解析几何最值问题

合集下载

解析几何中最值问题的常用方法

解析几何中最值问题的常用方法
3 +2 +l = o x y 0 2
分 :zxy y x , 族 丢 平 的 析 =一, = — 作 与 ×行 令 34则 孚 z 一
平行线 。 注意到当直线 与椭 圆相切时 , 线在 Y轴上的截距 一 直 有最值 , z有最值。 即 (x 4 — = 3 一 v. 0 Z
由 I 得
分 : 最 值即 的 大 , 看 析求 小 ,求 最 值而 } 作
两点 A(、)l 10的斜率。 xyB一 ,) 故等价于在椭圆上找一个点 A, 使
它与 B连线斜率最大。 解析 : A 设 B方程为 y k + ) =【 1 x
f= 【 1 y kx ) +
的能力 , 中学数学复 习中不可忽视的问题。下面我结合具体 是
时 ,距离 之和有 最小值 。本题 中点 A B在 l 、 的异筒 ,易得
变式 : 已知圆 C ( 4 + 24 圆 D的圆心 D在 Y轴上且 : + 】 y= , X 与圆 C相 外切 , D与 Y轴交于 A、 圆 B点 , P为 ( 3 0)当 点 一, , 点 D在 Y轴上移动时, _ P 求/A B的最大值 。 _ 答案 : ctn at a
3  ̄2 a 4 = a+ s + s 0,由方程有实数根得△ =Is - x3X4 ≥0, 2) 4 Z S
即s 1 ≥ 2或 S ( )从 而 得 a 一 I= 6 ≤O 舍 , = 4b一 。
当 I HP l P A B取得最大值时, P的坐标是— 点


提示 : 当点 A B I 、 在 同侧时 , 距寓之差有最大值 ; l 在 异侧
甘肃省张掖市实验 中学
王希明
【 要】 摘 解析几何中的最值问题是历届高考的热点, 如何利用合理的数学方法解决这类问题, 提高学生分析问题和解决问

初中数学专题04几何最值存在性问题(解析版)

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。

解析几何中最值问题的求法

解析几何中最值问题的求法

=T t _A - X 3 + X 2 c s0 了 ) 当 0 - I 即(- ) 2 / 一 一 / 。 / 2 / o (+, f - x y \ 1 、

解 :设 与直 线 3- 3 1 = x 2, 6 O斜 率 相 同 且 与 椭 圆 7Z4 : 8 _ x+  ̄ 2
三 、 用 不 等 式 。 其 是 均 值 不 等 式 求最 值 利 尤
J  ̄AAMB的 面 积 的 最 小值 是 0 -  ̄ 4

≥ , 当x0 l = , P 普。 o・ = 时,AJ 即J J 一 . . P A
所 以 距 点 A 最 近 的 点 P的 坐 标 为 ( , )即最 短 距 离 为 。 00,
二、 利用 三 角 函数 , 其 是 正 、 弦 函数 的 有 界 性 。 最 值 尤 余 求
相切的直线z 的方程为3-y£ , x2 : 则由{ +o 7 x
得 l 6+ x
j 2 t 一 y+ =U
例3 知椭圆c 筝+ 1 曰 椭圆中 已 : 孚= , 是过 A 心的 任意弦, f
是 线 段 A 的 垂 直 平 分 线 . 是 与椭 圆 的 交 点 .求 △AMB 的 面 积 的最 小 值 解 : 设 线 段 AB所 在 直 线 的 斜 率 存 在 且 不 为 零 . A 所 假 设 B 在 的 直线 方 程 为 y k ( ≠0 , x ,A , =xk ) A( ^ ) Y
6 £ 2= , 缸十2 8 0 由判 别 式 △= 624 1 ( — 8 = . f± , 直线 3 t x 6t 2 )0 得 = 8 故 - 2 的方 程 为 3 一 忙 8 0 又 - 直 线 3 - y 6 0与 直 线 Z3 - ’ 2 =。 , - x 2 一1 - - :x 2, 一

