Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent

合集下载

松露药典标准

松露药典标准

松露药典标准As a prestigious and authoritative guide in the world of truffles, the Truffle Encyclopedia sets the standard for excellence and quality. 松露药典是世界松露领域中一本声名显著、权威的指导书,它为松露的优秀品质和标准设立了榜样。

With its detailed descriptions and in-depth information on different species of truffles, this encyclopedia provides invaluable knowledge for truffle enthusiasts, chefs, and researchers alike. 通过对不同种类松露的详细描述和深度信息,这本百科全书为松露爱好者、厨师和研究者提供了宝贵的知识。

One of the key aspects that the Truffle Encyclopedia focuses on is the different classifications and characteristics of truffles. 松露药典关注的一个关键方面是松露的不同分类和特征。

By delving into the nuances of aroma, flavor, texture, and appearance, readers can gain a deeper understanding of the complexities of truffles and how to distinguish between them. 通过深入研究气味、味道、口感和外观的微妙之处,读者可以更深入地了解松露的复杂性,以及如何区分它们。

美从光秃库盘尼树皮中分离出新的可抗癌细胞和病原细菌化合物

美从光秃库盘尼树皮中分离出新的可抗癌细胞和病原细菌化合物
维普资讯
7 6
浙 江 林
业 科

2 卷 6
【 5 】张泽华.日本青森县 苹果省力化低 成本 栽培技术的发展 【. J 落叶果 树 ,20 ,3 6 1 04 6( ):5 —5 0 1
L b r a iga d E oo a n g me t d l a o vn n c lgc l S i Ma a e n Mo es a d E au t nf r l ie F ut c a d n v la i l d r i0r h r o o Hi s
1 . , ,4 乙酰..- .[ 3 . O2 三 a 鼠李糖吡喃糖. 1+ ) BD 吡喃型葡萄糖】 L (— 2 . . . 十六烷 , 并将这种新的长链脂肪醇糖苷 称之为库盘尼糖苷。还利用 2 维核磁共振分析了这种化合物的化学结构。 试验证明 , 库盘尼糖苷具有离体抗人肝细胞癌 H p 2 eC 、乳腺腺癌 MD . .3 、 AMB2 1 乳腺导管癌 H 58 、乳 5 T 7
Zh -i n1 LU e .h ng , HE io y ng , XI Ja . u W iz o X a .o 2 E in qi3 LAIJ n s e 3 W AN G il u h ng



( .uh F rsy ueu f eag Yn e 2 60C i ; .i u Si c rm t n et o Ze agLsu 330, h ; 1Yne oet B ra  ̄ j n。 uh 3 30, hn 2Ls ic ne o oi ne f  ̄j n, i i 200 C i r o i a h e P oC r i h a n
腺腺癌 MC .、原发性乳腺癌 5 3 和前列腺癌 P 细胞毒性。还证明,库盘尼糖苷具有抗蜡样芽孢杆菌、金 F7 67 C3 黄色葡萄球菌和大肠杆菌的抗病原细菌毒性 。

物——精选推荐

物——精选推荐

生物繁殖技术欧洲(不含法国):北美及南美 :法国: 亚洲:其他:营业额4,800万欧元劳动力250雇员产品在法国95%制造出口 120 个120国家IMV卡苏公司的历史种动物种类,而且自从1987年Cryo 及到了人类。

世界生物繁育全能的研发小组将技术融于繁育技术服务之中动物的人工授精优化繁育产业链的每个环节IMV卡苏公司自成立以来,经营范围不断发展且多样化。

到目前为止,其专业已经涉及到以下四个囊括养殖户所有需求的专业化领域。

服务于养殖户的专业技能我们的研发小组成员包括生命科学家,动物外科医生,药理学家及设计师。

我们有来自于国家农科院(National Institute for Agronomic Re-search – INRA)及许多大学的支持。

另外,这个核心小组致力于应用研究并且受到科研部门、电子研发部门及样品制作部门的支持。

我们的小组成员还通过与部分客户合作,执行的项目范围从实地或实验室到工业化生产,指导整个项目,着力于以下设计:n 生物产品 – 用于保存人类或动物细胞n 设备 – 用于分析、包装、冷冻保存、储存及使用精子、胚胎及生物样本n 一次性塑料耗材自1981年来,卡苏公司已经培训了来自世界各地的同仁,用最新的设施培训他们人工授精及胚胎移植技术。

