江苏省常州市2017-2018学年高三上学期期末数学试卷 Word版含解析
省常中2017-2018高三期中考试数学
江苏省常州高级中学2017-2018学年第一学期期中高三年级一.填空题(每小题5分,共70分)1. 集合{}{}52|,7,5,3,1≤≤==x x B A ,则=⋂B A ____________. 2. 命题“02,≥∈∃x R x ”的否定是__________.3. 执行如图所示的流程图,则输出的S 值为 .4. 已知i 是虚数单位,且复数,21,221i z bi z -=+=若21z z 是实数,则实数=b ____________. 5. 在各项均为正数的等比数列{}n a 中,若46822,1a a a a +==,则6a 的值是____________.6. 若变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且y x z +=2的最大值和最小值分别为m 和n,则=-n m _________.7. 已知3,2==b a ,b a ,的夹角为︒120,则=+b a 2___________.8. 在锐角三角形ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知b a ,是方程02322=+-x x 的两个根,且03)sin(2=-+B A ,则=c ___________.9. 在正三棱柱111C B A ABC -中,已知6,41==AA AB ,若F E ,分别是棱1BB 和1CC 上的点,则三棱锥EF A A 1-的体积値是____________.10. 已知)6sin(3sin παα+=,则=+)12tan(πα_____________. 11. 已知函数⎩⎨⎧<≤-+>=04,30,log )(x x x x x f a ,其中0>a 且1≠a ,)(x f y =的图像上有且只有一对点关于y 轴对称,则实数a 的取值范围是______________.12. 在等差数列{}n a 中,27,6632=+=a a a ,前n 项和为n S ,且123-⋅=n n n S T ,若对一切正整数n ,总有m T n ≤成立,则实数m 的取值范围是_______________.13. 设R a a ∈21,,且22sin 21sin 2121=+++αα,则2110ααπ--的最小值为__________.14.若()()+∞∈∃+∞∈∀,2,,021x x 总使得()0ln 12111=---x x x a x x 成立,则实数a 的取值范围是 .二、解答题:本大题共6小题,共90分。
2018常州市区高三期末统考试卷(含解析)
2017-2018年江苏省常州市市区高三(上)期末统考英语试卷第一部分:听力(共20小题;每小题1分,满分20分)第二部分:英语知识运用第一节:单项填空(共15小题;每小题1分,满分15分)请阅读下面各题,从题中所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
21. Ladies and gentlemen, we ___________ at Changzhou Station, please get ready to get off the train.A. are to arriveB. are arrivingC. are going to arriveD. will arrive考察时态。
现在进行时表将来,表示计划好的事情,并且距离现在是不远的将来。
根据句意:女士们先生们,我们即将到达常州站,下车的乘客请做好准备。
用现在进行时表即将发生的动作。
故选B。
22. ---What is the principal contradiction facing Chinese society nowadays?---The contradiction between _________ development and the people's ever-growing needs for a better lifeA. sustainableB. inadequateC. privilegedD.confidential考察形容词词义辨析。
A为可持续的,B为不充分的,C为赋予特权的,D为机密的。
根据句意:人民日增长的美好生活需要和不平衡不充分的发展之间的矛盾。
不充分,用inadequate故选B。
23. ---When the Americans objected to this,what did the British do?---They did not compromise,but increased control, __________ away many of their rights, and _______ soldiers there.A. taking; stationingB. taking; to stationC. took; stationingD. took; to station考察非谓语。
2017-2018学年江苏省常州市高一(上)期末数学试卷(解析版)
2017-2018学年江苏省常州市高一(上)期末数学试卷一、填空题(本大题共14小题,共56.0分)1.已知集合A={1,2},集合B={a,1-a2},若A∩B={2},则实数a的值为______.2.若<<,则点P(tanθ,sinθ)位于第______象限.3.若点P是线段AB上靠近A的三等分点,则=______.4.已知函数,则f(-2)=______.5.函数的值域为______.6.弧长为3π,圆心角为π的扇形的面积为______.7.若函数f(x)=2x+x-2的零点在区间(k,k+1)(k∈Z)中,则k的值为______.8.已知幂函数y=xα的图象经过点(2,),则的值为______.9.已知向量=(sinθ,cosθ),=(2,-1),若 ∥,则tan2θ=______.10.若,,则sin(α+β)=______.11.已知是定义在(-∞,+∞)上的减函数,则实数a的取值范围是______.12.已知f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(1)=0,则不等式f(ln x)<0的解集为______.13.在△ABC中,已知B=,=2,则的取值范围是______.14.已知当x∈(0,1)时,函数y=(mx-1)2的图象与y=x+m的图象有且只有一个交点,则实数m的取值范围是______.二、解答题(本大题共6小题,共64.0分)15.已知向量=(3,-4),=(4,3).(1)求的值;(2)若(2+)⊥(+k),求实数k的值.16.已知函数∈的定义域为集合A,函数g(x)=2x+1的值域为集合B.(1)当a=3时,求A∪B;(2)若A∩B=∅,求实数a的取值范围.17.已知,且α为第四象限角,求下列各式的值.(1);(2).18.设函数,其中0<ω<3,.(1)求函数f(x)的最小正周期及单调增区间;(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数g(x)的图象,求g(x)在(,)上的值域.19.如图,某校生物兴趣小组计划利用学校角落处一块空地围出一个周长为10米的直角三角形ABC作为试验地,设∠ABC=θ,△ABC的面积为S.(1)求S关于θ的函数关系式;(2)当θ为何值时,试验地的面积最大?求出该面积的最大值.20.已知m∈R,函数.(1)若函数g(x)=f(x)+lg x2有且仅有一个零点,求实数m的值;(2)设m>0,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,求m的取值范围.答案和解析1.【答案】2【解析】解:∵A∩B={2},∴a=2或1-a2=2,解得a=2,a=2时,B={2,-3},满足题意.故答案为:2.由A∩B={2},得方程a=2或1-a2=2,解得a=2,需验证a=2.本题考查集合间的基本运算,本题转化成对应的方程是关键.2.【答案】二【解析】解:∵,∴tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限,故答案为:二.tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限.本题考查三角函数值的符号,考查象限角的概念及应用,属于基础题.3.【答案】【解析】解:如图,P是线段AB上靠近A的三等分点,则:.故答案为:.可根据条件画出图形,根据条件及图形即可得出.考查线段三等分点的概念,以及向量数乘的几何意义.4.【答案】3【解析】解:∵函数,∴f(-2)=f(0)=f(2)=22-1=3.故答案为:3.推导出f(-2)=f(0)=f(2),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算与求解能力,是基础题.5.【答案】[0,1]【解析】解:因为0≤sin2x≤1,所以1≤sin2x+1≤2,又根据y=log2x为递增函数,得0≤log2(sin2x+1)≤1,故答案为:[0,1].因为0≤sin2x≤1,所以1≤sin2x+1≤2,再根据对数函数为增函数可得f(x)的值域为[0,1].本题考查了对数函数的值域与最值,属中档题.6.【答案】6π【解析】解:设扇形的半径是r,根据题意,得:=3π,解,得r=4.则扇形面积是=6π.故答案为:6π.根据扇形面积公式,则必须知道扇形所在圆的半径,设其半径是r,则其弧长是,再根据弧长是3π,列方程求解.此题考查了扇形的面积公式以及弧长公式,求出扇形的半径是解题关键.7.【答案】0【解析】解:函数f(x)=2x+x-2,可得f(x)在R上递增,由f(0)=1+0-2=-1<0,f(1)=2+1-2=1>0,可得f(x)在(0,1)内存在零点,则k=0.故答案为:0.判断f(x)在R上递增,计算f(0),f(1)的符号,由函数零点存在定理即可得到所求值.本题考查函数零点存在定理的运用,考查运算能力和推理能力,属于基础题.8.【答案】【解析】解:幂函数y=xα的图象经过点(2,),∴2α=,∴α=,∴=cos(-)=cos=.故答案为:.根据幂函数y=xα的图象过点(2,),求出α的值,再计算的值.本题考查了幂函数的图象与性质的应用问题,是基础题.9.【答案】【解析】解:∵;∴-sinθ-2cosθ=0;∴tanθ=-2;∴.故答案为:.根据即可得出-sinθ-2cosθ=0,从而得出tanθ=-2,根据二倍角的正切公式即可求出tan2θ的值.考查向量平行时的坐标关系,以及二倍角的正切公式.10.【答案】【解析】解:若,,则4sin2α+9cos2β-12sinαcosβ=①,4cos2α+9sin2β-12cosαsinβ=②,①+②可得4+9-12sin(α+β)=,求得sin(α+β)=,故答案为:.由条件利用同角三角函数的基本关系,两角和差的正弦公式,求得sin(α+β)的值.本题主要考查同角三角函数的基本关系,两角和差的正弦公式的应用,属于中档题.11.【答案】[,)【解析】解:∵f(x)是定义在R上的减函数;∴;解得;∴实数a的取值范围是.故答案为:.分段函数f(x)是R上的减函数,从而得出每段函数都是减函数,并且左段函数的右端点大于右段函数的左端点,即得出,解出a的范围即可.考查减函数的定义,分段函数、一次函数和对数函数的单调性.12.【答案】(,e)【解析】解:根据题意,f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,则f(x)在[0,+∞)上递增,又由f(1)=0,则f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得:<x<e,即不等式的解集为(,e),故答案为:(,e).根据题意,分析可得f(x)在[0,+∞)上递增,结合函数的特殊值分析可得f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得x的值,即可得答案.本题考查抽象函数的应用,涉及函数的奇偶性与单调性的综合应用,属于基础题.13.【答案】[-,)【解析】解:由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系∵B=,且BC=2,∴C(1,),设A(x,0),则=(-x,0)•(1-x,)=x2-x=,即取值范围是[-,+∞).故答案为:[-,+∞)由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系,由已知结合三角函数的定义可表示C(1,),然后设A(x,0),代入利用,结合向量数量积的坐标表示及二次函数的性质可求.本题主要考查了平面向量数量积的运算,解题的关键是坐标系的建立.14.【答案】(0,1]∪[3,+∞)【解析】解:根据题意,由于m为正数,y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=x+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx-1)2为减函数,且其值域为[(m-1)2,1],函数y=x+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx-1)2在区间(0,)为减函数,(,1)为增函数,函数y=x+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m-1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故答案为:(0,1]∪[3,+∞).根据题意,由二次函数的性质分析可得:y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m 的分类讨论.15.【答案】解:(1),;∴;(2),,,;∵⊥;∴;解得k=-2.【解析】(1)可求出,从而可求出的值;(2)可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量坐标的减法和数量积运算,向量垂直的充要条件,根据向量坐标可求向量长度.16.【答案】解:∵ ,∴0<x<a,∴A=(0,a)∵2x>0,∴2x+1>1,∴B=(1,+∞)(1)当a=3时,A=(0,3),A∪B=(0,+∞);(2)A≠∅时,,∴0<a≤1,综上可知:实数a的取值范围为(0,1].【解析】(1)确定出A与B,利用并集定义可求A∪B;(2)根据当A≠∅得a的范围即可.本题考查了集合间的基本运算及应用,集合中的参数问题,考查了函数定义域和值域的求法,难度中档.17.【答案】解:(1)∵,∴cos,∵α为第四象限角,∴sinα=,则tan,∴tan()=;(2)==.【解析】(1)由已知利用诱导公式及同角三角函数基本关系式化简求值;(2)化弦为切求解.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.18.【答案】解:(1)∵函数=sinωx-cosωx-cosωx =sinωx-cosωx=sin(ωx-),其中0<ω<3.∵=sin(-),∴-=kπ,k∈Z,∴ω=2,f(x)=sin(2x-).令2kπ-≤2x-≤2kπ+,求得kπ-≤x≤kπ+,故函数f(x)的增区间为[kπ-,kπ+],k∈Z.(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),可得y=sin(x-)的图象;再将得到的图象向左平移个单位,得到函数g(x)=sin(x+-)=sin(x-)的图象,在(,)上,x-∈(-,),故当x-=时,函数g(x)取得最大值为,当x-=-时,函数g(x)=-,故g(x)的值域为(-,].【解析】(1)利用三角恒等变换化简f(x)的解析式,再根据正弦函数的周期性和单调性,得出结论.(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得g(x)在(,)上的值域.本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.19.【答案】解:(1)设BC=L,则AB=L cosθ,AC=L sinθ,∴L+L sinθ+L cosθ=10,则L=,∴S==,θ∈(0,);(2)设sinθ+cosθ=t,则t=∈(1,],sin.∴S=.∵当t∈(1,]时,S为增函数,∴当t=,即时,.答:当时,试验地的面积最大,为平方米.【解析】(1)设BC=L,则AB=Lcosθ,AC=Lsinθ,由周长列式求得L,然后由三角形面积公式可得S关于θ的函数关系式;(2)设sinθ+cosθ=t,则t=∈(1,],sin,把面积转化为含有t的函数式,利用分离常数法求最值.本题考查函数解析式的求解及常用方法,训练了利用换元法求三角函数的最值,是中档题.20.【答案】解:(1)g(x)=lg(m+)+lg x2=lg(mx2+2x),由g(x)=0,可得mx2+2x=1有且只有一个解,当m=0时,x=成立;当m≠0时,△=4+4m=0,即m=-1,x=1成立.综上可得m=0或-1;(2)当x>0,设u=m+,可得函数u在x>0递减,由m>0,可得u>0,y=lg u递增,即f(x)在(0,+∞)递减,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,可得f(t)-f(t+2)=lg(m+)-lg(m+)≤1对任意t∈[,1]恒成立,即m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,由m>0可得y=9mt2+18(m+1)t-4在t∈[,1]递增,可得当t=时,y的最小值为9m•+18(m+1)•-4≥0,解得m≥.【解析】(1)由对数的运算性质和方程解法,讨论m是否为0,结合二次函数的判别式即可得到所求值;(2)由题意可得m>0,x>0,f(x)递减,由题意可得m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,运用二次函数的单调性,解不等式即可得到所求范围.本题考查函数的零点个数问题,注意运用分类讨论思想和方程思想,考查不等式恒成立问题解法,注意运用复合函数的单调性,以及转化思想,考查化简运算能力和推理能力,属于中档题.。
2017-2018学年江苏省常州市区高三年级(上)期末统英语考试卷(word版含答案)
2017-2018年江苏省常州市市区高三(上)期末统考英语试卷第一部分:听力(共20小题;每小题1分,满分20分)第二部分:英语知识运用第一节:单项填空(共15小题;每小题1分,满分15分)请阅读下面各题,从题中所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
21. Ladies and gentlemen, we ___________ at Changzhou Station, please get ready to get off the train.A. are to arriveB. are arrivingC. are going to arriveD. will arrive考察时态。
现在进行时表将来,表示计划好的事情,并且距离现在是不远的将来。
根据句意:女士们先生们,我们即将到达常州站,下车的乘客请做好准备。
用现在进行时表即将发生的动作。
故选B。
22. ---What is the principal contradiction facing Chinese society nowadays?---The contradiction between _________ development and the people's ever-growing needs for a better lifeA. sustainableB. inadequateC. privilegedD.confidential考察形容词词义辨析。
A为可持续的,B为不充分的,C为赋予特权的,D为机密的。
根据句意:人民日增长的美好生活需要和不平衡不充分的发展之间的矛盾。
不充分,用inadequate故选B。
23. ---When the Americans objected to this,what did the British do?---They did not compromise,but increased control, __________ away many of their rights, and _______ soldiers there.A. taking; stationingB. taking; to stationC. took; stationingD. took; to station考察非谓语。
2017-2018学年江苏省常州市高一(上)期末数学试卷(解析版)
2017-2018学年江苏省常州市高一(上)期末数学试卷一、填空题(本大题共14小题,共56.0分)1.已知集合A={1,2},集合B={a,1-a2},若A∩B={2},则实数a的值为______.2.若<<,则点P(tanθ,sinθ)位于第______象限.3.若点P是线段AB上靠近A的三等分点,则=______.4.已知函数,则f(-2)=______.5.函数的值域为______.6.弧长为3π,圆心角为π的扇形的面积为______.7.若函数f(x)=2x+x-2的零点在区间(k,k+1)(k∈Z)中,则k的值为______.8.已知幂函数y=xα的图象经过点(2,),则的值为______.9.已知向量=(sinθ,cosθ),=(2,-1),若 ∥,则tan2θ=______.10.若,,则sin(α+β)=______.11.已知是定义在(-∞,+∞)上的减函数,则实数a的取值范围是______.12.已知f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(1)=0,则不等式f(ln x)<0的解集为______.13.在△ABC中,已知B=,=2,则的取值范围是______.14.已知当x∈(0,1)时,函数y=(mx-1)2的图象与y=x+m的图象有且只有一个交点,则实数m的取值范围是______.二、解答题(本大题共6小题,共64.0分)15.已知向量=(3,-4),=(4,3).(1)求的值;(2)若(2+)⊥(+k),求实数k的值.16.已知函数∈的定义域为集合A,函数g(x)=2x+1的值域为集合B.(1)当a=3时,求A∪B;(2)若A∩B=∅,求实数a的取值范围.17.已知,且α为第四象限角,求下列各式的值.(1);(2).18.设函数,其中0<ω<3,.(1)求函数f(x)的最小正周期及单调增区间;(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数g(x)的图象,求g(x)在(,)上的值域.19.如图,某校生物兴趣小组计划利用学校角落处一块空地围出一个周长为10米的直角三角形ABC作为试验地,设∠ABC=θ,△ABC的面积为S.(1)求S关于θ的函数关系式;(2)当θ为何值时,试验地的面积最大?求出该面积的最大值.20.已知m∈R,函数.(1)若函数g(x)=f(x)+lg x2有且仅有一个零点,求实数m的值;(2)设m>0,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,求m的取值范围.答案和解析1.【答案】2【解析】解:∵A∩B={2},∴a=2或1-a2=2,解得a=2,a=2时,B={2,-3},满足题意.故答案为:2.由A∩B={2},得方程a=2或1-a2=2,解得a=2,需验证a=2.本题考查集合间的基本运算,本题转化成对应的方程是关键.2.【答案】二【解析】解:∵,∴tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限,故答案为:二.tanθ<0,sinθ>0,故点P(tanθ,sinθ)位于第二象限.本题考查三角函数值的符号,考查象限角的概念及应用,属于基础题.3.【答案】【解析】解:如图,P是线段AB上靠近A的三等分点,则:.故答案为:.可根据条件画出图形,根据条件及图形即可得出.考查线段三等分点的概念,以及向量数乘的几何意义.4.【答案】3【解析】解:∵函数,∴f(-2)=f(0)=f(2)=22-1=3.故答案为:3.推导出f(-2)=f(0)=f(2),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算与求解能力,是基础题.5.【答案】[0,1]【解析】解:因为0≤sin2x≤1,所以1≤sin2x+1≤2,又根据y=log2x为递增函数,得0≤log2(sin2x+1)≤1,故答案为:[0,1].因为0≤sin2x≤1,所以1≤sin2x+1≤2,再根据对数函数为增函数可得f(x)的值域为[0,1].本题考查了对数函数的值域与最值,属中档题.6.【答案】6π【解析】解:设扇形的半径是r,根据题意,得:=3π,解,得r=4.则扇形面积是=6π.故答案为:6π.根据扇形面积公式,则必须知道扇形所在圆的半径,设其半径是r,则其弧长是,再根据弧长是3π,列方程求解.此题考查了扇形的面积公式以及弧长公式,求出扇形的半径是解题关键.7.【答案】0【解析】解:函数f(x)=2x+x-2,可得f(x)在R上递增,由f(0)=1+0-2=-1<0,f(1)=2+1-2=1>0,可得f(x)在(0,1)内存在零点,则k=0.故答案为:0.判断f(x)在R上递增,计算f(0),f(1)的符号,由函数零点存在定理即可得到所求值.本题考查函数零点存在定理的运用,考查运算能力和推理能力,属于基础题.8.【答案】【解析】解:幂函数y=xα的图象经过点(2,),∴2α=,∴α=,∴=cos(-)=cos=.故答案为:.根据幂函数y=xα的图象过点(2,),求出α的值,再计算的值.本题考查了幂函数的图象与性质的应用问题,是基础题.9.【答案】【解析】解:∵;∴-sinθ-2cosθ=0;∴tanθ=-2;∴.故答案为:.根据即可得出-sinθ-2cosθ=0,从而得出tanθ=-2,根据二倍角的正切公式即可求出tan2θ的值.考查向量平行时的坐标关系,以及二倍角的正切公式.10.【答案】【解析】解:若,,则4sin2α+9cos2β-12sinαcosβ=①,4cos2α+9sin2β-12cosαsinβ=②,①+②可得4+9-12sin(α+β)=,求得sin(α+β)=,故答案为:.由条件利用同角三角函数的基本关系,两角和差的正弦公式,求得sin(α+β)的值.本题主要考查同角三角函数的基本关系,两角和差的正弦公式的应用,属于中档题.11.【答案】[,)【解析】解:∵f(x)是定义在R上的减函数;∴;解得;∴实数a的取值范围是.故答案为:.分段函数f(x)是R上的减函数,从而得出每段函数都是减函数,并且左段函数的右端点大于右段函数的左端点,即得出,解出a的范围即可.考查减函数的定义,分段函数、一次函数和对数函数的单调性.12.