高中数学解析几何中求最值的方法

高中数学解析几何中求最值的方法

一、利用圆锥曲线的定义圆锥曲线的定义,是曲线上的动点本质属性的反映。

研究圆锥曲线的最值,利用圆锥曲线的定义,可使问题简化。

例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。

解析:如图所示,由双曲线定义2可知,,所以|MF|=2|MP|。

令,即。

此问题转化为折线AMP的最短问题。

显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。

二、利用几何图形的对称性对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题。

例2、已知点A(2,1),在直线和上分别求B点和C 点,使△ABC的周长最小。

分析:轴对称的几何性质以及两点间的距离以直线段为最短。

解析:先找A(2,1)关于直线、的对称点分别记为和,如图所示,若在、上分别任取点和,则△ABC周长=周长。

故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。

三、利用参数的几何意义利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题。

例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。

分析:若直接利用两点的距离公式,难度较大,通过椭圆定义转化后,利用几何性质可解决问题。

解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是,最小值是。

四、利用代数性质将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,可使问题简单化。

例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。

初中几何最值问题类型

初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。

求抛物线的最高点或最低点,即顶点的坐标。

2.极值问题:
求函数图像与坐标轴的交点。

求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。

3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。

4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。

5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。

这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。

对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。


过多做练习和思考,培养几何思维和解决问题的能力。

浅谈高考解析几何中的最值问题

浅谈高考解析几何中的最值问题
轴 AB 匕一 点 , 到 直 线 AP M

图4
转化 为 l A I l F I +4的 P + P 最 小 值 ,再 由 图 2 可 知 l 十 l A I 最 小 值 就 PF 1 的 P
是点 A 到右 焦点 的距离 .
图2
的 距 离 等 于 I B 1 求 椭 圆 上 点 到 点 M 的 距 离 的 最 . M
l Fl P 的最小值 转化 为 I Q l l P 1 + 的最 小 值 , 由 P P 再 图 1知 I PQI I 的最小 值是 点 Q到 准线 的距离 . + I PP
析 由抛物 线定 义知 I Fl 于 点 P 到 准线 的距 P 等 离 I ,P + I FI l QI I P l PP l 1 QI — + ≥3 P P P

/ 】 6 - 战


√2


图 1
1 6 时 ; 一 ,) ) 一 , 一 A 譬; 当 d (
2 )当 6 一 时 , 一 一 d ; A( ,一 ) .
义 l — I P l 把 I + I , l PF P PQ
M F J B5

1 AI P 的最小值 为 多少 ?
思 维 导 引 根 据 双 曲 线

A /
的定 义 I l l +4 PF — PF l ,
把 1 + f 的 最 小 值 PF l PA l
为椭 圆 上 , 于 z轴 的上 方 , 位 且 P A上 P 若 M 为 椭 圆长 F,
P( y , z,) 则 一 ( + 6 y z , ),i 一 ( z一4 ,
), APIF _ P,所 以( z+6 ( -4 + 一d ) - ) .

浅谈如何有效地解决解析几何中的最值问题

浅谈如何有效地解决解析几何中的最值问题
我们应大胆地 尝试此做法.本题主要考查直 线、圆和椭 圆参数方 程的理解以及 化参数方程为普通方程的方法,椭圆方程 的应用、
由双 曲线的第二定义 知
:, 。
Il d 1 I Nl = ,  ̄
所以I 4 I =I + =I +I I P I P I P I d P I . M F M M

C:{ 2
【 =3i y sn0
( 为参数) 0 .
( ) C,C 的方 程为普通 方程 ,并说 明它们 分别表 示什 1化
么 曲线 ;