通过这种方式,我们预见,创造并实现各种技术创新来持续改善动物繁殖技术。

设计并生产养殖户所需的所有一次性用品及用具95%以上的产品在我们的生产基地法国莱格勒市制造。

我们始终坚持为我们的客户提供辅助生殖技术领域的高质量产品。

我们的新产品是专门为满足市场需求设计的,且严格符合质量、安全及可追溯性的标准。

通过了国际标准ISO 9001:2008 及医学标准ISO 13485:2003 认证。

我们的CBS™--专门为精液包装及胚胎包装设计的高度安全细管,荣获CE认证和美国食品及药物管理局许可。

从原材料到完成生产这整个生产过程中,我们始终坚持每个细节严格把控。

天然产物中英文

天然产物中英文

ENGLISH CHINESEAbrine 相思豆碱Abruquinone AAbruquinone BAcetate of Albopilosin AAcetone condensation of Albopilosin A3β-acetyloleanolicacid 3β-乙酰氧基齐墩果酸O-Acetyl-3,6-di-O-β-D-xylopy-rano-astragaloside O-乙烯3,6-双氧-β-D-吡喃木糖基绵毛黄芪甙6''-acetylhyperoside 6''-乙酰氧基金丝桃甙N-Acetyl-D-Glucosamine N-乙酰氨基葡萄糖糖8-o-acetyl Shanzhiside MethylesterAcetylursolic acid 乙酰乌索酸Acetylshikonin 乙酰紫草素14-AcetyltalatisamineAchyranthan 牛膝多糖Aconitine 乌头碱Aconosine 爱康诺辛Actein 黄肉楠碱ActinodephnineAcuminatinAcuminatosideAdenanthin 腺华素Adenosine 腺苷,腺嘌呤核苷Aescin 七叶皂甙Aesculetin 马栗树皮素Aesculin 七叶甙,马栗树皮甙Agaricic acid 落叶松覃酸Agrimophol 鹤草酚Ajmalicine(δ-Y ohimbine) 阿吗碱,δ-育亨宾碱,阿吗里新,阿马林,,萝芙碱Ajmaline 阿马林Akebia saponin D 木通皂甙DAlantolactone (Helenin) 土木香内酯,阿兰内酯Albopilosin AAleuritic acid 苏式-紫胶桐酸Alizarin 茜素Allantoin 尿囊素Allasecurinine 别一叶秋碱AllantolinAllicin 大蒜素α-Allocryptopine α-别隐品碱Alloisoimperatorin 别异欧前胡素AlloxanthoxyletinAllose 阿罗糖Aloe-emodin 芦荟大黄素Aloe-saponolAloin 芦荟甙Aloesin 芦荟苦素Aloperin 苦豆碱Alpinetin 山姜素Amentoflavone9-Amino camptothecin 9-氨基喜树碱1- Amino-cyclopropane-1-acid hydrochloride 1-氨基环丙烷-1-羧酸盐酸盐Amethystoidin A香茶菜甲素Ampelopstin 福建茶素Amphicoside II 胡黄连苦甙II,胡黄连甙IIAmygdalin 苦杏仁甙β-Amyrin β-香树脂醇α-Amyrin acetate α-香树脂醇乙酸乙酯β-Amyrin acetate β-香树脂醇乙酸乙酯β-Amyrin palmitate 棕榈酰β-香树酯Anagyrine 臭豆碱,安那吉碱,安纳基林,Andrographolide 穿心莲内酯,穿心莲乙素5α-Androstane-3,17-Diol 5α-雄烷-3,17-二醇5α-Androstenediol 5α-雄烯二醇AnetholeAnemonine25-anhydrocimicigenol-3-O--β-D-xylopyranoside gbc-09β-Anhydroicaritin 去水淫羊藿黄素Anisodamine 山莨菪碱Anisodine 樟柳碱Apigenin 芹菜素,芹菜甙元,芹菜(甙)配基,芹黄素Apigenin-7-glucoside 芹菜甙元(芹菜素)-7-葡萄糖甙Apigenin-7-O-glucoside 