小学奥数:简单乘法原理.专项练习及答案解析
小学四年级奥数题精选乘法原理章节2
小学四年级奥数题:乘法原理一:何为乘法原理(路线问题分析:树状图)二:乘法原理的相关经典题型1、 如下图由火柴组成的一个图形,一只蚂蚁由A 点顺着火柴走到B 点,一支火柴只能经过一次,问一共有几种走法?2、 课桌上有两个盒子,第一个盒子里装着标有1、2、3、4、5、6的6个同样大小的球,第二个盒子里装着7、8、9、0的4个同样大小的球,现分别从第一个盒子和第二个盒子分别抓出一个球;问题一:若第一个盒子里面的球放在十位上,第二个盒子的球放在个位上,共有几个数字?问题二:若第二个盒子里面的球放在十位上,第一个盒子里面的球放在个位上,共有几个数字?3、 好老师培训中心近期将举办一场户外比赛,共有跳绳、跳远、打乒乓球和游泳4个项目,学校的小花同学、小红同学和张三同学三位同学准备报名参加,若每个项目不限制人数,则报名结果有几种情况?4、 由数字0、1、2、3组成三位数,则:可组成多少个不相等的三位数?可组成多少没有重复数字的三位数?5、 由数字1、2、3、4、5、6、7可以组成多少个没有重复数字的四位奇数?可以组成多少个没有重复数字的四位偶数?6、 用1元、2元和5元的3种面值的纸币(每张纸币没有限制张数)组成10元钱,有多少种方法?AB四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-乘法原理(含答案)
通用版六年级奥数专项精品讲义及常考易错题汇编-计数问题-乘法原理【知识点归纳】乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法…不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2…×mn种不同的方法.关键问题:确定工作的完成步骤.基本特征:每一步只能完成任务的一部分.【经典题型】例1:小明有4本不同的科技类图书和3本不同的故事类图书.在一次为贫困学校捐书的活动中,他准备捐科技类和故事类图书各一本,他有()种不同的捐法.A、3B、4C、7D、12分析:由题意可知,共有4本不同的科技类图书和3本不同的故事类图书,如果固定科技类图书与故事类图书进行组合的话,则每本科技类图书可分别与3本不同的故事书组合,共有3种组合方法,一共有四本科技类书,根据乘法原理,所以共有4×3=12种不同的捐法解:4×3=12(种).所以共有12种不同的捐法.故选:D点评:乘法原理与加法原理加法原理是数学概率方面的基本原理,理解时要注意这两种原理的区别.例2:小红有2件不同的上衣,3双不同的鞋子,2件不同的裙子,共有()穿法.A、9B、12C、24分析:要完成不同的穿衣搭配,需要分三步,第一步从2件不同的上衣取一件有2种取法;第二步从2件不同的裙子取一条有2种取法;第三步从3双不同的鞋子取一双有3种取法;根据乘法原理,共有:2×3×2=12(种),据此解答解:2×3×2=6×2=12(种);答:共有12种不同的穿法.故选:B点评:本题考查了乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法;本题有三种衣物,所以需要分三步完成不同的穿衣搭配.一.选择题1.有2种饮料和3种点心,小莉从中任意选一种饮料和一种点心,她有()种不同的选法.A.6B.5C.32.某饭店推出新菜系,荤菜有:红烧肉、糖醋排骨;素菜有:烧茄子、麻辣豆腐、香菇油菜.小亮想买一道荤菜一道素菜,有()种不同的搭配方法.A.6B.5C.43.体育比赛中,小王、小李、小张获得了前三名,名次没有并列,他们三人获得前三名的情况共有()A.6种B.5种C.4种D.3种4.小红有三条围巾和三顶帽子,小红可以有()种不同的围法.A.3B.6C.95.乐乐有4本科技书和3本故事书,他准备捐出科技书和故事书各一本,他有()种不同的捐法.A.12B.7C.46.如图,娜娜要从摩天轮经过石山到水上乐园,一共有()条路可以走.A.3B.5C.6D.97.丫丫给她的芭比娃娃买了4条不同的裙子和2件不同的上衣,她在给芭比娃娃穿一套衣服(1条裙子和1件上衣为1套)时有()种不同的搭配方法.A.6B.8C.108.如图的早餐有()种搭配.(饮料和西点只能各选一种呦!)A.4B.6C.89.用4双不同的袜子配6双不同的鞋子,共有()种不同的配法,A.8B.10C.12D.2410.用4、0、5三张数字卡片可以组成()个不同的三位数.A.3B.4C.5D.611.静怡要参加舞蹈比赛,她有四件上衣,三条裤子,她一共有()种不同的穿法.A.7B.12C.812.用6、5、4、2四个数字可组成()个三位数.A.25B.20C.2413.小林早上吃早餐,妈妈给他准备的饮料有豆浆和牛奶,准备的点心有蛋糕、油条、饼干和面包.如果饮料和点心只能各选一种,小林的早餐有()种不同的吃法.A.2B.6C.4D.814.东东有3件上衣和2条裤子,如果把上衣和裤子搭配起来穿,一共有( )种不同的搭配.A.3B.4C.5D.615.今天春游,小红的妈妈给小红准备了3件不同的上衣,4条不同的裤子,让小红自己搭配着穿,小红有()种不同的穿法.(每次上衣与裤子只能各穿一件)A.12B.10C.7D.8二.填空题16.有10支足球队进行足球比赛,如果每两支球队进行一场比赛,共比赛场.17.学校食堂的午餐有2种荤菜和2种素菜,一种荤菜搭配一种素菜,共有种不同的搭配方法.18.好乐家超市里有三种碗,单价分别是8.6元/个、5.4元/个和4.8元/个;有两种碗垫,单价分别是3元/个、2.5元/个.(1)买一个碗,并配上一个碗垫,一共有种不同的搭配.(2)买8个碗和8个碗垫,最少要用元.19.用3、6、9可以摆成个不同的三位数,其中最大的数是,最小的数是.20.用0、3、6、9能组成个没有重复数字的两位数,其中最小的是.21.食堂里的一份盒饭含一种主食和一种炒菜,今日主食有2种,炒菜有5种,一共有种不同的配餐方法.22.用9、3、7三个数字设置三位数密码(数字不能重复),一共可以设置个不同的密码.23.静怡要参加舞蹈表演,她有三件上衣,两条裤子,她一共有种穿法.24.用5、7、9三个数字可以组成个不同的三位数,其中是3的倍数的最小的数是.25.学校广播站有3名女播音员和4名男播音员,每次安排一男一女播音,一共有种不同的安排.26.小丁,小亮,小敏3位同学排成一排照相,共有种排法.如果从他们三个人中任选两人参加校文艺队,有种不同的选法.27.用摆两位数,能摆出个没有重复数字的两位数.28.红红有3双不同颜色的鞋子和4条不同颜色的袜子,要选一双鞋子和一双袜子搭配穿,有种不同的搭配方法.29.下面的服装要配成一套衣服,有种不同的搭配方法.30.书架上有4本不同的科技书和5本不同的文艺书,张萌想借两本不同类的书,共有种不同的借法.三.解答题31.小军有3顶帽子、2条围巾,可以有种不同的搭配方法.32.下面的早餐可以怎么搭配?共有几种不同的搭配方法?连一连.33.李老师要给8名同学购买衣服,款式如图.(1)一件上衣和一条裤子配成一套衣服,有种不同的搭配方法.(2)每人买一套一样的衣服,李老师最多要花多少元?34.学校积极开展体艺“21 ”活动,即:每个学生至少学习掌握两项体育运动技能和一项艺术特长.王老师为大家提供了如表的参考信息:(1)根据王老师的参考信息,小林同学按王老师的参考建议选择2种体育项目和一项艺术项目参加,共有种选择方案.(2)经过市场调研,王老师了解相关器材价格如下表:小林用100元买了一副乒乓球拍后,剩下的钱还能买几只口琴?(列式解答)35.下面是爱心之家餐厅盒饭的菜单,每盒有一个荤菜和一个素菜.荤菜:红烧肉、鱼香肉丝素菜:炒瓜片、土豆丝、烧茄子、炖豆角一共有几种不同的配菜方法?请列举出来.36.连一连.一种花色的领带与一种颜色的衬衫搭配,会出现种不同的搭配方法.37.红星幼儿园星期一的菜谱如下图,要求每份配餐有一个荤菜和一个素菜.一共有几种不同的配菜方法?星期一菜谱荤菜:排骨牛肉素菜:青椒菜花豆腐.38.有2件上衣和3条裤子,一共可以搭配出种不同的穿法.39.①(如图)从公园经过动物园到植物园有种走法.②每两个人通一次电话,4个人可以通次电话.40.董雨洁的四件衣服有几种搭配方法?连一连.41.从甲地到乙地有4条路可走,从乙地到丙地有3条路可走,那么从甲地到丙地有多少种不同的走法?42.