解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(一)带答案高中数学

合集下载

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。

解析几何综合问题圆与椭圆双曲线抛物线等午练专题练习(一)带答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等午练专题练习(一)带答案高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知121(0,0),m nm n+=>>当mn取得最小值时,直线22y x=-+与曲线xNMOyA B l :x =t x x m+1y yn =的交点个数为 ▲3.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.评卷人得分三、解答题4.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.5.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作⊙P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率32e =,求⊙P 的方程; (2)若⊙P 的圆心在直线0x y +=上,求椭圆的方程.6.若椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,椭圆上的点到焦点的最短距离为1,椭圆的离心率为45,以原点为圆心、短轴长为直径作圆O ,过圆O 外一点P 作圆O 的两条切线,PA PB 。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(四)带答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(四)带答案高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q . (1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF 交12F F 于点R ,记1PRF∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】第20题P AR OF 1Q xy F 2(4+6+6=16分)6.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(六)带答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(六)带答案高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知椭圆221:12xC y+=和圆222:1C x y+=,椭圆1C的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.如图,直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,22)B -,顶点C 在x 轴上,点P 为线段OA 的中点. (1)求BC 边所在直线方程;(2)求三角形ABC 外接圆的方程;(3)若动圆N 过点P 且与ABC ∆的外接圆内切, 求动圆N 的圆心N 所在的曲线方程.OyxMF1F25.已知椭圆22221x y a b += ()0a b >>的右焦点为1(20)F ,,离心率为e .(1)若22e =,求椭圆的方程; (2)设A ,B 为椭圆上关于原点对称的两点,1AF 的中点为M ,1BF 的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明点A 在定圆上;②设直线AB 的斜率为k ,若3k ≥,求e 的取值范围. 关键字:求椭圆方程;证明点在定圆上;求点的轨迹方程;6.椭圆2222:1(0)x y C a b a b+=>>上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M .(1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且212ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.4.7.已知圆1F :16)1(22=++y x ,定点,动圆过点2F ,且与圆1F 相内切。

双曲线、椭圆、圆专题训练与答案

双曲线、椭圆、圆专题训练与答案

圆锥曲线习题——双曲线1. 如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A)364 (B)362 (C)62 (D)322. 已知双曲线C ∶22221(x y a a b-=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是 (A )a(B)b(C)ab(D)22b a +3. 以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++=D .221090x y x +++=4. 以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)6. 若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )57. 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A 2B 35108. 已知双曲线)0(12222>=-b by x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则12PF PF ⋅=( )A. -12B. -2C. 0D. 4 二、填空题9. 过双曲线221916x y -=的右顶点为A ,右焦点为F 。

