钢材表面清洁度的评定

钢材表面清洁度的评定
钢材表面清洁度的评定

钢材表面清洁度的评定

为了充分发挥涂料的保护和装饰作用,必须进行彻底的表面处理已为人们公认。涂装成功与否主要取决于表面处理质量。通常表面清洁度(表面处理质量)越高,越能保证涂料的保护作用,但过高的要求也会造成极大的浪费。对钢材表面清洁度的进行评定是一项至关重要的工作。表面处理质量包括三个方面,即钢板表面的可视清洁度(锈蚀、氧化皮等)、粗糙度和不可视清洁度(油脂、可溶性铁盐、氯化物、硫化物、灰尘等),在这方面以船舶行业为代表,已经形成了较完善的检测标准和体系,其他行业一般均参照执行。

一、钢材表面可视清洁度(锈蚀、氧化皮)的评定

钢材表面可视清洁度(锈蚀、氧化皮)的评定,可分为定量和定性两种方法。

定量方法一般有两种,第一种为硫酸铜法:将硫酸铜溶液刷在处理后的钢板表面,除锈完全的部分呈金属铜的颜色,而大于0.5mm残留氧化皮的部分呈暗色,从而判断表面的清洁程度。可采用在每升含1gH2SO4的溶液中添加4~8gCu2SO4的方法配制硫酸铜溶液,或将36gCu2SO4·5H20加热溶于100ml水中,再加入过量的Cu(OH)放置24小时后,去除多余的Cu(OH)2的方法来配制硫酸铜溶液。第二种定量检测方法是利用氧化皮和铁电阻不同的特点,采用电阻测量仪测定处理后的表面与探头2

(直径1mm的球型笔状电极)之间的过渡电阻,通过各点的平均值判断表面清洁度。此外,还可利用带蓝色过滤器的光线反射测量仪进行表面清洁度检验。

仪器定量测量方法受光线、处理方法、原始状态和表面粗糙度等影响极大,而硫酸铜法又需要进行后处理,否则会留下腐蚀隐患,所以,更为可靠的方法还是定性的与标准照片进行对比的方法。

为了能正确、方便地评定钢材在除锈之后的表面处理质量,许多工业发达国家都先后制定了钢材除锈的质量等级标准,其中最显著的是瑞典工业标准SIS055900《涂装前钢材表面除锈标准》,长期以来为世界各国所引用。国际标准化组织色漆和清漆技术委员会涂装前钢材表面处理分会(ISO/TC 35/SC12)以瑞典标准SIS055900-1967为基础,制订了国际标准ISO8501-1:1988《涂装油漆和有关产品前钢材预处理-表面清洁度的目视评定-第一部分:未涂装过的钢材和全面清除原有涂层后的钢材的锈蚀等级和除锈等级》。我国标准为GB8923-88《涂装前钢材表面锈蚀等级和除锈等级》。

上述标准将未涂装过的钢材表面原始锈蚀程度分为四个“锈蚀等级”,将钢材表面除锈后的质量分为若干个“除锈等级”。钢材表面的锈蚀等级和除锈等级均以文字叙述和典型样板的照片共同确定。

1、锈蚀等级

除锈前钢材表面原始锈蚀状态对除锈的难易程度和除锈后的表面外观质量具有较大影响。因此,该标准根据钢材表面氧化皮覆盖程度和锈蚀状况将其原始锈蚀程度分为四个等级,分别以A、B、C、D表示。

A 全面地覆盖着氧化皮而几乎没有铁锈的钢材表面。

B 已发生锈蚀,并且部分氧化皮已经剥落的钢材表面。

C 氧化皮已因锈蚀而剥落,或者可以刮除,并且有少量点蚀的钢材表面。

D 氧化皮已因锈蚀而全面剥落,而且已普遍发生点蚀的钢材表面。

2、除锈等级

该标准对喷射或抛射除锈、手工和动力工具除锈、火焰除锈后的钢材表面清洁度规定了相应的除锈等级,分别以字母Sa、St、F1表示,字母后的阿拉伯数字则表示

1

清除氧化皮、铁锈和涂层等附着物的程度等级。

Sa1 轻度的喷射或抛射除锈钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和涂层等附着物。

Sa2 彻底的喷射或抛射除锈钢材表面应无可见的油脂和污垢,并且氧化皮、铁锈和油漆涂层等附着物已基本清除,其残留物应是牢固附着的。

Sa2.5 非常彻底的喷射或抛射除锈钢材表面应无可见的油脂、污垢、氧化皮、铁锈和油漆涂层等附着物,任何残留的痕迹应仅是点状或条纹状的轻微色斑。

Sa3 使钢材表观洁净的喷射或抛射除锈钢材表面应无可见的油脂、污垢、氧化皮、铁锈及油漆涂层等附着物,其表面应显示均匀的金属色泽。

St2 彻底的手工和动力工具除锈钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。

St3 非常彻底的手工和动力工具除锈钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物,除锈应比St2更彻底,底材显露部分的表面应具有金属光泽。

F1 火焰除锈钢材表面应无氧化皮、铁锈和油漆涂层等附着物,任何残留的痕迹仅为表面变色(不同颜色的暗影)。

标准中,表示钢板表面原始锈蚀程度的典型样板照片有4张;表示喷射或抛射除锈、手工和动力工具除锈以及火焰除锈所达到的除锈等级的照片有24张。这些照片标有除锈前原始锈蚀等级和除锈后的除锈等级的符号。分别为:

A B C D

BSt2 BSt3 CSt2 CSt3 DSt2 DSt3 ASa2.5 ASa3 BSa1 BSa2 BSa2.5 BSa3 CSa1 CSa2 CSa2.5 CSa3 DSa1 DSa2 DSa2.5 DSa3 例如,钢材原始锈蚀等级为B级,经喷砂除锈到Sa2.5级,则相应的照片标示为BSa2.5。

该标准中不含ASa1、ASa2、ASt2和ASt3级的照片,因为在原始锈蚀状态为A级的钢材表面上,除锈至这些等级不能满足涂装的最低要求。

上述标准是以钢材表面的目视外观来表达锈蚀等级和除锈等级的。因此,评定这些等级时,应在良好的散射日光下或照明度相当的人工照明条件下进行。检查人员应具有正常的视力。同时,标准规定评定等级时不应借助于放大镜等器具。

在评定锈蚀等级和除锈等级时,待检查的钢材表面应与相应的照片进行目视比较,并且照片应尽量靠近待查表面。如果评定钢材的原始锈蚀等级,应以相应锈蚀较严重的等级照片所标示的锈蚀等级作为评定结果;如果是评定除锈等级,则以与钢材表面外观最接近的照片所标示的除锈等级作为评定结果。例如,一块钢板的锈蚀状态与锈蚀等级照片相比,其实际锈蚀程度介于照片B和C之间,则该钢材的锈蚀等级应定为C级。