有多少种不同的穿法,请连一连,填一填.一共有种不同的穿法.43.小丽的这些衣服,可以有多少种不同的搭配方法?请用字母表示出搭配方法.44.有几种不同的穿法.用线连一连.45.刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?参考答案一.选择题1.解:根据分析可得:⨯=(种)236答:她有6种不同的选法.答案:A.2.解:326⨯=(种);答:一共有6种不同配菜方法.答案:A.3.解:因为没有并列名次,所以可得:⨯⨯=(种)3216答:他们三人获得前三名的情况共有6种.答案:A.4.解:339⨯=(种),答:小红可以有9种不同的围法.答案:C.5.解:4312⨯=(种).所以共有12种不同的捐法.答案:A.6.解:一共有:236⨯=(条).答:一共有6条路可以走.答案:C.7.解:248⨯=(种)答:她在给芭比娃娃穿一套衣服(1条裙子和1件上衣为1套)时有8种不同的搭配方法.答案:B.8.解:248⨯=(种),答:早餐有8种搭配.答案:C.9.解:根据分析可得,4624⨯=(种);答:共有24种不同的配法.答案:D.10.解:2214⨯⨯=(个)答:用4、0、5三张数字卡片可以组成4个不同的三位数.答案:B.11.解:4312⨯=(种);答:她一共有12种不同的穿法.答案:B.12.解:43224⨯⨯=(个)答:一共可以组成24个不同的三位数.答案:C.13.解:248⨯=(种)答:小林的早餐有8种不同的吃法.答案:D.14.解:如图所示:,每件上衣都可以和两条裤子搭配,有2种不同方法,3件上衣和2条裤子搭配一共有方法:326⨯=(种).答案:D.15.解:3412⨯=(种)答:小红有12种不同的穿法.答案:A.二.填空题16.解:(101)102-⨯÷=÷902=(场);45答:如果每两支球队进行一场比赛,共比45场.答案:45.17.解:224⨯=(种)答:她共有 4种不同的配菜方法.答案:4.18.解:(1)三种碗,有3种选择,有两种碗垫,有2种选择;326⨯=(种)答:买一个碗,并配上一个碗垫,一共有 6种不同的搭配.(2)4.8 5.48.6<<<2.53⨯+⨯4.88 2.58=+38.420=(元)58.4答:买8个碗和8个碗垫,最少要用58.4元.答案:6,58.4.19.解:3216⨯⨯=(个)963>>所以用3、6、9可组成6个不同的三位数,其中最大的数是963,最小的数是369.答案:6,963,369.20.解:根据乘法原理,共有:339⨯=(个)其中最小的两位数是30.答:用0、3、6、9能组成 9个没有重复数字的两位数,其中最小的是 30.答案:9;30.21.解:5210⨯=(种)答:一共有10种不同的配餐方法.答案:10.22.解:3216⨯⨯=(个)答:一共可以设置 6个不同的密码.答案:6.23.解:326⨯=(种).答:三件上衣,两条裤子有6种不同穿法.答案:6.24.解:3216⨯⨯=(个)++=,21被3整除特征,所以其中是3的倍数的最小的数是579.57921答:用5、7、9三个数字可以组成6个不同的三位数;其中是3的倍数的最小的数是 579.答案:6;579.25.解:3412⨯=(种)答:有 12种不同的安排方法.答案:12.26.解:(1)3216⨯⨯=(种)答:共有6种不同的排法.(2)3(31)2⨯-÷=÷62=(种)3答:如果从他们三个人中任选两人参加校文艺队,有3种不同的选法.答案:6,3.27.解:339⨯=(个)答:用摆两位数,能摆出9个没有重复数字的两位数.答案:9.28.解:4312⨯=(种)答:要选一双鞋子和一双袜子搭配穿,有12种不同的搭配方法.答案:12.29.解:根据分析可得,⨯=(种);236答:有6种不同的搭配方法.答案:6.30.解:4520⨯=(种)答:共有20种不同的借法.答案:20.三.解答题31.解:326⨯=(种),答:共有6种不同的搭配方法.答案:6.32.解:⨯=(种)326答:共有6种不同的搭配方法.33.解:(1)326⨯=(种)答:一件上衣和一条裤子配成一套衣服,有 6种不同的搭配方法.(2)90110200+=(元)20081600⨯=(元)答:李老师最多要花1600元.34.解:(1)根据王老师的参考信息,小林同学按王老师的参考建议选择2种体育项目和一项艺术项目参加,共有6种选择方案:①乒乓球、足球、口琴;②乒乓球、足球、竖笛;③乒乓球、篮球、口琴;④乒乓球、篮球、竖笛;⑤足球、篮球、口琴;⑥乒乓球、篮球、竖笛.(2)(10060)16-÷=÷4016≈(只)2答:剩下的钱还能买2只口琴.35.解:248⨯=(种)红烧肉和炒瓜片、红烧肉和土豆丝、红烧肉和烧茄子、红烧肉和炖豆角;鱼香肉丝和炒瓜片、鱼香肉丝和土豆丝、鱼香肉丝和烧茄子、鱼香肉丝和炖豆角;共8种;答:一共有8种搭配方法.36.解:⨯=(种)428答:共有8种不同的搭配方法.答案:8.37.解:根据分析可得,共有236⨯=(种),答:一共有6种不同的配菜方法.38.解:236⨯=(种);答:一共可以搭配出 6种不同的穿法.答案:6.39.解:①3412⨯=(种),答:从公园经过动物园到植物园有12种走法.②3426⨯÷=(次),答:一共可以通话6次.答案:12,6.40.解:224⨯=(种),答:共有4种不同穿法.41.解:根据分析可得,⨯=(种);3412答:从甲地到丙地共有12种不同的走法.42.解:由分析可得:⨯=(种),326答:一共有6种不同的穿法.答案:6.43.解:236⨯=(种)一共有6种不同的搭配方法,它们分别是:AC,AD,AE,BC,BD,BE.答:可以有6种不同的搭配方法.44.解:236⨯=(种)连续如下:答:一共有6种不同的穿法.45.解:因为,选上衣有2种选法,选裤子有3种选法,所以,共有:236⨯=(种),答:她任意拿一件上衣和一条裤子穿上,共有6种可能.。
小学思维数学讲义:简单乘法原理-带答案解析
简单乘法原理1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.教学目标知识要点【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村C 村中A 村村 C 村北南C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?例题精讲CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?BCA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。
小学数学《乘法原理》练习题(含答案)
小学数学《乘法原理》练习题(含答案)知识要点完成一件事,这件事情可以分成n个步骤来完成,第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法。
那么完成这件事情一共有A×B×.....×N 种不同的方法。
用乘法算出一共有多少种方法,这就是乘法原理。
例:李老师周五要去新城,首先得从家到公交总站,然后得再坐公交车到新城。
如果说李老师的家到公交总站有5种可选择的路线,然后再从公交总站到新城有2条可选择的路线,李老师从家到新城一共有多少条路线?从上面示意图看出,李老师必须先的到公交总站,然后再到新城。
李老师要完成从家到新城的这件事,需要2个步骤,第1步是从家到公交总站,一共5种选择;第2步从公交总站到新城,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条,因为从家到公交总站的每一步都有2种路线到新城。
解题指导11.乘法原理在解决搭配问题中的应用,先明确第一步有几种方法,再明确第二步有几种方法,然后两种方法数相乘的积,就是方法的总数。
【例1】马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。
问:小丑的帽子和鞋共有几种不同搭配?分析与解:由下图可以看出,帽子和鞋共有6种搭配。
事实上,小丑戴帽穿鞋是分两步进行的。
第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。