【答案】(,e)【解析】解:根据题意,f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,则f(x)在[0,+∞)上递增,又由f(1)=0,则f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得:<x<e,即不等式的解集为(,e),故答案为:(,e).根据题意,分析可得f(x)在[0,+∞)上递增,结合函数的特殊值分析可得f(lnx)<0⇒f(|lnx|)<f(1)⇒|lnx|<1⇒-1<lnx<1,解可得x的值,即可得答案.本题考查抽象函数的应用,涉及函数的奇偶性与单调性的综合应用,属于基础题.13.【答案】[-,)【解析】解:由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系∵B=,且BC=2,∴C(1,),设A(x,0),则=(-x,0)•(1-x,)=x2-x=,即取值范围是[-,+∞).故答案为:[-,+∞)由=2,可得BC=a=2,以B为原点,以BA所在的直线为x轴,建立直角坐标系,由已知结合三角函数的定义可表示C(1,),然后设A(x,0),代入利用,结合向量数量积的坐标表示及二次函数的性质可求.本题主要考查了平面向量数量积的运算,解题的关键是坐标系的建立.14.【答案】(0,1]∪[3,+∞)【解析】解:根据题意,由于m为正数,y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=x+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx-1)2为减函数,且其值域为[(m-1)2,1],函数y=x+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx-1)2在区间(0,)为减函数,(,1)为增函数,函数y=x+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m-1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故答案为:(0,1]∪[3,+∞).根据题意,由二次函数的性质分析可得:y=(mx-1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.15.【答案】解:(1),;∴;(2),,,;∵⊥;∴;解得k=-2.【解析】(1)可求出,从而可求出的值;(2)可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量坐标的减法和数量积运算,向量垂直的充要条件,根据向量坐标可求向量长度.16.【答案】解:∵ ,∴0<x<a,∴A=(0,a)∵2x>0,∴2x+1>1,∴B=(1,+∞)(1)当a=3时,A=(0,3),A∪B=(0,+∞);(2)A≠∅时,,∴0<a≤1,综上可知:实数a的取值范围为(0,1].【解析】(1)确定出A与B,利用并集定义可求A∪B;(2)根据当A≠∅得a的范围即可.本题考查了集合间的基本运算及应用,集合中的参数问题,考查了函数定义域和值域的求法,难度中档.17.【答案】解:(1)∵,∴cos,∵α为第四象限角,∴sinα=,则tan,∴tan()=;(2)==.【解析】(1)由已知利用诱导公式及同角三角函数基本关系式化简求值;(2)化弦为切求解.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.18.【答案】解:(1)∵函数=sinωx-cosωx-cosωx=sinωx-cosωx=sin(ωx-),其中0<ω<3.∵=sin(-),∴-=kπ,k∈Z,∴ω=2,f(x)=sin(2x-).令2kπ-≤2x-≤2kπ+,求得kπ-≤x≤kπ+,故函数f(x)的增区间为[kπ-,kπ+],k∈Z.(2)将函数f(x)的图象上各点的横坐标变为原来的2倍(纵坐标不变),可得y=sin(x-)的图象;再将得到的图象向左平移个单位,得到函数g(x)=sin(x+-)=sin(x-)的图象,在(,)上,x-∈(-,),故当x-=时,函数g(x)取得最大值为,当x-=-时,函数g(x)=-,故g(x)的值域为(-,].【解析】(1)利用三角恒等变换化简f(x)的解析式,再根据正弦函数的周期性和单调性,得出结论.(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得g(x)在(,)上的值域.本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.19.【答案】解:(1)设BC=L,则AB=L cosθ,AC=L sinθ,∴L+L sinθ+L cosθ=10,则L=,∴S==,θ∈(0,);(2)设sinθ+cosθ=t,则t=∈(1,],sin.∴S=.∵当t∈(1,]时,S为增函数,∴当t=,即时,.答:当时,试验地的面积最大,为平方米.【解析】(1)设BC=L,则AB=Lcosθ,AC=Lsinθ,由周长列式求得L,然后由三角形面积公式可得S关于θ的函数关系式;(2)设sinθ+cosθ=t,则t=∈(1,],sin,把面积转化为含有t的函数式,利用分离常数法求最值.本题考查函数解析式的求解及常用方法,训练了利用换元法求三角函数的最值,是中档题.20.【答案】解:(1)g(x)=lg(m+)+lg x2=lg(mx2+2x),由g(x)=0,可得mx2+2x=1有且只有一个解,当m=0时,x=成立;当m≠0时,△=4+4m=0,即m=-1,x=1成立.综上可得m=0或-1;(2)当x>0,设u=m+,可得函数u在x>0递减,由m>0,可得u>0,y=lg u递增,即f(x)在(0,+∞)递减,任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[,1]恒成立,可得f(t)-f(t+2)=lg(m+)-lg(m+)≤1对任意t∈[,1]恒成立,即m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,由m>0可得y=9mt2+18(m+1)t-4在t∈[,1]递增,可得当t=时,y的最小值为9m•+18(m+1)•-4≥0,解得m≥.【解析】(1)由对数的运算性质和方程解法,讨论m是否为0,结合二次函数的判别式即可得到所求值;(2)由题意可得m>0,x>0,f(x)递减,由题意可得m+≤10(m+)对任意t∈[,1]恒成立,整理可得9mt2+18(m+1)t-4≥0对任意t∈[,1]恒成立,运用二次函数的单调性,解不等式即可得到所求范围.本题考查函数的零点个数问题,注意运用分类讨论思想和方程思想,考查不等式恒成立问题解法,注意运用复合函数的单调性,以及转化思想,考查化简运算能力和推理能力,属于中档题.。
江苏省常州市武进区2017-2018学年高三上学期期中考试数学(文)试题 Word版含答案
2017-2018学年 高三文科数学试题一、填空题:本大题共14个小题,每小题5分,共70分. 1.已知集合{1,2,5,6}A =,{2,3,4}B =,则AB = .2.设a R ∈,若复数(1)()i a i ++的虚部为零,则a = .3.要得到函数()sin(2)3f x x π=-的图象,须将函数sin 2y x =的图象向右平移 个单位.4.“直线l 垂直于平面α内的两条直线”是“直线l 垂直于平面α”的 条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)5.已知函数1()21xf x =+,则221(log 3)(log )3f f += . 6.已知向量(1,2)a =,(2,0)b =,若向量a b λ+与向量(1,2)c =-共线,则实数λ= .7.设n S 是首项不为零的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a = . 8.如图,在平行四边形ABCD 中,4AB =,3AD =,3DAB π∠=,点,E F 分别在,BC DC边上,且12BE EC =,DF FC =,则AE EF ∙= .9.已知锐角θ满足4sin()265θπ+=,则5cos()6πθ+的值为 . 10.已知正数,x y 满足3x y +=,则411x y ++的最小值为 . 11.设数列{}n a 的前n 项和为n S ,若27S =,121n n a S +=+,*n N ∈,则5S = . 12.长方体1111ABCD A BC D -中,4AB BC ==,13AA =,则四面体11A BC D 的体积为 .第Ⅱ卷(共90分)13.已知ABC ∆的内角,A B 满足sin cos()sin BA B A=+,则tan B 的最大值为 . 14.已知函数3()3f x x x =-在区间[1,1](0)a a a -+≥上的最大值与最小值之差为4,则实数a 的值为 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15. (本小题满分14分)已知函数2()2sin cos f x a x x x ωωω=+(0,0)a ω>>的最大值为2,且最小正周期为π.(1)求函数()f x 的解析式及其对称轴方程; (2)求函数()f x 的单调递增区间. 16. (本小题满分12分)如图,在直三棱柱111ABC A B C -中,13AB AC AA ===,,D E 分别是,BC AB 的中点,F 是1C C 上一点,且12CF C F =. (1)求证:1//C E 平面ADF ;(2)若2BC =,求证:1B F ⊥平面ADF .17. (本小题满分14分)在ABC ∆中,5c =,b =a A =.(1)求a 的值;(2)求证:2B A ∠=∠. 18. (本小题满分12分)某药厂在动物体内进行新药实验,已知每投放剂量为(0)m m >的药剂后,经过x 小时该药剂在动物体内释放的浓度y (毫克/升)满足函数()y mf x =,其中22128,042()log 12,4162x x x f x x x x ⎧-++<≤⎪⎪=⎨⎪--+<≤⎪⎩,当药剂在动物体内中释放的浓度不低于12(毫克/升)时,称为该药剂达到有效.(1)为了使在8小时之内(从投放药剂算起包括8小时)始终有效,求应该投放的药剂m 的最小值;(2)若2m =,k 为整数,若该药在k 小时之内始终有效,求k 的最大值. 19. (本小题满分16分)已知a R ∈,函数()(1)x f x e a x =-+的图象与x 轴相切. (1)求()f x 的单调区间;(2)若1x >时,2()f x mx >,求实数m 的取值范围. 20. (本小题满分12分)已知数列{}n a 中,1(1)a t t =≠-,且12,1,2n n n a n n a a n n ++⎧⎪=⎨-⎪⎩为奇数为偶数. (1)证明:数列2{1}n a +是等比数列,并求2n a ; (2)若数列{}n a 的前2n 项和为2n S . ①当1t =时,求2n S ;②若2{}n S 单调递增,求t 的取值范围.试卷答案1.{}22.1- 3.6π4.必要不充分 5.1 6.1- 7.1或38. 3- 9.2425-10.94 11.202 12.16 13.414.1或0 15.(本小题满分14分)解:(1)()sin 2f x a x x ωω=, …………………………………2分 由题意()f x 的周期为π,所以22ππω=,得1ω=,…………………………………4分()f x 最大值为22=,又0a >,∴1a =,∴()2sin 23f x x π⎛⎫=+ ⎪⎝⎭…………………………………7分令232x k πππ+=+,解得()f x 的对称轴为122k x ππ=+(k ∈Z ).………………10分 (2)由()2sin 23f x x π⎛⎫=+⎪⎝⎭,(仅作出函数()2sin 23f x x π⎛⎫=+⎪⎝⎭图像得增区间只得2分) 16.(本小题满分14分)证明:(1)(证法一)连接CE 与AD 交于点H ,连接FH . 因为D 是BC 的中点,E 是AB 中点, 所以H 是ΔABC 的重心, ………2分 所以2CH EH =, ………3分 又因为12CF C F =,所以1//C E FH , ……5分 因为FH ⊂平面ADF ,1C E ⊄平面ADF , 所以1C E //平面ADF , ………………7分(证法二)取BD 中点H ,连接1,EH C H .因为H 是BD 的中点,E 是AB 中点,所以//EH AD ,因为AD ⊂平面ADF ,EH ⊄平面ADF ,所以EH //平面ADF , …………2分 又因为12CF C F =,2CD DH =所以1//C H DF ,同理1C H //平面ADF , ……5分1EHC H H =所以平面1//C EH 平面ADF , ………………6分又1C E ⊂平面1C EH ,所以1C E //平面ADF , ………………7分 (2)因为AB AC =且D 是BC 中点,AD BC ∴⊥, 直三棱柱111ABC A B C -,∴1B B ⊥平面ABC ,∴1B B ⊥AD 又AD BC ⊥,B BBC B =,AD ∴⊥平面11B BCC ,1AD B F ∴⊥, ………………10分13CC =,12CF C F =,12,1CF C F ∴==,在11B C F ∆与FCD ∆中,112B C FC ∴==,11C F CD ==,11B C F FCD ∠=∠,11B C F ∴∆≌FCD ∆, ………………11分 11C B F CFD ∴∠=∠,1190C FB CFD ∴∠+∠=︒,1B F FD ∴⊥, ………………13分(由11B F DF B D ==,根据勾股定理得1B F FD ⊥也可)FDAD D =,∴1B F ⊥平面ADF . ……………14分17.(本小题满分14分)解:(1)因为 cos 2a A =,所以22222b c a a bc+-=. ……………3分因为5c =,b = 所以23404930a a +-⨯=. 解得:3a =,或493a =-(舍). ………………6分(2)(解法一)由(1)可得:cos 33A ==. ………………8分 所以21cos 22cos 13A A =-=. ………………10分因为3a =,5c =,b =,所以2221cos 23a cb B ac +-==. 所以cos 2cos A B =. ………………12分 因为c b a >>, 所以(0,)2A π∈.因为(0,)B ∈π,所以2B A ∠=∠. ………………14分(解法二)因为(0,)A ∈π,所以sin A ==………………8分=所以sin 3B =. ………………10分所以sin 22sin 333A B =⨯==. ………………12分因为c b a >>,sin 2A =<所以(0,)4A π∈,(0,)2B π∈.所以2B A ∠=∠. ………………14分 18.(本小题满分14分)解:(1)由22(2)10,04,2()log 12,416,2m x m x y mf x mx m x m x ⎧--+<≤⎪⎪==⎨⎪--+<≤⎪⎩,可知在区间(0,4]上有,即810m y m ≤≤, ………………2分 又()f x 在区间(4,16]上单调递减,()85mf m =, ………………4分为使12y ≥恒成立,只要812512m m ≥⎧⎨≥⎩, ………………6分即125m ≥,可得125m ≥. 即:为了使在8小时之内达到有效,投放的药剂剂量m 的最小值为125.………8分 (2)2m =时,设()22416,04,2log 24,416x x x y g x x x x ⎧-++<≤==⎨--+<≤⎩,当04x <≤时,21641620x x ≤-++≤,显然符合题意 ………………10分又()f x 在区间(4,16]上单调递减,由22(6)182log 618log 3612g =-=->, ………………12分22(7)172log 717log 4912g =-=-<, ………………14分 可得 6k ≤,即k 的最大值为6. …………16分19.(本小题满分16分)解:(1)()e x f x a '=-,依题意,设切点为0(,0)x ,………………2分则00()0,()0,f x f x =⎧⎨'=⎩即000e (1)0,e 0,xx a x a ⎧-+=⎪⎨-=⎪⎩解得()00,01,x a a 不合=⎧=⎨=⎩………………4分所以()e 1x f x '=-,所以,当0x <时,()0f x '<;当0x >时,()0f x '>.所以,()f x 的单调递减区间为(,0)-∞,单调递增区间为()0,+∞.……………6分(猜出1a =并求出单调递减区间为(,0)-∞,单调递增区间为()0,+∞仅得3分) (2)法一、令2()()g x f x mx =-, 则()e 21x g x mx '=--,1x >,令()()h x g x '=,则()e 2x h x m '=-,1x >,………………8分 (ⅰ)当2em …时, 因为当1x >时,e x e >,所以()0h x '>, 所以()h x 即()g x '在()1,+∞上单调递增. 又因为(1)21g e m '=--, 所以当21m e ≤-即12e m -≤时,(1)0g '≥,()0g x '∴>, 从而()g x 在()1,+∞上单调递增,而(1)2g e m =--,()10g ∴≥,2m e ∴≤-,122e e ->-,2m e ∴≤-成立.………………10分 当122e em -<≤时,必存在()01,x ∈+∞使得()00h x =即()'00g x =, 当()01,x x ∈时()'0g x <,当()0,x x ∈+∞时()'0g x >, 故()g x 在()01,x 单调递减,在()0,x +∞单调递增,13(1)22022e e g e m e --=--<--=<, ∴当()01,x x ∈时()0g x <,不合题意.………………12分(ⅱ)若2em >,令()0h x '=,解得ln(2)1x m =>, (1)0h '<,()h x '在()1,+∞单调递增,必存在()11,x ∈+∞使得()10h x =即()'10g x =, 当()11,x x ∈时()'0h x <,当()1,x x ∈+∞时()'0h x >,故()h x 在()11,x 单调递减,在()1,x +∞单调递增,………………14分(1)210h e m =--<,1()0h x ∴<,即()0g x '<,()0g x ∴<在()11,x 恒成立, ()g x ∴在()11,x 单调递减,4(1)22022e e g e m e -=--<--=<,()10g x ∴<,不合题意. 综上,实数m 的取值范围是(],2e -∞-.………………16分(2)法二、由题意得21xe x mx -->,即21x e x m x -->在()1,+?恒成立,………8分设21(),1x e x h x x x--=>,则()'322(),1x x e x h x x x -++=>,……………9分 设()()22,1x s x x e x x =-++>, ()'()11,1x s x x e x \=-+>,'()0s x \>在()1,+?恒成立,()s x \在()1,+?单调递增, ………………11分 (1)30s e =->,()0s x \>即'()0h x >在()1,+?恒成立, ………………13分故()h x 在()1,+?单调递增, (1)2h e =-,2m e\?, ……………15分即实数m 的取值范围是(],2e -∞-. …………16分20. 解:(1)证明:设21n n b a =+,则121b a =+,212121a a t =+=+,()1210b t ∴=+≠, ……………1分()()()()212212122221221122112121111n n n n n n n n n n a a n n a n a b b a a a a ++++⎡-++⎤+++++⎣⎦=====++++,(得()22112(1)n n a a ++=+也可)………………3分∴数列{}n b 是公比为2的等比数列,故数列2{1}n a +是等比数列, ………………4分()()111221212n n n n b b t t --∴=⋅=+⋅=+⋅,()2121n n a t ∴=+⋅-, ………………6分(2)由(1)得,()221121221nn n a t a n -=+⋅-=+-,()12112n n a t n --∴=+⋅-, ……………7分 ()12123121n n n a a t n --∴+=+⋅--, ………………8分 ()()()21234212n n n S a a a a a a -∴=++++++,()()()()()()13311221231212n n n n t n n t -+=+⋅+++-+++-=+⋅--, (10)分①当1t =时,()()()123362132622n n n n n n n S +++∴=--=⨯--;………………11分② 2{}n S 单调递增,(解法一)∴()122231210n n n S S t n ---=+⋅-->对2n ≥且*n N ∈恒成立, …………12分即()11312n n t -++>,设11,22nn n P n -+=≥, 则11210222n n n n n n n nP P +-++--=-=<, {}n P ∴在2n ≥且*n N ∈单调递减, ………………14分232P =,()3312t ∴+>,即12t >-,故t 的取值范围为1,2⎛⎫-+∞ ⎪⎝⎭. ………………16分(解法二)∴()22231220nn n S S t n +-=+⋅-->对*n N ∈恒成立, …………12分即()2312n n t ++>,设*2,2n nn P n N +=∈, 则11132(1)0222n n n n n n n n P P +++++-+-=-=<, {}n P ∴在*n N ∈单调递减, ………………14分132P =,()3312t ∴+>,即12t >-,故t 的取值范围为1,2⎛⎫-+∞ ⎪⎝⎭. ………………16分。
2017-2018学年高中数学必修三(人教B版)练习:1.1算法与程序框图1.1.2、1.1.3 第1课时 Word版含解析
第一章 1.1 1.1.2 1.1.3 第1课时A 级 基础巩固一、选择题1.任何一种算法都离不开的基本结构为导学号 95064050( D ) A .逻辑结构 B .条件结构 C .循环结构D .顺序结构[解析] 任何一种算法都离不开顺序结构.2.如图所示程序框图中,其中不含有的程序框是导学号 95064051( C )A .终端框B .输入、输出框C .判断框D .处理框[解析] 含有终端框,输入、输出框和处理框,不含有判断框. 3.如图所示的程序框图的运行结果是导学号 95064052( B )A .2B .2.5C .3.5D .4[解析] ∵a =2,b =4,∴S =a b +b a =12+2=2.5.二、填空题4.在如图所示的程序框图中,若输出的z 的值等于3,那么输入的x 的值为 19.导学号 95064053[解析] 当输出的z 的值为3时,z =y =3,∴y =9,由1x =9,得x =19,故输入的x 的值为19.5.如图是求一个数的百分之几的程序框图,则(1)处应填__n =n ×m __.导学号 95064054[解析] 因为程序框图的作用是求一个数的百分之几,故(1)处应填输入的数n 与百分比m 的乘积所得数,再让它赋值给n .三、解答题6.已知球的半径为1,求其表面积和体积,画出其算法的程序框图.导学号 95064055 [解析] 如图所示:7.已知x =10,y =2,画出计算w =5x +8y 值的程序框图.导学号 95064056 [解析] 算法如下:S1令x=10,y=2.S2计算w=5x+8y.S3输出w的值.其程序框图如图所示:B级素养提升一、选择题1.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为导学号95064057(D)A.1 B.3C.1或3 D.0或3[解析]本题实质是解方程a=-a2+4a,解得a=0或a=3.2.阅读如图所示的程序框图,若输入的a、b、c的值分别是21、32、75,则输出的a、b、c分别是导学号95064058(A)A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21[解析]输入21,32,75后,该程序框图的执行过程是:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.二、填空题3.如图所示的程序框图,输出的结果是S=7,则输入的A值为__3__.导学号95064059[解析]该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.4.如下图,程序框图的功能是__求五个数的和以及这五个数的平均数__. 导学号95064060[解析]该程序框图表示的算法是首先输入5个数,然后计算这5个数的和,再求这5个数的算术平均数,最后输出它们的和与平均数.三、解答题5.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.导学号95064061[解析]算法如下:S1输入R,h,S2计算V=πR2h.S3输出V.程序框图如图所示:6.已知两个单元分别存放了变量x 和y ,试变换两个变量的值,并输出x 和y ,请写出算法并画出程序框图.导学号 95064062[解析] 算法如下: S1 输入x ,y . S2 把x 的值赋给p . S3 把y 的值域给x . S4 把p 的值赋给y . S5 输出x ,y . 程序框图如下:C 级 能力拔高1.已知一个直角三角形的两条直角边长为a 、b ,斜边长为c ,写出它的外接圆和内切圆面积的算法,并画出程序框图.导学号 95064063[解析] 算法步骤如下: S1 输入a ,b . S2 计算c =a 2+b 2.S3 计算r =12(a +b +c ),R =c2.S4 计算内切圆面积S 1=πr 2,外接圆面积S 2=πR 2. S5 输出S 1、S 2,结束. 程序框图如图.2.已知函数y=2x+3,若给出函数图象上任一点的横坐标x(由键盘输入),设计一个算法,求该点到坐标原点的距离,并画出程序框图.导学号95064064[解析]算法如下:S1输入横坐标的值;S2计算y=2x+3;S3计算d=x2+y2;S4输出d.程序框图如图:。
江苏省常州市高级中学2017-2018学年高三上学期阶段调研数学试卷(文科)(二) Word版含解析
