量,N 为⽓体分⼦总数⽬,n 为⽓体分⼦数密度,N A 为阿伏加得罗常量) (A) pV M m 23. (B) pV M M mol23. (C)npV 23. (D)pV N MM A 23mol . [ ]16、两容器内分别盛有氢⽓和氦⽓,若它们的温度和质量分别相等,则:(A) 两种⽓体分⼦的平均平动动能相等.(B) 两种⽓体分⼦的平均动能相等.(C) 两种⽓体分⼦的平均速率相等.(D) 两种⽓体的内能相等.[]17、⼀容器内装有N 1个单原⼦理想⽓体分⼦和N 2个刚性双原⼦理想⽓体分⼦,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT .[]18、设声波通过理想⽓体的速率正⽐于⽓体分⼦的热运动平均速率,则声波通过具有相同温度的氧⽓和氢⽓的速率之⽐22H O /v v 为 (A) 1 . (B) 1/2 .(C) 1/3 . (D)1/4 .[]19、设v 代表⽓体分⼦运动的平均速率,p v 代表⽓体分⼦运动的最概然速率,2/12)(v 代表⽓体分⼦运动的⽅均根速率.处于平衡状态下理想⽓体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C) 2/12)(v v v <>p[ ]20、已知⼀定量的某种理想⽓体,在温度为T 1与T 2时的分⼦最概然速率分别为v p 1和v p 2,分⼦速率分布函数的最⼤值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)<f (v p 2).[]21、两种不同的理想⽓体,若它们的最概然速率相等,则它们的(A) 平均速率相等,⽅均根速率相等.(B) 平均速率相等,⽅均根速率不相等.(C) 平均速率不相等,⽅均根速率相等.(D) 平均速率不相等,⽅均根速率不相等.[]22、假定氧⽓的热⼒学温度提⾼⼀倍,氧分⼦全部离解为氧原⼦,则这些氧原⼦的平均速率是原来氧分⼦平均速率的(A) 4倍. (B) 2倍. (C) 2倍. (D) 21倍.[]23、麦克斯韦速率分布曲线如图所⽰,图中A 、B 两部分⾯积相等,则该图表⽰(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为⽅均根速率. (D) 速率⼤于和⼩于0v 的分⼦数各占⼀半.[]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分⼦占总分⼦数的百分⽐.(B) 速率分布在v 附近的单位速率间隔中的分⼦数占总分⼦数的百分⽐.(C) 具有速率v 的分⼦数.(D) 速率分布在v 附近的单位速率间隔中的分⼦数.[]25、若N 表⽰分⼦总数,T 表⽰⽓体温度,m 表⽰⽓体分⼦的质量,那么当分⼦速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .(E) N ,m ,T .[]26、⽓缸内盛有⼀定量的氢⽓(可视作理想⽓体),当温度不变⽽压强增⼤⼀倍时,氢⽓分⼦的平均碰撞频率Z 和平均⾃由程的变化情况是:f (v )0(A) Z和λ都增⼤⼀倍.(B) Z和λ都减为原来的⼀半.(C) Z增⼤⼀倍⽽λ减为原来的⼀半.(D) Z减为原来的⼀半⽽λ增⼤⼀倍.[]27、⼀定量的理想⽓体,在温度不变的条件下,当体积增⼤时,分⼦的平均碰撞频率Z和平均⾃由程λ的变化情况是:(A) Z减⼩⽽λ不变. (B) Z减⼩⽽λ增⼤.(C)Z增⼤⽽λ减(D)Z不变⽽λ增⼤.[]28、⼀定量的理想⽓体,在温度不变的条件下,当压强降低时,分⼦的平均碰撞频率Z和平均⾃由程λ的变化情况是:(A) Z和λ都增⼤. (B) Z和λ都减⼩.(C) Z增⼤⽽λ减⼩. (D) Z减⼩⽽λ增⼤.[]29、⼀定量的理想⽓体,在体积不变的条件下,当温度降低时,分⼦的平均碰撞频率Z和平均⾃由程λ的变化情况是:(A) Z减⼩,但λ不变. (B) Z不变,但λ减⼩.(C) Z和λ都减⼩.(D) Z和λ都不变.[]30、⼀定量的理想⽓体,在体积不变的条件下,当温度升⾼时,分⼦的平均碰撞频率Z和平均⾃由程λ的变化情况是:(A) Z增⼤,λ不变. (B) Z不变,λ增⼤.(C) Z和λ都增⼤. (D) Z和λ都不变. [ ]31、在⼀个体积不变的容器中,储有⼀定量的理想⽓体,温度为T 0时,⽓体分⼦的平均速率为0v ,分⼦平均碰撞次数为0Z ,平均⾃由程为0λ.