对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有3×2=6(种)。
【变式题1】贝奇打算吃过面包、喝点饮料后去运动,一共有2种面包、3种饮料、2种运动可供选择,贝奇一共有多少种选择?解题指导22.乘法原理在组数中的应用。
用几个数组数,要先选定最高位上的数有几种方法,用去一个数后,还有几个数能满足下一数位,这个数位上就有几种方法。
依次类推,再把每个数位组的方法数相乘,就得到一共的组数方法。
【例2】用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?【分析与解】组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。
小学数学《乘法原理》练习题(含答案)
小学数学《乘法原理》练习题(含答案)在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:注意到 3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1×m2×…×m n种不同的方法.这就是乘法原理.例1某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?分析某人买饭要分两步完成,即先买一种主食,再买一种副食(或先买副食后买主食).其中,买主食有3种不同的方法,买副食有5种不同的方法.故可以由乘法原理解决.解:由乘法原理,主食和副食各买一种共有3×5=15种不同的方法.补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?分析甲虫要从A点沿线段爬到B点,必经过C点,所以,完成这段路分两步,即由A 到C,再由C到B.而由A到C有三种走法,由C到B也有三种走法,所以,由乘法原理便可得到结论.解:这只甲虫从A到B共有3×3=9种不同的走法.例3书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?分析要做的事情是从外语、语文书中各取一本.完成它要分两步:即先取一本外语书(有6种取法),再取一本语文书(有4种取法).(或先取语文书,再取外语书.)所以,用乘法原理解决.解:从架上各取一本共有6×4=24种不同的取法.例4王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?分析三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.例5由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法,由乘法原理,共可组成3×4×4=48个不相等的三位数.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法,由乘法原理,共有3×3×2=18个没有重复数字的三位数.解:由乘法原理①共可组成3×4×4=48(个)不同的三位数;②共可组成3×3×2=18(个)没有重复数字的三位数.例6由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.解:由1、2、3、4、5、6共可组成3×4×5×3=180个没有重复数字的四位奇数.例7右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.解:由乘法原理,共有16×9×4×1=576种不同的放法.例8现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取,共9种取法,即0、1、2、3、4、5、6、7、8;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.由乘法原理,共有9×4=36种情形,但注意到,要求“至少取一张”而现在包含了一张都不取的这一种情形,应减掉.解:取出的总钱数是9×4-1=35种不同的情形.习题一1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?习题一解答1.3×2×4=24(种).2.1×4×3=12(个).3.90×9=810(个).4.4×4×3×2×1=96(种).5.①8×8×8=512(个);②4×8×8=256(个);③4×7×6=168(个);④1×7×6=42(个);⑤1×3×6=18(个).6.9×10×10×10×10×10=900000(部).。
小学奥数 乘法原理练习及答案
乘法原理【课前思考】某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?【定义】一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,⋯,做第n步有mn种不同的方法,那么,完成这件事一共有:N=m1×m2×⋯×mn种不同的方法.这就是乘法原理.【例题精讲】例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?例7.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?【课后作业】1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?参考答案课前思考3种例1、15种例2、9种;例3、24种;例4、64种;例5、48个,18个;例6、180个;例7、576种;例8、35种;。
四年级奥数详解答案乘法原理
四年级奥数详解答案第九讲乘法原理一、知识概要如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。
这就是乘法原理。
乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。
二、典型例题精讲1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙地共有多少种不同的走法?分析:如图,很明显,这是个乘法原理的题目。
要完成“从甲到丙的行走任务”必须分两步完成。
第一步:甲分别通过乙的三条路线到达丙,故有3种走法。
第二步:甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。
这两种走法相类似,共同完成“从甲到丙”的任务。
解:3×2=6(种) 答:共有6种不同的走法。
2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、每列只能出现一个棋子,共有多少种不同的放法?分析:(如图二)摆放四个棋子分四步来完成。
第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。
解:16×9×4×1=576(种) 答:共有576种不同的放法。
3. 有五张卡片,分别写有数字1,2,4,5,8。
现从中取出3张片排在一起,组成一个三位数,如□1□5□2,可以组成个不同的偶数。
分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位共放了两张,所以还有3张可选放,有3种放法。
四年级下册数学试题-奥数专题讲练:1 乘法原理 竞赛篇(解析版)全国通用