半 =, } }则y , 直 径r1设 j 当 ,
线 Y= 与圆 c相切 时 ,卫 取最值 .
所 以
Байду номын сангаас0
( ) C 上的点 P对应 的参数为 £ ,Q为 C 上 的动点 , 2若 = 2
( ) —Y: 2设 m,
均为参数 方程 ,两 问相 互关联 ,可 以化 参数方程 为熟 悉的普通
方 程 ,于是 问题 获 得 如 下 解 法 .
则 , —m与圆 C相切 时 , — , = Y有最值 ,
所 以
、2 /
解 ( C ( 4+ 一) 1C 昔 ・ :1 - ) ( 3=,z ): + : 手 1
分 析 : 本 题 与 例 3有 类 似 之 处 , 利 用 定 义 及 几 何 特 征 可 买
现 问题 的转 化 .
故 (+刚, 手i) 一 4 2 s . 2c n
C 为 直 线 一2 , y一7=0 , 到 G 的距 离 d=T - ・ V3
解 由 曲音一 =知 =,= :双 线 手 1 1b9 6 2,
所 以 c =2 , 5 ) 5 ,0 ,

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略(广东省封开县江口中学 526500) 黎伟初解析几何中涉及最值问题常有求夹角、面积、距离最值或与之相关的一些问题;求直线与圆锥曲线(圆)中几何元素的最值或与之相关的一些问题。

这些问题的处理有九种解题策略。

一.代数策略 解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。

是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科。

因此在处理解析几何中最值问题时,若目标与条件具有明确的互动函数关系时,不妨可考虑建立目标函数,通过函数的单调性、均值不等式、判别式、二次函数的图象等知识点来解决。

1.二次函数法 利用二次函数求最值要注意自变量的 取值范围及对称轴位置,当对称轴位置不确定时,必须进行分类讨论。

例1.若椭圆14922=+y x 上点P 到定 点A (a ,0)(0<a <3)的距离最短是1 ,则实数a 的值是 分析:设椭圆上一点P (3cos θ,2sin θ),()()220sin 2cos 3)(-+-==θθθa f PA ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2254453cos 5a a θ① 当350≤<a 时,因为1530≤<a ,所以 当a 53cos =θ时, 有f (θ)= 1544)53(arccos 2=-=a a f ,得)(35215)(215舍或舍>=-=a a 。

② 当335<<a 时,因为59531<<a ,所以当cos θ=1时,)0()(min min f f =θ1544)531(522=-+-=a a ,得a =2 或a = 4(舍), 综上得a = 2. 2.单调性 若所构造的函数在指定区间上具有单调性时,求最值可用单调性解决,但要注意自变量的取值范围。

例2.已知圆C :(x + 4)2 + y 2= 4, 圆D 的圆心D 在y 轴上且与圆C 相外切,圆D 与y 轴交于A 、B 点,点P 为(–3,0),当点D 在y 轴上移动时,求∠APB 的最大值。

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中专题-解析几何中的最值与范围问题解析几何中的定点、定值问题例1设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点)3545,,55M F ⎛⎫ ⎪ ⎪⎝⎭,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.【解】(1)2214x y -=;(2)最大值为2,6525,55P ⎛⎫- ⎪ ⎪⎝⎭例2设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求使得12EF EF +取最小值时椭圆的方程;(2)已知(0,1)N -,设斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不同的两点,A B ,点Q 满足AQ QB = ,且0NQ AB ⋅= ,求直线l 在y 轴上截距的取值范围.【解】(1)最小值2213x y +=;(2)1,22⎛⎫ ⎪⎝⎭例3(1)椭圆224()4x y a +-=与抛物线22x y =有公共点,则a 的取值范围是.(2)椭圆2212516x y +=上的点到圆22(6)1x y +-=上的点的距离的最大值是().A.11B.C.D.9【解】(1)171,8⎡⎤-⎢⎥⎣⎦;(2)A例4在直角坐标系中,O 是原点,,A B 是第一象限内的点,并且A 在直线(tan )y x θ=上,其中42OA ππθ⎛⎫∈= ⎪⎝⎭,,,B 是双曲线22=1x y -上使OAB 面积最小的点,求:当θ在42ππ⎛⎫ ⎪⎝⎭,中取什么值时,OAB 的面积最大,最大值是多少?【解】2arccos 4θ=,最大值为66专题-解析几何中的定点、定值问题例1已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1)2626,0,,033⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例3如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2py =例4已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5如图3所示,设椭圆2221(2)4x y a a +=>的离心率为33,斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE = ,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y+=;(2)63k=±;(3)证明略。