当⽓体温度升⾼为4T 0时,⽓体分⼦的平均速率v ,平均碰撞频率Z 和平均⾃由程λ分别为: (A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ.[]32、在⼀封闭容器中盛有1 mol 氦⽓(视作理想⽓体),这时分⼦⽆规则运动的平均⾃由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z .[]33、⼀定量的某种理想⽓体若体积保持不变,则其平均⾃由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升⾼,λ减少⽽Z 增⼤.(B) 温度升⾼,λ增⼤⽽Z 减少.(C) 温度升⾼,λ和Z 均增⼤.(D) 温度升⾼,λ保持不变⽽Z 增⼤.[]34、⼀容器贮有某种理想⽓体,其分⼦平均⾃由程为0λ,若⽓体的热⼒学温度降到原来的⼀半,但体积不变,分⼦作⽤球半径不变,则此时平均⾃由程为 (A) 02λ. (B) 0λ. (C) 2/0λ. (D) 0λ/ 2.[]35、图(a)、(b)、(c)各表⽰联接在⼀起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么:(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.36、关于可逆过程和不可逆过程的判断:(1) 可逆热⼒学过程⼀定是准静态过程.V 图(a) V图(b) V 图(c)(2) 准静态过程⼀定是可逆过程.(3) 不可逆过程就是不能向相反⽅向进⾏的过程.(4) 凡有摩擦的过程,⼀定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[] 37、如图所⽰,当⽓缸中的活塞迅速向外移动从⽽使⽓体膨胀时,⽓体所经历的过程(A) 是平衡过程,它能⽤p─V图上的⼀条曲线表⽰.(B) 不是平衡过程,但它能⽤p─V图上的⼀条曲线表⽰.(C) 不是平衡过程,它不能⽤p─V图上的⼀条曲线表⽰.(D) 是平衡过程,但它不能⽤p─V图上的⼀条曲线表⽰.[]38、在下列各种说法(1) 平衡过程就是⽆摩擦⼒作⽤的过程.(2) 平衡过程⼀定是可逆过程.(3) 平衡过程是⽆限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可⽤⼀连续曲线表⽰.中,哪些是正确的?(A) (1)、(2). (B) (3)、(4).(C) (2)、(3)、(4). (D) (1)、(2)、(3)、(4).[]39、设有下列过程:(1) ⽤活塞缓慢地压缩绝热容器中的理想⽓体.(设活塞与器壁⽆摩擦)(2) ⽤缓慢地旋转的叶⽚使绝热容器中的⽔温上升.(3) ⼀滴墨⽔在⽔杯中缓慢弥散开.(4) ⼀个不受空⽓阻⼒及其它摩擦⼒作⽤的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[]40、在下列说法(1) 可逆过程⼀定是平衡过程.(2) 平衡过程⼀定是可逆的.(3) 不可逆过程⼀定是⾮平衡过程.(4) ⾮平衡过程⼀定是不可逆的.中,哪些是正确的?(A) (1)、(4).(B) (2)、(3).(C) (1)、(2)、(3)、(4).(D) (1)、(3).[]41、臵于容器内的⽓体,如果⽓体内各处压强相等,或⽓体内各处温度相同,则这两种情况下⽓体的状态(A) ⼀定都是平衡态.(B) 不⼀定都是平衡态.(C) 前者⼀定是平衡态,后者⼀定不是平衡态.(D) 后者⼀定是平衡态,前者⼀定不是平衡态.[]42、⽓体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) ⼀定都是平衡过程.(B) 不⼀定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程.[]43、如图所⽰,⼀定量理想⽓体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D绝热过程,其中吸热量最多的过程 (A) 是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热⼀样多。
《大学物理》热力学基础练习题及答案解析
《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
大学物理习题及解答(热学)