2017-2018学年江苏省常州市高级中学高三(上)阶段调研数学试卷(文科)(二)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上)1.函数y=的定义域是.2.设i是虚数单位,若复数z满足z(1+i)=(1﹣i),则复数z的模|z|=.3.“a=3”是“直线ax+2y+3a=0和直线3x+(a﹣1)y+7=0平行”的条件.(选“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空)4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为.5.阅读程序框图,运行相应的程序,则输出的值为.6.若等差数列{a n}的公差为2,且a1,a2,a4成等比数列,则a1=.7.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球中有黄球的概率为.8.圆锥的侧面展开图是圆心角为π,面积为2π的扇形,则圆锥的体积是.9.已知sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),则θ=.10.已知双曲线﹣=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为.11.已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF,若•=1,则λ的值为.12.如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,则mn的最大值为.13.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是.14.已知圆O:x2+y2=4,点M(1,0)圆内定点,过M作两条互相垂直的直线与圆O交于AB、CD,则弦长AC的取值范围.二、解答题(本大题共6小题,共计90分)15.在△ABC中,A=,AB=6,AC=3.(1)求sin(B+)的值;(2)若点D在BC边上,AD=BD,求AD的长.16.在四棱锥P﹣ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2,∠CBA=30°.(1)求证:AC⊥PB;(2)若PC=2,点M是棱PB上的点,且CM∥平面PAD,求BM的长.17.某油库的设计容量是30万吨,年初储量为10万吨,从年初起计划每月购进石油m万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前x个月的需求量y(万吨)与x的函数关系为y=(p>0,1≤x≤16,x∈N*),并且前4个月,区域外的需求量为20万吨.(1)试写出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定m的取值范围.19.平面直角坐标系xOy中,已知椭圆的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)过椭圆C上一动点P(x0,y0)(y0≠0)的直线l: +=1,过F2与x轴垂直的直线记为l1,右准线记为l2;①设直线l 与直线l 1相交于点M ,直线l 与直线l 2相交于点N ,证明恒为定值,并求此定值.②若连接F 1P 并延长与直线l 2相交于点Q ,椭圆C 的右顶点A ,设直线PA 的斜率为k 1,直线QA 的斜率为k 2,求k 1•k 2的取值范围.20.设数列{a n }的前n 项和S n >0,a 1=1,a 2=3,且当n ≥2时,a n a n +1=(a n +1﹣a n )S n . (1)求证:数列{S n }是等比数列; (2)求数列{a n }的通项公式;(3)令b n =,记数列{b n }的前n 项和为T n .设λ是整数,问是否存在正整数n ,使等式T n +成立?若存在,求出n 和相应的λ值;若不存在,说明理由.21.已知a 为实常数,函数f (x )=lnx ﹣ax +1.(Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若函数f (x )有两个不同的零点x 1,x 2(x 1<x 2). (ⅰ)求实数a 的取值范围;(ⅱ)求证:<x 1<1,且x 1+x 2>2.(注:e 为自然对数的底数)2015-2016学年江苏省常州市高级中学高三(上)阶段调研数学试卷(文科)(二)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上)1.函数y=的定义域是(﹣1,+∞).【考点】函数的定义域及其求法.【分析】根据二次根式的性质以及父母不为0,得到关于x的不等式,解出即可.【解答】解:由题意得:x+1>0,解得:x>﹣1,故函数的定义域是(﹣1,+∞),故答案为:(﹣1,+∞).2.设i是虚数单位,若复数z满足z(1+i)=(1﹣i),则复数z的模|z|=1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:z(1+i)=(1﹣i),∴z(1+i)(1﹣i)=(1﹣i)(1﹣i),∴2z=﹣2i,z=﹣i.则复数z的模|z|=1.故答案为:1.3.“a=3”是“直线ax+2y+3a=0和直线3x+(a﹣1)y+7=0平行”的充分不必要条件.(选“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空)【考点】必要条件、充分条件与充要条件的判断.【分析】由直线ax+2y+3a=0和直线3x+(a﹣1)y+7=0平行,可得,解出即可判断出结论.【解答】解:由直线ax+2y+3a=0和直线3x+(a﹣1)y+7=0平行,可得,解得a=3或﹣2.∴“a=3”是“直线ax+2y+3a=0和直线3x+(a﹣1)y+7=0平行”的充分不必要条件.故答案为:充分不必要.4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为16.【考点】极差、方差与标准差.【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为=16,故答案为16.5.阅读程序框图,运行相应的程序,则输出的值为4.【考点】循环结构.【分析】利用循环体,计算每执行一次循环后a的值,即可得出结论.【解答】解:第一次循环,i=1,a=2;第二次循环,i=2,a=2×2+1=5;第三次循环,i=3,a=3×5+1=16;第四次循环,i=4,a=4×16+1=65>50,退出循环,此时输出的值为4故答案为4:6.若等差数列{a n}的公差为2,且a1,a2,a4成等比数列,则a1=2.【考点】等比数列的通项公式;等差数列的通项公式.【分析】把a2,a4用a1和常数表示,再由a1,a2,a4成等比数列列式求得a1.【解答】解:∵等差数列{a n}的公差为2,∴a2=a1+2,a4=a1+6,又a1,a2,a4成等比数列,∴,解得:a1=2.故答案为:2.7.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球中有黄球的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再求出这2只球中有黄球包含的基本事件个数,由此能求出这2只球中有黄球的概率.【解答】解:袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,基本事件总数n==6,这2只球中有黄球包含的基本事件个数m==5,∴这2只球中有黄球的概率为p==.故答案为:.8.圆锥的侧面展开图是圆心角为π,面积为2π的扇形,则圆锥的体积是π.【考点】旋转体(圆柱、圆锥、圆台).【分析】设圆锥的底面半径为r,母线长为l,利用圆锥的侧面展开图是圆心角为π,面积为2π的扇形,列出关系式,即可求出l,r,然后求出圆锥的高,即可求解圆锥的体积.【解答】解:设圆锥的底面半径为r,母线长为l,由题意知=π,且•2πr•l=2π,解得l=2,r=,所以圆锥高h===1,则体积V=πr2h=π.故答案为:π.9.已知sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),则θ=.【考点】两角和与差的余弦函数;三角函数中的恒等变换应用.【分析】由条件利用两角和差的余弦公式,诱导公式可得cos(2x﹣)=cos(2x﹣θ),由此求得θ的值.【解答】解:∵sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),∴sin(2x﹣)=cos(2x﹣θ),即cos(2x﹣)=cos(2x﹣θ),∴θ=,故答案为:.10.已知双曲线﹣=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为.【考点】双曲线的简单性质.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a 2+b 2=c 2=7,∴a=2,b=,∴双曲线的方程为.故答案为:.11.已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BC=3BE ,DC=λDF ,若•=1,则λ的值为 2 . 【考点】平面向量数量积的运算.【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【解答】解:∵BC=3BE ,DC=λDF ,∴=, =,=+=+=+,=+=+=+,∵菱形ABCD 的边长为2,∠BAD=120°,∴||=||=2, •=2×2×cos120°=﹣2,∵•=1,∴(+)•(+)=++(1+)•=1,即×4+×4﹣2(1+)=1,整理得,解得λ=2, 故答案为:2.12.如果函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[]上单调递减,则mn 的最大值为 18 . 【考点】二次函数的性质.【分析】函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[,2]上单调递减,则f ′(x )≤0,即(m ﹣2)x +n ﹣8≤0在[,2]上恒成立.而y=(m ﹣2)x +n ﹣8是一次函数,在[,2]上的图象是一条线段.故只须在两个端点处f ′()≤0,f ′(2)≤0即可.结合基本不等式求出mn 的最大值.【解答】解:∵函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[,2]上单调递减,∴f′(x)≤0,即(m﹣2)x+n﹣8≤0在[,2]上恒成立.而y=(m﹣2)x+n﹣8是一次函数,在[,2]上的图象是一条线段.故只须在两个端点处f′()≤0,f′(2)≤0即可.即,由②得m≤(12﹣n),∴mn≤n(12﹣n)≤=18,当且仅当m=3,n=6时取得最大值,经检验m=3,n=6满足①和②.∴mn的最大值为18.故答案为:18.13.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是[,).【考点】利用导数研究曲线上某点切线方程;函数的零点与方程根的关系;分段函数的应用.【分析】由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,又∵a表示直线y=ax的斜率,∴y′=,设切点为(x0,y0),k=,∴切线方程为y﹣y0=(x﹣x0),而切线过原点,∴y0=1,x0=e,k=,∴直线l1的斜率为,又∵直线l2与y=x+1平行,∴直线l2的斜率为,∴实数a的取值范围是[,)故答案为:[,).14.已知圆O:x2+y2=4,点M(1,0)圆内定点,过M作两条互相垂直的直线与圆O交于AB、CD,则弦长AC的取值范围[﹣1, +1] .【考点】直线与圆的位置关系.【分析】根据题意,求出AC的中点的轨迹方程,求出AC的最大值与最小值,即可得出它的取值范围.【解答】解:设AC的中点为P(x,y),则OP⊥AC,|PA|=|PM|∴=,∴=,∴|PM|max=,∴|PM|min=,∴|AC|max=+1,|AC|min=﹣1,故答案为:[﹣1, +1].二、解答题(本大题共6小题,共计90分)15.在△ABC中,A=,AB=6,AC=3.(1)求sin(B+)的值;(2)若点D在BC边上,AD=BD,求AD的长.【考点】解三角形.【分析】(1)利用余弦定理及其推论,求出BC,cosB,再由同角三角函数基本关系公式,求出sinB,结合两角和的正弦公式,可得答案;(2)过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD 的长.【解答】解:(1)∵在△ABC中,A=,AB=6,AC=3.由余弦定理得:BC===3,故cosB===,则sinB==,故sin(B+)=(+)=;(2)过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===16.在四棱锥P﹣ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2,∠CBA=30°.(1)求证:AC⊥PB;(2)若PC=2,点M是棱PB上的点,且CM∥平面PAD,求BM的长.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析】(1)推导出PC⊥AC,AC=2,从而AC⊥BC,进而AC⊥平面PBC,由此能证明AC⊥PB.(2)以C为原点,CA为x轴,CB为y轴,CP为z轴,建立空间直角坐标系,利用向量法能求出BM的值.【解答】证明:(1)∵PC⊥平面ABCD,∴PC⊥AC,又∠CBA=30°,BC=2,AB=4,∴AC==,∴AC2+BC2=4+12=16=AB2,∴∠ACB=90°,故AC⊥BC.又∵PC、BC是平面PBC内的两条相交直线,∴AC⊥平面PBC,∴AC⊥PB.7分解:(2)以C为原点,CA为x轴,CB为y轴,CP为z轴,建立空间直角坐标系,B(0,2,0),A(2,0,0),P(0,0,2),D(1,﹣,0),设M(0,b,c),,(0≤λ≤1),即(0,b,c﹣2)=(0,2,﹣2λ),∴b=2,c=2﹣2λ.M(0,2,2﹣2λ),∴=(0,2λ,2﹣2λ),设平面PAD的法向量=(x,y,z),则,取x=1,得=(1,﹣,1)∵CM∥平面PAD,∴•=﹣2λ+2﹣2λ=0,解得λ=,∴M(0,,1),∴BM==2.14分17.某油库的设计容量是30万吨,年初储量为10万吨,从年初起计划每月购进石油m万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前x个月的需求量y(万吨)与x的函数关系为y=(p>0,1≤x≤16,x∈N*),并且前4个月,区域外的需求量为20万吨.(1)试写出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定m的取值范围.【考点】根据实际问题选择函数类型.【分析】(1)利用前4个月,区域外的需求量为20万吨,求出p,可得y=10(1≤x≤16,x∈N*),即可求出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;(2)由题意0≤mx﹣x﹣10+10≤30(1≤x≤16,x∈N*),分离参数求最值,即可得出结论.【解答】解:(1)由题意,20=,∴2p=100,∴y=10(1≤x≤16,x∈N*),∴油库内储油量M=mx﹣x﹣10+10(1≤x≤16,x∈N*);(2)∴0≤M≤30,∴0≤mx﹣x﹣10+10≤30(1≤x≤16,x∈N*),∴(1≤x≤16,x∈N*)恒成立.;设=t,则≤t≤1,.由≤(x=4时取等号),可得m≥,由20t2+10t+1=≥(x﹣16时取等号),可得m≤,∴≤m≤.19.平面直角坐标系xOy中,已知椭圆的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)过椭圆C上一动点P(x0,y0)(y0≠0)的直线l: +=1,过F2与x轴垂直的直线记为l1,右准线记为l2;①设直线l与直线l1相交于点M,直线l与直线l2相交于点N,证明恒为定值,并求此定值.②若连接F1P并延长与直线l2相交于点Q,椭圆C的右顶点A,设直线PA的斜率为k1,直线QA的斜率为k2,求k1•k2的取值范围.【考点】椭圆的简单性质.【分析】(1)以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点E在椭圆C上.可得|EF1|+|EF2|=3+1=2a,解得a=2.又e==,a2=b2+c2,解得c,b2,即可得到椭圆C的方程;(2)①直线l1:x=1,直线l2:x=4.把x=1代入直线1,解得y,可得M坐标.同理可得N坐标.又=,利用两点之间的距离公式可得=为定值.②由由,解得=.直线l1的方程为:x=1;直线l2的方程为:x=4.直线PF1的方程为:y﹣0=(x+1),由于﹣1<x0<2,可得∈(,+∞),即可得出k1k2,利用函数的性质即可得出.【解答】解:(1)由题意知2a=4,则a=2,由e==,求得c=1,b2=a2﹣c2=3∴椭圆C的标准方程为.;(2)①证明:直线l1:x=1,直线l2:x=4.把x=1代入直线1: +=1,解得y=,∴M,把x=4代入直线1: +=1方程,解得y=,∴N,∴②由,解得=3(1﹣)(﹣2≤x0<2),x0≠﹣1.直线l1的方程为:x=1;直线l2的方程为:x=4.直线PF1的方程为:y﹣0=(x+1),令x=4,可得y Q═.点Q,∵,k2=,∴k1•k2==.∵点P 在椭圆C 上,∴,∴k 1•k 2==.∵﹣1<x 0<2,∴∈(,+∞),∴k 1•k 2<﹣.∴k 1•k 2的取值范围是k 1k 2∈(﹣∞,﹣).20.设数列{a n }的前n 项和S n >0,a 1=1,a 2=3,且当n ≥2时,a n a n +1=(a n +1﹣a n )S n . (1)求证:数列{S n }是等比数列; (2)求数列{a n }的通项公式;(3)令b n =,记数列{b n }的前n 项和为T n .设λ是整数,问是否存在正整数n ,使等式T n +成立?若存在,求出n 和相应的λ值;若不存在,说明理由.【考点】数列与函数的综合;数列的求和;数列递推式.【分析】(1)通过当n ≥2时,a n =S n ﹣S n ﹣1,a n +1=S n +1﹣S n ,代入a n a n +1=(a n +1﹣a n )S n ,通过S 1=1,S 2=4,S 3=16,满足,而S n 恒为正值,即可证明数列{S n }是等比数列;(2)利用(1)求出S n ,然后求数列{a n }的通项公式;(3)化简b n =,利用裂项法求出数列{b n }的前n 项和为T n .通过n=1,推出λ不是整数,不符合题意,n ≥2,是整数,从而λ=4是整数符合题意.然后得到结论 【解答】解:(1)当n ≥2时,a n =S n ﹣S n ﹣1,a n +1=S n +1﹣S n ,代入a n a n +1=(a n +1﹣a n )S n 并化简得(n ≥3),…a n a n +1=(a n +1﹣a n )S n ,又由a 1=1,a 2=3得S 2=4,代入a 2a 3=(a 3﹣a 2)S 2可解得a 3=12,∴S 1=1,S 2=4,S 3=16,也满足,而S n 恒为正值,∴数列{S n }是等比数列.…(2)由(1)知.当n ≥2时,,又a1=S1=1,∴…(3)当n≥2时,,此时=,又∴.…故,当n≥2时,=,…若n=1,则等式为,不是整数,不符合题意;…若n≥2,则等式为,∵λ是整数,∴4n﹣1+1必是5的因数,∵n≥2时4n﹣1+1≥5∴当且仅当n=2时,是整数,从而λ=4是整数符合题意.综上可知,当λ=4时,存在正整数n=2,使等式成立,当λ≠4,λ∈Z时,不存在正整数n使等式成立.…21.已知a为实常数,函数f(x)=lnx﹣ax+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)有两个不同的零点x1,x2(x1<x2).(ⅰ)求实数a的取值范围;(ⅱ)求证:<x1<1,且x1+x2>2.(注:e为自然对数的底数)【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)写出函数f(x)的定义域,求出f'(x),分a≤0,a>0两种情况讨论,通过解不等式f'(x)>0,f'(x)<0可得单调区间;(Ⅱ)(ⅰ)由(Ⅰ)可知,当a≤0时f(x)单调,不存在两个零点;当a>0时,可求得f(x)有唯一极大值,令其大于零,可得a的范围,再判断极大值点左右两侧附近的函数值小于零即可;(ⅱ)由(i)知可判断f(x)的单调性,根据零点存在定理可判断<1;分析:由0,得,故只要证明:f()>0就可以得出结论.下面给出证明:构造函数:g(x)=f(﹣x)﹣f(x)=ln(﹣x)﹣a(﹣x)﹣(lnx﹣ax)(0<x≤),利用导数可判断g(x)在区间(0,]上为减函数,从而可得g(x1)>g()=0,再由f(x1)=0可得结论;【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),其导数f'(x)=﹣a.①当a≤0时,f'(x)>0,函数在(0,+∞)上是增函数;②当a>0时,在区间(0,)上,f'(x)>0;在区间(,+∞)上,f'(x)<0.∴f(x)在(0,)是增函数,在(,+∞)是减函数.(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,函数f(x)在(0,+∞)上是增函数,不可能有两个零点,当a>0时,f(x)在(0,)上是增函数,在(,+∞)上是减函数,此时f()为函数f(x)的最大值,当f()≤0时,f(x)最多有一个零点,∴f()=ln>0,解得0<a<1,此时,<,且f()=﹣1﹣+1=﹣<0,f()=2﹣2lna﹣+1=3﹣2lna﹣(0<a<1),令F(a)=3﹣2lna﹣,则F'(x)=﹣=>0,∴F(a)在(0,1)上单调递增,∴F(a)<F(1)=3﹣e2<0,即f()<0,∴a的取值范围是(0,1).(ii)由(Ⅱ)(i)可知函数f(x)在(0,)是增函数,在(,+∞)是减函数.f(x)=lnx﹣ax+1,∴f()=﹣1﹣+1=﹣<0,f(1)=1﹣a>0.故<1;第二部分:分析:∵0,∴.只要证明:f()>0就可以得出结论.下面给出证明:构造函数:g(x)=f(﹣x)﹣f(x)=ln(﹣x)﹣a(﹣x)﹣(lnx﹣ax)(0<x≤),则g'(x)=+2a=,函数g(x)在区间(0,]上为减函数.0<x1,则g(x1)>g()=0,又f(x1)=0,于是f()=ln()﹣a()+1﹣f(x1)=g(x1)>0.又f(x2)=0,由(1)可知,即.2016年12月7日。
【精选高中试题】江苏省常州市高三上学期期末考试数学(理)试题Word版含答案
常州市教育学会学业水平监测高三数学Ⅰ试题参考公式:圆锥的体积公式:1=3V Sh 圆锥,其中S 是圆锥的底面积,h 是高. 样本数据1x ,2x ,⋅⋅⋅,n x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、选择题:本大题共14个小题,每小题5分,共70分. 请把答案填写在答题卡相应位......置上... 1.若集合{2,0,1}A =-,2{1}B x x =>,则集合AB = ▲ .2命题“[0,1]x ∃∈,210x -≥”是 ▲ 命题(选填“真”或“假”). 3.若复数z 满足221z i z ⋅=+(其中i 为虚数单位),则z = ▲ .4.若一组样本数据2015,2017,x ,2018,2016的平均数为2017,则该组样本数据的方差为5.如图是一个算法的流程图,则输出的n 的值是 ▲.6.函数1()ln f x x=的定义域记作集合D ,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数1,2,⋅⋅⋅,6),记骰子向上的点数为t ,则事件“t D ∈”的概率为 ▲ .7.已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为 ▲ .8.各项均为正数的等比数列{}n a 中,若234234a a a a a a =++,则3a 的最小值为 ▲ .9.在平面直角坐标系xOy 中,设直线l :10x y ++=与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是 ▲ .10.已知实数x ,y 满足0,220,240,x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩则x y +的取值范围是 ▲ .11.已知函数()ln f x bx x =+,其中b R ∈,若过原点且斜率为k 的直线与曲线()y f x =相切,则k b -的值为 ▲ .12.如图,在平面直角坐标系xOy 中,函数sin()y x ωϕ=+(0,0)ωϕπ><<的图像与x 轴的交点A ,B ,C 满足2OA OC OB +=,则ϕ= ▲.13.在ABC ∆中,5AB =, 7AC =,3BC =,P 为ABC ∆内一点(含边界),若满足1()4BP BA BC R λλ=+∈,则BA BP ⋅的取值范围为 ▲ . 14.已知ABC ∆中,AB AC ==ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积的最大值为 ▲ .二、解答题 :本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答应写出文字说明、证明过程或演算步骤.)15.已知ABC ∆中,a ,b ,c 分别为三个内角A ,B ,Csin cos +C c B c =, (1)求角B ; (2)若2b ac =,求11tan tan A C+的值. 16.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,PC ⊥平面ABCD ,PB PD =,点Q 是棱PC 上异于P 、C 的一点.(1)求证:BD AC ⊥;(2)过点Q 和的AD 平面截四棱锥得到截面ADQF (点F 在棱PB 上),求证://QF BC . 17.已知小明(如图中AB 所示)身高1.8米,路灯OM 高3.6米,AB ,OM 均垂直于水平地面,分别与地面交于点A ,O .点光源从M 发出,小明在地上的影子记作'AB .(1)小明沿着圆心为O ,半径为3米的圆周在地面上走一圈,求'AB 扫过的图形面积; (2)若3OA =米,小明从A 出发,以1米/秒的速度沿线段1AA 走到1A ,13OAA π∠=,且110AA =米.t 秒时,小明在地面上的影子长度记为()f t (单位:米),求()f t 的表达式与最小值.18.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的右焦点为F ,点A 是椭圆的左顶点,过原点的直线MN 与椭圆交于M ,N 两点(M 在第三象限),与椭圆的右准线交于P 点.已知AM MN ⊥,且243OA OM b ⋅=.(1)求椭圆C 的离心率e ; (2)若103AMN POE S S a ∆∆+=,求椭圆C 的标准方程. 