芹菜甙元(芹菜素)-7-O-葡萄糖甙Apigenin-8-O-glucoside 芹菜甙元(芹菜素)-8-O-葡萄糖甙Apigenin-8-O-β-glucoside 芹菜甙元(芹菜素)-8-O-葡萄糖甙,牡荆素Arbutin 熊果甙Arctiin 牛蒡子苷,牛蒡子甙Aristolochic acid 马兜铃总酸Aristolochic acid A马兜铃酸 AAristolochic acid B 马兜铃酸 BAristolochic acid C 马兜铃酸CArmillarisin A亮菌甲素,假蜜环菌甲素Arteannuic acid 青蒿酸Atraotydin 苍术甙α-Artemether α-蒿甲醚β-Artemether β-蒿甲醚Arteannuin 青蒿素Artemetin 蒿亭Artemisinic acid 青蒿酸Artemisinin 青蒿素Arundoin 芦竹素Asarinin 细辛脂素, 细辛酯素α-Asaron α-细辛醚β-Asaron β-细辛醚AseculinAsiatic acid 积雪草酸Asiaticoside 积雪草甙DL-Asparagine DL-天冬素,DL-天冬碱L-Asparagine L-天冬素,DL-天冬碱(怕热+4℃)DL-Aspartic acid DL-天冬酸L-Aspartic acid L-天冬酸AstragalinAstragaloside II 黄芪皂甙IIAstragaloside IV 黄芪甲甙Atisine chlorideAtractydin 苍术素Atractylon 苍术酮Atractyloside 苍术甙Atropine SulfateAucubin 桃叶珊瑚甙A vacularin 扁蓄甙Azedarachin(Toosendanin) 川楝素,苦楝素Baicalein 黄芩素,黄芩甙元,黄芩黄素Baicalin 黄芩甙,贝加灵Benzoylene ureaBaptitixine 金雀花碱,野靛碱,金雀儿碱,金莲花碱Barbaloin 芦荟甙BeesiosideI[(20S,24S)-15β,16β-iacetoxy-18,24;20,24-diepoxy-9,19-cyclanostane-3β,25-diol-3-O-β-D-xylop yranoside]yl-28-O-α- L-rhamnopyranosyl(1-4)- β-D-glucopyranosyl(1-6)- β-D-glucopyranosyl ester gbc-21Benzoin 安息香Benzoin ethyl ether 安息香乙醚Berbamine hydrochloride 盐酸小檗胺Berberine hydrochloride 盐酸小檗碱,盐酸黄连素Bergapten 佛手柑内酯,5-甲氧基补骨脂素Bergenin 岩白菜素,矮茶素,虎耳草素,岩白菜宁,佛手配质Betaine 甜菜碱Betulin 白桦脂醇Betulinic acid 白桦脂酸2,3- Dihydroxy Betulinic acid 2,3-二羟基白桦脂酸Bicuculline 毕枯枯林Biflorin 双花母草素BIflorine 原阿片碱Bilirubin 胆红素Bilobalide 白果内酯Bilobetin 7-去甲基银杏双黄酮Bronyl acetate 乙酸龙脑酯4-(2-Bronyloxy)-2-butytene-1-ol 4-冰片氧基-2-丁烯-1-醇4-(2-Bronyloxy)-2-butanol 4-冰片氧基-1-丁醇Brervifolincaboxylic acid 天豆叶苏木酚酸,短叶苏木酚酸BrevicorninBritanin 大花旋覆花素Brucealine-glucoside 鸦蛋子苦素 E 葡萄糖甙Bruceine D 鸦蛋子苦素DBruceine E 鸦蛋子苦素 EBrucine 马钱子碱,布鲁生Brucine sulfate 马钱子碱硫酸盐borneol 龙脑,冰片Bornyl acetate 乙酸龙脑酯Bufalin 蟾毒灵γ-Bufotalin γ-日蟾毒配质Bulleyaconitine A草乌甲素Butenolide A白术内酯 AButenolide B 白术内酯 Bn-Butyl-p-hydroxybenzoatButylidene 