解析几何中的最值问题

解析几何中的最值问题
2 2
的最值。 求: S = x − 2y 的最值。
解:
Y
由 S = x −2y 得
y= 1x− 1S 2 2
O
− 1 s 为直线在 轴上的截距。 为直线在y轴上的截距 轴上的截距。 2 取最小时,S 取最大值。 当 − 1 s 取最小时 取最大值。 2
此时,直线与圆相切。 此时,直线与圆相切。 .
设右准线为 L , 则 L 的方程是 x =
又设 P 到 L 的距离为 PB ,则
4 3
L
B
PF =e PB
P
A
F
PF 2 即 PB = = PF e 3
B1 P1
2 ∴ PA + PF = PA + PB 3 当且仅当 A、P、B共线时, + PB 最小。 共线时, PA 最小。
X=
4 3
4 8 此 小 为 − = 最 值 4 3 3
小 结
代数方法讨论几何问题是解析几何的特点和手段 讨论几何问题是解析几何的特点和手段。 1 用代数方法讨论几何问题是解析几何的特点和手段。 对于解析几何中的极值问题的解决 首先应注意函数方法 参数法)的运用, 函数方法( 首先应注意函数方法(参数法)的运用, 将所求对象表示成某个变量的函数, 将所求对象表示成某个变量的函数, 利用代数方法来解决。 利用代数方法来解决。
X
圆心(1、-2)到直线的距离等于 5 圆心( 、 )
− 1s 2
1 + 2 − S 2 2 = 5 4
5

S最小值 = 0
S最大值 = 10
例4、已知:实数 x、y 满足 (x − 1) + (y + 2) = 5 。 、已知: 、

高中数学期末备考:解析几何03圆中最值问题含解析

高中数学期末备考:解析几何03圆中最值问题含解析

3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。

解析几何中的一些最值问题

解析几何中的一些最值问题

OCCUPATION2011 7162解析几何中的一些最值问题文/王海滔最值问题遍及中学数学的代数、三角、立体几何及解析几何等学科内的各个分支,在生产实践当中广泛应用,解析几何中的最值问题也是历届各类考试的热点。

如何利用相关的数学方法,运用数形结合的思想解决这类问题,来提高学生分析问题和解决问题的能力,为进一步学好高等数学中的最值问题打下基础,是中学数学复习中不可忽视的问题。

下面,笔者结合具体的例子,对解析几何中的最值问题介绍几种解答方法。

一、利用对称性求最值(动点在直线上)动点在直线上求最值,解决的办法是把折线问题转化成直线问题,利用平面内两点间直线段最短的公理,或利用两点间距离公式求出线段长的最值。

【例1】已知点P 在x 轴上运动,A (-2,2),B (1,3)(1)则│P A │+│PB │的最小值为多少?分析:作出A 点关于x 轴的对称点A'(-2,2),那么│P A │+│PB │=│P A'│+│PB │,利用三角形两边之和大于第三边,可得:│P A'│+│PB │≥│A'B │,当且仅当A',P ,B 三点共线时取得最小值│A'B(2)则│PB │-│P A 分析:此题不用找对称点,利用三角形两边之差小于第三边,只要延长BA 交x 轴于P ,│PB │-│PA │此时得到的最大值为│BA小结:当动点在直线上时,(1)求线段长之和的最小值时,若定点是异侧,则两定点距离即为最小值。