第一讲 乘法原理卷Ⅰ 本讲的三个教学要点:①使学生掌握乘法原理主要内容;②掌握乘法原理运用的方法;③培养学生准确分解步骤的解题能力.乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.(一)简单乘法原理应用【例1】(★★★★)在右图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多各有几种不同走法?分析:从A 点到C 点一共有3种走法,从C 点到D 点一共也有3种走法,从D 点到B 点一共也有3种走法,根据乘法原理一共有3×3×3=27种走法.我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理. 乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法 ,…,做第n 步有m n 种不同的方法,则完成这件事一共有N=m 1×m 2×…×m n 种不同的方法. 乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 专题精讲 教学目标 想 挑战 吗?下图所示的八个图案是《周易》中所说的八卦,你们能画出第九个不同的卦相吗?如果不能,那是为什么? 答案:根据乘法原理,一共只有2×2×2=8种卦象 DC B A[拓展] (★★★)在右图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多各有几种不同走法?分析:解这道题时千万不要受原来那道题的影响,A 到C 的地走法不是3条而是4条所以这只甲虫最多有4×4=16种走法.【例2】(★★★★)有三组:(1)1,2,3;(2)0.5,1.5,2.5,3.5;(3)4,5,6.如果从每组数中各取出一个数相乘,那么所有不同取法的三个数乘积的总和是多少?分析:将式子(1+2+3)×(0.5+1.5+2.5+3.5)×(4+5+6)用乘法分配律展开所得的3×4×3=36个加项即为36种不同取法的三个数的乘式,所以(1+2+3)×(0.5+1.5+2.5+3.5)×(4+5+6)的值即为不同取法的三个数乘积的总和为720.【例3】(★★★★)从1到2004这2004个正整数中,共有 个数与四位数8866相加时,至少发生一次进位.分析:考虑不进位的情况. 9999-8866=1133.千位百位各有0,1两种选法,十位、个位各有0,1,2,3四种选法,因为0000不是正整数,所以不进位的数有 2×2×4×4-1=63(个).至少发生一次进位的数有 2004-63=1941(个).[前铺]10到99这90个数中,与66相加不产生进位的数有多少个?分析:十位、个位上不产生进位,要求十位上、个位上的数字不超过3,这样十位的数可以取值1、2、3上,个位上的数可以取值0、1、2、3,所以与66相加不产生进位的数有3×4=12个.(二)较复杂的乘法原理应用【例4】(★★★★)如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?分析:第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择.共有4×3×2×2×2=96种着色方法. C B A ED C B A[拓展1] 如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?分析:这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4×3×2×2×2=96种方法.讨论:如果染色步骤为C-A-B-D-E,那么应该该如何解答?答案:也是4×3×2×2×2=96种方法.如果染色步骤为C-A-D-B-E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有4×3×(1×2×2+2×1×2)=96种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.[拓展2]如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?分析:对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4×3×2×2×2×2×2×2×2=1536.【例5】(★★★)右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析:由于四个棋子要一个一个地放入方格内,故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法.由乘法原理,共有16×9×4×1=576种不同的放法.[前铺]:国际象棋棋盘是8×8的方格网,下棋的双方各有16个棋子位于16个区格中,国际象棋中的“车”同中国象棋中的“车”一样都可以将位于同一条横行或竖行的对方棋子吃掉,如果棋局进行到某一时刻,下棋的双方都只剩下一个“车”,那么这两个“车”位置有多少种情况?分析:对于如果只有一只“车”的情况,它可以有64种摆放位置,如果在棋盘中再加入一个“车”,那么它不能在原来那个“车”的同行或同列出现,他只能出现在其他七行七列,所以它只有7×7=49中摆放,所以这两个“车”的摆放位置有64×49=3136种方法.【例6】(★★★★)有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?分析:可以将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,不同的竖线插入方式代表不同的吃法,所以只需要求出有多少种竖线插入式.○○|○|○○○|○○○|○由于每个空都有画线与不画线两种可能(相当于每吃完一粒考虑今天还吃不吃),根据乘法原理,则不同的吃法共有29=512(种).[拓展]有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?分析:如图:○○|○○○○|○○○○,将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有9×8÷2=36种方法.(注意这里用到了组和的方法)卷Ⅱ(三)乘法原理在排列组合中的应用【例7】(★★★★)书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排法?分析:(1)每种书内部任意排序,分别有4×3×2×1,5×4×3×2×1,3×2×1种排法,然后再排三种类型的顺序,有3×2×1种排法,整个过程分4步完成.4×3×2×1×5×4×3×2×1×3×2×1×3×2×1=103680(种)一共有103680种不同排法.(2)方法一:首先将漫画书和童话书全排列,分别有4×3×2×1=24、5×4×3×2×1=120种排法,然后将漫画书和童话书捆绑看成一摞,再和3本故事书一起全排列,一共有5×4×3×2×1=120种排法,所以一共有24×120×120=345600种排法.方法二:首先将三种书都全排列,分别有24、120、6种排法,然后将排好了顺序的漫画书和童话书,整摞得先后插到故事书中,插漫画书时有4个地方可以插,插童话书时就有5个地方可插,所以一共有24×120×6×5×4=345600种排法.[前铺]小明有6本不同的课外书,把他们按顺序放在书架上有多少种排法?如果借出去两本剩下的情况有多少种?分析:(1)6本书的全排列:6!=720种,6本书中取4本排列:6×5×4×3=360种.【例8】(★★★★)用0,1,2,3,4这5个数字,组成各位数字互不相同的四位数,例如1023,2341等,求全体这样的四位数之和.分析:先求出5个数字共能组成多少个符合条件的数,分为4步,第一步确定千位数一共有4种选择,然后确定百位,有4种选择,确定十位数有3种选择,确定个位数有2种选择.一共有4×4×3×2=96种选择. 这96种选择中,千位数字出现1、2、3、4的次数都是24次,百位、十位、个位出现的次数为18次(0出现24次).所以全体这样的四位数和为(1+2+3+4) ×24×1000+(1+2+3+4) ×18×(100+10+1)=259980[前铺] 用1,2,3,4这4个数字,组成各位数字互不相同的三位数,例如123,231等,求全体这样的三位数之和.分析:先求出这4个数字共能组成多少个各位数字互不相同的三位数,分为4步,第一步确定百位数一共有4种选择,确定十位,有3种选择,确定个位数有2种选择,所以一共有24个符合条件的数,其中百位数字是1的有3×2×1=6个,同理、百位数字是2、3、4的也有6个,所以各个数百位数字之和为 6×(1+2+3+4)=60,同理各个数十位数字之和为60,各个数个位数字之和为60,所以,这些数的总和为:60×100+60×10+60×1=6660.【例9】(★★★★★)四对夫妇围一圆桌吃饭,要求每对夫妇两人都要相邻,那么一共有多少安排座位的方法?(如果某种排法可以通过旋转得到另一种排法,那么这两种排法算作同一种.)