1.如图所示,开始在状态A ,其压强为Pa100.25⨯,体积为33m 100.2-⨯,沿直线AB 变化到状态B 后,压强变为5100.1⨯Pa ,体积变为33m 100.3-⨯,求此过程中气体所作的功。
(150J )2.一定量的空气,吸收了1.71⨯103J 的热量,并保持在 1.0⨯105Pa 下膨胀,体积从1.0⨯10-2 m 3 增加到1.5⨯10-2 m 3,问空气对外作了多少功?它的内能改变了多少?(5.0×102J, 1.21×103J )3.一压强为1.0⨯105 Pa ,体积为1.0⨯10-3m 3的氧气自0 ℃加热到100 ℃。
问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压或等体过程中各作了多少功?解:根据题给初态条件得氧气的物质的量为mol1041.42111-⨯===RT V p M mn已知氧气的定压摩尔热容R C Pm 27=,定体摩尔热容R C Vm 25=(1)求Q p 、Q V等压过程氧气(系统)吸热()J8.129d 12m p,p =-=∆+=⎰T T nC E V p Q等体过程氧气(系统)吸热()J1.9312m V,V =-=∆=T T nC E Q(2)按分析中的两种方法求作功值①利用公式⎰=VV p W d )(求解。
在等压过程中,T R M mV p W d d d ==,则得⎰⎰===21J 6.36d d p T T T R M mW W而在等体过程中,因气体的体积不变,故作功为d )(p ==⎰V V p W②利用热力学第一定律WE Q +∆=求解。
氧气的内能变化为 ()J 1.9312m V,=-=∆T T C M mE由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压、等体过程中所作的功分别为J7.36p p =∆-=E Q WV V =∆-=E Q W4.如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J 。
大学物理通用教程热学(刘玉鑫著)课后答案
大学物理通用教程热学(刘玉鑫著)课后答案大学物理通用教程热学(刘玉鑫著)课后答案刘玉鑫的《大学物理通用教程热学》适合于理、工、农、医和师范院系使用。
以下是为大家搜集的大学物理通用教程热学(刘玉鑫著),希望能对你有帮助!点击此处阅读大学物理通用教程热学(刘玉鑫著)课后答案《大学物理通用教程普通高等教育十一五国家级规划教材·大学物理通用教程:力学(第2版)》内容简介:全套教程包括《力学》、《热学》、《电磁学》、《光学》、《近代物理》和《习题指导》。
《力学》一书包括质点运动学、牛顿力学基本定律、动量定理、机械能定理、角动量定理、质心力学定理、刚体力学、振动、波动、流体力学和哈密顿原理,共计十一章,并配有181道习题。
《大学物理通用教程普通高等教育十一五国家级规划教材·大学物理通用教程:力学(第2版)》以力学基本规律和概念、典型现象和应用为主体内容,同时注重知识的扩展和适度的深化,包括学科发展前沿评介、某些历史背景和注记,以及对学生在学习上的指导。
崇尚结构、承袭传统、力求平实、注重扩展是《大学物理通用教程普通高等教育十一五国家级规划教材·大学物理通用教程:力学(第2版)》的特色。
这是一本通用教程,大体上与讲授36课时相匹配,适合于理、工、农、医和师范院系使用。
力学引言第1章质点运动学1.1时间与空间1.2物体的点模型1.3位置矢量与轨道方程1.4速度矢量1.5加速度矢量1.6运动学中的逆问题1.7角速度1.8极坐标系与自然坐标系习题第2章牛顿力学的基本定律2.1牛顿以前的力学2.2牛顿运动定律2.3几种常见的力2.4万有引力定律2.5力学相对性原理与伽利略变换 2.6惯性系与非惯性系惯性力习题第3章动量变化定理与动量守恒 3.0概述3.1质点动量变化定理3.2质点组动量变化定理3.3动量守恒律3.4火箭推进速度习题第4章动能与势能——机械能变化定理与机械能守恒4.1质点动能变化定理4.2保守力的功4.3保守力场中的势能4.4机械能变化定理与机械能守恒4.5三种宇宙速度4.6两体碰撞习题第5章角动量变化定理与角动量守恒5.1角动量与力矩5.2质点组角动量变化定理5.3有心运动习题第6章质心力学定理6.0概述6.1质心动量定理6.2质心动能定理6.3质心角动量定理6.4有心运动方程与约化质量习题第7章刚体力学7.1刚体运动学7.2定轴转动惯量7.3定轴转动定理与动能定理 7.4一组刚体力学的典型题目 