若是同侧,作对称点即可解决。

(2)求线段长之差的最大值时,若定点是同侧,则两定点距离即为最大值。

若是异侧,就利用对称性,转化到同侧,也可解决。

二、利用圆锥曲线的定义求最值(动点在圆锥曲线上)动点在圆锥曲线上求最值,解决方法是先利用圆锥曲线定义对所求的问题进行转化,再利用平面内两点间直线段最短的公理,或利用点到直线的距离为垂线段最短,求出最值。

【例2】已知F 是抛物线y 2=4x 的焦点,A (4,2),点P 是该抛物线上的一个动点,试求│PF │+│P A │的最小值为______。

立体几何解析几何最值问题

立体几何解析几何最值问题

立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。

在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。

在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。

解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。

解析几何中最值问题的解决方法通常是通过求导来进行。

我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。

这种方法在求解平面最值问题时非常有效。

而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。

解决这类问题可以利用几何性质和定理来进行推导和求解。

比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。

具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。

例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。

2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。

例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。

3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。

例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。

总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。

解析几何中的最值问题

解析几何中的最值问题
解: y 12 的几何意义
x6 是动点(x, y)与 定点(6,12)两点连 线的斜率
x y 36 (x 0)
2 2
y

P(6,12)
o
A(0,6)
x
解法小结:数形结合法
y 12 1 、 已知实数x, y满足 x 36 y 0, 则 3 x6 6 4 的最大值为 _______, 2 x y的最大值为 ________ 。
x
x y 例3.设实数x,y满足 1 16 9 12 2 , 则3x 4 y的最大值是 ______
12 2 . 最小值是 _______
2
2
y
O
x
解1 :换元法。 设x 4 cos , y 3 sin , 则
知识迁移
若将椭圆换成 双曲线、抛物线 又如何进行换元 呢?
3x 4 y 12(cos sin )
方法:数形结合法
Q1
| AF 1 | 16
7,
.
Y
.
F
O
. .
A
| QF | 。
X
F1
总结规律:延长线段AF1(F1为另一焦点)与 椭圆的交点Q就是所求的点。AQ过另一焦点F1!
Q
例3备
知识迁移
x2 y2 1的右焦点,P是其上一点,定点B(2,1). 变 F是 25 9 17 式 5 | PB | | PQ | 4 题 则 | PB | | PF | 的最小值 _______; 4 37 10 37 最大值 10 | PB | | PF | 的最小值 ________, _______
几何法、换元法
3 表示点P (cos , sin )与A( ,2)连线斜率的一半. 2 3 2 2 即圆x y 1上点与A( ,2)连线斜率的一半. 2 y A 3 设切线方程y 2 k ( x ), 2 圆心O(0,0)到切线的距离等于半径1 可解得 k 12 2 21 , k 12 2 21 O 5 5 x

解析几何最值问题

解析几何最值问题
空间图形的体积最值
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。

初中几何最值问题含解析

初中几何最值问题含解析
总结:用轴对称进行转化时,通常作定点关于动点所在直线的对称点。
分析务必细致·论证务求严谨
-2-
刻意练习: 1.如左图,梯形 ABCD 中,AD∥BC,∠BAD=90°,AD=1,E 为 AB 的中点,AC 是 ED 的垂直平分线。
(1)求证 DB=DC. (2)在右图的线段 AB 上找出一点 P,使 PC+PD 的值最小,标出点 P 的位置,保留画图痕迹,并求出 PB 的值。
B
P R
O
Q
A
【解析】如图所示,分别作 P 关于 OB、OA 的对称点,连接 P′、P″.∠P′OP″=90°,P′P″=10 2,C△PQR≥P′P″=10 2
P' B
R P
O
Q
A
P''
点评:运用轴对称进行转化,求解 P′P″的长时,学生不容易想到通过连接 OP′、OP″、构造等腰直角三角形求解。
分析务必细致·论证务求严谨
-5-
刻意练习:
1.如图,在锐角△ABC 中,AB=4 2,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M 和 N 分别是 AD,AB 上的
动点,则 BM+MN 的最小值是
.
C
D M
A
N
B
【答案】4
【解析】作 N 关于 AD 的对称点 N′,BM+MN=BM+MN′≥BH=4
y
C
E
B
y
C
E
B
N
D
N
D
O
M
A
x
O
M
A
x
【答案】(1) y=-43x+25;(2)5+5 37。 【解析】(1)OE=OA=15,OC=9,得 CE=12,BE=3,E(12,9)