分析:方法一:事实上如果没有括号中的条件,那么所得的答案是原题答案的八分之一,因为符合原题的所有不同排法都通过旋转可以得到8种各不相同的安排方法.所以我们可以先求出改掉括号中条件的题目答案, 对于改编后的题,显然所有的安排方法分为两大类,如右图所示,每个椭圆中是一对,对于其中的一类,例如右图,第一步,确定1号位的人选:8种,那么2号位只能是他(她)的妻子(丈夫);第二步确定3号位的人选:6种,那么4号位只能是坐3号位的妻子或丈夫……,如此,对于右图可以有8×6×4×2=384种排法,同理左图也有384种排法,一共是768种排法.那么对于有括号中条件的题目一共有768÷8=96种排法.方法二:由于括号中的条件让我们很为难,对于一种新的排法,我们还要将它旋转,看它是否和之前的排法是否相同,当然我们也可以将所有排法都转到一个特殊的角度,以判断这些排法是否有相同的,所以我们可以定义一个特殊角度:先将四对夫妇编号,然后规定对于每一种排法1号夫妇面南坐是它的特殊角度,那么如果两中排法都转到特殊角度后,还不完全一样,那么这两种排法就无论如何也不能通过旋转得到相同的排法,所以我们只要求出特殊角度下的不同排法数,第一步先将4对夫妻的整体位置安排好,当然1号夫妻已经排好了,安排另3对夫妻一共有3×2×1=6种排法,如图所示:432143211234123412344321对于以上每一种排法,夫妻之间都可以交换位置,所以一共有6×2×2×2×2=96种排法.[拓展]3个3口之家在一起举行家庭宴会,围一桌吃饭,要求一家人不可以被拆开,那么一共有多少种排法?(如果某种排法可以通过旋转得到另一种排法,那么这两种排法算作同一种.)分析:使用原题的方法二更方便:共(2×1)×(3×2×1)×(3×2×1)×(3×2×1)=432种7812345687654321【例10】(★★★★)从10名男乒乓球运动员,10名女乒乓球运动员中选派运动员组成代表队去参加男女混合双打比赛,要求选派6人(男女各3),组成3个搭配,那么一共有多少种选派方法?分析:方法一:首先从10名男选手中选出3人(组合),一共有10×9×8÷(3×2×1)=120种,然后从10名女乒乓球运动员挑3人与之对应(排列),一共有10×9×8=720种,所以一共有120×720=86400种.方法二:先将6人挑出来一共是14400种,然后对这六人搭配,一共3×2×1=6种,所以一共有86400种.[前铺]从10名男乒乓球运动员,10名女乒乓球运动员中选派6名运动员组成代表队去参加比赛,要求男女运动员各3名,那么一共有多少种选派方法?分析:第一步:在男运动员中先选一名有10种方法.第二步:在剩下的男生中再选一名有9种方法,第三步:在剩下的男生中再选一名有8种方法,男生中选三人一共有10×9×8=720种方法,需要注意的是,每一种方法,例如,甲乙丙三人的组合,被统计了3×2×1=6次,分别是甲乙丙、甲丙乙,乙丙甲、乙甲丙、丙甲乙、丙乙甲,所以实际有720÷6=120种方法,同理在女生中选取三人一共有120种.所以一共有120×120=14400种选派方法.【例11】(★★★★)用1,2,3,4,5这5个数字组成四位数,至多允许有一个数字重复两次,例如1234和2454是满足条件的,而1212,3335和4444就是不满足条件的,那么满足条件的四位数共有多少个?分析:至多允许有一个数字重复两次的四位数即是由至少3个不同数字组成的四位数.这5个数字组成的四位数共有5×5×5×5=625个,其中由一个数字组成的有5个,包含指定两个数字四位数有2×2×2×2-2=14个,共有5×4÷(2×1)=10种指定方法,所以一共有140个四位数包含两个数字.剩下的四位数都满足条件一共有共有625-5-140=480个.(其中涉及到一点加法原理和排除法)【例12】(★★★★★仁华试题)一台晚会上有6个演唱节目和4个舞蹈节目.问:(1)如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?分析:(1)将4个舞蹈节目视为1个节目,七个节目一起排列一共有7×6×5×4×3×2×1=5040个,但舞蹈节目还有4×3×2×1=24种排列.所以一共有5040×24=120960种.(2)优先安排将6个演唱节目顺序,一共有6×5×4×3×2×1=720种方法,然后将安排4个舞蹈节目顺序一共有4×3×2×1=24种排列,最后将舞蹈节目按顺序安插到6个演唱节目前后不同位置,包括首尾一共有6+1=7个位置可供4个舞蹈节目安插,共有7×6×5×4÷(4×3×2×1)=35个安插方式,所以一共有720×24×35=60480种排列方式.专题展望本讲介绍了对于分步解决问题所用到的乘法原理,下一讲加法原理中我们将重点介绍对于同一步骤不同类方法的计数原理.练习一1.(★★例10)10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?分析:两人相邻的情况有10种,第三个人不能与他们相邻,所以对于每一种来说,只剩6个人可选,10×6=60(种)共有60种不同的选法.2.(★★例3)在21世纪中,有些年的年份数是由4个不相同的数字组成的,这样的年份共有个.分析:符合要求的年份形如20xy,其中x有8种不同选法,y有7种不同选法,所以有56个四位数满足题目要求.3.(★★★)世界杯小组赛一般由4个球队进行单循环赛,如何安排这四个球队先后比赛次序,有几种方法?分析:小组赛一共要赛4×3÷2=6场,排列这六场赛事一共有6×5×4×3×2×1=720种.4.(★★★★例11)用1,2,3,4这4个数字,组成各位数字互不相同的二位数,例如13,24等,求全体这样的二位数之和.分析:先求出2个数字共能组成多少个符合条件的数,分为2步,第一步确定十位数有4种选择,确定个位数有3种选择.一共有4×3=12种选择.这12种选择中,十位或个位出现1、2、3、4的次数都是3次,所以全体这样的二位数和为(1+2+3+4) ×3×(10+1)=330.5.(★★★)从一个班级10名优秀学生中选出5人组成班委,5人中再选出班长,一共有多少种方法?分析:第一步,先把班长选出来,一共有10种选法,第二步,在其余9人中选出4人一共有9×8×7×6÷(4×3×2×1)=126种选法.所以一共有10×126=1260种选法.数学知识二进制记数法的光辉第一次是闪现在中国的一部古书《周易》中.传说在远古时代,伏羲为天下王,他向外探求大自然的奥秘,向内省视自己的内心,终于推演出了太极八卦图.太极八卦图中心是由两条黑白相间、首尾相顾的鱼形成的一个圆圈,四周还围着结构奇特的八组图符,每组都含有三个或断或连的线段.这八组图符便是著名的八卦图,古人曾解释说:“太极生两仪,两仪生四象,四象生八卦.”再进一步,若把八卦两两组合,就会生成六十四卦.据学者考察,德国数学家莱布尼兹(1616-1703)看到“伏羲六十四卦方位图”后,从中领悟出了阴爻“--”代表“0”,阳爻“—”代表“1”,从而完善、撰写了《二进制数字算术》一书,他意味深长地说,自己不过是重新发现了中国古代数学中的秘密而已.古老的太极八卦图竟与现代数学上的二进制有着如此神秘的联系.。
小学五年级乘法原理奥数题【三篇】
小学五年级乘法原理奥数题【三篇】
导读:本文小学五年级乘法原理奥数题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】从甲城到乙城有3条不同的道路,从乙城到丙城有4条不同的道路,那么从甲城经乙城到丙城共有多少条不同的道路?解:4×3=12(条)答:从甲城经乙城到丙城共有12条不同的道路。
【第二篇】有10块糖,每天至少吃一块,吃完为止。
问:共有多少种不同的吃法?分析与解:将10块糖排成一排,糖与糖之间共有9个空。
从头开始,如果相邻两块糖是分在两天吃的,那么就在其间画一条线。
下图表示10块糖分在五天吃:第一天吃2块,第二天吃3块,第三天吃1块,第四天吃2块,第五天吃2块。
因为每个空都有加线与不加线两种可能,根据乘法原理,不同的加线方法共有29=512(种)。
因为每一种加线方法对应一种吃糖的方法,所以不同的吃法共有512种。
【第三篇】1、三位小朋友每两人通一次电话,一共通了多少次?2、在一次聚会上,小刚遇见了他的5位朋友,他们彼此握了一次手,他们一共握了多少次手?