采用目测方式,必然存在许多因素会影响我们目视评定的结果,如标准中表示喷射、抛射除锈的14张照片,是使用石英砂磨料进行干式喷射除锈后的钢材表面外观。使用其他种类的磨料,例如目前广泛使用的钢丸、钢砂、钢丝段、铜矿渣等磨料时,表面颜色则要暗一些。对比,ISO8501-3标准提供了一套反应不同磨料喷射处理后钢材表面外观差异的若干典型样板照片,作为ISO8501-1标准的补充。该标准提供了采用常用的六种磨料:对锈蚀等级为C级的低碳钢,处理到CSa3级之后的外观典型样板照片。这六种磨料分别是:

①高碳钢丸,等级IG 100,维氏硬度400-520HV;

②铁砂,等级IG 070,维氏硬度400-520HV;

③铁砂,等级IG 070,维氏硬度750-950HV;

④冷硬铸铁砂,等级IG 070;

⑤铜矿渣;

⑥煤炉熔渣。

2

此外,钢材在轨制过程中,由于处理温度不同,也可能会形成不同的颜色。喷砂除锈后,这种颜色差异有时会显露出来。此外,由于照明不匀、表面不平整、因腐蚀程度不同造成表面各部分粗糙度的差异、因喷射除锈时磨料冲击表面的角度不同而引起光线在除锈表面反射不同,都会造成表面色调的差异。对于这些影响因素,评定除锈等级时,应予以考虑,以相似相近的原则处理。

3

表面清洁度分析仪

蔡司全自动清洁度分析仪(Particle Analyzer) 总体描述: 零部件表面的洁净度对于零部件工作的可靠性和持久性有着非常重要的影响。零部件表面的污染物多为切屑、毛刺、铸沙、焊渣、磨料等固体颗粒。这些污染物会加速零件的磨损,会堵塞元件的节流孔使元件失去调节功能,会进入滑阀间隙使阀芯卡死,会拉伤油缸内表面使泄漏增加或使输出力减小,会损坏泵的配油盘使泵烧伤或研死……。这些情况的出现最终将系统功能丧失或彻底瘫痪。因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的系统能够安全可靠的运行。 蔡司最新推出的Particle Analyzer的出现将工业清洁度控制过程提升到了全新的高度。Particle Analyzer清洁度分析仪采用全自动分析方式将过滤膜上的污染颗粒进行快速成像,无需多重图像分析即可实现将颗粒尺寸大小、形貌分析一步完成,在实现快速对污染物等级的快速评定同时还可以对污染物来源进行分析。Particle Analyzer全自动清洁度分析仪已经成为零部件表面清洁度分析和污染物控制的首选。

产品特点: 1、适合精密清洗定量化的清洁度检测,尤其使用于检测微小颗粒和带色杂质颗粒 2、对整个过滤膜上的颗粒进行分析,因此分析的准确性和可靠性更高。 3、采用全自动分析方式,因此分析效率更高,同时软件符合国家、国际标准等多国标准(ISO4406、ISO4407、IOS16232、NAS1638、ASTMD4378-03、VDA19)。标准可自行添加。 产品应用: 对于许多行业,清洁度控制都非常重要。同汽车行业一样,这些行业也常发生很多使产品寿命和可靠性降低的质量问题,其中主要症结都在于零件加工过程中清洗不净,整机装配时又混入不少杂质和尘埃。因此要确保产品的质量和可靠性,它们也必须要求严格清洁的零件。这些行业包括:汽车零部件、轴承、发动机、汽轮机、航空、半导体、数据存储、医疗设备、通讯、精密仪表,大型工矿设备的磨损监测等。

RH-LF 和LF-VD 工艺生产管线钢洁净度的比较

RH-LF和LF-VD工艺生产管线钢洁净度的比较 一、电弧炉炼钢的时代特点 1、变为初炼炉 进入20 世纪80年代后,随着炉外精炼技术、工艺、装备的快速发展,原冶炼工艺中在电弧炉内完成的合金钢、特殊钢的脱氧、合金化、除气、去夹杂的电炉“重头戏”移到炉外精炼炉去进行了。电弧炉及转炉皆变为只须向炉外精炼炉提供含碳、硫、磷、温度、合金化合格或基本合格的钢水就算完成任务的炼钢初炼炉。改变和结束了原电弧炉的熔时长(三个多小时)、老三期操作(熔化期、氧化期、还原期)以及产量低、渣量大、炉容小、成本高的状况。 2、炉容大型化 随着电炉—炉外精炼—连铸—直接轧材工艺的发展,这种短流程(相对于焦化、烧结—高炉—转炉—炉外精炼炉—连铸—)轧材工艺而言的轧机产量要求电炉与之相匹配,例如长材年产50-80 万t、板材100-200 万t 、热轧卷年产200万t以上,因此单一匹配电炉的炉容量和生产率,生产速率必须与轧机相衔接. 目前, 较多采用公称炉容量80-120万t 左右的电弧炉,从趋势看炉容量仍在提高。变压器向超高功率发展(1000KV A/t)。 3 、电炉转炉化 氧气顶吹转炉依靠铁水为原料,吹氧冶炼故冶炼周期短(20min左右),产量高,即获得了比电炉高的多的生产率和生产速率( 科技工作者在20 世纪50年代在电弧炉上吹氧(炉门和炉顶)兑入约30%~50%的铁水(EOF 炉),把转炉的工艺优势移植过来,电炉的冶炼周期大大缩短,目前均在45min 左右( 故电炉顶吹氧、热装铁水、电炉双炉壳很快得到推广。 4、电弧炉钢产量大幅增长 在上述三项电炉自身工艺变化的同时,随着社会发电技术,能力的增长(核电站、水力发电等)及社会废钢量的增加,直接还原铁DRI、HBI、Fe3C 技术工艺的发展,都为电弧炉快速发展提供了条件. 因此,世界各国电弧炉钢产量由1950 年占世界总产钢量的6.5%增至1990 年的27.5% , 2003 年的36%. 5、提质、降耗、防污染使电弧炉获得新的活力 电弧炉使用废钢为原料与使用高炉铁水的转炉相比,总能耗是高炉-转炉工艺的1/2~1/3。