题型六 几何最值(专题训练)(解析版)

题型六 几何最值(专题训练)(解析版)

题型六几何最值(专题训练)1.如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD +的最小值是( )【答案】B【详解】如图,作DH ⊥AB 于H ,CM ⊥AB 于M .∵BE ⊥AC ,∴∠AEB=90°,∵tanA=BE AE=2,设AE=a ,BE=2a ,则有:100=a 2+4a 2,∴a 2=20,∴,∴,∵AB=AC ,BE ⊥AC ,CM ⊥AB ,∴(等腰三角形两腰上的高相等))∵∠DBH=∠ABE ,∠BHD=∠BEA ,∴sin DH AE DBH BD AB Ð===,∴BD ,∴BD=CD+DH ,∴CD+DH ≥CM ,∴BD ≥∴BD 的最小值为故选B .2.如图,在Rt ABC D 中,90°Ð=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【答案】B【详解】如图,设⊙O 与AC 相切于点D ,连接OD ,作OP BC ^垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∴5AB =∵90OPB °Ð=,∴OP ACP ∵点O 是AB 的三等分点,∴210533OB =´=,23OP OB AC AB ==,∴83OP =,∵⊙O 与AC 相切于点D ,∴OD AC ^,∴OD BC ∥,∴13OD OA BC AB ==,∴1OD =,∴MN 最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值1013133=+=,513+=633,∴MN 长的最大值与最小值的和是6.故选B .3.如图,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF V 沿EF 所在直线翻折,得到'A EF V ,则'A C 的长的最小值是( )A B .3C 1-D 1-【答案】D【详解】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点A'在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:1A'E AE AB 12===.在Rt BCE V 中,1BE AB 12==,BC 3=,B 90Ð=o ,CE \==,A'C \的最小值CE A'E 1=-=.故选D .4.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .B .C .D .【答案】D【详解】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AG+BG+CG=FE+GF+CG .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,,在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13故选:D .5.如图,Rt ABC △中,AB BC ^,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA °Ð+Ð=,则线段CP 长的最小值为________.【答案】2:【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P 在以AB 为直径的弧上(P 在△ABC 内)设以AB 为直径的圆心为点O ,如图接OC ,交☉O 于点P ,此时的PC 最短∵AB=6,∴OB=3∵BC=4∴5OC ===∴PC=5-3=26.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G点运动轨迹.CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF=1G E =1,CF=1322CE =,所以CH=52,因此CG 的最小值为52.GA B CDE F27.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且D D =PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】ABCD Q 为矩形,AB DC\=又=V V Q PAB PCDS S \点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====故答案为:8.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是2______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:549.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【答案】2【分析】作以BD 为对称轴作N 的对称点N',连接PN',MN',依据PM ﹣PN =PM ﹣PN'≤MN',可得当P ,M ,N'三点共线时,取“=”,再求得//AN CN BM CM ==31,即可得出PM ∥AB ∥CD ,∠CMN'=90°,再根据△N'CM 为等腰直角三角形,即可得到CM =MN'=2.【解答】解:如图所示,作以BD 为对称轴作N 的对称点N',连接PN',MN',根据轴对称性质可知,PN =PN',∴PM ﹣PN =PM ﹣PN'≤MN',当P ,M ,N'三点共线时,取“=”,∵正方形边长为8,∴AC =2AB =28,∵O 为AC 中点,∴AO =OC =24,∵N 为OA 中点,∴ON =22,∴ON'=CN'=22,∴AN'=26,∵BM =6,∴CM =AB ﹣BM =8﹣6=2,∴//AN CN BM CM ==31∴PM ∥AB ∥CD ,∠CMN'=90°,∵∠N'CM =45°,∴△N'CM 为等腰直角三角形,∴CM =MN'=2,即PM ﹣PN 的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.如图,ABC V 是等边三角形,6AB =,N 是AB 的中点,AD 是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.