解析几何综合问题圆与椭圆双曲线抛物线等午练专题练习(二)带答案新高考高中数学

解析几何综合问题圆与椭圆双曲线抛物线等午练专题练习(二)带答案新高考高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 评卷人得分三、解答题4.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.5.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.xNMOyA B l :x =t6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.7.如图,过椭圆的左右焦点12,F F 分别作长轴的垂线12,l l 交椭圆于1122,,,A B A B ,将12,l l 两侧的椭圆弧删除,再分别以12,F F 为圆心,线段1122,F A F A 的长度为半径作半圆,这样得到的图形称为“椭圆帽”,夹在12,l l 之间的部分称为“椭圆帽”的椭圆段,夹在12,l l 两侧的部分称为“椭圆帽”的圆弧段.(Ⅰ)若已知两个圆弧段所在的圆方程分别为22(2)1x y ±+=,求椭圆段的方程;(Ⅱ)在(Ⅰ)的条件下,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,若1120FM F N +=,求直线l 的方程; (Ⅲ)在(Ⅰ)的条件下,如图,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,求PM PN的取值范围.分析:利用椭圆的第一定义不难求出长轴长2a ,从而求出椭圆方程;利用椭圆的第二定义,可求出M 点的坐标,易得直线方程;关注PM PN 的实质,涉及分类讨论. 解答:(Ⅰ)由题意:22222,21(22)14c a ==++=,则2222b a c =-=;则椭圆段的方程:221(22)42x y x +=-≤≤; (Ⅱ)由题意:1||1NF =,则1||2MF =,设00(,)M x y ,则0(22)2e x +=,00x ∴=,则(0,2)M ±,则直线l 的方程是:(2)y x =±+; (Ⅲ)211111111111()()P M P NP F F M P F F N P F P FF NP FF M=++=+++(1)P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,则N 必在“椭圆帽”的左侧圆弧段下半部分,则11||1,||1PF F N ==, 11110PF F N PF FM ==, 所以:11111||PM PN F M F NF M =+=-,设00(,)M x y (1)0[2,2]x ∈-时,M 在“椭圆帽”的椭圆段的上方部分,则102||2[1,3]2F M x =+∈ 则11||[2,0]PM PN FM =-∈-; (2)0[2,21]x ∈+时,M 在“椭圆帽”的右侧圆弧段的上方部分,P则2200(2)1x y -+=,且1||F M =22000(2)142[3,122]x y x ++=+∈+则11||[22,2]PM PN FM =-∈--; 综上可知:PM PN 的取值范围是11||[22,0]PM PN FM =-∈-. 说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,将其他的数学知识和数学思想方法与圆锥曲线综合,从一个更新颖的角度来考察圆锥曲线.8.已知:“过圆222:C x y r +=上一点00(,)M x y 的切线方程是200x x y y r +=.”(Ⅰ)类比上述结论,猜想过椭圆2222:1(0)x y C a b a b'+=>>上一点00(,)M x y 的切线方程(不要求证明);(Ⅱ)过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B两点,求过,A B 两点的直线方程;(Ⅲ)若过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B 两点,且AB 恰好通过椭圆的左焦点,证明:点M 在一条定直线上.分析:利用圆方程与椭圆方程结构的一致性,不难得出(Ⅰ)的结论,而(Ⅱ)的解决则体现了方法的类比. 解答:(Ⅰ)椭圆2222:1(0)x y C a b a b '+=>>上一点00(,)M x y 的切线方程是00221x x y y a b+=;(Ⅱ)设1122(,),(,)A x y B x y .由(Ⅰ)可知:过点11(,)A x y 的椭圆的切线1l 的方程是:11221x x y ya b +=; 过点22(,)B x y 的椭圆的切线2l 的方程是:22221x x y ya b+=; 因为12,l l 都过点00(,)M x y ,则10102210102211x x y y abx x y y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则过,A B 两点的直线方程是:00221x x y ya b+= (Ⅲ)由(Ⅱ)知过,A B 两点的直线方程是:00221x x y ya b+=, 由题意:(,0)F c -在直线AB 上,则02()1x c a-=,则20a x c =- ∴点00(,)M x y 在椭圆的左准线上.说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,利用类比或其他的数学思想方法,从一个更新颖的角度来关注圆锥曲线的命题方向.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(一)附答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(一)附答案高中数学
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.
3.2
评卷人
得分
三、解答题
4.由相似三角形知, , ,
∴ , .
(1)当 时, ,∴ .
(2)
= ,在 上单调递增函数.
∴ 时, 最大3, 时, 最小 ,
∴ ,∴ .
(3)当 时, ,∴ ,∴ .
∵ ,∴ 是圆的直径,圆心是 的中点,
(1)当 时,求双曲线的渐近线方程;
(2)求双曲线的离心率 的取值范围;
(3)当 取最大值时,过 的圆的截y轴的线段长为8,求该圆的方程.
17-1
5.如图,已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的右顶点,BC过椭圆中心O,且 · =0, ,
(1)求椭圆的方程;
(2)若过C关于y轴对称的点D作椭圆的切线DE,则AB与DE有什么位置关系?证明你的结论.
∴在y轴上截得的弦长就是直径,∴ =8.
又 ,∴ .
∴ ,圆心 ,半径为4, .
5.(1)A(2,0),设所求椭圆的方程为:
=1(0<b<2),
由椭圆的对称性知,|OC|=|OB|,
由 · =0得,AC⊥BC,
∵|BC|=2|AC|,∴|OC|=|AC|,∴△AOC是等腰直角三角形,
∴C的坐标为(1,1).
代入 (**)……………14分
要证 = ,即证
由方程组(**)可知方程组(1)成立,(2)显然成立.∴ ……………16分
7.解:(1)设圆 的半径为 。
因为圆 与圆 ,所以
所以 ,即:
所以点 的轨迹 是以 为焦点的椭圆且设椭圆方程为 其中 ,所以

椭圆、双曲线抛物线综合练习题及答案.