洁净室温湿度如何控制

如何对洁净室温湿度进行控制 洁净室的温湿度主要是根据工艺要求来确定,但在满足工艺要求的条件下,应考虑到人的舒适度感。随着空气洁净度要求的提高,出现了工艺对温湿度的要求也越来越严的趋势。净化工程具体工艺对温度的要求以后还要列举,但作为总的原则看,由于加工精度越来越精细,所以对温度波动范围的要求越来越小。例如在大规模集成电路生产的光刻曝光工艺中,作为掩膜板材料的玻璃与硅片的热膨胀系数的差要求越来越小。直径100 um的硅片,温度 洁净室的温湿度主要是根据工艺要求来确定,但在满足工艺要求的条件下,应考虑到人的舒适度感。随着空气洁净度要求的提高,出现了工艺对温湿度的要求也越来越严的趋势。 净化工程具体工艺对温度的要求以后还要列举,但作为总的原则看,由于加工精度越来越精细,所以对温度波动范围的要求越来越小。例如在大规模集成电路生产的光刻曝光工艺中,作为掩膜板材料的玻璃与硅片的热膨胀系数的差要求越来越小。直径100 um的硅片,温度上升1度,就引起了0.24um线性膨胀,所以必须有±0.1度的恒温,同时要求湿度值一般较低,因为人出汗以后,对产品将有污染,特别是怕钠的半导体车间,这种车间不宜超过25度。 湿度过高产生的问题更多。相对湿度超过55%时,冷却水管壁上会结露,如果发生在精密装置或电路中,就会引起各种事故。相对湿度在50%时易生锈。此外,湿度太高时将通过空气中的水分子把硅片表面粘着的灰尘化学吸附在表面耐难以清除。相对湿度越高,粘附的难去掉,但当相对湿度低于30%时,又由于静电力的作用使粒子也容易吸附于表面,同时大量半导体器件容易发生击穿。对于硅片生产最佳温度范围为35—45%。 洁净室中的气压规定 对于大部分洁净空间,为了防止外界污染侵入,需要保持内部的压力(静压)高于外部的压力(静压)。压力差的维持一般应符合以下原则: 1.洁净空间的压力要高于非洁净空间的压力。 2.洁净度级别高的空间的压力要高于相邻的洁净度级别低的空间的压力。 3.相通洁净室之间的门要开向洁净度级别高的房间。 压力差的维持依靠新风量,这个新风量要能补偿在这一压力差下从缝隙漏泄掉的风量。所以压力差的物理意义就是漏泄(或渗透)风量通过洁净室的各种缝隙时的阻力。 洁净室中的气流速度规定 这里要讨论的气流速度是指洁净室内的气流速度,在其他洁净空间中的气流速度在讨论具体设备时再说明。 对于乱流洁净室由于主主要靠空气的稀释作用来减轻室内污染的程度,所以主要用换气次数这一概念,而不直接用速度的概念,不过对室内气流速度也有如下要求; (1)送风口出口气流速度不宜太大,和单纯空调房间相比,要求速度衰减更快,扩散角度更大。 (2)吹过水平面的气流速度(例如侧送时回流速度)不宜太大,以免吹起表面微粒重返气流,而造成再污染,这一速度一般不宜大干0.2m/s。 对于平行流洁净室《习惯上称层流洁净室),由于主要靠气流的“活塞打挤压作用排除行染,所以截面上的速度就是非常重要的指标。过去都参考美国20gB标准,采用0.45m/s.但人们也都了解到这样大速度所需要的通风量是极大的,为了节能,也都在探求降低速一风速的可行性。 在我国,《空气洁净技术措施》和<洁净厂房设计规范))都是这样规定的 垂直平行流(层流)洁净室≥0.25m/s 水平平行流(层流)洁净室≥0.35 m/s 研究表明以上规定基本上满足控制污染的要求,但认为应区别不同情况分出不同的档别,更能体现节能的目的。

钢材除锈等级标准及对比图

钢材除锈等级标准 表面处理是取得良好涂装效果的关键。表面处理的投资相当可观,因此,对选择表面处理方法和油漆配套必须作周密的考虑。 用国际标准来衡量表面处理也是很重要的,如瑞典标准SIS055900或ISO8501。 锈蚀等级 表面处理标准的根本点是四个不同的锈蚀等级: A级钢材表面完全覆盖粘附的氧化皮,几乎无铁锈。 B级钢材表面已开始锈蚀,氧化皮开始成片状脱落。 C级钢材表面上的氧化皮已锈蚀或可刮除,但裸眼可看到轻微锈点。 D级钢材表面上的氧化皮已锈蚀剥落,裸眼可看到大量锈点。 根据SIS055900,这些锈蚀等级的表面处理是根据以下质量标准进行钢丝刷除锈和喷砂除锈的: St-钢丝刷除锈标准St2,St3 Sa-喷砂除锈标准Sa1,Sa2,,Sa3 喷砂除锈-Sa 喷砂除锈前应凿去所有的厚锈层,可见的油、脂和污物也应去除。喷砂除锈后,表面应清洁,无灰尘和碎悄屑。 Sa1级轻度喷砂除锈 表面应无可见的油脂、污物、附着不牢的氧化皮、铁锈、油漆涂层和杂质。 Sa2级彻底的喷砂除锈 表面应无可见的油脂、污物,氧化皮、铁锈、油漆涂层和杂质基本清

级非常彻底的喷砂除锈 表面应无可见的油脂、污物、不牢的氧化皮、铁锈、油漆涂层和杂质,残留物痕迹仅显示点状或条纹状的轻微色斑。 Sa3级喷砂除锈至钢材表现洁净 表面应无油脂、氧化皮、铁锈、油漆涂层和杂质,表面具有均匀的金属色泽。 钢丝刷除锈-St St2 彻底的手工和动力工具除锈 表面应无可见的油脂、污物、附着不牢的氧化皮,铁锈、油漆涂层和杂质。 St3 非常彻底的手工和动力工具除锈 同St2,但应比St2处理得更彻底,金属底材呈现金属光泽。

表面清洁度分析

品制产 总体 响。污染阀间配油必须后的 全新的污析一分析和污蔡司品牌:卡尔制造商:德产地:德国体描述: 零部件表零部件表染物会加速间隙使阀芯油盘使泵烧须从每个环的系统能够 蔡司最新新的高度。污染颗粒进一步完成,在析。Partic 污染物控制司全自动清尔·蔡司 德国卡尔蔡司国 表面的洁净度面的污染物速零件的磨损芯卡死,会拉烧伤或研死。环节的每一个够安全可靠的新推出的Par Particle A 进行快速成像在实现快速cle Analyz 制的首选。 清洁度分司公司 度对于零部物多为切屑损,会堵塞元拉伤油缸内表这些情况的个细节入手的运行。 rticle Ana Analyzer 清像,无需多重速对污染物等er 全自动清分析仪(P 型号:P 经销商联系方式部件工作的可、毛刺、铸元件的节流表面使泄漏的出现最终手来防止和减alyzer 的出清洁度分析重图像分析等级的快速清洁度分析Particle Particle A :北京普瑞式:800-89可靠性和持铸沙、焊渣、流孔使元件漏增加或使输终将系统功能减小污染物出现将工业清析仪采用全自析即可实现将速评定同时还析仪已经成为Analyze Analyzer 瑞赛司仪器有90-0660 持久性有着非、磨料等固失去调节功输出力减小能丧失或彻物的产生,才清洁度控制自动分析方将颗粒尺寸还可以对污为零部件表er) 有限公司 非常重要的固体颗粒。这功能,会进入小,会损坏泵彻底瘫痪。因才可能保证安制过程提升到方式将过滤膜寸大小、形貌污染物来源进表面清洁度分 的影这些入滑泵的因此,安装到了膜上貌分进行分析