丁烯基太内酯Byakangelicin 比克白芷素Byoscine bulylbromideByoscine hydrobromideCaffeine 咖啡因,咖啡碱,茶碱Calc icalin A灰岩香茶菜甲素Calycosin 毛蕊异黄酮Calycosin-O-β-D-glucopyranoside 毛蕊异黄酮甙Campanulin 风铃草素Camphol 樟脑Camptothecine 喜树碱Cantharidin 斑蝥素Caohuoside ACaohuoside BCaohuoside CCaohuoside DCaohuoside El-capaurine l-卡巴任碱Capnoidine 咖喏定Capsaicin 辣椒碱Carboxymethylpachymaran 羧甲基茯苓多糖Cardamonin 小豆蔻明β-Caryophllene alcohol β-石竹烯醇, β-丁香烯醇β-Caryophllene acetate β-乙酸石竹烯醇酯, β-乙酸丁香烯醇酯Caryptoside 山栀子甙Catalpin 梓甙,梓实糖甙Catalpinoside 梓醇,脱对羟基苯甲酸梓甙Catalpol 梓醇Catalposide 梓甙(+)-Catechin hydrate 儿茶素Caudatin(Cauldatin)Celafurine 呋喃南蛇碱Cepharanthine 头花千金藤碱,千金藤素, Cephalomannine 三尖杉宁碱Cephalotaxin 三尖杉碱Chanlmogric acid 大风子酸Chasmanconitine 查斯曼尼亭Chasmanine 查斯曼宁碱ChelerythridimerineChelerythrineChelerythrine hydrochloride 盐酸白屈菜红碱Chelidonic acid 白屈菜酸Chelidonine 白屈菜碱Chenodeoxycholic acid 鹅去氧胆酸L-Chiro-inositolChitin 甲壳素Chloranthalactone C 金粟兰内酯 C4-Chloro-3,5-dimethoxybenzoic-O-arabitol ester 猴菇菌素I Chlorogenic Acid 氯原酸Chlorophyll Cu 叶绿素铜Cholesterol 胆固醇Cholic acid 胆酸6-Choropurine Riboside 6-氯嘌呤核苷Chrysin 5,7-二羟基黄酮,白杨素,白杨黄素Chrysophanic acid 大黄酚Chrysophanol 大黄酚10-(Chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone Cimigenol xyloside 升麻醇木糖甙Cimigenol xyloside gbc-08Cimiside 升麻甙Cinnamaldehyde 肉桂醛Cinnamate sodium 肉桂酸钠Cinnamic aldehyde 桂皮醛Cinnamic acid 桂皮酸,肉桂酸6-O-Cinnamoyl CatalpolCinnamon oil 肉桂油Cinnamoyl chloride 肉桂酰氯Cinnamyl alcohol 肉桂醇Cincumol 莪术醇,姜黄醇Cinobufagin 华蟾酥毒基Cis-communic acid 反式璎柏酸Cis-podophyllic acidCistanoside C 角胡麻甙 CCistanoside D 角胡麻甙 DCiwujianoside B 刺五加皂甙BCnidium lactone 蛇床子素Coclaurine 乌药碱Codeine PhosphateColchicinamide 秋水酰胺Colchicine 秋水仙碱Columbin 黄藤内酯Conduritol 牛奶菜醇2-COOH-3OH-4-Isopenyl-5-OCH3-stylbene 木豆芪Cordycepin 冬虫夏草素,蛹虫草菌素,虫草素Corilagin 柯里拉京,鞣(料)云实精,柯子次鞣素Corticosterone 皮质甾酮Corydalis 原阿片碱Corydine 紫堇定Corydaline 延胡索碱甲,紫堇碱Corydinine 原阿片碱CorypallineCostunolide 