椭圆、双曲线抛物线综合练习题及答案.

一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。

( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。

( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。

解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(二)带答案新教材高中数学

解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(二)带答案新教材高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.圆心在抛物线y x 42=上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .3.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ . 评卷人得分三、解答题4.(汇编年高考福建卷(文))如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN =⋅,求圆C 的半径.5.已知椭圆()22220y x C a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C相交于A 、B 两点,且(13)B --,. (1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m-+++-=与D 有公共点,试求实数m 的最小值.6.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)7.在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上(如图),且OC =1,OA =a +1(a >1),点D 在边OA 上,满足OD =a . 分别以OD 、OC 为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD . 直线l :y =-x +b 与椭圆弧相切,与AB 交于点E .(1)求证:221b a -=;(2)设直线l 将矩形OABC 分成面积相等的两部分,求直线l 的方程;(3)在(2)的条件下,设圆M 在矩形及其内部, 且与l 和线段EA 都相切,求面积最大的圆M的方程.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 4)1()2(22=-+±y x3.63评卷人得分三、解答题4.解:(Ⅰ)抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||5CO =. 所以22||2||2542MN CO d =-=-=.(Ⅱ)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+, 即22200202y x x y y y -+-=.由1x =-,得2202102y y y y -++=设1(1,)M y -,2(1,)N y -,则:222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩由2||||||AF AM AN =⋅,得12||4y y =所以2142y +=,解得06y =±,此时0∆>所以圆心C 的坐标为3(,6)2或3(,6)2-从而233||4CO =,33||2CO =,即圆C 的半径为3325.6.解:(1)直线l 的方程为b x + c y – (3–2)c =0 …………2分因为直线l 与圆C 2: x 2 + (y – 3) 2 = 1相切,所以d =22|332|c c c b c-++=1…………4分可得2 c 2 = a 2,从而e =22…………7分 (2)设P(x , y ),则22222222()()()()PM PN PC C M PC C N PC C N PC C N⋅=++=-+2222PC C N =-= x 2 + (y – 3) 2 – 1 = – (y + 3) 2 + 2 c 2 + 17, ( – c ≤y ≤c ) ………10分(或者设M(x 1, y 1), N(x 2, y 2), P(x , y ),因为x 1 + x 2=0, y 1 + y 2=6, x 1 2+ y 12 – 6 y 1 + 8=0,所以PM PN ⋅=( x 1 – x 2)( x 2 –x 1)+( y 1 – y 2)( y 2 –y 1) =x 2 + y 2 – (x 1 + x 2)x +( x 1 + x 2)y + x 1 x 2+ y 1 y 2= x 2 + y 2 +6y – x 1 2+ y 1(6 – y 1)= x 2 + y 2 +6y +8= – (y + 3)2 + 2c 2+17…………10分)当c ≥3时,(PM PN ⋅)m a x = 2c 2+17=49, 解得c =4,此时椭圆的方程为2213216x y +=…12分 当0<c <3时,(PM PN ⋅)m a x = – (c + 3)2 + 2c 2+17=49, 解得c =523-, 但(523-) – 3=50– 6>0,所以523->3,故c =523-舍去…………14分综上所述,椭圆的方程为2213216x y +=…………15分 7.题设椭圆的方程为2221x y a +=.…………………………1分由2221,x y a y x b⎧+=⎪⎨⎪=-+⎩消去y 得22222(1)2(1)0a x a bx a b +-+-=. …………………………2分 由于直线l 与椭圆相切,故△=(-2a 2b )2-4a 2(1+a 2) (b 2-1)=0,化简得221b a -=. ① …………………………4分(2)由题意知A (a +1,0),B (a +1,1),C (0,1),于是OB 的中点为()11,22a +.…………………………5分因为l 将矩形OABC 分成面积相等的两部分,所以l 过点()11,22a +,即(1)122a b -+=+,亦即22b a -=. ② …………………………6分 由①②解得45,33a b ==,故直线l 的方程为5.3y x =-+ (8)分(3)由(2)知()()57,0,,033E A . 因为圆M 与线段EA 相切,所以可设其方程为2220()()(0)x x y r r r -+-=>.………9分因为圆M 在矩形及其内部,所以0010,25,37.3r x x r ⎧<⎪⎪⎪>⎨⎪⎪+⎪⎩≤≤ ④ (10)分圆M 与 l 相切,且圆M 在l 上方,所以03()532x r r +-=,即03()532x r r +=+.………………………12分代入④得10,253(21)5,335327,33r r r ⎧<⎪⎪⎪+->⎨⎪⎪+⎪⎩≤≤即20.3r <≤………………………13分所以圆M 面积最大时,23r =,这时,0723x -=.故圆M 面积最大时的方程为227222.339x y ⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭ (15)分。