产品1、粒 2、3、多国标准产品对于多使洗不它们汽轮 的磨品特点: 适合精密清对整个过滤采用全自动国标准(IS 准可自行添品应用: 于许多行业使产品寿命不净,整机们也必须要轮机、航空 磨损监测等清洗定量化滤膜上的颗动分析方式SO4406、IS 添加。 业,清洁度控命和可靠性降机装配时又混要求严格清洁、半导体、 等。 化的清洁度检颗粒进行分析式,因此分析SO4407、IO 控制都非常降低的质量混入不少杂洁的零件。 数据存储检测,尤其析,因此分析效率更高OS16232、N 重要。同汽量问题,其中杂质和尘埃。这些行业包 、医疗设备其使用于检测分析的准确性高,同时软件NAS1638、A 汽车行业一样中主要症结都。因此要确包括:汽车 备、通讯、精 测微小颗粒性和可靠性件符合国家ASTMD4378-样,这些行都在于零件确保产品的质车零部件、轴 精密仪表,粒和带色杂质性更高。 家、国际标准-03、VDA19行业也常发生件加工过程中质量和可靠轴承、发动大型工矿设 质颗准等9)。生很中清靠性,动机、设备

洁净区人员控制管理制度

洁净区人员控制管理制度 目的:制定洁净室从员控制管理规定,确保洁净室洁净度不低于控制标准。 二、适用范围:适用于生产部洁净区各生产岗位。 三、责任者:生产部管理人员、生产操作者、QA监督员。 四、管理规定: 1.洁净室仅限于该区域生产操作人员、生产部管理人员和经批准的人员进入。 2.洁净室内生产操作人同定员上岗,限制操作人同和管理人员进入的人数。3.洁净室生产操作人员定员和允许进入的最多人员如下:

环境突发事故应急救援预案 目录 编写说明………………………………………………………………… 1.基本情况……………………………………………………………… 2.环境污染目标及其特性、对周围的影响…………………………… 3、应急救援组织机构、组成、职责划分…………………………… 4.报警、通讯联系方式………………………………………………… 5.事故发生后应采取的处理措施…………………………………… 6.人员紧急疏散、撤离……………………………………………… 7.危险区的隔离……………………………………………………… 8.检测、抢险、救援及控制措施…………………………………… 9.现场保护与现场洗消……………………………………………… 10.应急救援保障……………………………………………………… 11.事故应急救援终止程序…………………………………………… 12.应急救援培训计划………………………………………………… 13.附件: ……………………………………………………………… (1)组织机构名单………………………………………………… (2)值班联系电话………………………………………………… (3)组织应急救援有关人员联系电话…………………………… (4)政府有关部门联系电话…………………………………… (5)平面布置图…………………………………………………… (6)周边区域的单位、社区、重要基础设施分布图及有关联系方式,供电、供水单位的联系方式…………………………… (7)保障制度………………………………………………………

钢材表面锈蚀和除锈等级标准

【摘要】一、钢材表面锈蚀和除锈等级标准为国家标准GB8923-88《涂装前钢材表面锈蚀等级和除锈等级》。 二、标准将除锈等级分成喷射或抛射除锈、手工和电动除锈、火焰除锈三种类型。 三、喷射和抛射除锈,用字母“sa”表示,分四个等级: 一、钢材表面锈蚀和除锈等级标准为国家标准GB8923-88《涂装前钢材表面锈蚀等级和除锈等级》。 二、标准将除锈等级分成喷射或抛射除锈、手工和电动除锈、火焰除锈三种类型。 三、喷射和抛射除锈,用字母“sa”表示,分四个等级: sa1——轻度的喷射后抛射除锈。钢材表面无可见的油脂、污垢、无附着的不牢的氧化皮、铁锈、油漆涂层等附着物。 sa2——彻底的喷射或抛射除锈。钢材表面无可见的油脂、污垢,氧化皮、铁锈等附着物基本清除。 sa21/2——非常彻底的喷射或抛射除锈。钢材表面无可见的油脂、污垢、氧化皮、铁锈、油漆涂层等附着物,任何残留的痕迹仅是点状或条状的轻微色斑。 sa3——使钢材表面非常洁净的喷射或抛射除锈。钢材表面无可见的油脂、污垢、氧化皮、铁锈、油漆涂层等附着物,该表面显示均匀的金属色泽。 手工除锈等级: St2 彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。St3 非常彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。除锈应比St2更为彻底,底材显露部分的表面应具有金属光泽。 表面处理是取得良好涂装效果的关键。表面处理的投资相当值得。因此,对选择表面处理方法和油漆配套系统必须作周密的考虑。 用国际标准来衡量表面处理程度是很重要的,如瑞典标准:SIS055900或ISO08501。 锈蚀等级 表面处理标准的根本点是四个不同的锈蚀等级: A级钢材表面完全覆盖粘附的氧化皮,几乎无铁锈。 B级钢材表面已经开始锈蚀,氧化皮开始呈片状脱落。 C级钢材表面上的氧化皮已锈蚀,或可刮除,但裸眼可看到轻微锈点。 D级钢材表面上的氧化皮已锈蚀剥落,裸眼可看到大量锈点。 根据SIS055900,这些锈蚀等级的表面处理是根据以下质量标准进行钢丝刷除锈和喷砂除锈的: St - 钢丝刷除锈标准St2,St3 Sa - 喷砂除锈标准Sa1,Sa2,Sa2.5,Sa3 钢丝刷除锈- St St2 彻底的手工和动力工具除锈 表面应无可见的油脂、污物、氧化皮、铁锈、油漆涂层和杂质。 St3 非常彻底的手工和动力工具除锈 同St2,但应比St2处理得更彻底,金属底材呈金属光泽。 这些标准对表面处理有很大的指导和帮助,油漆供应商一般对每种类型的油漆规定有相应的表面处理标准和要求。 喷砂除锈- Sa 喷砂除锈前应去除表面所有的厚锈层,可见的油,脂和污物也应去除。喷砂除锈后表面应清