3、校运动会上,四年级有5人参加乒乓球单打比赛,每人都要和另外4人比赛一场,一共要比赛多少场
4、小红和她的爸爸,妈妈,弟弟去公园玩,每次选2人进行合影留念,有多少种不同的选法?
5、某旅行社推出"五一"黄金周的旅游景点为:桂林,花果山,周庄,苏州园林,南京中山陵.小红家想选择其中的两个景点游玩,他们家一共有多少种不
同的选择方案? 6、有5位同学,如果每两人互赠一件礼物,共需多少件礼物?。
奥数培优《乘法原理》含答案
我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理。
乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法。
乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。
例1.在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过,问这只甲虫最多各有几种不同走法?例 2.要从五年级六个班中评选出学习先进集体,体育先进集体、卫生先进集体各一个,有多少种不同的评选结果(同一个班级只能得到一个先进集体?)例3.5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?例4.如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?例5.下图中共有16个方格,要把A,B,C,D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子,问共有多少种不同的放法?例6.求360共有多少个不同的因数。
A B1.某短跑队有9名运动员,其中2人起跑技术好,另外有3人跑弯道技术好,还有2人冲刺技术好,现在要从中选4人组队参加4×100米接力赛,为了使每人充分发挥特长,共有多少种组队方式?(注:4×100米接力赛中,第一棒起跑,第二棒跑直道,第三道跑弯道,第四棒冲刺)2.在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。
问:共有多少种不同的放法?3.求1800共有多少个不同的因数。
4.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?5.在图中,从“华”字开始,每次向下移动到一个相邻的字可以读出“华罗庚学校”.那么共有多少种不同的读法?1.有4粒糖,每天至少吃一粒,吃完为止。
六年级奥数乘法原理
六年级奥数:乘法原理(1)年级 班 姓名 得分一、填空题1.书架上有6本不同的画报、10本不同科技书,请你每次从书架上任取一本画报、一本科技书,共有 种不同的取法.2.七个相同的球,放入四个不同的盒子里,每个盒子至少放一个.不同的放法有 种.3.用0,1,2,3,4,5,6,7,8,9十个数字,能够组成 个没有重复数字的三位数.4.有一个面积为693平方米的长方形,其周长最多可有 种不同的数值.5.两个点可以连成一条线段,3个点可以连成三条线段,4个点可以连成六条线段,5个点可以连成几条线段?6个点可以连成 条线段.6.学雷锋小组的一次集会,参加会的人每两人握手一次,共握手36次,这个小组共有 人.7.数出图中长方形(包括正方形)的总个数是 .8.用9枚钉子组成33⨯方阵,用橡皮筋勾在3枚钉子上,组成一个三角形,共可组成 个三角形.9.有5人参加的学雷锋小队上街宣传交通规则,站成一排,其中2名队长不排在一起,一共有 种排法.10.在图中画出n ⨯3方格中(n 是自然数)每一列中的3个方格中分别用红、白、蓝三种颜色任意染色(每列中三格的颜色各不相同).最少需要 列才能保证至少使两列染色的方式相同.二、解答题11.在88 的棋盘上可以找到多少个形如右图所示的“凸”字形图形?12.某城市的街道非常整齐(如图),从西南角A 处走到东北角B 处,要求走得最近的路,并且不能通过十字路口C (正在修路),共有多少种不同的走法?13.一个自然数,如果它顺着数和倒过来数都是一样的,则称这个数为“回文数”.例如1331, 7, 202都是回文数.而220则不是回文数.问1到6位的回文数一共有多少个?14.如图,把A 、B 、C 、D 、E 这个五部分用四种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相领的部分可以使用同一种颜色.那么这幅图一共有多少种不同的着色方法?———————————————答 案——————————————————————1. 60.第一步,取一本画报,有6种方法;第二步,取一本科技书,有10种方法.根据乘法原理,一共有6×10=60(种)不同取法.2. 16384.放第一个球,有4种方法;放第二个球,也有4种方法,…,放第七个球,还有4种方法.由乘法原理知,一共有4×4×4×4×4×4×4=47=16384(种)放法.3. 648.第一步,排百位数字,有9种方法(0不能作首位);第二步,排十位数字,有9种方法;第三步,排个位数字,有8种方法.根据乘法原理,一共有9×9×8=648(个)没有重复数字的三位数.4. 6.将693分解质因数得693=7×11×32,它有(1+1)×(1+1)×(2+1)=12个约数,故它可以组成6组不同的长和宽,即周长最多有6种不同数值.5. 10;15.每一条线段有两个端点,从五个点中选一个点作为端点有5种方法,而选第二个点有4种方法,共有5×4=20(种)方法.但是因先选A 再选B 与先选B 再选A 是同一条线段,故实际上是(5×4)÷2=10(条)线段.同理,六个点可以连成(6×5)÷2=15(条)线段.6. 9.设小组有x 人,则握手总次数为362)1(=-x x ,即72)1((=-x x .相邻两个连续自然数的积为72,即9×8=72,故x =9.7. 90.大长方形长上有6个点,共可组成15256=⨯条线段;大长方形宽上有4个点,可以组成6234=⨯条线段.故图中长方形的个数为15×6=90(个).8. 72.从9枚钉子中取3枚,先取第一枚有9种方法,再取第二枚有8种方法,最后取第三枚有7种方法,共有9×8×7种方法.但其中每个三角形顶点有6种排列次序,故实际上只有9×8×7÷6=84种方法.又有三个点在一直线不能组成三角形,这种情况有8种,所以一共可得到84-8=72(个)三角形.9. 72.我们可以先将除二名队长的三人排成一列,有3×2×1=6(种)排法.再将两名队长插入到这三个人之间或两头,第一个队长有4种方法,第二个队长有3种方法,故一共有6×4×3=72(种)排法.10. 7.每一列的排法有3×2×1=6(种),故最少需要6+1=7(列)才能保证至少有两列染色方式相同.11. 如图,将标有A 字的方格称为凸字形的“头”,当“头”在8×8的正方形边上时,一个“头”对应着一个凸字形,这样的凸字形有6×4=24(个);当“头”位于8×8的正方形内部时,一个“头”对应着4个凸字形,这样的下凸字形有4×(6×6)=144(个),合计24+144=168(个).12. 用标数法可以求出一共有120(种)走法.13. 一位回文数有9个;二位回文字也有9个;三位回文数有9×10=90(个);四位回文数也有90个;五位回文数有9×10×10=900(个);六位回文数也有900个.一共有9+9+90+90+900+900=1998(个).14. 按A ,B ,C ,D ,E 的顺序,分别有4,3,2,2,2种颜色可选,所以不同颜色着色方法共有4×3×2×2×2=96(种).。
小学计数知识学习习题乘法原理含答案
小学计数知识学习:乘法原理习题一答案1 / 4小学计数知识学习:乘法原理习题二求正整数1400的正因数的个数.解因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=23527所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:(1)取23的正因数是20,21,22,33,共3+1种;(2)取52的正因数是50,51,52,共2+1种;(3)取7的正因数是70,71,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明利用本题的方法,可得如下结果:若pi是质数,ai是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1).小学计数知识学习:乘法原理习题三在小于10000的自然数中,含有数字1的数有多少个?解不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.2 / 4先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.小学计数知识学习:乘法原理习题四用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。
小学奥数系列7-2乘法原理(一)及参考答案