解析几何综合问题圆与椭圆双曲线抛物线等早练专题练习(三)带答案新高考高中数学

解析几何综合问题圆与椭圆双曲线抛物线等早练专题练习(三)带答案新高考高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲O A 1A 2B 1 B 2xy (第173.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.5.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(二)附答案人教版高中数学真题技巧总结提升

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(二)附答案人教版高中数学真题技巧总结提升
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.(汇编四川理)已知两定点 ,如果动点 满足 ,则点 的轨迹所包围的图形的面积等于
设点 ,则 ,所以 的方程为
…13分
从而直线QS的方程为
(*)………………………………………………………………14分
因为 一定是方程(*)的解,
所以直线QS恒过一个定点,且该定点坐标为 ……………16分
5.
6.解:(1)由题意: 可得: ,
故所求椭圆方程为: 1………………………3分
(2)易得A的坐标(-2,0),B的坐标(2,0),M的坐标 ,N的坐标 ,
线段AM的中点P ,
直线AM的斜率 ………………………………………5分
又 , 直线 的斜率
直线 的方程 ,
的坐标为 同理 的坐标为 …………………………8分
,即无论t如何变化,为圆C1与圆C2的圆心距是定值.……………11分
(2)圆 的半径为 ,圆 的半径为 ,
则 ( < < )
显然 时, 最小, .……………15分
3.椭圆 ,右焦点F(c,0),方程 的两个根分别为x1,x2,则点P(x1,x2)在与圆 的位置关系是▲.
评卷人
得分
三、解答题
4.已知抛物线 的准线为 ,焦点为 . 的圆心在 轴的正半轴上,且与 轴相切.过原点 作倾斜角为 的直线 ,交 于点 ,交 于另一点 ,且 .

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(二)含答案新人教版高中数学名师一点通

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(二)含答案新人教版高中数学名师一点通

高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.椭圆21)0,0(12222
=>>=+e b a b y a x 的离心率,右焦点F (c,0),方程
02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(六)附答案新教材高中数学

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(六)附答案新教材高中数学
将 代入 ,得 ,即 .
所以 .……………………………………………………………………8分
(3)解:设点 、 ( , , ),
则 , .
因为 ,所以 ,即 .…………9分
因为点 在双曲线上,则 ,所以 ,即 .
因为点 是双曲线在第一象限内的一点,所以 .………………………10分
因为 , ,
所以 .…………………11分
(或者设M(x1,y1), N(x2,y2), P(x,y),因为x1+x2=0,y1+y2=6,x12+y12– 6y1+ 8=0,所以 =(x1–x2)(x2–x1)+(y1–y2)(y2–y1)
=x2+y2– (x1+x2)x+(x1+x2)y+x1x2+y1y2
=x2+y2+6y–x12+y1(6 –y1)=x2+y2+6y+8= – (y+ 3)2+2c2+17…………10分)
7.已知椭圆 的右焦点为 ,上顶点为 , 为 上任一点, 是圆 的一条直径.若与 平行且在 轴上的截距为 的直线 恰好与圆 相切.
(Ⅰ)求椭圆 的离心率;(7分)
(Ⅱ)若 的最大值为49,求椭圆 的方程.(8分)
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.DD
【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为 ,故所求圆的方程为 ,即 ,选D。
由(2)知, ,即 .
设 ,则 ,

设 ,则 ,
当 时, ,当 时, ,
所以函数 在 上单调递增,在 上单调递减.