表面清洁度检测方法

表面清洁度检测 方法 金属表面镀层和有机涂层都应满足涂(镀)层致密、均匀一致、与基体结合牢固的要求。而涂(镀)层中出现诸如涂(镀)层脱落、鼓泡或发花以及局部无涂覆层等,多数情况下都是由于金属涂(镀)前表面不洁净所致。与有机溶剂涂料相比,以水为溶剂的金属表面涂覆处理,如电镀、阳极氧化、磷化以及水性涂料涂装等对金属表面的有机物污染更为敏感,即使是单分子层的污染物,都可能导致整个工艺的失败。因此,材料表面涂(镀)前处理后的清洁度至关重要,本文就各种检验金属表面清洁度的方法做一总结。 1目测与光学法 光亮金属表面上的油污可用肉眼和借助放大镜或光学显微镜进行观察。其缺点是金属表面的钝态氧化膜及极薄的油污会检查不到。对粗糙及不光亮的金属表面,上述方法就显得无能为力,但可通过用干净、洁白的棉花、布、纸对表面擦拭,然后观察其是否干净,以确定金属表面是否洁净。 2表面张力法 根据表面油污对其表面能的影响,通过金属在一系列表面张力不同的试液中是否浸润以确定其表面能,据此判断其表面的干净程度。如配成从80%乙酸20%水)(V/V,下同)到1%乙醇99%水的系列溶液,其表面张力相应地从24.5×1 0-5 N/cm增加到66.0×10-5 N/cm。 3油漆法 将除油剂滴在金属表面上,然后蒸干,如无痕迹,表面金属表面是洁净的,如出现圆环则表明有油污存在。

4润湿法 干净的金属表面是亲水的,因此,可以完全被水润湿,当金属表面含有油污时,会出现不被水浸润的断水区域。基于是否亲水这一原理,除了最简单常用的呼气法和雾化器喷雾法外,还有以下几种检测手段。由于金属的氧化膜也是亲水的,因此,这类方法大多不能检测出金属表面的氧化膜是否退净。 4.1喷射图案法 用喷枪将含有0.1%染料的蒸馏水喷于已浸湿的金属表面,观察喷射面的图案。有油污的地方,因不被水浸润不会显示染料色。喷枪的操作条件是:空气压力5.9×10-4~9.8×10-4 Pa,距离60 cm,时间30~50 s。 4.2断水法 将试样浸入水中,然后移出水面,倾斜45°观察表面是否有挂水珠或无水的区域,如有,表明金属表面有油污存在。 4.3汞滴法 本法特别适合检查金属表面的油污和氧化膜。当汞滴滴在金属表面上,它会在干净的地方展开,而在氧化膜与油污处形成一个小球。汞有剧毒,应慎用。 5滑石粉法 把金属试样垂直地放入表面洒有滑石粉的水中,然后垂直地提出,可以看到,洁净的表面会均匀地粘有滑石粉,而有油污的地方则无滑石粉。 6铜置换法 对黑色金属,把其浸于63 g/L CuSO4·H2O和17 g/L H2SO4中,静置10 s取出,在蒸馏水中搅动15 s,用洗瓶冲洗,烘干。在干净的金属表面,因F

如何降低加工表面粗糙度

南京工业职业技术学院数控加工与维修专业专科毕业论 文 论文题目:如何降低加工表面粗糙度 学生姓名:尹玉鑫 学号: 29 指导教师:元军伟 专业:数控加工与维修 年级:三年级 教学点:江苏省交通技师学院 2011年6月28日

摘要 机械加工工件时加工精度与机床的精度及包括刀具、夹具、工件在内的整个系统有直接的关系,影响机械加工精度的因素很多,如机床制造零件的误差和安装误差以及加工过程中的有关操作,需要掌握机械加工中各种工艺对加工零件表面质量影响的规律,以便运用这些规律来控制零件加工的表面粗糙度,最终改善零件的表面质量、提高产品使用性能、减少机械设备的损坏、降低生产成本、提高经济效益。本文探讨了机械加工影响零件表面粗糙度的因素及改善措施。 关键词:加工表面粗糙度;机械加工质量因素;改善加工的措施

ABSTRACT When machining pieces,processing precision and machine tool precision have direct relationship with the whole system,including cutting tool,clamping tool and pieces,the impact factors of machine are various,such as machine processing pieces inaccuracy,installing inaccuracy and other operation in process,which requires the master of the rule of all kinds of process to surface quality of machining pieces in machining in order to control processing roughness of surface roughness of pieces process,improving quality of surface of pieces and feature of products,decreasing equipments damage,lowing producing cost and improving economic paper discussed impact factors and modifying measures of machining to surface roughness. KEY WORDS:Processing surface roughness,Factors of machining,Measure of improving process.

钢材表面清洁度的评定

钢材表面清洁度的评定 为了充分发挥涂料的保护和装饰作用,必须进行彻底的表面处理已为人们公认。涂装成功与否主要取决于表面处理质量。通常表面清洁度(表面处理质量)越高,越能保证涂料的保护作用,但过高的要求也会造成极大的浪费。对钢材表面清洁度的进行评定是一项至关重要的工作。表面处理质量包括三个方面,即钢板表面的可视清洁度(锈蚀、氧化皮等)、粗糙度和不可视清洁度(油脂、可溶性铁盐、氯化物、硫化物、灰尘等),在这方面以船舶行业为代表,已经形成了较完善的检测标准和体系,其他行业一般均参照执行。 一、钢材表面可视清洁度(锈蚀、氧化皮)的评定 钢材表面可视清洁度(锈蚀、氧化皮)的评定,可分为定量和定性两种方法。 定量方法一般有两种,第一种为硫酸铜法:将硫酸铜溶液刷在处理后的钢板表面,除锈完全的部分呈金属铜的颜色,而大于0.5mm残留氧化皮的部分呈暗色,从而判断表面的清洁程度。可采用在每升含1gH2SO4的溶液中添加4~8gCu2SO4的方法配制硫酸铜溶液,或将36gCu2SO4·5H20加热溶于100ml水中,再加入过量的Cu(OH)放置24小时后,去除多余的Cu(OH)2的方法来配制硫酸铜溶液。第二种定量检测方法是利用氧化皮和铁电阻不同的特点,采用电阻测量仪测定处理后的表面与探头2 (直径1mm的球型笔状电极)之间的过渡电阻,通过各点的平均值判断表面清洁度。此外,还可利用带蓝色过滤器的光线反射测量仪进行表面清洁度检验。 仪器定量测量方法受光线、处理方法、原始状态和表面粗糙度等影响极大,而硫酸铜法又需要进行后处理,否则会留下腐蚀隐患,所以,更为可靠的方法还是定性的与标准照片进行对比的方法。 为了能正确、方便地评定钢材在除锈之后的表面处理质量,许多工业发达国家都先后制定了钢材除锈的质量等级标准,其中最显著的是瑞典工业标准SIS055900《涂装前钢材表面除锈标准》,长期以来为世界各国所引用。国际标准化组织色漆和清漆技术委员会涂装前钢材表面处理分会(ISO/TC 35/SC12)以瑞典标准SIS055900-1967为基础,制订了国际标准ISO8501-1:1988《涂装油漆和有关产品前钢材预处理-表面清洁度的目视评定-第一部分:未涂装过的钢材和全面清除原有涂层后的钢材的锈蚀等级和除锈等级》。我国标准为GB8923-88《涂装前钢材表面锈蚀等级和除锈等级》。 上述标准将未涂装过的钢材表面原始锈蚀程度分为四个“锈蚀等级”,将钢材表面除锈后的质量分为若干个“除锈等级”。钢材表面的锈蚀等级和除锈等级均以文字叙述和典型样板的照片共同确定。 1、锈蚀等级 除锈前钢材表面原始锈蚀状态对除锈的难易程度和除锈后的表面外观质量具有较大影响。因此,该标准根据钢材表面氧化皮覆盖程度和锈蚀状况将其原始锈蚀程度分为四个等级,分别以A、B、C、D表示。 A 全面地覆盖着氧化皮而几乎没有铁锈的钢材表面。 B 已发生锈蚀,并且部分氧化皮已经剥落的钢材表面。 C 氧化皮已因锈蚀而剥落,或者可以刮除,并且有少量点蚀的钢材表面。 D 氧化皮已因锈蚀而全面剥落,而且已普遍发生点蚀的钢材表面。 2、除锈等级 该标准对喷射或抛射除锈、手工和动力工具除锈、火焰除锈后的钢材表面清洁度规定了相应的除锈等级,分别以字母Sa、St、F1表示,字母后的阿拉伯数字则表示 1