小学奥数系列7-2乘法原理(一)一、1. 邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?2. 如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C地有多少种不同的走法?3. 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?4. 在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?5. 在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?6. 在下图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?7. 在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?8. 在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?9. 按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?10. 题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?11. 文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)12. 小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?13. 要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?14. 从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?15. 从全班20人中选出3名学生排队,一共有多少种排法?16. 五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?17. 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?18. “数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?19. “IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?20. “学习改变命运”这六个字要用6种不同颜色来写,现只有6种不同颜色的笔,问共有多少种不同的写法?21. 有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?22. 用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?23. 北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种)24. 一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?25. 某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?26. 北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
小学奥数--乘法原理24道
【题型】应用题【题目】某短跑队有9名运动员,其中2人起跑技术好,另外有3人跑弯道技术好,还有2人冲刺技术好。
现在要从中选4人组队参加 4×100米接力赛,为使每人充分发挥特长,共有多少种组队方式?(注: 4×100米接力赛中,第一棒起跑,第二棒跑直道,第三棒跑弯道,第四棒冲刺。
)【答案】72【解析】起跑、弯道、冲刺各选1人后,还有6人可以跑直道。
【难度】难度1【知识点】乘法原理【题目】用四种颜色对下列各图的A,B,C,D,E五个区域染色,要求相邻的区域染不同的颜色。
问:各有多少种不同的染色方法?【答案】(2)72种【解析】(1)按A,B,C,D,E次序染色,可供选择的颜色依次有4,3,2,2,2种。
(2)按A,B,E,C,D次序染色, B与E同色时有4×3×1×2×2=48(种),B与E异色时有4×3×2×1×1=24(种),共有 48+24=72(种)。
【难度】难度3【知识点】乘法原理【题目】已知15120=24×33×5×7,问:15120共有多少个不同的约数?【答案】80【解析】15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4,2, 2种,所以共有约数5×4×2×2=80(个)。
【难度】难度3【知识点】乘法原理【题目】在所有的四位数中,前两位的数字之和与后两位的数字之和都等于6的共有多少个?【答案】42【解析】前两位有15,24,33,42,51,60六种,后两位增加一个06,所以共有6×7=42(个)。
【难度】难度2【知识点】乘法原理【题目】在三位数中,至少出现一个6的偶数有多少个?【答案】162【解析】三位偶数共有450个。
小学数学六年级下册奥数高频考点常考易错题汇编——计数问题——乘法原理(含答案)
小学数学六年级奥数高频考点常考易错题汇编——计数问题——乘法原理一.选择题1.丽丽有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法.A.5B.6C.3D.22.下列说法正确的是()A.三件上衣和两条裤子一共有5种搭配方法B.因为450.590÷=,所以45是0.5的倍数,0.5是45的因数C.小红画了一条15cm长的射线D.用一个可以放大100倍的放大镜看一个30︒的角,这个角还是30︒3.3件T恤,2条短裤和1条长裤,一共有()穿搭方法。
A.8B.9C.104.小宁要参加故事比赛,他有三件上衣,两条裤子,他一共有()种不同的穿法.A.5B.6C.45.每次上衣穿一件,裤子穿一条.下面的服装可以有()种不同的穿法.A.5B.6C.86.李华有2件上衣和2条裤子,要配成一套衣服,有()种不同的搭配方法.A.2B.4C.6D.87.小静有两件上衣和三条裤子,可以有()种不同的搭配方法.A.3B.6C.58.用3、5、0三个数字,一共能组成()个不同的三位数.A.4B.5C.6D.09.用数字卡片3,0,5,6可以排出()个不同的两位数.A.12B.9C.610.小明有4本不同的科技类图书和3本不同的故事类图书.在一次为贫困学校捐书的活动中,他准备捐科技类和故事类图书各一本,他有()种不同的捐法.A.3B.4C.7D.1211.笑笑有2件上衣,4条裙子,她可以有()种不同的搭配方法.A.4B.6C.8D.1012.有3件不同的上衣和4条不同的裤子,要搭配成套(一件上衣和一条裤子是一套),有()种不同的搭配方法.A.7B.10C.1213.学校食堂午餐有米饭、馒头两种主食和红烧鱼、土豆炖肉、地三鲜三种菜,如果一次可以选择一种主食和两种菜,有()种搭配方法.A.6B.8C.1014.小红有3件不同的上衣,3件不同的裙子,共有()种不同的穿衣搭配方法.A.3B.6C.915.右面是营养餐公司午餐菜单,如果一荤一素是种搭配,共有()种不同的搭配方法.A.7B.12C.14D.24二.填空题16.淘气有2件不同的上衣,4条不同的裤子,有种不同的搭配.17.要配成一套衣服,有种不同的搭配方法.18.周末小丽先去大润发购物,再到图书馅有书,如图,共有种不同的路线。
小学数学《乘法原理》练习题(含答案)
小学数学《乘法原理》练习题(含答案)知识要点完成一件事,这件事情可以分成n个步骤来完成,第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法。
那么完成这件事情一共有A×B×.....×N 种不同的方法。
用乘法算出一共有多少种方法,这就是乘法原理。
例:李老师周五要去新城,首先得从家到公交总站,然后得再坐公交车到新城。
如果说李老师的家到公交总站有5种可选择的路线,然后再从公交总站到新城有2条可选择的路线,李老师从家到新城一共有多少条路线?从上面示意图看出,李老师必须先的到公交总站,然后再到新城。
李老师要完成从家到新城的这件事,需要2个步骤,第1步是从家到公交总站,一共5种选择;第2步从公交总站到新城,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条,因为从家到公交总站的每一步都有2种路线到新城。
解题指导11.乘法原理在解决搭配问题中的应用,先明确第一步有几种方法,再明确第二步有几种方法,然后两种方法数相乘的积,就是方法的总数。
【例1】马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。
问:小丑的帽子和鞋共有几种不同搭配?分析与解:由下图可以看出,帽子和鞋共有6种搭配。