19.已知各项均为正数的无穷数列{}n a 的前n 项和为n S ,且满足1a a =(其中a 为常数),1(1)(1)n n nS n S n n +=+++*()n N ∈.数列{}n b满足*)n b n N =∈.(1)证明数列{}n a 是等差数列,并求出{}n a 的通项公式;(2)若无穷等比数列{}n c 满足:对任意的*n N ∈,数列{}n b 中总存在两个不同的项s b ,t b *(,)s t N ∈使得s n t b c b ≤≤,求{}n c 的公比q . 20.已知函数2ln ()()xf x x a =+,其中a 为常数.(1)若0a =,求函数()f x 的极值;(2)若函数()f x 在(0,)a -上单调递增,求实数a 的取值范围;(3)若1a =-,设函数()f x 在(0,1)上的极值点为0x ,求证:0()2f x <-.常州市教育学会学业水平监测数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题只能选做两题......,每小题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4-1:几何证明选讲在ABC ∆中,N 是边AC 上一点,且2CN AN =,AB 与NBC ∆的外接圆相切,求BCBN的值.B.选修4-2:矩阵与变换 已知矩阵421A a ⎡⎤=⎢⎥⎣⎦不存在逆矩阵,求: (1)实数a 的值;(2)矩阵A 的特征向量. C.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴,建立极坐标系.曲线C 的参数方程为2cos 12sin x y αα=+⎧⎨=⎩(α为参数),直线l 的极坐标方程为sin()4πρθ+=l 与曲线C 交于M ,N 两点,求MN 的长. D.选修4-5:不等式选讲已知0a >,0b >,求证:3322a b a b+≥+【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.已知正四棱锥P ABCD -的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.23.记11(1)()()2x x x n+⨯+⨯⋅⋅⋅⨯+(2n ≥且*n N ∈)的展开式中含x 项的系数为n S ,含2x 项的系数为n T . (1)求n S ; (2)若2nnT an bn c S =++,对2,3,4n =成立,求实数,,a b c 的值; (3)对(2)中的实数,,a b c 用数字归纳法证明:对任意2n ≥且*n N ∈,2nnT an bn c S =++都成立.常州市教育学会学业水平监测高三数学参考答案一、填空题1. {2}-2.真3.14. 25.76.567.310.[2,8] 11.1e 12.34π 13.525[,]84二、解答题15.解:(1sin cos C B c =+sin cos sin sin B C B C C ==,ABC ∆中,sin 0C >cos 1s B B -=,所以1sin()62B π-=,5666B πππ-<-<, 66B ππ-=,所以3B π=;(2)因为2b ac =,由正弦定理得2sin sin sin B A C =,11tan tan A C +=cos cos sin sin A C A C +=cos sin sin cos sin sin A C A C A C +sin()sin sin A C A C +=sin()sin sin B A Cπ-=sin sin sin B A C=所以,211sin 1tan tan sin sin 32B AC B B +====.16.(1)证明:PC ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD PC ⊥,记AC ,BD 交于点O ,平行四边形对角线互相平分,则O 为BD 的中点,又PBD ∆中,PB PD =, 所以BD OP ⊥, 又PCOP P =,PC , OP ⊂平面PAC ,所以BD ⊥平面PAC ,又AC ⊂平面PAC所以BD AC ⊥;(2)四边形ABCD 是平行四边形,所以//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又AD ⊂平面ADQF ,平面ADQF平面PBC QF =,所以//AD QF ,又//AD BC ,所以//QF BC .17.解:(1)由题意//AB OM ,则' 1.81' 3.62AB AB OB OM ===,3OA =,所以'6OB =,小明在地面上的身影'AB 扫过的图形是圆环,其面积为226327πππ⨯-⨯=(平方米); (2)经过t 秒,小明走到了0A 处,身影为00'A B ,由(1)知000'12A B AB OB OM ==,所以 000()'f t A B OA ===化简得()f t =010t <≤,()f t =32t =时,()f t的最小值为答:()f t =010t <≤,当32t =(秒)时,()f t. 18.解:(1)由题意22222221()()22x y a b a a x y ⎧+=⎪⎪⎨⎪++=⎪⎩,消去y 得22220c x ax b a ++=,解得1x a =-,222ab x c =-所以22M ab x c =-(,0)a ∈-, M A OA OM x x ⋅=22243ab a b c ==,2234c a =,所以2e =;(2)由(1)2(,)33M b --,右准线方程为3x =, 直线MN的方程为y =,所以(,)33P , 12POF P S OF y ∆=⋅2==2AMN AOM S S ∆∆==22M OA y b ⨯==,所以22103a +=2203b =,所以b =a =椭圆C 的标准方程为22182x y +=.19.解:(1)方法一:因为1(1)(1)n n nS n S n n +=+++①, 所以21(1)(2)(1)(2)n n n S n S n n +++=++++②,由②-①得,21(+1)S n n n nS ++-1(2)(1)2(1)n n n S n S n +=+-+++, 即2(1)n n S ++=1(22)(1)2(1)n n n S n S n ++-+++,又10n +>, 则2122n n n S S S ++=-+,即212n n a a ++=+.在1(1)(1)n n nS n S n n +=+++中令1n =得,12122a a a +=+,即212a a =+. 综上,对任意*n N ∈,都有12n n a a +-=, 故数列{}n a 是以2为公差的等差数列. 又1a a =,则22n a n a =-+.方法二:因为1(1)(1)n n nS n S n n +=+++,所以111n nS S n n+=++,又11S a a ==, 则数列n S n ⎧⎫⎨⎬⎩⎭是以a 为首项,1为公差的等差数列,因此1nS n a n=-+,即2(1)n S n a n =+-. 当2n ≥时,122n n n a S S n a -=-=-+,又1a a =也符合上式,故*22()n a n a n N =-+∈.故对任意*n N ∈,都有12n n a a +-=,即数列{}n a 是以2为公差的等差数列. (2)令12122n n n a e a n a +==+-+,则数列{}n e 是递减数列,所以211n e a<≤+. 考察函数1(1)y x x x =+>,因为22211'10x y x x -=-=>,所以1y x x =+在(1,)+∞上递增,因此1422(2)n n e e a a <+≤++,从而n b =∈. 因为对任意*n N ∈,总存在数列{}n b 中的两个不同项s b ,t b ,使得s n t b c b ≤≤,所以对任意的*n N ∈都有n c ∈,明显0q >.若1q >,当1log q n ≥+有111n n n c c q--=>≥,不符合题意,舍去;若01q <<,当1log qn ≥+有11n n c c q -=≤1n -≤故1q =.20.解:(1)当0a =时,ln ()xf x x=,定义域为(0,)+∞, 312ln '()xf x-=,令'()0f x =,得x =∴当x =()f x 的极大值为2e,无极小值. (2)312ln '()()axxf x x a +-=+,由题意'()0f x ≥对(0,)x a ∈-恒成立. (0,)x a ∈-,3()0x a ∴+<, ∴12ln 0ax x+-≤对(0,)x a ∈-恒成立, ∴2ln a x x x ≤-对(0,)x a ∈-恒成立.令()2ln g x x x x =-,(0,)x a ∈-,则'()2ln 1g x x =+, ①若120a e-<-≤,即120a e->≥-,则'()2ln 10g x x =+<对(0,)x a ∈-恒成立,∴()2ln g x x x x =-在(0,)a -上单调递减,则2()ln()()a a a a ≤----,0ln()a ∴≤-,1a ∴≤-与12a e -≥-矛盾,舍去; ②若12a e -->,即12a e-<-,令'()2ln 10g x x =+=,得12x e-=,当120x e -<<时,'()2ln 10g x x =+>,()2ln g x x x x ∴=-单调递减,当12ex a -<<-时,'()2ln 10g x x =+>,()2ln g x x x x ∴=-单调递增,∴当12x e -=时,12min [()]()g x g e -=111122222ln()2ee ee ----=⋅-=-,122a e-∴≤-.综上122a e -≤-.(3)当1a =-时,2ln ()(1)x f x x =-,312ln '()(1)x x xf x x x --=-,令()12ln h x x x x =--,(0,1)x ∈,则'()12(ln 1)h x x =-+2ln 1x =--,令'()0h x =,得12x e -=, ①当121ex -≤<时,'()0h x ≤,()12ln h x x x x ∴=--单调递减,12()(0,21]h x e -∈-, 312ln '()0(1)x x x f x x x --∴=<-恒成立,2ln ()(1)x f x x ∴=-单调递减,且12()()f x f e -≤. ②当120x e -<≤时,'()0h x ≥,()12ln h x x x x ∴=--单调递增,11112222()12ln()h e ee e ----∴=--⋅12210e-=->又2222()12ln()h e ee e ----=--⋅2510e=-<, ∴存在唯一12(0,)x e -∈,使得0()0h x =,0'()0f x ∴=,当00x x <<时,0'()0f x >,2ln ()(1)xf x x ∴=-单调递增,当12x x e-<≤时,0'()0f x <,2ln ()(1)x f x x ∴=-单调递减,且12()()f x f e -≥, 由①和②可知,2ln ()(1)xf x x =-在0(0,)x 单调递增,在0(,1)x 上单调递减, ∴当0x x =时,2ln ()(1)xf x x =-取极大值.0000()12ln 0h x x x x =--=,0001ln 2x x x -∴=, 0020ln ()(1)x f x x ∴=-200011112(1)2()22x x x ==---,又120(0,2)x e -∈,201112()(,0)222x ∴--∈-,0201()2112()22f x x ∴=<---.常州市教育学会学业水平监测 高三数学Ⅱ(附加题)参考答案21.A.解:记NBC ∆外接圆为O ,AB 、AC 分别是圆O 的切线和割线,所以2AB AN AC =⋅, 又A A ∠=∠,所以ABN ∆与ACB ∆相似,所以BC AB ACBN AN AB==,所以 23BC AB AC AC BN AN AB AN ⎛⎫=⋅== ⎪⎝⎭,BC BN =. B.解:(1)由题意4201a =,即420a -=,解得2a =; (2)42021λλ--=--,即(4)(1)40λλ---=,所以250λλ-=,解得10λ=,25λ=10λ=时,42020x y x y --=⎧⎨--=⎩,2y x =-,属于10λ=的一个特征向量为12⎡⎤⎢⎥-⎣⎦;25λ=时,20240x y x y -=⎧⎨-+=⎩,2x y =,属于10λ=的一个特征向量为21⎡⎤⎢⎥⎣⎦.C.解:曲线C :22(1)4x y -+=,直线l :20x y +-=,圆心(1,0)C 到直线l 的距离为2d ==MN ===D.证明:0a >,0b >,不妨设0a b ≥>,则5522a b ≥,1122a b ≥,由排序不等式得5151515122222222a ab b a b b a +≥+,所以51515151222222222222a ab b a b b a a b a b++≥=++22.解:根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到PAC ∆,PBD ∆为等腰直角三角形,ξ的可能取值为:0,3π,2π,共2828C =种情况,其中:0ξ=时,有2种;3πξ=时,有342420⨯+⨯=种;2πξ=时,有246+=种;(1)21(0)2814P ξ===; (2)4165()3287P πξ+===,63()22814P πξ===, 根据(1)的结论,随机变量的分布列如下表:根据上表,15329()0143721484E ππξπ=⨯+⨯+⨯=. 23.解:(1)12!n nS n ++⋅⋅⋅+==12(1)!n n +-. (2)2223T S =,23116T S =,4472T S =, 则34221193671692a b c a b c a b c ⎧=++⎪⎪⎪=++⎨⎪⎪=++⎪⎩解得14a =,112b =-,16c =-,(3)①当2n =时,由(2)知等式成立;②假设n k =(*k N ∈,且2k ≥)时,等式成立,即21114126k k T k k S =--; 当1n k =+时,由1()(1)()2f x x x =+⨯+⨯⋅11()()1x x k k ⋅⋅⨯+⨯++ 1[(1)()2x x =+⨯+⨯11()]()1x x kk ⋅⋅⋅⨯+⨯++ 211()()!1k k S x T x x k k =+++⋅⋅⋅++ 知111k k T S k +=++2111112[1()](1)!14126k k T k k k k +=+---+, 所以11k k T S ++=2111112[1()](1)!14126112!k k k k k k k ++---+=++⎛⎫ ⎪⎝⎭232(1)212k k k k k --+++(35)12k k +=, 又2111(1)(1)4126k k +-+-(35)12k k +=,等式也成立; 综上可得,对任意2n ≥且*n N ∈,都有2nnT an bn c S =++成立.。
江苏省常州市2017届高三上学期期末考试数学试题_Word版Word版含答案
省市教育学会学生学业水平监测高三数学Ⅰ试题2017.1一、填空题:(本大题共14小题,每小题5分,共70分) 1. 已知集合{}{}{}1,2,3,4,5,3,4,1,4,5U A B ===,则()U A C B = .2. 已知0x >,若()2x i -是纯虚数(其中i 为虚数单位),则x = .3.某单位有老人20人,中年人120人,青年人100人,现采用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知青年人抽取的人数为10人,则n = .4.双曲线221412x y -=的右焦点与左准线之间的距离是 . 5.函数()1lg 2y x x =-+的定义域为 . 6.执行右图所示的程序框图,若输入27a =,则输出的值b = .7.满足等式[]()cos 213cos 0,x x x π-=∈的x 值为 . 8.设n S 为等差数列{}n a 的前n 项和,若3964,27a S S =-=,则10S = .9.男队有1,2,3的三名乒乓球运动员,女队有为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,则出场的两名运动员不同的概率为 .10.以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为为 .11.在ABC ∆中,45,C O ∠=是ABC ∆的外心,若(),OC mOA nOB m n R =+∈,则m n+的取值围为 .12.已知抛物线()220x py p =>的焦点F 是椭圆()222210y x a b a b+=>>的一个焦点,若,P Q 是椭圆与抛物线的公共点,且直线PQ 经过焦点F ,则该椭圆的离心率为 .13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若22233sin a b c A =+-,则C .14.若函数()()2x x e af x a R e=-∈在区间[]1,2上单调递增,则实数a 的取值围是 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(本题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若18,cos .4a c B +==(1)若4BA BC ⋅=,求b 的值;(2)若sin A =,求sin C 的值.16.(本题满分14分)在111ABC A B C -中,所有棱长均相等,且160,ABB D ∠=为AC 的中点,求证:(1)1//B C 平面1A BD ; (2)1AB B C ⊥.17.(本题满分14分)已知圆()()22:200C x t y t -+=<与椭圆()2222:10x y E a b a b+=>>的一个公共点为()()0,2,,0B F c -为椭圆E 的右焦点,直线BF 与圆C 相切于点B . (1)求t 的值及椭圆E 的方程;(2)过点F 任作与坐标轴都不垂直的直线l 与椭圆交于,M N 两点,在x 轴上是否存在一定点P ,使PF 恰为MPN ∠的平分线?18.(本题满分16分)某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120x ≤≤)时,每小时的油耗(所需要的汽油量)为145005x k x ⎛⎫-+ ⎪⎝⎭升,其中k 为常数,且60120k ≤≤.(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值围;(2)求该汽车行驶100千米的油耗的最小值.19.(本题满分16分) 已知函数()21ln 12f x ax x bx =++. (1)若曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=,求()f x 的单调区间; (2)若2a =,且关于x 的方程()f x 在21,e e ⎡⎤⎢⎥⎣⎦上恰有两个不等的实根,数b 的取值围; (3)若2,1a b ==-,当1x ≥时,关于x 的不等式()()21f x t x ≥-恒成立,数t 的取值围(其中e 是自然对数的底数,2,71828e =).20.(本题满分16分)已知数列{}n a 满足()1110,1010.n n n a a a a n N*+=-≤≤+∈(1)若{}n a 是等差数列,12n nS a a a =+++,且()11010n n n S S S n N *+-≤≤+∈,求公差d 的取值集合;(2)若12,,,k a a a 成的比数列,公比q 是大于1的整数,且122017k a a a +++>,求正整数k 的最小值;(3)若12,,,k a a a 成等差数列,且12,,,100k a a a =,求正整数k 的最小值及k取最小值时公差d 的值.省教育学会学生学业水平监测高三数学Ⅱ试题(附加题)21【选做题】在A,B,C,D 四个小题中只能选择两题,每小题10分,共计20分. A.选修4—1:几何证明选讲如图,过圆O 外一点P 作圆O 的切线PA,切点为A,连接OP 与圆O 交于点C,过点C 作圆O作AP 的垂线,垂足为D,若:1:3,PA PC PO ==求CD 的长.B.选修4—2:矩阵与变换 已知绝阵2132A ⎡⎤=⎢⎥⎣⎦,列向量4,7x X B y ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,若AX B =,直接写出1A -,并求出X .C.选修4-4:坐标系与参数方程在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆4sin 6πρθ⎛⎫=+⎪⎝⎭被射线0θθ=(00,ρθ≥为常数,且00,2πθ⎛⎫∈ ⎪⎝⎭)所截得的弦长为3求0θ的值.D.选修4-5:不等式选讲已知0,0x y >>,且26x y +=,求224x y +的最小值.22.(本小题10分)如图,以正四棱锥V ABCD -的底面中心O 为坐标原点建立空间直角坐标系O xyz -,其中//,//,Ox BC Oy AB E 为VC 中点,正四棱锥的底面边长为2a ,高为h ,且有15cos ,.49BE DE =- (1)求ha的值; (2)求二面角B VC D --的余弦值.23.(本小题满分10分)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.例如:考察恒等式()()()()2111nnnx x x n N *+=++∈,左边n x 的系数为2n n C ,而右边()()()()010111n nn n n nn n n n n n x x C C x C x C C x C x ++=++++++,n x 的系数为()()()222011001n n n nn n n n n n n n n C C C C C C C C C -+++=+++,因此可得到组合恒等式()()()222012n nn n n n C C C C =+++.(1)根据恒等式()()()()111,m nmnx x x m n N +*+=++∈两边k x (其中,,k N k m k n ∈≤≤)的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:222202n k n k k nn k n k C C C ⎡⎤⎢⎥⎣⎦-=⋅⋅=∑,其中2n ⎡⎤⎢⎥⎣⎦是指不超过2n的最大整数.。
2018常州市区高三期末统考试卷(含解析)
2017-2018年江苏省常州市市区高三(上)期末统考英语试卷第一部分:听力(共20小题;每小题1分,满分20分)第二部分:英语知识运用第一节:单项填空(共15小题;每小题1分,满分15分)请阅读下面各题,从题中所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
21. Ladies and gentlemen, we ___________ at Changzhou Station, please get ready to get off the train.A. are to arriveB. are arrivingC. are going to arriveD. will arrive考察时态。
现在进行时表将来,表示计划好的事情,并且距离现在是不远的将来。
根据句意:女士们先生们,我们即将到达常州站,下车的乘客请做好准备。
用现在进行时表即将发生的动作。
故选B。
22. ---What is the principal contradiction facing Chinese society nowadays?---The contradiction between _________ development and the people's ever-growing needs for a better lifeA. sustainableB. inadequateC. privilegedD.confidential考察形容词词义辨析。
A为可持续的,B为不充分的,C为赋予特权的,D为机密的。
根据句意:人民日增长的美好生活需要和不平衡不充分的发展之间的矛盾。
不充分,用inadequate故选B。
23. ---When the Americans objected to this,what did the British do?---They did not compromise,but increased control, __________ away many of their rights, and _______ soldiers there.A. taking; stationingB. taking; to stationC. took; stationingD. took; to station考察非谓语。
2017年度-2018年度常州市高三期末卷数学(理)