洁净室温湿度如何控制精编版

洁净室温湿度如何控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

如何对洁净室温湿度进行控制 提高,出现了工艺对温湿度的要求也越来越严的趋势。 净化工程具体工艺对温度的要求以后还要列举,但作为总的原则看,由于加工精度越来越精细,所以对温度波动范围的要求越来越小。例如在大规模集成电路生产的光刻曝光工艺中,作为掩膜板材料的玻璃与硅片的热膨胀系数的差要求越来越小。直径100 um的硅片,温度上升1度,就引起了线性膨胀,所以必须有±度的恒温,同时要求湿度值一般较低,因为人出汗以后,对产品将有污染,特别是怕钠的半导体车间,这种车间不宜超过25度。 湿度过高产生的问题更多。相对湿度超过55%时,冷却水管壁上会结露,如果发生在精密装置或电路中,就会引起各种事故。相对湿度在50%时易生锈。此外,湿度太高时将通过空气中的水分子把硅片表面粘着的灰尘化学吸附在表面耐难以清除。相对湿度越高,粘附的难去掉,但当相对湿度低于30%时,又由于静电力的作用使粒子也容易吸附于表面,同时大量半导体器件容易发生击穿。对于硅片生产最佳温度范围为35—45%。 洁净室中的气压规定 对于大部分洁净空间,为了防止外界污染侵入,需要保持内部的压力(静压)高于外部的压力(静压)。压力差的维持一般应符合以下原则: 1.洁净空间的压力要高于非洁净空间的压力。 2.洁净度级别高的空间的压力要高于相邻的洁净度级别低的空间的压力。 3.相通洁净室之间的门要开向洁净度级别高的房间。 压力差的维持依靠新风量,这个新风量要能补偿在这一压力差下从缝隙漏泄掉的风量。所以压力差的物理意义就是漏泄(或渗透)风量通过洁净室的各种缝隙时的阻力。 洁净室中的气流速度规定 这里要讨论的气流速度是指洁净室内的气流速度,在其他洁净空间中的气流速度在讨论具体设备时再说明。 对于乱流洁净室由于主主要靠空气的稀释作用来减轻室内污染的程度,所以主要用换气次数这一概念,而不直接用速度的概念,不过对室内气流速度也有如下要求; (1)送风口出口气流速度不宜太大,和单纯空调房间相比,要求速度衰减更快,扩散角度更大。 (2)吹过水平面的气流速度(例如侧送时回流速度)不宜太大,以免吹起表面微粒重返气流,而造成再污染,这一速度一般不宜大干s。 对于平行流洁净室《习惯上称层流洁净室),由于主要靠气流的“活塞打挤压作用排除行染,所以截面上的速度就是非常重要的指标。过去都参考美国20gB标准,采用s.但人们也都了解到这样大速度所需要的通风量是极大的,为了节能,也都在探求降低速一风速的可行性。 在我国,《空气洁净技术措施》和<洁净厂房设计规范))都是这样规定的 垂直平行流(层流)洁净室≥s 水平平行流(层流)洁净室≥ m/s 研究表明以上规定基本上满足控制污染的要求,但认为应区别不同情况分出不同的档别,更能体现节能的目的。

钢铁表面处理标准说明及各标准比较讲解

钢铁表面主要表面处理标准 GB8923-88 中国国家标准 ISO8501-1:1988 国际标准化组织标准 SIS055900-1967 瑞典标准 SSPC-SP2,3,5,6,7和10 美国钢结构涂装协会表面处理标准 BS4232 英国标准 DIN55928 德国标准 JSRA SPSS 日本造船研究协会标准国标GB8923-88 对除锈等级描述: 喷射或抛射除锈以字母“Sa”表示。本标准订有四个除锈等级: Sa1 轻度的喷射或抛射除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮,铁锈和油漆涂层等附着物。Sa2 彻底的喷射或抛射除锈 钢材表面应无可见的油脂和污垢,并且氧化皮,铁锈和油漆涂层等附着物已基本清除,其残留物应该是附着牢固的。 Sa2.5 非常彻底的喷射或抛射除锈 钢材表面应无可见的油脂,污垢,氧化皮,铁锈和油漆涂层等附着物,任何残留的痕迹应仅是点状或条纹状的轻微色斑。 Sa3 钢材表面外观洁净的喷射或抛射除锈 钢材表面应无可见的油脂,污垢,氧化皮,铁锈和油漆涂层等附着物,该表面应显示均匀的金属色泽。 手工和动力工具除锈以字母“St”表示。本标准订有二个除锈等级: St2 彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。 St3 非常彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。除锈应比St2更为彻底,底材显露部分的表面应具有金属光泽。

我国的除锈标准与相当的国外除锈标准对照表: 注:SSPC中的Sp6比Sa2.5 略为严格,Sp2为人工钢丝刷除锈,Sp3为动力除锈。 表面粗糙度及其评定 喷砂、抛丸、手工和动力除锈,其目的除达到前述一定的表面清洁度外,还会对钢铁表面造成一定的微观不平整度,即表面粗糙度。对于涂漆前钢铁表面的粗糙度通常以一些主要的波峰和波谷间的高度值来表示。钢铁表面粗糙度对漆膜的附着力,防腐蚀性能和保护寿命有很大影响。钢铁表面合适的粗糙度有利于漆膜保护性能的提高,粗糙度太小,不利于漆膜的附着力的提高,粗糙度太大,如漆膜用量一定时,则会造成漆膜厚度分布的不均匀,特别是在波峰处的漆膜厚度不足而低于设计要求,引起早期的锈蚀,此外,粗糙度过大,还常在较深的波谷凹坑内截留住气泡,将成为漆膜起泡的根源。 对于常用涂料,合适的粗糙度范围以39—75um为宜。