椭圆、双曲线、抛物线习题(有答案)

椭圆、双曲线、抛物线习题(有答案)

1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。

解析几何综合问题圆与椭圆双曲线抛物线等三轮复习考前保温专题练习(二)附答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等三轮复习考前保温专题练习(二)附答案高中数学
(1)求动点 的轨迹方程;
(2)过动点 作圆 的两条切线,切点分别为 ,求MN的最小值;
(3)设过圆心 的直线交圆 于点 ,以点 分别为切点的两条切线交于点 ,求证:点 在定直线上.
5.已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标
原点,设圆C是△OAB的外接圆(点C为圆心).
(1)求圆C的方程;
所以圆心C在x轴上.
设C点的坐标为(r,0),则A点坐标为 ,于是有 2=2× r,解得r=4,所
以圆C的方程为(x-4)2+y2=16.
(2)设∠ECF=2α,则 · =| |·| |·cos 2α=16cos 2α=32cos2α-16.
在Rt△PCE中,cosα= = .由圆的几何性质得
PC≤MC+1=7+1=8,
(2)直线AB与圆P能否相切?证明你的结论.
7.设椭圆的方程为 =1(m,n>0),过原点且倾角为θ和π-θ(0<θ< =的两条直线分别交椭圆于A、C和B、D两点,
(Ⅰ)用θ、m、n表示四边形ABCD的面积S;
(Ⅱ)若m、n为定值,当θ在(0, ]上变化时,求S的最小值u;
(Ⅲ)如果μ>mn,求 的取值范围.(汇编上海,24)
的椭圆,则 ,所以 , ,故P点的轨迹方程是 .(5分)
(2)法1(几何法)四边形SMC2N的面积 ,
所以 ,(9分)
从而SC2取得最小值时,MN取得最小值,显然当 时,SC2取得最大值2,
所以 .(12分)
法2(代数法)设S(x0,y0),则以SC2为直径的圆的标准方程为

该方程与圆C2的方程相减得, ,(8分)
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.(汇编福建理2)以抛物线2
4y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .2
2
x +y +2x=0 B .22
x +y +x=0
C .22
x +y -x=0
D .22
x +y -2x=0
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.设椭圆x 2a 2+y 2
b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .
3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 2
4
=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点
(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )
在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人
得分
三、解答题
4.已知双曲线()22
2210,0x y a b a b -=>>左右两焦点为12,F F ,P 是右支上一点,
2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤
=∈⎢⎥⎣⎦
.
(1)当1
3
λ=
时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;
(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-1
5.如图,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的右顶点,BC 过椭圆中心O ,且AC ·BC =0,||2||BC AC =, (1)求椭圆的方程;
(2)若过C 关于y 轴对称的点D 作椭圆的切线DE ,则AB 与DE 有什么位置关系?证明你的结论.
6.中心在原点,焦点在x 轴上的椭圆C 的焦距为2,两准线间的距离为10.设A(5,0),
O
y
x
C
B
A
O
y
x
M
F1
F2 B(1,0).
(1)求椭圆C 的方程;(4分)
(2)过点A 作直线与椭圆C 只有一个公共点D ,求过B ,D 两点,且以AD 为切线的圆
的方程;(6分)
(3)过点A 作直线l 交椭圆C 于P ,Q 两点,过点P 作x 轴的垂线交椭圆C 于另一点S .
若→AP= t →AQ (t >1),求证:→SB= t →
BQ (6分)
7.已知圆1F :16)1(2
2=++y x ,定点,动圆过点2F ,且与圆1F 相内切。

(1)求点M 的轨迹C 的方程;
(2)若过原点的直线l 与(1)中的曲线C 交于B A ,两点,
且1ABF ∆的面积为2
3
,求直线l 的方程。

【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.DD
【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原
点,所以圆的半径为r=1,故所求圆的方程为
22x-1)+y =1(,即22
x -2x+y =0,选D 。

第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2. 3. 2 评卷人
得分
三、解答题
4.由相似三角形知,
1
21
OF OH PF PF =,22
2b a b a a
λ=+