常州市教育学会学生学业水平监测高三数学Ⅰ试题 2018年1月一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.若集合2{2,0,1},{|1}A B x x =-=>,则集合A B =I ▲ .2.命题“2[0,1],10x x ∃∈-≥”是 ▲ 命题(选填“真”或“假”). 3.若复数z 满足22i 1(i )z z ⋅=+其中为虚数单位,则z = ▲ . 4.若一组样本数据2015,2017,x ,2018,2016的平均数为2017,则该组样本数据的方差为 ▲ .5.右图是一个算法的流程图,则输出的n 的值是 ▲ . 6.函数1()ln f x x=的定义域记作集合D .随机地投掷一枚质地均匀的 正方体骰子(骰子的每个面上分别标有点数1,2,,6L ),记骰子 向上的点数为t ,则事件“t D ∈”的概率为 ▲ .7.已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为 ▲ .8.各项均为正数的等比数列{}n a 中,若234234a a a a a a =++,则3a 的最小值为 ▲ .9.在平面直角坐标系xOy 中,设直线:10l x y ++=与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是 ▲ .10.已知实数,x y 满足0,220,240,x y x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥则x y +的取值范围是 ▲ .11.已知函数()ln f x bx x =+,其中b ∈R .若过原点且斜率为k 的直线与曲线()y f x =相切,则k b -的值为 ▲ .12.如图,在平面直角坐标系xOy 中,函数sin()(0,0π)y x ωϕωϕ=+><<的图象与x 轴的交点,,A B C 满足2OA OC OB +=,则ϕ= ▲ .13.在ABC ∆中,3,7,5===BC AC AB ,P 为ABC ∆内一点(含边界),若满足)(41R ∈+=λλBC BA BP ,则BP BA ⋅的取值范围为 ▲ . 14.已知ABC ∆中,3AB AC ==,ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知ABC ∆中,a b c ,, 分别为三个内角A B C ,, 的对边,3sin cos b C c B c =+. (1)求角B ; (2)若2b ac =,求11tan tan A C+的值. 16.(本小题满分14分)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,PC ABCD ⊥平面,PB PD =,点Q 是棱PC 上异于P ,C 的一点. (1)求证:BD AC ⊥;(2)过点Q 和AD 的平面截四棱锥得到截面ADQF (点F 在棱PB 上),求证:QF BC ∥.已知小明(如图中AB 所示)身高1.8米,路灯OM 高3.6米,AB ,OM 均垂直于水平地面,分别与地面交于点A ,O .点光源从M 发出,小明在地面上的影子记作AB'.(1)小明沿着圆心为O ,半径为3米的圆周在地面上走一圈,求AB'扫过的图形面积; (2)若3=OA 米,小明从A 出发,以1米/秒的速度沿线段1AA 走到1A ,3π1=∠OAA ,且101=AA 米.t 秒时,小明在地面上的影子长度记为)(t f (单位:米),求)(t f 的表达式与最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a bya x C 的右焦点为F ,点A 是椭圆的左顶点,过原点的直线MN 与椭圆交于N M ,两点(M 在第三象限),与椭圆的右准线交于P 点.已知MN AM ⊥,且243OA OM b ⋅=u u u r u u u u r .(1)求椭圆C 的离心率e ; (2)若103AMN POF S S a ∆∆+=,求椭圆C 的标准方程.(第17题)已知各项均为正数的无穷数列{}n a 的前n 项和为n S ,且满足1a a =(其中a 为常数),1(1)(1)n n nS n S n n +=+++*()n ∈N .数列{}n b满足n b =(*)n ∈N .(1)证明数列{}n a 是等差数列,并求出{}n a 的通项公式;(2)若无穷等比数列{}n c 满足:对任意的*n ∈N ,数列{}n b 中总存在两个不同的项s b ,t b (*,s t ∈N ),使得s n t b c b ≤≤,求{}n c 的公比q .20.(本小题满分16分) 已知函数2ln ()()xf x x a =+,其中a 为常数. (1)若0a =,求函数()f x 的极值;(2)若函数()f x 在(0)a -,上单调递增,求实数a 的取值范围;(3)若1a =-,设函数()f x 在(01),上的极值点为0x ,求证:0()2f x <-.常州市教育学会学生学业水平监测数学Ⅱ(附加题) 2018年1月21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲在ABC ∆中,N 是边AC 上一点,且2CN AN =,AB 与NBC ∆的外接圆相切,求BCBN的值. B .选修4—2:矩阵与变换已知矩阵421a ⎡⎤=⎢⎥⎣⎦A 不存在逆矩阵,求: (1)实数a 的值; (2)矩阵A 的特征向量. C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴,建立极坐标系.曲线C 的参数方程为2cos 1,2sin x y αα=+⎧⎨=⎩(α为参数),直线l 的极坐标方程为πsin()24ρθ+=,直线l与曲线C 交于M ,N 两点,求MN 的长. D .选修4—5:不等式选讲 已知0,0a b >>,求证:3322a b ab a b++≥.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将本卷和答题卡一并交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知正四棱锥ABCD P -的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0=ξ;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求)0(=ξP 的值;(2)求随机变量ξ的分布列及数学期望)(ξE .23.(本小题满分10分)记11(1)()()2x x x n+⨯+⨯⨯+L (2n ≥且*n ∈N )的展开式中含x 项的系数为n S ,含2x 项的系数为n T . (1)求n S ; (2)若2nnT an bn c S =++,对2,3,4n =成立,求实数a b c ,,的值; (3)对(2)中的实数a b c ,,,用数学归纳法证明:对任意2n ≥且*n ∈N ,2n nT an bn cS =++都成立.常州市教育学会学生学业水平监测高三数学Ⅰ试题参考答案及评分标准一、填空题:本大题共14小题,每小题5分,共70分1.{2}- 2.真 3.1 4.2 5.7 6.567.38.3 9.(1,2)10.4[,8]3 11.1e 12.34π 13.525[,]84 14.523二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.解:(1)由正弦定理得3sin sin cos sin sin B C B C C =+,ABC ∆中,sin 0C >,所以3sin cos 1B B -=,所以1sin()62B π-=,5666B πππ-<-<,66B ππ-=,所以3B π=; (2)因为2b ac =,由正弦定理得2sin sin sin B A C =,11cos cos cos sin sin cos sin()sin()sin tan tan sin sin sin sin sin sin sin sin sin sin A C A C A C A C B BA C A C A C A C A C A Cπ++-+=+==== 所以,211sin 123tan tan sin sin 3B AC B B +====16.(1)证明:PC ABCD ⊥平面,BD ABCD ⊂平面,所以BD PC ⊥,记AC BD ,交于点O ,平行四边形对角线互相平分,则O 为BD 的中点,又PBD ∆中,PB PD =,所以BD OP ⊥, 又=PC OP P I ,PC OP PAC ⊂,平面,所以BD PAC ⊥平面,又AC PAC ⊂平面,所以BD AC ⊥;(2)四边形ABCD 是平行四边形,所以AD BC ∥,又AD PBC ⊄平面,BC PBC ⊂平面,所以AD PBC 平面∥,又AD ADQF ⊂平面,ADQF PBC QF =I 平面平面,所以AD QF ∥,又AD BC ∥,所以QF BC ∥. 17.解:(1)由题意AB OM ∥,' 1.81' 3.62AB AB OB OM ===,3OA =,所以'6OB =,小明在地面上的身影AB'扫过的图形是圆环,其面积为226327()πππ⨯-⨯=平方米;(2)经过t 秒,小明走到了0A 处,身影为00'A B ,由(1)知000'12A B AB OB OM ==,所以22000000()'2cos f t A B OA OA AA OA AA OAA ===+-⋅∠,化简得2()39,010f t t t t =-+<≤,2327()24f t t ⎛⎫=-+ ⎪⎝⎭,当32t =时,()f t 的最小值为33, 答:2()39,010f t t t t =-+<≤,当32t =(秒)时,()f t 的最小值为33(米).18.解:(1)由题意22222221()()22x y a b a a x y ⎧+=⎪⎪⎨⎪++=⎪⎩,消去y 得22220c x ax b a ++=,解得2122ab x a x c =-=-,, 所以22(,0)M ab x a c =-∈-,22243M A ab OA OM x x a b c ⋅===u u u r u u u u r ,2234c a =,所以e ;(2)由(1)2(,)33M b --,右准线方程为x , 直线MN的方程为y =,所以)P ,212POF P S OF y ∆=⋅=,222AMN AOM M S S OA y b ∆∆==⨯=,所以22103a =2203b =,所以b a == 椭圆C 的标准方程为12822=+y x . 19.解:(1)方法一:因为1(1)(1)n n nS n S n n +=+++①, 所以21(1)(2)(1)(2)n n n S n S n n +++=++++②,由②-①得,211(1)(2)(1)2(1)n n n n n S nS n S n S n ++++-=+-+++, 即21(1)(22)(1)2(1)n n n n S n S n S n +++=+-+++,又10n +>, 则2122n n n S S S ++=-+,即212n n a a ++=+.在1(1)(1)n n nS n S n n +=+++中令1n =得,12122a a a +=+,即212a a =+. 综上,对任意*n ∈N ,都有12n n a a +-=, 故数列{}n a 是以2为公差的等差数列. 又1a a =,则22n a n a =-+.方法二:因为1(1)(1)n n nS n S n n +=+++,所以111n n S S n n +=++,又11S a a ==,则数列n S n ⎧⎫⎨⎬⎩⎭是以a 为首项,1为公差的等差数列, 因此1nS n a n=-+,即2(1)n S n a n =+-. 当2n ≥时,122n n n a S S n a -=-=-+,又1a a =也符合上式, 故22n a n a =-+(*)n ∈N ,故对任意*n ∈N ,都有12n n a a +-=,即数列{}n a 是以2为公差的等差数列. (2)令12122n n n a e a n a +==+-+,则数列{}n e 是递减数列,所以211n e a<+≤.考察函数1y x x =+(1)x >,因为2221110x y x x -'=-=>,所以1y x x=+在(1,)+∞上递增. 因此1422(2)n n e e a a <+++≤,从而n b =.因为对任意的*n ∈N ,总存在数列{}n b 中的两个不同项s b ,t b ,使得s n t b c b ≤≤,所以对任意的*n ∈N都有n c ∈,明显0q >.若1q >,当1log q n +≥有111n n n c c q --=>不符合题意,舍去;若01q <<,当1log qn +≥111n n n c c q --=,不符合题意,舍去;故1q =. 20.解:(1)当0a =时,2ln ()xf x x =,定义域为(0)+∞,. 312ln ()xf x x -'=,令()0f x '=,得x =∴当x =()f x 的极大值为2e,无极小值. (2)312ln ()()ax x f x x a +-'=+,由题意()0f x '≥对(0)x a ∈-,恒成立. ∵(0)x a ∈-,,∴3()0x a +<, ∴12ln 0ax x+-≤对(0)x a ∈-,恒成立. ∴2ln a x x x -≤对(0)x a ∈-,恒成立.令()2ln g x x x x =-,(0)x a ∈-,, 则()2ln 1g x x '=+, ①若120ea -<-≤,即120ea ->≥-,则()2ln 10g x x '=+<对(0)x a ∈-,恒成立,∴()2ln g x x x x =-在(0)a -,上单调递减,则2()ln()()a a a a ---≤-,∴ln()a -0≤,∴1a -≤与12e a -≥-矛盾,舍去;②若12ea -->,即12ea -<-,令()2ln 10g x x '=+=,得12ex -=,当120e x -<<时,()2ln 10g x x '=+<,∴()2ln g x x x x =-单调递减,当12ex a -<<-时,()2ln 10g x x '=+>,∴()2ln g x x x x =-单调递增,∴当12ex -=时,1111122222min [()](e)2eln(e )e2eg x g -----==-=-g ,∴122e a --≤. 综上122ea --≤.(3)当1a =-时,2ln ()(1)x f x x =-,312ln ()(1)x x xf x x x --'=-. 令()12ln h x x x x =--,(01)x ∈,,则()12(ln 1)2ln 1h x x x '=-+=--,令()0h x '=,得12e x -=.①当12e1x -<≤时,()0h x '≤,∴()12ln h x x x x =--单调递减,12()(02e 1]h x -∈-,,∴312ln ()0(1)x x x f x x x --'=<-恒成立,∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≤, ②当120ex -<≤时,()0h x '≥,∴()12ln h x x x x =--单调递增,其中1111()12ln()02222h =--⋅=>,又222225(e )e 12e ln(e )10eh ----=--⋅=-<, ∴存在唯一201(e ,)2x -∈,使得0()0h x =,∴0()0f x '=,当00x x <<时,()0f x '>,∴2ln ()(1)xf x x =-单调递增, 当120ex x -<≤时,()0f x '<,∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≥, 由①和②可知,2ln ()(1)xf x x =-在0(0)x ,单调递增,在0(1)x ,上单调递减,∴当0x x =时,2ln ()(1)xf x x =-取极大值.∵0000()12ln 0h x x x x =--=,∴0001ln 2x x x -=, ∴00220000ln 11()112(1)(1)2()22x f x x x x x ===----, 又01(0)2x ∈,,∴201112()(0)222x --∈-,,∴0201()2112()22f x x =<---.常州市教育学会学生学业水平监测 高三数学Ⅱ(附加题) 参考答案21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲解:记NBC ∆外接圆为圆O ,AB 、AC 分别是圆O 的切线和割线,所以2AB AN AC =⋅, 又A A ∠=∠,所以ABN ∆与ACB ∆相似,所以BC AB ACBN AN AB==,所以 23BC AB AC AC BN AN AB AN ⎛⎫=⋅== ⎪⎝⎭,BC BN B .选修4—2:矩阵与变换 (2)42=021λλ----,即(4)(1)40λλ---=,所以250λλ-=,解得120,5λλ== 10λ=时,42020x y x y --=⎧⎨--=⎩,2y x =-,属于10λ=的一个特征向量为12⎡⎤⎢⎥-⎣⎦;25λ=时,20240x y x y -=⎧⎨-+=⎩,2x y =,属于10λ=的一个特征向量为21⎡⎤⎢⎥⎣⎦.C .选修4—4:坐标系与参数方程解:曲线22:(1)4C x y -+=,直线:20l x y +-=,圆心(1,0)C 到直线l 的距离为d =MN ==D .选修4—5:不等式选讲证明:0,0a b >>,不妨设0a b >≥,则5522a b ≥,1122a b ≥,由排序不等式得5151515122222222a ab b a b b a ++≥,所以51515151222222222222a ab b a b b aa b a b ++++≥【必做题】第22题、第23题,每题10分,共计20分.22.解:根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:ππ0,,32,共2828C =种情况,其中:0ξ=时,有2种;π3ξ=时,有34+24=20⨯⨯种;π2ξ=时,有2+4=6种; (1)141282)0(===ξP ; (2)7528164)3π(=+==ξP ,143286)2π(===ξP .再根据(1)的结论,随机变量ξ的分布列如下表:根据上表,π8414273140)(=⨯+⨯+⨯=ξE . 23.解:(1)1122!(1)!nn n S n n ++++==-L . (2)222=3T S ,3311=6T S ,447=2T S , 则2=42311=93671692a b c a b c a b c ⎧++⎪⎪⎪++⎨⎪⎪=++⎪⎩,,, 解得1114126a b c ==-=-,,. (3)①当2n =时,由(2)知等式成立;②假设*(N ,2)n k k k =∈且≥时,等式成立,即21114126k k T k k S =--; 当1n k =+时,由2111()(1)()()()21111[(1)()()]()2111()()!1k k f x x x x x k k x x x x k k S x T x x k k =+⨯+⨯⨯+⨯++=+⨯+⨯⨯+⨯++=+++++L L L知211111112[1()]1(1)!14126k k kk T S T k k k k k ++=+=+--+-+,所以2211111112[1()]32(35)(1)!14126(1)11212122!k k k k k T k k k k k k k k k S k k ++++----+-+==++=+++⎛⎫⎪⎝⎭,又2111(35)(1)(1)412612k k k k ++-+-=,等式也成立; 综上可得,对任意2n ≥且*n ∈N ,都有2nnT an bn c S =++成立.。
江苏省常州高级中学2017-2018学年高三上学期期初质量检查英语试卷 Word版含答案
江苏省常州高级中学2017-2018学年第一学期期初质量检查高三年级英语试卷Ⅰ.Listening ComprehensionSection ADirections: In section A, you will hear five short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the three possible answers on your paper, and decide which one is the best answer to the question you have heard within ten seconds..(20分)1. Who did the woman’s hair?A. A hairdresser.B. The woman herself.C. The woman’ mother.2. What day is it today?A. Monday.B. Wednesday.C. Friday.3. Why doesn’t the m an want to work with Tom?A. Tom treats the man poorly.B. Tom says a lot but doesn’t do very much.C. Tom is not as smart as the man.4. How does the woman feel?A. Disappointed.B. Confused.C. Pressured.5. What will the man probably do next?A. Continue studying.B. Take a break.C. Take a midterm.Section BDirections: In Section B, you will hear five short passages, and you will be asked several questions on each of the passages. The passages will be read twice. Read the three possible answers on your paper and decide which one would be the best answer to the question you have heard within five seconds for each question..Questions 6 through 7 are based on the following introduction.6. Where does this conversation take place?A. In a parking lot.B. On a busy street.C. In a police station.7. Which of the following is true?A. The woman called the police.B. The man was driving through the red light.C. The woman intended to take a left turn.Questions 8 through 9 are based on the following passage8. Where is the woman now?A. In a shop.B. On a train.C. In the office.9. Why dose the man seem upset?A. The subway is too crowded.B. The woman forgot the appointment.C. He didn’t plan to eat alone.Questions 10 through 12 are based on the following passage10. What does the man think of 3D?A. He is excited about it.B. It’s better than reality.C. It’s bad for eyes.11. Why did the woman feel sick while watching Avatar?A. She ate some bad popcorn.B. She didn’t wear glasses.C. She was too close to the screen.12. What does the woman want to avoid?A. Living in the future.B. Wearing glasses while watching TV.C. Spending too much time watching TV.Questions 13 through 16 are based on the following passage13. What is a Tiger Mother like?A. She is a traditional Chinese mother.B. She plans everything for her children.C. She is always bad-tempered.14. What does the woman think of her mother?A. Her mother made her successful.B. Her morher knew what she wanted.C. Her mother set a good example for her.15. What word does the woman use to describe her life?A. Miserable.B. Happy.C. Regretful.16. What’s the woman’s plan for raising her daughter?A. She’ll make all the important decisions for her daughter.B. She’ll make sure her daughter enjoys her life.C. She’ll push her daughter to be successful.Questions 17 through 20 are based on the following passage17. What will the weather be like tonight?A. Cold and wet.B. Cloudy and dry.C. Snowy.18. What does Dave suggest people do on Tuesday afternoon?A. Fly a kite.B. Skate on a frozen lake.C. Ski on a low hill.19. What is the general pattern of weather for the week?A. Gradually getting drier and warmer.B. More snow and rain as the week goes on.C. Warm in the beginning but suddenly getting colder.20. When does the report probably take place?A. Late fall.B. Early winter.C. Late winter.П. Grammar and vo cabulary.Directions: Beneath each of the following sentences there are four choices marked A, B, C andD. Choose the one answer that best completes the sentence.