事实上,小丑戴帽穿鞋是分两步进行的。
第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。
对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有3×2=6(种)。
【变式题1】贝奇打算吃过面包、喝点饮料后去运动,一共有2种面包、3种饮料、2种运动可供选择,贝奇一共有多少种选择?解题指导22.乘法原理在组数中的应用。
用几个数组数,要先选定最高位上的数有几种方法,用去一个数后,还有几个数能满足下一数位,这个数位上就有几种方法。
依次类推,再把每个数位组的方法数相乘,就得到一共的组数方法。
【例2】用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?【分析与解】组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。
小学奥数:简单乘法原理.专项练习
1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字7-2-1.简单乘法原理知识要点教学目标有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法? 2号路1号路南中C B A【考点】简单乘法原理 【难度】1星 【题型】解答【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村 C 村中2号路1号路A 村村 C 村北2号路1号路1号路2号路南 C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C 地有多少种不同的走法?C B A【考点】简单乘法原理 【难度】1星 【题型】解答【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?学校例题精讲【考点】简单乘法原理【难度】1星【题型】解答【解析】从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?DCBA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?CBA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例 3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。
小学四年级奥数乘法原理练习题及答案
小学四年级奥数乘法原理练习题及答案
小学四年级奥数乘法原理练习题及答案
1.乘法原理
王英、赵明、李刚三人约好每人参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?
解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的.报名方法.满足乘法原理的条件,可由乘法原理解决.
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.
2.乘法原理
由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.
解:由1、2、3、4、5、6共可组成
3×4×5×3=180
个没有重复数字的四位奇数.
下载全文
下载文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;教学目标知识要点7-2-1.简单乘法原理2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法? 2号路1号路南中北C B A【考点】简单乘法原理 【难度】1星 【题型】解答【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村 C 村中2号路1号路A 村村 C 村北2号路1号路1号路2号路南 C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C 地有多少种不同的走法?C B A【考点】简单乘法原理 【难度】1星 【题型】解答【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?例题精讲【考点】简单乘法原理【难度】1星【题型】解答【解析】从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?DCBA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?CBA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例 3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。
【考点】简单乘法原理【难度】1星【题型】填空【关键词】希望杯,4年级,1试【解析】4×3×2×1=24【答案】24种【巩固】按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?【考点】简单乘法原理【难度】2星【题型】解答【解析】1、造一个句子必须包含三个部分,即人、交通工具、目的地.2、那么这个句子可以分成三个部分;第一个步——选择人物,有三种选择;第二步——选择交通工具,有三种选择;第三个步——选择目的地,有三种选择.3、根据乘法原理:3×3×3=27.【答案】27【巩固】小琴、小惠、小梅三人报名参加运动会的跳绳,跳高和短跑这三个项目的比赛,每人参加一项,报名的情况有______ 种。
【考点】简单乘法原理【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】乘法原理,3×3×3=27种【巩固】题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?【考点】简单乘法原理【难度】2星【题型】解答【解析】从该题库每一类试卷中分三步各选一道题,每一步分别有30、40、45种选法.根据乘法原理,一共有30×40×45=54000种不同的选法,所以一共可以组成54000种不同试卷.【答案】54000【巩固】文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?【考点】简单乘法原理【难度】2星【题型】解答【解析】完成这件事需要两步:一步是从女生中选1人,有4种选法;另一步是从男生中选1人,有3种选法.因此,由乘法原理,选出1男1女的方法有3412⨯=种.还可以用乘法的意义来理解这道题:男生有3种选法,每选定1个男生,再选1个女生,对应着4种选法,即3个男生,每个男生对应4种选女生的方法,因此选出1男1女共有3412⨯=种方法.【答案】12【巩固】要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?【考点】简单乘法原理【难度】2星【题型】解答【解析】第一步选出学习先进集体一共有6种方法,第二步选出体育先进集体一共有6种方法,第三步选出卫生先进集体一共有6种评选方法,根据乘法原理,一共有⨯⨯=种评选方法.666216【答案】216【例 4】小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?【考点】简单乘法原理【难度】2星【题型】解答【解析】小丸子搭配服装分四步.第一步选帽子,由于不戴帽子可以看作戴了顶空帽子,所以有516+=种选法;第二步选上衣,有10种选法;第三步选裤子,有8种选法;第四步选皮鞋,有6种选法.根据乘法原理,四种服装中各取一个搭配.一共有()种选法,所以一共可以组成2880种不同搭配.+⨯⨯⨯=5110862880【答案】2880【例 5】已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有()个。
(A)9 (B)8 (C)7 (D)6【考点】简单乘法原理【难度】3星【题型】选择【关键词】华杯赛,初赛,第4题【解析】两个眼睛可以去掉也可以不去掉有2种选择,同理嘴和脚也是各有两种选择,所以共有222=8⨯⨯种选择,但是题目说的新图型,所以要去掉题目已给的形式,共有-种,所以答案是:C81=7【答案】C【例 6】从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?【考点】简单乘法原理【难度】2星【题型】解答【解析】第一步选出学习先进集体共有6种方法,第二步从剩下班级中选出体育先进集体共有5种方法,第三步选出卫生先进集体只剩有4种评选方法,根据乘法原理,共有6×5×4=120种评选方法.【答案】120【巩固】奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。