【答案】【分析】根据题意可知要求BM+MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【解析】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM+MN=CN ,则CN 就是BM+MN 的最小值.∵ABC V 是等边三角形,6AB =,N 是AB 的中点,∴AC=AB=6,AN=12AB=3, CN AB ^,∴CN ====即BM+MN的最小值为故答案为:【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.11.如图,在中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .【分析】首先对问题作变式2AD+3BD=233AD BD æö+ç÷èø,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.ABC D A BCD问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.12.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.【答案】2-【解析】【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .求出OM ,OF 即可解决问题.【详解】解:取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=,GF,OF=,∴ME≥OF﹣OM=﹣2,∴当O,M,E共线时,ME的值最小,最小值为2.【点睛】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.【答案】【详解】将△BMN 绕点B 顺时针旋转60度得到△BNE ,∵BM=BN ,∠MBN=∠CBE=60°,∴MN=BM ∵MC=NE ∴AM+MB+CM=AM+MN+NE .当A 、M 、N 、E 四点共线时取最小值AE .∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH ⊥AE ,AH=EH ,∠BAH=30°,∴BH=12AB=3,BH=AE=2AH=故答案为14.如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE △沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.【答案】8【解析】【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=13,∴CF=CE﹣EF=13﹣5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.15、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.-【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC ,AH ⊥BC ,∴∠BAP=∠CAP ,∵PA=PA ,∴△BAP ≌△CAP (SAS ),∴PC=PB ,∵MG=PB ,AG=AP ,∠GAP=60°,∴△GAP 是等边三角形,∴PA=PG ,∴PA+PB+PC=CP+PG+GM ,∴当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∵AP+BP+CP 的最小值为,∴,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN ⊥AC 于N .则BN=12AB=1,,,∴16.如图所示,30AOB Ð=o ,点P 为AOB Ð内一点,8OP =,点,M N 分别在,OA OB 上,求PMN D 周长的最小值_____.【答案】PMN D 周长的最小值为8【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN D 周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP \D =++=,且1A O P A O P Ð=Ð,2BO P BO P Ð=Ð,12260POP AOB Ð=Ð=°,128O P O P O P ===,12PPO D 为等边三角形,1218PP OP ==即PMN D 周长的最小值为8.17.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=;(1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ;①把图形补充完整(无需写画法); ②求2EF 的取值范围;(2)如图2,求BE+AE+DE 的最小值.【答案】(1)①补图见解析;②2816EF ££;(2)2+【详解】(1)①如图△DCF 即为所求;②∵四边形ABCD 是正方形,∴BC =AB =,∠B =90°,∠DAE =∠ADC =45°,∴AC AB =4,∵△ADE 绕点D 逆时针旋转90°得到△DCF ,∴∠DCF =∠DAE =45°,AE =CF ,∴∠ECF =∠ACD +∠DCF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,∴y =(4−x )2+x 2=2x 2−8x +160(0<x ≤4).即y =2(x −2)2+8,∵2>0,∴x =2时,y 有最小值,最小值为8,当x =4时,y 最大值=16,∴8≤EF 2≤16.(2)如图中,将△ABE 绕点A 顺时针旋转60°得到△AFG ,连接EG ,DF .作FH ⊥AD 于H .由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF ≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 的长.在Rt △AFH 中,∠FAH =30°,AB ==AF ,∴FH =12AF ,AH ,在Rt △DFH 中,DF ==2+,∴BE +AE +ED 的最小值为2.。

中考压轴题突破:几何最值问题大全解析(将军饮马、造桥选址等)

中考压轴题突破:几何最值问题大全解析(将军饮马、造桥选址等)