(15分)21. so involved in his teaching business _______ that he can hardly accompany his family atweekends.A. has Mr. Wang becomeB. has become Mr. WangC. Mr. Wang has becomeD. become Mr. Wang22. The chancellor considered it urgent that those files _______ right now.A. was printedB. would be printedC. be printedD. had to be printed23. What a great weight she felt ________ off her mind the moment she heard she had passedthe College Entrance Examination!A. to takeB. takenC. to be takingD. to be taken24. Each year, a set of new words ________ the dictionary , _________ the changing tastes andhabits of a nation.A. has added to ; having reflectedB. have added to ; to have reflectedC. is added to ; reflectingD. has been added to ; reflected25. The government has taken measures to solve the problem of energy shortage, but it may besome time ________ we have enough power.A. sinceB. afterC. unlessD. before26. Realizing the manager had ______and feeling disappointed, the young man left the companyin the hope of finding a better one.A. the salt of the earthB. feet of clayC. his cup of teaD. the pearls of wisdom.27. — Anna, you look so tired and wet all over!— You know, all morning I _______ my properties to my new office on the third floor.A. am movingB. have movedC. had movedD. have been moving28. The new buyer identified a dozen new sources for the material, _______ proved to bereliable.A. most of themB. most of whichC. most of whomD. most of those29. In the reading room, we found her_______ at a desk, with her attention_______ on a book.A. sitting; fixingB. to sit; fixedC. seating; fixingD. seated; fixed30. ---My girlfriend got a really good job offer in Kent, but I’m afraid she’ll forget about me.---Well, ________.A.absence makes the heart grow fonderB.an apple a day keeps the doctor awayC.money makes the mare goD.don’t kick a man when he is down31. It was officially announced that only when the terrible disease which broke out last week wasunder control ________ to return to their homes.A. the residents would decideB. would the residents decideC. would the residents be decidedD. the residents would be decided32.Much to my surprise it _______ raining by the time I wanted to go out.A. stopsB. stoppedC. had stoppedD. has stopped33. She managed to save ________ she could out of her wages to help her brother.A. how little moneyB. so little moneyC. such little moneyD. what little money34. Nowadays a lot of people _______ the theory that acupuncture blocks pain signals fromreaching the brain, thus reducing pain.A. subscribe toB. correspond toC. submit toD. appeal to35. Although most dreams apparently happen unconsciously, dream activities _______ by outsideinfluence.A. may be providedB. must be providedC. should be providedD. will be providedⅢ. Cloze textDirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.(20分)From childhood to old age, we all use language as a means of broadening our knowledge of ourselves and the world around us. When humans first___(36)____, they were like newborn babies, unable to use this ____(37)____ tool. Yet once language developed, the possibilities for humankind’s future ____(38)____ and cultural growth increased. Many linguists believe that evolution is ____(39)____ for our ability to produce and use language. They ____(40)_____ that our highly evolved brain provides us ____(41)_____ an innate language ability not found in lower ____(42)____ . proponents of this innateness theory say that our ____(43)_____ for language is inborn, but that language itself develops gradually, ____(44)____ a function of the growth of the brain during childhood. Therefore there are critical ____(45)_____ times for language development. Current ____(46)____ of innateness theory are mixed, however, evidence supporting the existence of some innate abilities is undeniable. ____(47)____ , more and more schools are discovering that foreign languages are best taught in ___(48)____ grades. Young children often can learn several languages by being ____(49)____ to them, while adults have a much harder time learning another language once the _____(50)____ of their first language have become firmly fixed. ____(51)____ some aspects of language are undeniably innate, language does not develop automatically in a vacuum. Children who have been ____(52)____ from other human beings do not possess language. This demonstrates that ____(53)____ with other human beings is necessary for proper language development. Some linguists believe that this is even more basic to human language____(54)_____ than any innate capacities. These theorists view language as imitative, learned behavior. ____(55)____, children learn language from their parents by imitating them. Parents gradually shape their child’s language skills by positively reinforcing precise imitations and negatively reinforcing imprecise ones.36. A. generated B. evolved C. born D. originated37. A. valuable B. appropriate C. convenient D. favorite38. A. attainments B. feasibility C. entertainments D. evolution39. A. essential B. available C. reliable D. responsible40. A. confirm B. inform C. claim D. convince41. A. for B. from C. of D. with42. A. organizations B. organisms C. humans D. children43. A. potential B. performance C. preference D. passion44. A. as B. just as C. like D. unlike45. A. ideological B. biological C. social D. psychological46. A. reviews B. reference C. reaction D. recommendation47. A. In a word B. In a sense C. Indeed D. In other words48. A. various B. different C. the higher D. the lower49. A. revealed B. exposed C. engaged D. involved50. A. regulations B. formations C. rules D. constitutions51. A. Although B. Whether C. Since D. When52. A. distinguished B. difficult C. protected D. isolated53. A. exposition B. comparison C. contrast D. interaction54. A. acquisition B. appreciation C. requirement D. alternative55. A. As a result B. After all C. In other words D. Above allⅣ: Directions: Read the following four passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(30分)APeople in New York City may soon be swallowing down fewer jumbo-size drinks. Last month, the city banned restaurants ,movie theaters and sports arenas from selling sugar-sweetened drinks larger than 16 ounces. The ban goes into effect in March, 2013.New York’s ban comes at a time when health experts and lawmak ers are trying to address a nationwide obesity problem. About one third of adults in the US are obese, or dangerously overweight.Being overweight has been linked to serious health problems, including heart disease and diabetes. Many health experts say extra-large portions are partly to blame for the country’s weight problems.From French fries to hamburgers, popular menu items have gotten bigger over the years. But the size of soft drinks has ballooned most of all.In 1995, the only fountain soda size avai lable at McDonald’s was 7 ounces. Today, a large drink at McDonald’s measures 32 ounces. Other fast food restaurants sell jumbo 64-ounce drinks. The average hamburger has also gotten bigger ---it’s now three times the size it was when your grandparents were kids.The result: each day, Americans consume hundreds more calories and a lot more sugar than they did a few decades ago. At the same time, most people have been exercising less than previous generations, so they are not burning off those extra calories. That combination has caused millions of Americans to become overweight.In recent years, soft drinks have been the focus of other efforts to fight obesity. A number of districts around the country have banned the sale of soda in schools.Some nutrition e xperts say New York City’s supersize-drink ban will help people make healthier choices.But not everyone agrees that banning large sugary drinks is a good way to teach people healthy habits. Nutrition expert Julie Feldman says it would be more helpful to “educate families about the types of food they should include in their diet ----versus talking about all the things they shouldn’t include”.Other opponents of the soda ban say it takes away individuals’ freedom. They argue that consumers should be allowed to buy as much of a product as they want. New York City Mayor Michael Bloomberg proposed the soda ban. He points out that the law limits only large portions. Consumers are still free to buy as many 16-ounce or 12-ounce drinks as they like.“In the case of full0sugared drinks, in moderation it’s fine,” Bloomberg explained on the Todayshow, “ All we are trying to do is to explain to people that if you drink a little bit less, you will live longer.”56. This news report is about a ban on _________.A. supersize soft drinksB. obese problemC. French fries and hamburgersD. individuals’ freedom57. We can infer from the passage that ___________.A. soft drinks are to blame for overweight problem in AmericaB. the consumption of soft drinks has increased much faster than other fast foodsC. hamburgers used to be one-third smaller that it is todayD. most people have been exercising less than previous generations58. From the passage, we can see that Michael Bloomberg ____________.A. is against the banB. is in favor of the banC. makes the ban lawD. promotes full-sugared drinksBInner PlanetEarth is just one of the planets in our solar system. The planets are large bodies that rotate around the Sun and reflect its light and warmth. The planets that are located closest to the Sun are made out of rocky material, and are relatively small and heavy. In contrast, the planets that are farther away from a certain path around the Sun, held a specific distance from the Sun by the strong gravitational force of the Sun.The inner planets, those closest to the Sun, are Mercury, Venus, Earth, and Mars. Even though these planets are all small and rocky, they have more differences than they have things in common. Because Mercury is the closest to the Sun, the side that faces the Sun gets as hot as 427 ℃elsius. At the same time, the side that faces away from the Sun is a freezing -173 ℃elsius. Mercury also has a slower rate of rotation than Earth, making days and nights much longer than ours. The extreme temperatures alone make it a very unlikely place for life. Add to that an atmosphere too thin for human breathing, and it’s obvious that people won’t be living on Mercury any time soon. The next planet from the Sun is Venus. Below clouds of sulfuric gas lies its 96% carbon dioxide atmosphere. That might be nice for a plant, but not a person. If you managed to survive the atmosphere, the bad news is that the surface of the planet is hot enough to melt solid metal. In addition, the pressure of the air would be strong enough to crush you. You are probably most familiar with Earth because it is your home planet. It has the perfect conditions for life as we know it. Earth’s atmosphere and ocean s help control the trickiest part of making a planet life-friendly: temperature. Earth id the only planet known to have liquid water. Mars, the fourth farthest from the Sun, has about the same amount of land as Earth, but does not have vast oceans separating it as we have on Earth. Mars has been studied and photographed more than any of the other planets besides Earth. There is speculation that it may be possible for life to exist there. Although scientists have not been able to find actual water on Mars, there seems to be evidence of water erosion on its surface. Its canyons and mountains are very similar to those found on Earth, except that they are lacking vegetation. Some scientists believe that Mars may have been very much like Earth until something somehow happened to evaporate the water supply.59. Scientists have explored Mars more than the other planets because _________.A. it is similar to EarthB. it is the fourth farthest from the SunC. it lacks vegetationD. it does not have vast oceans60. The underlined word “ speculation” in Para. 3 probably means __________.A. hopeB. assumptionC. doubtD. news61. In what aspect does the writer discuss the differenced of inner planets?A. Temperature.B. Atmosphere.C. Pressure.D. Construction.CGiant landslides(山崩) have