7.5快速重陀螺的旋进习题第8章振动8.1振动的描述8.2弹性系统的自由振动8.3多自由度弹性系统8.4弹性系统的阻尼运动8.5简谐量的保守性与对应表示8.6弹性系统的受迫振动与共振8.7自激振动8.8非线性振动与混沌8.9振动的合成习题第9章波动9.1波与波函数9.2波动方程9.3弹性体的应变与应力9.4介质中的波速9.5波场中的能量与能流9.6波的叠加和驻波9.7多普勒效应与激波9.8介质色散波包群速与波包展宽9.9孤立波与非线性波动习题第10章流体力学10.1流体的宏观物性10.2理想流体的定常流动伯努利方程 10.3黏性流体的运动10.4物体在黏性流体中的运动10.5湍流与雷诺数习题第11章哈密顿原理11.0概述11.1力学系统的约束与广义坐标11.2哈密顿原理11.3哈密顿原理与拉格朗日方程11.4哈密顿原理与哈密顿正则方程习题附录物理常量保留单位习题答案1.大学物理学第二版上册(黄祝明著)课后答案2.大学物理简明教程吕金钟著课后答案3.大学物理课后答案。
热学参考答案
《大学物理D 》 练 习 三 热 学一、填空题3.1.1 质量为m ,摩尔质量为M ,分子数密度为n 的理想气体,处于平衡态时,气体的温度为T ,压强为p ,体积为V ,R 是摩尔气体常量,则状态方程为__RT MmpV =_;若其中k 称为玻耳兹曼常量,则状态方程的另一形式为_nkT p =_。
3.1.2 两种不同种类的理想气体,其分子的平均平动动能相等,但分子数密度不同,则它们的温度 相同 ,压强 不同 ;如果它们的温度、压强相同,但体积不同,则它们的分子数密度 相同 ,单位体积的气体质量 不同 ,单位体积的分子平动动能 相同 。
(填“相同”或“不同”)。
3.1.3 宏观量温度T 与气体分子的平均平动动能ω的关系为ω=___kT 23_,因此,气体的温度是__气体分子的平均平动动能__的量度。
3.1.4 设氮气为刚性分子组成的理想气体,其分子的平动自由度数为__3___,转动自由度为___2___。
3.1.5 2mol 氢气,在温度为27℃时,它的分子平动动能为 7479J ,分子转动动能为 4986J 。
3.1.6 1mol 氧气和2mol 氮气组成混合气体,在标准状态下,氧分子的平均能量为__211042.9−×__,氮分子的平均能量为_211042.9−×__;氧气与氮气的内能之比为__1:2__。
3.1.7 3mol 的理想气体开始时处在压强p 1 =6atm 、温度T 1 =500 K 的平衡态.经过一个等温过程,压强变为p 2 =3atm .该气体在此等温过程中吸收的热量为Q =__8.64×103________J . (普适气体常量R = 8.31 J/mol·K)3.1.8 一个孤立系统内,一切实际过程都向着___状态几率增大___________的方向进行.这就是热力学第二定律的统计意义.从宏观上说,一切与热现象有关的实际的过程都是___不可逆的_________.3.1.9 右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是___BM 、CM_______过程; (2) 气体吸热的是___CM_______过程..3.1.10 .可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T 1 =450 K , 低温热源的温度为T 2 =300 K, 卡诺热机逆向循环时从低温热源吸热 Q 2 =400 J ,则该卡诺热机逆向循环一次外界必须作功W =___200J___.3.1.11热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___功变热____的过程是不可逆的,而克劳修斯表述指出了_____热传导_____的过程是不可逆的。
大学物理习题解答第三章热力学
第三章热力学本章提要1.准静态过程系统连续经过得每个中间态都无限接近平衡态得一种理想过程。
准静态过程可以用状态图上得曲线表示。
2.内能系统内所有分子热运动动能与分子之间相互作用势能得与,其数学关系式为内能就是态函数。
3.功功就是过程量。
微分形式:积分形式:4.热量两个物体之间或物体内各部分之间由于温度不同而交换得热运动能量。
热量也就是过程量。
5.热力学第一定律热力学第一定律得数学表达式:热力学第一定律得微分表达式:由热力学第一定律可知,第一类永动机就是不可能造成得。