中考压轴题突破:几何最值问题大全解析(将军饮马、造桥选址等)
初中几何最值有几大典型内容,如将军饮马、造桥选址、胡不归、阿波罗尼斯圆等。

因几何最值有一定难度,很多同学们掌握起来比较吃力,考试的时候丢分也特别的严重。

几何作为初中数学比较重要的内容之一,在最开始接触几何的时候还比较简单,随着知识点的逐渐深入,同学们就觉得几何越来越难。

特别是几何最值问题,老师讲解过无数次的内容,还是再出错。

几何最值问题作为初中几何的一大难点,同学们觉得吃力也是比较常见的问题,想要彻底吃透几何最值问题,同学们就要花费一定的时间,在几何最值的问题上下功夫,突破这项重点内容。

既如此,如何突破几何最值问题就成为了同学们最关心的问题,首先,同学们可以看看几何最值的例题,从例题解析中掌握几何最值的解题步骤和特点,其次,就是多做练习,巩固知识点。

为了帮助同学们能够掌握初中几何最值问题,老师就向大家整理了中考压轴题突破:几何最值问题大全解析(将军饮马、造桥选址等),同学们赶紧收藏,中考复习能够用得上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何最值问题的赏析
丹阳市珥陵高级中学数学组:李维春
教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题.
重点难点:图形的处理和变量的选择及最值的处理.
问题提出: 已知椭圆方程:14
32
2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。

过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。

问题分析:
1、 图形的处理:
不规则图形转化为规则图形(割补法)
ABF ABE AENF S S S ∆∆+=
BEF AEF AENF S S S ∆∆+=
2、 变量的选择:
(1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式;
(2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得
一元表达式。

3,最值的处理方法:
(1) 一元表达式可用基本不等式或函数法处理;
(2) 二元表达式可用基本不等式或消元转化为一元表达式。

X
问题解决:
解法一:
由基本不等式得62
24)34(2322
02000==+≤+=y x y x S 时取“=”
当且仅当0032
y x =
解法二:
00000
0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S
(0,2),A B 因为,12
y +=
20x
+-=即1d =点E 到直线的距离:00(
,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134
x y +=在椭圆上22004312x y +=所以max S =所以
解法三:
)(2222ABE AOB AOBE BOE AOE BEF AEF AENF S S S S S S S S ∆∆∆∆∆∆+==+=+= 因为332-=AB K ,所以设切线方程为:)0(,3
32>+-=m m x y 由⎪⎪⎩⎪⎪⎨⎧=++-=143
33222y x m x y 得012334822=-+-m mx x 再由0=∆得22=m 切线的方程为:223
32+-=x y ,点E 到直线03232:=-+y x AB 的最大距离 )
0(EF >=k kx y :设4312431212
342222222+=+=⎩⎨⎧=+=k k y k x y x kx y E E ,得由4
3134431243122OE 2EF 22222++=+++==k k k k k 1312
22+=
+=→→k k d k d EF B EF A ,又1234313421222++++=k k k k S 43)
23(322++=k k 43)4343(12222
+++=k k k S )43341(122++=k k ""3324324)43341(12===≤++=时取即,当且仅当k k k k k 6
2max =S
73262343262-=+-=
d ,3621)(max -=•=∆d AB S ABE ,3=∆AOB S
变式与推广
①已知圆方程: 2
22r y x =+ ,A ,B 分别为圆的上顶点和右顶点。

过原点作一直线与线段AB 交于点G ,并和圆交于E 、F 两点,则四边形AEBF 面积的最大值为22r ; ②已知椭圆方程:122
22=+b
y a x ,A ,B 分别为椭圆的上顶点和右顶点。

过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,则有如下结论:
(1)四边形AEBF 面积的最大值ab 2;
(2)AB 的斜率与EF 的斜率互为相反数;
(3)EF 过线段AB 的中点;
③若条件中点E 、F 变成椭圆上且位于AB 两侧任意的两点,则E 、F 关于原点对称时,四边形面积取得最大,上述②的结论不变。

6
2max =S。

相关文档
最新文档