各行业无尘室及洁净度特点

各行业无尘室及洁净度特点 电子制造业: 随着计算机、微电子和信息技术的发展,推动了电子制造业的飞速发展,也带动了洁净室技术的发展,同时对洁净室的设计提出了更高的要求,电子制造业的无尘车间设计是一项综合的技术,只有充分了解电子制造业的无尘车间设计特点,做到设计合理,才能让电子制造产业的产品次品率降低,提高生产效率。 电子制造业洁净室的特点: 洁净度等级要求高,风量、温度、湿度、压差、设备排风按需受控,照度、洁净室截面风速按设计或规范受控,另外该类洁净室对静电要求极其严格。其中对湿度的要求尤甚。因为过于干燥的厂房内极易产生静电,造成CMOS集成损坏。一般来说,电子厂房的温度应控制在22℃左右,相对湿度控制在50-60%之间(特殊洁净车间有相关温湿度规定)。这时可有效地消除静电,并使人也感觉舒适。芯片生产车间、集成电路无尘室和磁盘制造车间是属于电子制造行业洁净室的重要组成部分,由于电子产品在制造、生产过程中对室内空气环境和品质的要求极为严格,主要以控制微粒和浮尘为主要对象,同时还对其环境的温湿度、新鲜空气量、噪声等作出了严格的规定。 1、电子制造厂万级洁净室内的噪声级(空态):不应大于65dB(A)。 2、电子制造厂洁净室垂直流洁净室满布比不应小于60%,水平单向流洁净室不应小于40%,否则就是局部单向流了。 3、电子制造厂洁净室与室外的静压差不应小于10Pa,不同空气洁净度的洁净区与非洁净区之间的静压差不应小于5Pa。

4、电子制造行业万级洁净室内的新鲜空气量应取下列二项中的最大值: (1)补偿室内排风量和保持室内正压值所需的新鲜空气量之和。 (2)保证供给洁净室内每人每小时的新鲜空气量不小于40m3。 (3)电子制造行业洁净室净化空调系统加热器,应设置新风,超温断电保护,若采用点加湿时应设置无水保护,寒冷地区,新风系统应设置防冻保护措施。无尘室的送风量,应取下面三项最大值:保证电子制造厂无尘室空气洁净度等级的送风量;根据热,湿负荷计算确定电子厂洁净室的送风量;向电子制造厂洁净室内供给的新鲜空气量。 生物制造业: 生物制药工厂的特点: 1、生物制药工厂不仅设备费用高、生产工艺复杂、洁净级别和无菌的要求高,而且对生产人员的素质有严格的要求。 2、在生产过程中会出现潜在的生物危害,主要有感染危险,死菌体或死细胞及成分或代谢对人体和其他生物致毒性、致敏性和其他生物学反应,产品的致毒性、致敏性和其他生物学反应,环境效应。 洁净区: 需要对环境中尘粒及微生物污染进行控制的房间(区域),其建筑结构、装备及其使用均具有防止该区域内污染物的引入、产生和滞留的功能。 气锁间: 设置于两个或数个房间之间(如不同洁净度级别的房间之间)的具有两扇或多扇门的隔离空间。设置气锁间的目的是在人员或物料出入其间时,对气流进

齿轮的表面粗糙度误差检测

河南工学院2016―2017学年第一学期《机械产品检测与质量控制(2)》大作业 题目:齿轮的表面粗糙度误差检测 班级: 姓名: 学号: 日期:

摘要 在加工制造过程中,由于机床本身误差、刀具安装误差等因素的存在,使齿轮各部分几何尺寸不能完全达到设计标准的要求,影响到其制造精度。为确保传动齿轮在额定功率下能减小齿轮传动的噪声、冲击、振动等不利因素影响,保证齿轮传动有较高的工作平稳性,使齿轮传动的瞬时速比变化尽可能小,就必须对齿轮的齿面粗糙度制造质量加以严格控制。齿面粗糙度的大小对齿轮副的磨损、强度、能耗、寿命、锈蚀、稳定性都有直接的影响。 关键词:齿轮、表面粗糙度、检测、齿面

国家对齿轮表面质量的评定规定 齿轮轮齿表面的加工方法很多,不同的加工方法能形成多种加工纹理。齿面的形状较复杂,加工纹理的多样性和表面形状的复杂性给齿面粗糙度的测量带来了很多困难。 根据我国现行的表面粗糙度评定的国家标准GB/T3505—2000《表面粗糙度 术语及其参数》规定:测量和评定表面粗糙度轮廓中的实际轮廓是指理想平面与实际表面相交所得的轮廓线为实际轮廓。按相截方向可分为横向和纵向实际轮廓。取样长度是指测量或评定表面粗糙度时所规定的一段基准线长度;评定长度是指在评定轮廓表面粗糙度所必须的一段长度,即评定表面粗糙度参数值的一段长度,包括一个或几个取样长度;轮廓中线是评定表面粗糙度参数值大小的一条参考线,包括轮廓的最小二乘中线和轮廓的算术平均中线。 齿面粗糙度评定存在的问题 齿轮的加工方法很多,不同加工方法形成了轮齿表面不同种类的加工纹理。加工纹理的多样性和表面形状的复杂性,给齿面质量的控制带来了很多困难。齿轮表面质量按表现形式和影响产品质量的不同,可分为微观形状误差(粗糙度)、中间形状误差(波纹度)和宏观形状误差。 不同的齿轮工艺方法,形成了齿面微观复杂的形貌特征,给齿面粗糙度的评 判带来了困难。究其原因:一方面是齿面精加工技术应用还不普遍;另一方面是人们对齿轮齿面粗糙度评定不统一、分析见仁见智,对国家标准的理解也很不一致,从而造成对齿轮齿面粗糙度等级判别与实际有偏差。 齿轮加工业乃至与齿轮行业有关的其他行业普遍反映齿轮轮齿表面粗糙度 的评定方法不合理,主要表现在没有从齿轮零件的功能出发选择合适的评定参数,而且评定方法也不规范,各单位各行其事,致使齿面粗糙度评定结果能相差1~2 级甚至更多,给齿轮轮齿表面粗糙度质量评定和齿轮行业间的仲裁带来困难。主要有以下几方面的问题:①评定参数和参数定义不统一;②选取测量部位数量和 方法不统一,影响测量结果的最后评定;③轮齿表面缺陷与齿面粗糙度的区分界 定不统一;④测量方向的问题。