∴()2
2
2
2
2
2,21a b b a b λλλλ+==- ,2221b a λ
λ
=-.
(1)当1
3λ=时,221b a =,∴,a b y x ==±.
(2)()222
22211211111c b e a a λλλλ
--⎡⎤⎣⎦==+=+
=+--
=
221111λλ-=--
--,在11,92⎡⎤
⎢⎥⎣⎦
上单调递增函数. ∴12λ=
时,2e 最大3,19λ=时,2
e 最小54
, ∴
25
34
e ≤≤,∴532e ≤≤. (3)当3e =时,
3c
a
=,∴3c =,∴222b a =.
∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点, ∴在y 轴上截得的弦长就是直径,∴1PF =8.
又22
12224b a PF a a a a a =+=+=,∴48,2,23,22a a c b ====. ∴2224b PF a a
===,圆心()0,2C ,半径为4,()2
2216x y +-=. 5.(1)A (2,0),设所求椭圆的方程为:
224b
y x 2
+=1(0<b <2), 由椭圆的对称性知,|OC |=|OB |, 由AC ·BC =0得,AC ⊥BC ,
∵|BC |=2|AC |,∴|OC |=|AC |,∴△AOC 是等腰直角三角形, ∴C 的坐标为(1,1).
∵C 点在椭圆上,∴22141b +=1,∴b 2=3
4

所求的椭圆方程为4
342
2y x +
=1. (2)是平行关系.…………10分
D (-1,1),设所求切线方程为y-1=k (x+1)
22
1
3144
y kx k x y =++⎧⎪⎨+
=⎪⎩,消去x ,222
(13)6(1)3(1)40k x k k x k +++++-= 上述方程中判别式=2
9610k k -+=,1
3
k =
又1
3
AB k =
,所以AB 与DE 平行. 6.(1)设椭圆的标准方程为22
221(0)x y a b a b
+=>>
依题意得:222,
210,c a c
=⎧⎪⎨=⎪⎩,得1,
5,c a =⎧⎪⎨=⎪⎩ ∴24b =
所以,椭圆的标准方程为22
154x y +=. ……………4分
(2)设过点A 的直线方程为:(5)y k x =-,代入椭圆方程22
154x y +=得;
2222(45)50125200k x k x k +-+-= (*)
依题意得:0∆=,即2222(50)4(4
50)(12520)0
k k k -+-= 得:55k =±
,且方程的根为1x = 45
(1,)5
D ∴± ……………7分 当点D 位于x 轴上方时,过点D 与AD 垂直的直线与x 轴交于点
E , 直线DE 的方程是:455(1)5y x -
=-, 1
(,0)5
E ∴ ……………8分 所求圆即为以线段
DE
为直径的圆,故方程为:
232524
()()5525
x y -+-=
……………9分 同理可得:当点
D 位于x 轴下方时,圆的方程为:
232524
()()5525
x y -++=
.……10分 (3)设11(,)P x y ,22(,)Q x y 由AP =t AQ 得:121
25(5)x t x y ty -=-⎧⎨=⎩, ……………12分
代入22
11222215415
4x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩122332x t t x t =-+⎧⎪∴⎨-=⎪⎩(**) ……………14分 要证SB =tBQ ,即证121
21(1) 1 2x t x y ty -=-⎧⎨
=⎩()
()
由方程组(**)可知方程组(1)成立,(2)显然成立.∴
SB tBQ = ……………16分
7.解:(1)设圆M 的半径为r 。

因为圆M 与圆1F ,所以r MF =2
所以214MF MF -=,即:421=+MF MF
所以点M 的轨迹C 是以21,F F 为焦点的椭圆且设椭圆方程为
)0(12
2
22>>=+b a b y a x 其中 1,42==c a ,所以3,2==b a 所以曲线C 的方程13
42
2=+y x (2)因为直线l 过椭圆的中心,由椭圆的对称性可知,112aoF ABF S S ∆∆=
因为2
3
1
=∆A B F
S ,所以431
=∆A O F S 。

不妨设点),(11y x A 在x 轴上方,则4
3
21111=⋅⋅=
∆y OF S AOF 。

所以231=
y ,31±=x ,即:点A 的坐标为)23,
3(或)2
3,3(- 所以直线l 的斜率为2
1
±
,故所求直线方和程为02=±y x。

相关文档
最新文档