6.理想气体得热功转换(1)等体过程:热量增量为或(2)等压过程:热量增量为因则(3)等温过程:热量增量为因则(4)绝热过程:根据热力学第一定路可得则或在绝热过程中理想气体得p、V、T三个状态参量之间满足如下关系:7.热容量等体摩尔热容量:等压摩尔热容量:对于理想气体,若分子自由度为i,则迈耶公式:比热容比:8.焓在等压过程中,由热力学第一定律可得由于,上式可写为如果令焓就是一个态函数。
9.循环过程正循环得热机效率逆循环得致冷系数10.卡诺循环由两个等温过程与两个绝热过程构成得循环。
正循环得效率逆循环得效率11.热力学第二定律开尔文表述:不可能制成一种循环动作得热机,只从单一热源吸收热量,使之全部转变为有用得功,而其她物体不发生任何变化。
克劳修斯表述:热量不可能自动地从低温物体传向高温物体,而不引起其她得变化。
统计意义:一个不受外界影响得孤立系统,其内部所发生得过程总就是由热力学概率小得宏观状态向热力学概率大得宏观状态进行,即从有序向无序得状态发展。
12.克劳修斯熵克劳修斯熵表达式熵增加原理:在孤立系统内,当热力学系统从一个平衡态到达另一个平衡态时,它得熵永远不减少。
如果过程不可逆,系统得熵增加;如果过程可逆,系统得熵不变。
13.玻耳兹曼熵玻耳兹曼熵表达式熵得微观本质:熵得多少就是系统微观状态数目多寡得标志。
思考题3-1 (1)热平衡态与热平衡有何不同?(2)热平衡与力学中得平衡有何不同?答:(1)一个孤立系统得各种宏观性质(如温度、压强、密度等)在长时间内不发生任何变化,这样得状态称为热平衡态。
大学物理2-1第九章(热力学基础)习题答案
大学物理2-1第九章(热力学基础)习题答案习 题 九9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。
(1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少?[解] 由热力学第一定律A E Q +∆= 得AQ E -=∆在a <b 过程中,E E E a b∆=-JA Q 19412632011=-=-= 在adb 过程中 JA E Q 236421942=+=+∆=在ba 过程中 JA E A E E Q b a 27884194333-=--=+∆-=+-=本过程中系统放热。
9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa(1atm)的初态等温地压缩到 510026.2⨯Pa(2atm)。
求气体放出的热量。
[解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J P P RT M m A Q mol T 3211046.321ln 30031.82ln ⨯-=⨯⨯⨯===即气体放热为J 31046.3⨯。
9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明] 设此直线斜率为k ,则此直线方程为kvE =又E 随温度的关系变化式为Tk T C M M E v mol'=⋅=所以T k kV '=因此C kk T V ='=(C 为恒量) 又由理想气体的状态方程知,C TpV '= (C '为恒量)所以 p 为恒量 即此过程为等压过程。
9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。
(2)1→2直线。
试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。
大学物理Ⅱ-热学(黑龙江联盟)智慧树知到答案章节测试2023年哈尔滨工业大学
第一章测试1.A:B:C:D:答案:D2.2g氢气与2g氦气分别装在两个容积相同的封闭容器内,温度也相同。
(氢气视为刚性双原子分子)。
求:(1)氢分子与氦分子的平均平动动能之比;(2)氢气与氦气压强之比。
A:B:C:D:答案:B3.以下各式哪个表示速率大于v1的分子的速率平均值A:B:C:D:答案:C4.已知一定量的某种理想气体,在温度T1与T2时的分子最概然速率分别为Vp1和Vp2,分子速率分布函数的最大值分别为f(Vp1)和f(Vp2)。
若T1>T2则A:B:C:D:答案:A5.A:B:C:D:答案:C第二章测试1.两个体积不等的容器内分别盛有氦气和氧气,若它们的压强和温度均相同,则两种气体()A:单位体积内气体的内能必相同。