a seismic(地震的) fingerprint that allows researchers to estimate their size, duration, and even how far they travel across the landscape, new research reveals. The finding may be particularly useful in identifying landslides that occur in steep, remote areas where few people live—not because of their immediate effects, but because such slumps(滑坡) can block rivers and impound lakes that could later destroy the natural dams and threaten populated areas downstream.Seismometers and other such instruments record ground motions occurring at all frequencies(频率), but seismologists typically pay attention to only those in ranges where the signals of earthquakes exist. The first seismic waves caused by quakes and explosions are sharp and distinct, says Gran Ekstrm, a seismologist in Palisades, New York. But the low-frequency waves caused by giant landslides are occasionally hidden in the mix of seismic vibrations(震动) booming through Earth's crust, too.Of the 29 largest known landslides worldwide from 1980 through 2012, ground motions from the 27 largest were detected by seismic instruments that were part of a global network of instruments. Seismic vibrations produced by the other two slides showed up well on regional networks.When Ekstrm and colleague Colin Stark analyzed the seismic data associated with those major landslides, they realized that certain characteristics of the slumps were contained in the ground motions—similar to the way that researchers can use seismic data to estimate the size of a quake and the directions. For instance, when rock falls off a mountainside, the peak is suddenly lighter—so, according to Newton's laws of motion, the mountain springs upward and away from the falling rock, causing initial ground motions that reveal some characteristics of the landslide.And because seismic data offer clues about how landslides unfold, it may help researchers develop better models of how landslides behave. “People rarely see large landslides happen; they typically only see the aftereffects,”Ekstrm notes.Indeed, Ekstrm and Stark's analysis revealed that a set of landslides that fell onto the Siachen Glacier near the India—Pakistan border in September 2010 actually included seven slides that occurred over a period of 4 days. “If we'd only seen this deposit in the field, we'd likely have thought it was formed by one or two landslides, ”Ekstrm says.Although some landslides fortunately don't affect people immediately, they can have long-term effects, If researchers have a way to identify such landslides quickly, they can possibly minimize damage and loss of life.62. What is the particular use of the finding mentioned in the passage?A. Clarifying the reasons to identify landslides.B. Finding the possible directions of landslides.C. Confirming the lonely sites and potential effects of landslides.D. Judging where landslides occur and how long they may last.63. According to the passage, seismic waves caused by giant landslides ________.A. are at high frequencyB. are sharp and distinctC. may occur at all frequenciesD. might hardly be discovered64. What can help scientists figure out the size and direction of a landslide?A. Newton's laws of motion.B. Ground motions.C. The falling rock.D. The lighter mountain peak.65. We can infer from the passage that ________.A. landslides can all be detected by instruments over the worldB. damage and loss of life from giant landslides are unavoidableC. landslides have never been seen when they occurD. deposit can tell scientists the number of landslidesDA Lesson from the Heart“You’ve grown so much…and it’s time you met a man,” my grandmother said, scrutinizing me through her round, thick bifocals(双焦眼镜). “A good man. No, the best man.” She pinched my left cheek until she left a red mark.“It’s okay, Hamai,” I said, looking down at my watch and b iting my lower lip until it bled. Hamai was what we called her in Korean.She was wearing her usual outfit for public appearance – a color-coordinated pants suit. Her polyester, the brace(支柱) on her left leg, and the matching jacket hid her hunched back.“You know, I used to have hundreds of men lined up at my door and calling me every night to ask me out. All the other girls looked at me with envy. Don’t think that I don’t know how to catch a man,” she snapped. Her voice acquired a sharper, defensive tone as she firmly pulled down the sides of her jacket, which reached just past her hips.“I thought you wanted help shopping for groceries,” I protested.However, Hamai had already made up her mind. “I’m going to teach you how to catch the ‘right’ man.” I was stuck. Hamai always got her way, and no one dared to go against her wishes.Of course, we went to her favorite place, a small park about two blocks from her apartment. She insisted that we walk despite the doctor’s warnings against it – and despite the fact that she had just recovered from a stroke. I walked slowly by her side, allowing her to stump along with the support of her newly finished wooden cane. I smiled to myself, remembering the months that we had spent – even buying the most expensive cane –convincing her that she must use it. “I can walk alone,” she would always say.We sat in her usual spot, an old wooden bench that resembled a rocking chair with two seats. Above us, the same huge oak tree looked down upon us almost as if my grandma had instructed it to protect us.. A winding concrete pathway, with lots of cracks where weeds managed to grow, was right in front of us. People occasionally walked this way as a shortcut but were usually in a rush to get to work. Rarely did families come and spend the day here.We must have looked like an odd couple. My grandma was leaning back with her legs dangling off the bench. Looking at her at the moment, I understood why people always told me that I had a “cute” grandma. Her plump figure, accentuated by the light blue matching outfit, and her short, jet-black, tightly premed hair framing a porcelain-white, perfectly round face, made her resemble an Asian Mrs. Beasley doll. In contrast, I was sitting Indian style on the bench, wearing old cutoff jeans and a white tank top. My hair was tied back in a loose ponytail with strands falling out around my face, and my golden-brown, sun-baked skin was evidence that Ispent most of my summer days in the sun.After a few minutes a man wearing a three-piece suit and carrying a briefcase walked by. He trudged along and stooped forward a little. I carefully watched my grandma’s eyes follow him until he disappeared around the curve of the pathway.She blinked once very hard and wrinkled her eye-brows, forming a deep crease across her forehead.After speculating for a moment, she said,” He stoops like a tree –how do you think he can support himself or you?” My grandma was famous for her endless supply of sayings or superstitions.”Then she darted her eyes at me and ordered, “Sit up straight and present yourself like a lady. How do you expect a man to ever look at you when you sit and act like an uncivilized person?” I sat up straight and watched a meticulously dressed man, wearing pressed white slacks and a matching dress shirt and with almost “plastic” hair, walk by with his head held up high. I merely gazed at him in awe. “That’s him, Hamai,” I sighed.She frowned in amazement at my ignorance. “Julie, what’s wrong with you? A man like that spen ds more time looking into a mirror than anything else.”Within the next few hours, more men passed by along with more criticisms from my grandma. Not one man matched my grandma’s strict standards. We waited as the sun slowly faded away and hid itself behind the branches of the tree. Silence overtook us for a few minutes, and I could only hear the wind rustling through the leaves of the tree.My grandma looked off absently toward where the pathway ended. “This was exactly the type of day that I last saw your grandfather,” She murmured. “He was a good man… the best I’ve ever seen. I spent years by the window every morning waiting for him to come back…until twenty years later I realized that I wasn’t going to see him ever again. Finally, I had to move on an d continue alone.”I put my hand sympathetically over hers and let the tips of my fingers run over the calluses and wrinkles that covered her hand. Her hands alone were proof that she had never run away from her hard life.She covered my hand with he r other hand. “I still remember smelling the salty sea air and standing on the boat holding your mother’s hand as I watched the last of our country. I was determined to leave my old life and dreams and never go back.” The wooden bench began to rock back and forth as if we were on the boat once again.Suddenly, she squeeze my hand hard. “I wasted so many years expecting him to come back because I was afraid of being alone,” she quavered as years of built-up anguish burst out.I leaned over, put my arm around her shoulder, and gently rubbed the collar of her jacket. “But Hami, you’re never alone….I’ll come live with you after I finish school, and we could have our ‘secret talks’ about men every day,” I tried to reassure her.Hamai didn’t respond for a few minutes and instead gently bowed her head and closed her eyes. Suddenly she looked up at me, clamped a hand on either side of my face, and looked straight at me. “I’ve already lived for eighty-seven years and had my chance; but you’re so young, with a ll your life ahead of you. More than I ever had. Don’t make the same mistakes that I did. Be strong. Be independent.” Her voice became very sharp.I looked into my grandma’s eyes, seeing the sparkle and youthfulness between the folds of loose skin and wrinkles. I wrapped my arms around her, rested my head on her should, andsmelled the baby powder on her cheek that always made it as soft as kid leather.66. Hamai took her granddaughter to the park ______________________________.A. to show her granddaughter a short cut to home.B. to ask her granddaughter to help shopping.C. to teach her granddaughter how to judge a “right” man.D. to watch people who walked by.67. Hamai didn’t like the first man who walked by because ______________________________.A. he was not as handsome as she thoughtB. he wore three-piece suitC. he seemed hard to support a family.D. he walked in a strange way.68. Which of these might be the “lesson” mentioned in the title of the story?A. Be independent.B. It is hard to find a good man.C. You should think about the past.D. Time waits for no man.69. Which of these qyestions is NOT answered in the story?A. What did Hamai look like?B. Why didn’t Hamai’s husband return?C. How old was she?D. How much did she care about her granddaughter?70. You can infer from this tory that Hamai wanted ________________________________A. her granddaughter to return her homeland with her.B. her granddaughter to learn from her msitakes.C. her granddaughter to live with her after she finished school.D. her granddaughter to keep her company.Ⅴ: Task-based reading (10分)Directions: Read the following passage, complete the form by using the information from the passage. Fill in each blank with one word.Are you a procrastinator?Following a schedule and doing things on time is extremely important in today’s busy world.Unfortunately, not everyone is good at doing this. Many people are procrastinators; they put off doing things that they need to until it’s too late.We all put off doing things at times. Statistics show that 90% of university students will often put off studying for a test or writing an important paper the night before. 