表面粗糙度等级对照表模板.doc

表面粗糙度级别对照及应用 国际标注Rz Ra表面形状特征加工方法举例 N1220050 粗糙面明显可见刀痕锯断、粗车、粗铣、粗刨、 钻孔以及用粗纹锉刀、粗砂 轮等加工 N1110025可见刀痕N105012.5微见刀痕 N9 25 6.3 半光面可见加工痕迹 冷拉、精车、精绞、粗绞、粗 磨、刮削、粗拉刀加工等 N8 12.5 3.2微见加工痕迹N7 6.3 1.6看不见加工痕迹 N6 6.30.8 光面可辨加工痕迹的方向 研磨、金刚石车刀的精车、精 绞、冷拉、拉刀加工、抛光等 N5 3.20.4微辨加工痕迹的方向N4 1.60.2不可辨加工痕迹的方向 N3 0.80.1 最光面暗光泽面 精磨、研磨、抛光、超精磨、 镜面磨削等 N2 0.40.05亮光泽面 N1 0.20.025镜状光泽面 0.10.012雾状镜面 0.05镜面 表面特征表面粗糙度(Ra)数值加工方法举例 明显可见刀痕Ra100、Ra50、Ra25、粗车、粗刨、粗铣、钻孔 微见刀痕Ra12.5、Ra6.3、Ra3.2、精车、精刨、精铣、粗铰、粗磨看不见加工痕迹,微辩加工方向Ra1.6、Ra0.8、Ra0.4、精车、精磨、精铰、研磨 暗光泽面Ra0.2、Ra0.1、Ra0.05、研磨、珩磨、超精磨、抛光

镜面0.006微米 雾状镜面0.012 镜状光泽面0.025 亮光泽面0.05 暗光泽面0.1 不可见加工痕迹的方向0.2 可见加工痕迹方向0.8 微见加工痕迹方向0.4 看不清加工痕迹方向 1.6 微见加工痕迹方向 3.2 可见加工痕迹方向 6.3 微见刀痕12.5 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级 Ra值不大于\μm=12.5

钙处理工艺对低碳冷镦钢洁净度的影响

118 2007年炉外精炼年会论文集 钙处理工艺对低碳冷镦钢洁净度的影响 高振波1)梁海庆1)吴坚1)胡义贵1)李颂1)杜松林1, 2) 1) 马钢第三钢轧总厂,安徽马鞍山,243000 2) 北京科技大学冶金与生态工程学院,北京100083 摘要本文对钙处理工艺过程中夹杂物变性处理需要的钙含量以及硫化钙的生成条件进行了 热力学计算,确定了LF处理后硫含量需控制的上限和钙处理后钙含量所需的下限;并对温度和 喂钙线量对钙的收得率的影响、钙处理后弱吹氩时间对钢中钙和铝的损失进行了试验摸索。以理 论计算和试验结果为基础,优化钙处理工艺,保证LF处理后钢液含硫不大于0.007%,按每炉钢 喂钙线100~200m、喂钙线后弱吹氩15~30分钟,最终提高低碳冷镦钢夹杂物合格率达到92%。 关键词冷镦钢;钙处理;弱吹氩;洁净度;夹杂物 冷镦钢主要用于制造紧固件产品,客户对冷 镦钢的使用性能和加工性能要求很高,这样要求冷镦钢具有较好的内部质量,夹杂物大小、分布、数量、种类均较好。作为衡量钢材质量的一个重要指标—夹杂物等级,通过电镜扫描、能谱分析等手段,根据冷镦钢夹杂物评级标准,检测到马钢第三钢轧总厂(以下简称三钢轧)冷镦钢夹杂物合格率83%,B类和DS类夹杂物超标较多。实践证明,钙处理是控制夹杂物的重要环节。本文通过理论计算和试验并结合生产实践,提出了钙处理工艺优化的方向,并付诸实践,有效提高了低碳冷镦钢洁净度。1工况条件简介 1.1 工艺路线 铁水预处理—50t复吹转炉—吹氩合金微调站—70t LF炉—六机六流140mm方坯连铸机—高速线材轧机 LF工序配备双管喂线机; 140mm方坯连铸机浇注方式为“外装式浸入水口+保护渣”。 1.2 钢种内控成份 冷镦钢成分请见表1 表1 马钢冷镦钢内控成分/% Table 1 controlled component of cold heading steel/% wt/% C Si Mn S P Al ≤0.10 ≤0.08 0.20~0.5≤0.015 ≤0.030 0.020~0.040 1.3 检测方法 (1)使用瑞士ARL-4460型光谱仪快速分析钢中C、Si、Mn、P、S、Al等元素; (2)通过电镜扫描观察夹杂物形态,能谱分析夹杂物组成; (3)采用小样电解分析夹杂物总量; (4)采用TOS针状全氧取样器取样,检验全氧、氮。 2 试验结果及分析 钙处理主要目是使高熔点的Al2O3变性为低熔点的铝酸钙,再经过一段时间弱吹氩,降低非金属夹杂物含量,从而改善钢液的可浇性,提高钢液的洁净度。 由于钙的沸点低(约1487℃)、蒸气压大、在钢中溶解度低,向钢包钢液内喂钙线进行钙处理过程钢液沸腾非常严重,这必然导致钢液的二次氧化,因此,怎样既能达到钙处理的目的,又能使二次氧化程度降到最小,以及喂过钙线后弱吹氩时间的掌握成为钙处理技术的关键。 2.1 钙处理前钢中硫含量对钙处理效果的影响 在钢包和中间包取样,通过电镜扫描和能谱分析,结果在钢包样里发现了少量硫化钙,在中间包样发现了更多硫化钙夹杂,请见图1和图2 。

表面粗糙度数

表面粗糙度理论与标准的发展 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。首先是美国在1940年发布了ASA B46.1国家标准,之后又经过几次修订,成为现行标准 ANSI/ASME B46.1-1988《表面结构表面粗糙度、表面波纹度和加工纹理》,该标准采用中线制,并将R a作为主参数;接着前苏联在1945年发布了ΓOCT2789-1945《表面光洁度、表面微观几何形状、分级和表示法》国家标准,而后经过了3次修订成为ΓOCT2789-1973《表面粗糙度参数和特征》,该标准也采用中线制,并规定了包括轮廓均方根偏差(即现在的R q)在内的6个评定参数及其相应的参数值。另外,其它工业发达国家的标准大多是在50年代制定的,如联邦德国在1952年2月发布了DIN4760和DIN4762有关表面粗糙度的评定参数和术语等方面的标准等。 以上各国的国家标准中都采用了中线制作为表面粗糙度参数的计算制,具体参数千差万别,但其定义的主要参数依然是R a(或R q),这也是国际间交流使用最广泛的一个参数。 2 表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统

相关文档
最新文档