B:单位体积内分子的平均动能必相同;C:单位体积内气体的质量必相同;D:单位体积内的分子数必相同;答案:D2.两个体积相同的容器中,分别贮有氮气和氢气,若它们的压强相同,以E1和E2分别表示氮气和氢气的内能,则()A:B:C:无法确定D:答案:D3.一定量的理想气体,开始时处于压强,体积,温度分别为p1,V1,T1的平衡态,后来变到压强,体积,温度分别为p2,V2,T2的终态.若已知V2 >V1,且T2 =T1,则以下各种说法中正确的是()。
A:如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断B:若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少C:不论经历的是什么过程,气体从外界净吸的热一定为正值D:不论经历的是什么过程,气体对外净作的功一定为正值答案:A4.对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q等于()A:2/3B:2/7C:1/2D:2/5答案:B5.一定量的理想气体分别经历了等压、等体和绝热过程后,其内能均由E1变化到E2,在上述三过程中,则气体的()A:温度变化不同吸热不同B:温度变化相同吸热相同C:温度变化相同吸热不同D:温度变化不同吸热相同答案:C第三章测试1.根据热力学第二定律可知( )A:热可以从高温物体传到低温物体,但不能从低温物体传到高温物体B:不可逆过程就是不能向相反方向进行的过程C:功可以全部转化成热,但热不能全部转化成功D:一切自发过程都是不可逆的过程答案:D2.根据热力学第二定律判断下列哪种说法是正确的?A:功可以全部变为热,但热不能全部变为功B:有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量C:热量能从高温物体传递到低温物体,但不能从低温物体传到高温物体D:气体能够自由膨胀,但不能自动收缩答案:D3.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
大学物理单元习题及答案(热学部分)
单元习题热学模块一、 判断题: 1、 只有处于平衡状态的系统才可用状态参数来表述。
( √ ) 2、温度是标志分子热运动激烈程度的物理量,所以某个分子运动越快,说明该分子温度越高。
( × ) 3、某理想气体系统内分子的自由度为i ,当该系统处于平衡态时,每个分子的能量都等于kT i2。
( × )4、单原子分子的自由度为3,刚性双原子分子的自由度为5,刚性多原子分子的自由度为6。
( √ ) 5、 理想气体物态方程nkT p =中,n 代表物质的量。
( × ) 6、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们的温度、压强都相同。
( √ ) 7、两种理想气体温度相等,则分子的平均平动动能不一定相等。
( × ) 8、 对给定理想气体,其内能只是温度的函数。
( √ ) 9、热力学第一定律是能量转换和守恒定律,所以凡是满足热力学第一定律的热力学过程都能够实现。
( × ) 10、 可逆过程一定是准静态过程,反之亦然。
( × )11、 热力循环过程中只要给出高温热源的温度和低温热源的温度,都可以用公式121T T -=η来计算热机效率。
( × )12、 循环输出净功越大,则热效率越高。
( × ) 13、 可逆循环的热效率都相等。
( × )14、 不可逆循环的热效率一定小于可逆循环的热效率。
( × ) 15、 从增加内能的角度来说,作功和热传递是等效的,在本质上无差别。
( × )16、 不可逆过程是不能回到初态的热力过程。
( × ) 17、 热机的循环效率不可能大于1。
( √ ) 18、 气体膨胀一定对外做功。
( × ) 二、 计算题1、 一容器内储有氧气,其压强为atm p 0.1=,温度为27℃。
求:(1)分子数密度; (2)氧分子质量; (3)氧气密度;(4)分子的平均平动动能; (5)分子间的平均距离。
大学物理答案第七章热力学基础-习题解答
展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。
大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答
第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。