25% of university students put off almost everything all the time. This more serious form of procrastination can result in a student dropping out of school. Students who put off doing their assignments once in a while get further and further behind in their studies. Before long, they feel completely helpless. For the chronic(长期的)procrastinator, often the only way to solve this problem is to quit school.According to recent studies, there are three main reasons that students put off doing things. First, many have poor time-management skills and often try to do too much in too little time. In the end, these students often feel helpless and will put off doing many things they need to. Another reason why students put off doing things is that they feel a subject is boring and have difficulty concentrating on an assignment. These students will often avoid doing something because they don’t like it. A third reason why many students put off doing things is that they often worry that their work will never be as good as it should be and fear failure of any kind,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省常州市高三(上)期末数学试卷一、填空题1.设复数z满足(z+i)(2+i)=5(i为虚数单位),则z=______.2.设全集U={1,2,3,4},集合A={1,3},B={2,3},则B∩∁U A=______.3.某地区有高中学校10所、初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校______所.4.已知双曲线C:(a>0,b>0)的一条渐近线经过点P(1,﹣2),则该双曲线的离心率为______.5.函数f(x)=log2(﹣x2+2)的值域为______.6.某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为______.7.如图所示的流程图中,输出S的值是______8.已知四棱锥P﹣ABCD的底面ABCD是边长为2,锐角为60°的菱形,侧棱PA⊥底面ABCD,PA=3,若点M是BC的中点,则三棱锥M﹣PAD的体积为______.9.已知实数x,y满足,则2x+y的最大值为______.10.已知平面向量,,x∈R,若,则||=______.11.已知等比数列{a n}的各项均为正数,且a1+a2=,a3+a4+a5+a6=40.则的值为______.12.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足(m,n均为正实数),则的最小值为______.13.在平面直角坐标系xOy中,已知圆O:x2+y2=1,O1:(x﹣4)2+y2=4,动点P在直线x+y ﹣b=0上,过P分别作圆O,O1的切线,且点分别为A,B,若满足PB=2PA的点P有且只有两个,则实数b的取值范围是______.14.已知函数f(x)=若不等式f(x)≥kx,对x∈R恒成立,则实数k的取值范围是______.二、简答题15.在△ABC中,角A,B,C的对边分别为a,b,c,已知cos(B﹣C)=1﹣cosA,且b,a,c成等比数列,求:(1)sinB•sinC的值;(2)A;(3)tanB+tanC的值.16.如图,正三棱柱A1B1C1﹣ABC,点D,E分别是A1C,AB的中点.(1)求证:ED∥平面BB1C1C(2)若AB=BB1,求证:A1B⊥平面B1CE.17.已知等差数列{a n}的公差d为整数,且a k=k2+2,a2k=(k+2)2,其中k为常数且k∈N*(1)求k及a n(2)设a1>1,{a n}的前n项和为S n,等比数列{b n}的首项为l,公比为q(q>0),前n项和为T n,若存在正整数m,使得,求q.18.如图,直线l是湖岸线,O是l上一点,弧是以O为圆心的半圆形栈桥,C为湖岸线l 上一观景亭,现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且不与点A,B重合)建栈桥,考虑到美观需要,设计方案为DP=DC,∠CDP=60°且圆弧栈桥BP在∠CDP的内部,已知BC=2OB=2(km),设湖岸BC与直线栈桥CD,DP是圆弧栈桥BP围成的区域(图中阴影部分)的面积为S(km2),∠BOP=θ(1)求S关于θ的函数关系式;(2)试判断S是否存在最大值,若存在,求出对应的cosθ的值,若不存在,说明理由.19.在平面直角坐标系xOy中,设椭圆(a>b>0)的离心率是e,定义直线y=为椭圆的“类准线”,已知椭圆C的“类准线”方程为y=,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:x2+y2=3的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.20.已知a,b为实数,函数f(x)=ax3﹣bx.(1)当a=1且b∈[1,3]时,求函数F(x)=||+2b+1(x∈[]的最大值为M(b));(2)当a=0,b=﹣1时,记h(x)=①函数h(x)的图象上一点P(x0,y0)处的切线方程为y=y(x),记g(x)=h(x)﹣y(x).问:是否存在x0,使得对于任意x1∈(0,x0),任意x2∈(x0,+∞),都有g(x1)g(x2)<0恒成立?若存在,求也所有可能的x0组成的集合;若不存在,说明理由.②令函数H(x)=,若对任意实数k,总存在实数x0,使得H(x0)=k成立,求实数s的取值集合.选修4-1:几何证明选讲21.如图所示,△ABC是⊙O的内接三角形,且AB=AC,AP∥BC,弦CE的延长线交AP于点D,求证:AD2=DE•DC.选修4-2:矩形与变换22.已知矩阵M=的属于特征值8的一个特征向量是e=,点P(﹣1,2)在M对应的变换作用下得到点Q,求Q的坐标.2015-2016学年江苏省常州市高三(上)期末数学试卷参考答案与试题解析一、填空题1.设复数z满足(z+i)(2+i)=5(i为虚数单位),则z=2﹣2i.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(z+i)(2+i)=5,得z+i=,∴z=2﹣2i.故答案为:2﹣2i.2.设全集U={1,2,3,4},集合A={1,3},B={2,3},则B∩∁U A={2} .【考点】交、并、补集的混合运算.【分析】先求出(∁U A),再根据交集的运算法则计算即可【解答】解:∵全集U={1,2,3,4},集合A={1,3},∴(∁U A)={2,4}∵B={2,3},∴(∁U A)∩B={2}故答为:{2}3.某地区有高中学校10所、初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校6所.【考点】分层抽样方法.【分析】从100所学校抽取20所学校做样本,样本容量与总体的个数的比为1:5,得到每个个体被抽到的概率,即可得到结果.【解答】解:某城地区有学校10+30+60=100所,现在采用分层抽样方法从所有学校中抽取20所,每个个体被抽到的概率是=,∴用分层抽样进行抽样,应该选取初中学校×30=6人.故答案为:6.4.已知双曲线C:(a>0,b>0)的一条渐近线经过点P(1,﹣2),则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】根据双曲线的渐近线过点P,建立a,b,c的关系,结合离心率的公式进行求解即可.【解答】解:焦点在x轴上的双曲线的渐近线方程为y=±x,∵一条渐近线经过点P(1,﹣2),∴点P(1,﹣2)在直线y=﹣x,即=2,则b=2a,则c2=a2+b2=5a2,即c=a,则双曲线的离心率e===,故答案为:5.函数f(x)=log2(﹣x2+2)的值域为(﹣∞,].【考点】对数函数的图象与性质.【分析】根据对数函数以及二次函数的性质解答即可.【解答】解:∵0<﹣x2+2≤2,∴x=0时,f(x)最大,f(x)=f(0)==,最大值故答案为:(﹣∞,].6.某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,由选出的学生中男女生都有的对立事件是选出的3名学生都是女生,由此利用对立事件概率计算公式能求出选出的学生中男女生都有的概率.【解答】解:某校从2名男生和3名女生中随机选出3名学生做义工,基本事件总数n==10,选出的学生中男女生都有的对立事件是选出的3名学生都是女生,∴选出的学生中男女生都有的概率为p=1﹣=1﹣=.故答案为:.7.如图所示的流程图中,输出S的值是【考点】程序框图.【分析】运行流程图,写出每次i <1026成立时S ,k 的值,当k=2016,k <1026不成立,退出循环,输出S 的值为.【解答】解:运行如图所示的流程图,有 S=3,k=1,k <1026成立,S=,k=2k <1026成立,S=,k=3k <1026成立,S=3,k=4 …观察规律可得S 的取值周期为3,由于2016=672×3,所以:k <1026成立,S=,k=2016k <1026不成立,退出循环,输出S 的值为.故答案为:.8.已知四棱锥P ﹣ABCD 的底面ABCD 是边长为2,锐角为60°的菱形,侧棱PA ⊥底面ABCD ,PA=3,若点M 是BC 的中点,则三棱锥M ﹣PAD 的体积为 . 【考点】棱柱、棱锥、棱台的体积.【分析】由AD ∥BC 可知S △ADM =S △ABD ,则V M ﹣PAD =V P ﹣ADM =.【解答】解:∵底面ABCD 是边长为2,锐角为60°的菱形,S △ADM =S △ADB ==,∵PA ⊥底面ABCD ,∴V M ﹣PAD =V P ﹣ADM ==.故答案为.9.已知实数x,y满足,则2x+y的最大值为.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解由约束条件作出可行域如图,联立,解得A(),令z=2x+y,得y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,z有最大值为.故答案为:.10.已知平面向量,,x∈R,若,则||=2.【考点】向量的模.【分析】根据向量的垂直关系求出,,从而求出||即可.【解答】解:平面向量,,x∈R,若,则4x+2x﹣2=0,解得:2x=1,∴=(1,1),=(1,﹣1)∴﹣=(0,﹣2),∴||=2,故答案为:2.11.已知等比数列{a n}的各项均为正数,且a1+a2=,a3+a4+a5+a6=40.则的值为117.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a1+a2=,a3+a4+a5+a6=40.∴,解得a1=,q=3.则===117.故答案为:117.12.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足(m,n均为正实数),则的最小值为.【考点】平面向量的基本定理及其意义.【分析】假设=λ,用表示出,使用平面向量的基本定理得出m ,n 与λ的关系,得到关于λ的函数,求出函数的最值.【解答】解: =,==﹣+,设=λ=﹣+λ(0≤λ≤1),则==(1﹣)+λ.∵,∴m=1﹣,n=λ.∴===≥=.当且仅当3(λ+4)=即(λ+4)2=时取等号.故答案为:.13.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x ﹣4)2+y 2=4,动点P 在直线x +y ﹣b=0上,过P 分别作圆O ,O 1的切线,且点分别为A ,B ,若满足PB=2PA 的点P 有且只有两个,则实数b 的取值范围是 ﹣<b <4 .【考点】直线与圆的位置关系.【分析】求出P 的轨迹方程,动点P 在直线x +y ﹣b=0上,满足PB=2PA 的点P 有且只有两个,转化为直线与圆x 2+y 2+x ﹣=0相交,即可求出实数b 的取值范围.【解答】解:由题意O (0,0),O 1(4,0).设P (x ,y ),则 ∵PB=2PA ,∴(x ﹣4)2+y 2=4(x 2+y 2),∴x 2+y 2+x ﹣=0,圆心坐标为(﹣,0),半径为, ∵动点P 在直线x +y ﹣b=0上,满足PB=2PA 的点P 有且只有两个,∴直线与圆x 2+y 2+x ﹣=0相交,∴圆心到直线的距离d=<,∴﹣﹣<b<﹣+故答案为:﹣<b<4.14.已知函数f(x)=若不等式f(x)≥kx,对x∈R恒成立,则实数k的取值范围是﹣3≤k≤e2.【考点】函数恒成立问题.【分析】根据分段函数的表达式,利用参数分离法,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【解答】解:当x=0时,不等式f(x)≥kx等价为0≥0成立,当x<0时,由f(x)≥kx得2x2﹣3x≥kx,即2x﹣3≤k,当x<0,2x﹣3<﹣3,则k≥﹣3;当x>0时,由f(x)≥kx得e x+e2≥kx,≥k,设h(x)=,当x>0时,h′(x)=,设g(x)=xe x﹣e x﹣e2,则g′(x)=xe x,当x>0时,g′(x)>0,即函数g(x)为增函数,∵g(2)=2e2﹣e2﹣e2=0,∴当x>2时,g(x)>0,h′(x)>0,函数h(x)为增函数,当0<x<2时,g(x)<0,h′(x)<0,函数h(x)为减函数,即当x=2时,函数h(x)取得极小值,同时也是最小值h(2)==e2,此时k≤e2,综上﹣3≤k≤e2,故答案为:﹣3≤k≤e2.二、简答题15.在△ABC中,角A,B,C的对边分别为a,b,c,已知cos(B﹣C)=1﹣cosA,且b,a,c成等比数列,求:(1)sinB•sinC的值;(2)A;(3)tanB+tanC的值.【考点】正弦定理;三角函数的化简求值.【分析】(1)利用三角形内角和定理及两角和的余弦函数公式化简cos(B﹣C)=1﹣cosA即可求得sinBsinC的值.(2)由等比数列的性质可得a2=bc,由正弦定理得sin2A=sinBsinC,由(1)解得sin2A=,结合范围A∈(0,π),a边不是最大边,即可解得A的值.(3)由B+C=π﹣A=,可得cos(B+C)=cosBcosC﹣sinBsinC=﹣,解得cosBcosC的值,利用同角三角函数基本关系式及两角和的正弦函数公式化简所求后计算即可得解.【解答】(本题满分为14分)解:(1)∵cos(B﹣C)=1﹣cosA=1+cos(B+C),∴cosBcosC+sinBsinC=1+cosBcosC﹣sinBsinC,∴sinBsinC=.…2分(2)∵b,a,c成等比数列,∴a2=bc,由正弦定理,可得sin2A=sinBsinC,从而sin2A=,因为A∈(0,π),所以sinA=,又因为a边不是最大边,所以A=…8分(3)因为B+C=π﹣A=,所以cos(B+C)=cosBcosC﹣sinBsinC=﹣,从而cosBcosC=,…10分所以tanB+tanC====﹣2﹣…14分16.如图,正三棱柱A1B1C1﹣ABC,点D,E分别是A1C,AB的中点.(1)求证:ED∥平面BB1C1C(2)若AB=BB1,求证:A1B⊥平面B1CE.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结AC1,BC1,则DE∥BC1,由此能证明ED∥平面BB1C1C.(2)推导出CE⊥AB,从而CE⊥平面ABB1A1,进而CE⊥A1B,再推导出Rt△A1B1B∽Rt △B1BE,从而A1B⊥B1E,由此能证明A1B⊥平面B1CE.【解答】证明:(1)连结AC1,BC1,∵AA1C1C是矩形,D是A1C的中点,∴D是AC1的中点,在△AA1C1C中,∵D、E分别是AC1、AB的中点,∴DE∥BC1,∵DE⊄平面BB1C1C,BC1⊂平面BB1C1C,∴ED∥平面BB1C1C.(2)∵△ABC是正三角形,E是AB的中点,∴CE⊥AB,又∵正三棱柱A1B1C1﹣ABC中,平面ABC⊥平面ABB1A1,交线为AB,∴CE⊥平面ABB1A1,∴CE⊥A1B,在矩形ABB1A1中,∵,∴Rt△A1B1B∽Rt△B1BE,∴∠B1A1B=∠BB1E,∴∠B1A1B+∠A1B1E=∠BB1E+∠A1B1E=90°,∴A1B⊥B1E,∵CE,B1E⊂平面B1CE,CE∩B1E=E,∴A1B⊥平面B1CE.17.已知等差数列{a n}的公差d为整数,且a k=k2+2,a2k=(k+2)2,其中k为常数且k∈N*(1)求k及a n(2)设a1>1,{a n}的前n项和为S n,等比数列{b n}的首项为l,公比为q(q>0),前n项和为T n,若存在正整数m,使得,求q.【考点】数列的求和;等差数列的通项公式.【分析】(1)根据等差数列{a n}的公差d为整数,且a k=k2+2,a2k=(k+2)2,其中k为常数且k∈N*,可得a1+(k﹣1)d=k2+2,a1+(2k﹣1)d=(k+2)2,解得d=4+,即可得出.(2)由于a1>1,可得a n=6n﹣3,S n=3n2.而,可得T3==1+q+q2.整理为:q2+q+1﹣=0,利用△≥0,解得m,即可得出.【解答】解:(1)∵等差数列{a n}的公差d为整数,且a k=k2+2,a2k=(k+2)2,其中k为常数且k∈N*,∴a1+(k﹣1)d=k2+2,a1+(2k﹣1)d=(k+2)2,解得d=4+,∵k=1或2,∴当k=1时,d=6,a1=3,a n=3+6(n﹣1)=6n﹣3;当k=2时,d=5,a1=1,a n=1+5(n﹣1)=5n﹣4.(2)∵a1>1,∴a n=6n﹣3,∴S n==3n2.∵,∴T3===1+q+q2.整理为:q2+q+1﹣=0,∵△=1﹣4≥0,解得m2≤,∵m∈N*,∴m=1或2.当m=1时,q2+q﹣3=0,q>0,解得q=.当m=2时,q2+q=0,q>0,舍去.综上可得:q=.18.如图,直线l是湖岸线,O是l上一点,弧是以O为圆心的半圆形栈桥,C为湖岸线l 上一观景亭,现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且不与点A,B重合)建栈桥,考虑到美观需要,设计方案为DP=DC,∠CDP=60°且圆弧栈桥BP在∠CDP的内部,已知BC=2OB=2(km),设湖岸BC与直线栈桥CD,DP是圆弧栈桥BP围成的区域(图中阴影部分)的面积为S(km2),∠BOP=θ(1)求S关于θ的函数关系式;(2)试判断S是否存在最大值,若存在,求出对应的cosθ的值,若不存在,说明理由.【考点】在实际问题中建立三角函数模型.【分析】(1)根据余弦定理和和三角形的面积公式,即可表示函数关系式,(2)存在,存在,S′=(3cosθ+3sinθ﹣1),根据两角和差的余弦公式即可求出.【解答】解:(1)在△COP中,CP2=CO2+OP2﹣2OC•OPcosθ=10﹣6cosθ,从而△CDP得面积S△CDP=CP2=(5﹣3cosθ),又因为△COP得面积S△COP=OC•OP=sinθ,=(3sinθ﹣3cosθ﹣θ)+,0<θ<θ0<π,所以S=S△CDP+S△COP﹣S扇形OBPcosθ0=,当DP所在的直线与半圆相切时,设θ取的最大值为θ0,此时在△COP中,OP=1,OC=3,∠CPO=30°,CP==6sinθ0,cosθ0=,(2)存在,S′=(3cosθ+3sinθ﹣1),令S′=0,得sin(θ+)=,当0<θ<θ0,S′>0,所以当θ=θ0时,S取得最大值,此时cos(θ0+)=﹣,∴cosθ0=cos[(θ0+)﹣]=cos(θ0+)cos+sin(θ0+)sin=19.在平面直角坐标系xOy中,设椭圆(a>b>0)的离心率是e,定义直线y=为椭圆的“类准线”,已知椭圆C的“类准线”方程为y=,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:x2+y2=3的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.【考点】椭圆的简单性质.【分析】(1)由题意列关于a,b,c的方程,联立方程组求得a2=4,b2=3,c2=1,则椭圆方程可求;(2)设P(x0,2)(x0≠0),当x0=时和x0=﹣时,求出A的坐标,代入椭圆方程验证知,A在椭圆上,当x0≠±时,求出过点O且垂直于0P的直线与椭圆的交点,写出该交点与P点的连线所在直线方程,由原点到直线的距离等于圆的半径说明直线是圆的切线,从而说明点A在椭圆C上.【解答】解:(1)由题意得:==2,2a=4,又a2=b2+c2,联立以上可得:a2=4,b2=3,c2=1.∴椭圆C的方程为+y2=1;(2)如图,由(1)可知,椭圆的类准线方程为y=±2,不妨取y=2,设P(x0,2)(x0≠0),则k OP=,∴过原点且与OP垂直的直线方程为y=﹣x,当x0=时,过P点的圆的切线方程为x=,过原点且与OP垂直的直线方程为y=﹣x,联立,解得:A(,﹣),代入椭圆方程成立;同理可得,当x0=﹣时,点A在椭圆上;当x0≠±时,联立,解得A1(,﹣),A2(﹣,),PA1所在直线方程为(2+x0)x﹣(x0﹣6)y﹣x02﹣12=0.此时原点O到该直线的距离d==,∴说明A点在椭圆C上;同理说明另一种情况的A也在椭圆C上.综上可得,点A在椭圆C上.20.已知a,b为实数,函数f(x)=ax3﹣bx.(1)当a=1且b∈[1,3]时,求函数F(x)=||+2b+1(x∈[]的最大值为M(b));(2)当a=0,b=﹣1时,记h(x)=①函数h(x)的图象上一点P(x0,y0)处的切线方程为y=y(x),记g(x)=h(x)﹣y(x).问:是否存在x0,使得对于任意x1∈(0,x0),任意x2∈(x0,+∞),都有g(x1)g(x2)<0恒成立?若存在,求也所有可能的x0组成的集合;若不存在,说明理由.②令函数H(x)=,若对任意实数k,总存在实数x0,使得H(x0)=k成立,求实数s的取值集合.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)记t(x)=x2﹣lnx,x∈[,2],求出t(x)的范围是[,4﹣ln2],b∈[1,3]时,记v(t)=|t﹣b|+2b+1,求出函数的单调性,求出M(b)即可;(2)①求出h(x)的导数,求出g(x)的表达式,结合函数的单调性求出x0的值即可;②求出H(x)的值域,根据y=x在[s,+∞)递增,值域是[,+∞),若s>e,则函数y=在(0,e)递增,[e,s)是减函数,其值域是(﹣∞,],得到≤,即s2﹣2elns≤0,①,记u(s)=s2﹣2elns,根据函数的单调性判断即可.【解答】解:(1)F(x)=|x2﹣lnx﹣b|+2b+1,记t(x)=x2﹣lnx,x∈[,2],则t′(x)=2x﹣,令t′(x)=0,得:x=,<x<2时,t′(x)<0,t(x)在(,)上递减,<x<2时,t′(x)>0,t(x)在(,2)上递增,又t()=+ln2,t(2)=4﹣ln2,t()=且t(2)﹣t()=﹣2ln2>0,∴t(x)的范围是[,4﹣ln2],b∈[1,3]时,记v(t)=|t﹣b|+2b+1,则v(t)=,∵v(t)在[,b]上递减,在(b,4﹣ln2]递增,且v()=3b+,v(4﹣ln2)=b+5﹣ln2,v()﹣v(4﹣ln2)=2b+,∴b≤时,最大值M(b)=v(4﹣ln2)=b+5﹣ln2,b>时,最大值M(b)=v()=3b+,∴M(b)=;(2)h(x)=,①h′(x)=,h′(x0)=,∴y(x)=(x﹣x0)+y0,g(x)=﹣y0﹣(x﹣x0),g(x0)=0,g′(x)=﹣,g′(x0)=0,令G(x)=g′(x)=﹣,G′(x)=,∴g′(x)在(0,)递减,在(,+∞)递增,若x0<,则x∈(0,x0)时,g′(x)>0,g(x)递增,g(x)<g(x0)=0,x∈(x0,)时,g′(x)<0,g(x)递减,g(x)<g(x0)=0,不符合题意,若x0>,则x∈(,x0)时,g′(x)<0,g(x)递减,g(x)>g(x0)=0,x∈(x0,+∞)时,g′(x)>0,g(x)递增,g(x)>g(x0)=0,不符合题意,若x0=,则x∈(0,)时,g(x)<0,x∈(,+∞)时,g(x)>0,符合题意,综上,存在x0满足要求,且x0的取值集合是{},②∵对任意实数k,总存在实数x0,使得H(x0)=k成立,∴y=H(x)的值域是R,y=x在[s,+∞)递增,值域是[,+∞),对于y=,y′=,x=e时,y′=0,x>e时,y′>0,在(e,+∞)递增,0<x<e时,y′<0,在(0,e)递减,若s >e ,则函数y=在(0,e )递增,[e ,s )是减函数,其值域是(﹣∞,],又<,不符合题意,舍去,若0<s ≤e ,则函数y=在(0,s )递增,其值域是(﹣∞,),由题意得:≤,即s 2﹣2elns ≤0,①,记u (s )=s 2﹣2elns ,u ′(s )=2s ﹣=,0<s <时,u ′(s )<0,u (s )在(0,)递减,s >时,u ′(s )>0,u (s )在(,e )递增,∴s=时,u (s )有最小值u ()=0,从而u (s )≥0恒成立(当且仅当s=时,u (s )=0)②,由①②得:u (s )=0,得:s=,综上,实数s 的取值集合是{}.选修4-1:几何证明选讲21.如图所示,△ABC 是⊙O 的内接三角形,且AB=AC ,AP ∥BC ,弦CE 的延长线交AP 于点D ,求证:AD 2=DE •DC .【考点】与圆有关的比例线段.【分析】连接AE ,通过证明∠AED=∠CAD ,∠ACD=∠EAD ,得到△ACD ∽△EAD ,即可证明结论.【解答】证明:连接AE ,则∠AED=∠B , ∵AB=AC , ∴∠ACB=∠B , ∴∠AED=∠ACB , ∵AP ∥BC ,∴∠ACB=∠CAD , ∴∠AED=∠CAD . ∵∠ACD=∠EAD , ∴△ACD ∽△EAD ,∴,∴AD2=DE•DC.选修4-2:矩形与变换22.已知矩阵M=的属于特征值8的一个特征向量是e=,点P(﹣1,2)在M对应的变换作用下得到点Q,求Q的坐标.【考点】矩阵特征值的定义;特征向量的定义;特征向量的意义.【分析】利用矩阵的特征值和特征向量的定义,求出矩阵,即可求Q的坐标.【解答】解:由题意,=8×,∴,∴a=6,b=4,∴,∴Q的坐标是(﹣2,4).2016年9月22日。