木香烃内酯P-Coumaric acid 对香豆酸Coumarin 香豆素,香豆精,香豆酮Crassicauline A粗茎乌头碱Cryptotanshinone 隐丹参酮Cucurbitacin 雪胆甲素Cucurbitacin B 葫芦素B,葫芦苦素B Cucurbitacin IIa 葫芦素IIaCucurbitacin IIb 葫芦素IibCucurbitacin E 葫芦素E,葫芦苦素E Curculigoside 仙茅甙CuhuosideCurcumalactone 莪术内酯Curcumenol 莪术醇,姜黄醇Curcumin 姜黄素Curcumol 莪术醇,姜黄醇Curculigoside 仙茅甙Curgerenone 莪术酮Cyclovirobune D 环常绿黄杨碱D,黄杨木生物碱I,环锦热黄杨碱D Cylindrin 白茅素Cyclcanoline 轮环藤酚碱Cycleanine 轮环藤碱,轮环藤宁碱,轮环藤宁α-Cyperone α-香附酮Cytisine 金雀花碱,野靛碱,金雀儿碱,金莲花碱Daidzein 大豆甙元,黄豆甙元,大豆黄素,大豆黄酮,黄豆黄素Daidzein-4',7-diglucoside 黄豆甙元-4`,7-二葡萄糖甙Daidzein-8-C-glucoside 黄豆甙元-8-葡萄糖甙Daidzeol 大豆甙元,黄豆甙元,大豆黄素,大豆黄酮Daidzin 大豆甙,黄豆甙Sodium Danshensu 丹参素钠DaphneticinDaphnetin 祖师麻甲素,(白)瑞香素, 瑞香内酯,Daphnin 祖师麻乙素,(白)瑞香甙Daphnoretin 西瑞香素Daucosterol 胡萝卜素,胡萝卜甾醇Dauricine 北豆根碱,蝙蝠葛碱,山豆根碱,北山豆根碱Daurisoline 北豆根苏林碱,蝙蝠葛苏林碱10-Deacetyl baccatin III 10-脱乙酰基巴卡丁III14-Debenzoylfranchetine 14-去苯甲酰大度乌碱Decosahedaenoic acid(DHA) 二十二碳烯酸Decursin 日本前胡素,紫花前胡素Dehydrocavidine 去氢紫堇碱Dehydrocorydaline 去氢延胡索素Dehydrostephanine 去氢千金藤碱Dehydrocostunolide lactone 脱氢木香内酯13-Dehydroxyindaconintine 13-去羟基印乌碱6,7-Dehydroxyleanone 6,7-去氢罗列酮6-Dehydrozeylenyl 2-isonicotinic esterDelavaconitine 紫草乌碱甲Deltalineα-Deltatinβ-DeltatinDemethoxycurcumin 去甲氧基姜黄素3'-Demethyl etoposide4'-Demethyl epipodophyllotoxin 4`-去甲氧基表鬼臼毒素Demethyl Evodiamin 去甲基吴茱萸碱4'-Demethyl isopicropodophyllone4'-Demethyl podophyllotoxin 4`-去甲氧基鬼臼毒素Dencichine 三七素Denudatine 裸翠雀亭Deoxyandrographoline 去氧穿心莲内酯, 穿心莲甲素Deoxycholic acid 去氧胆酸27-Deoxyla acteinDehydroandrographoline 脱水穿心莲内酯,穿心莲丁素Deoxyaconitine 脱氧乌头碱Deoxyschizandrin 脱氧五味子素,五味子甲素,五味子素ADephylloside BN-DesmethydauricineDesmethylanhydroicaritin4-Desoxy-coriacinDesoxypodophyllotoxinDeverative of Amethystoidin A乙酰香茶菜甲素Dianyctrsnlgide 大蒜素L-Dicendrine 左旋荷包牡丹碱D-Dicentrine 右旋荷包牡丹碱Dictamnine 白藓碱Dictamnolactone 吴茱萸内酯,柠檬苦素Didymin 香风草甙(20S,24S)-18,24;20,24-diepoxy-9,19-cyclanostane-3β,15β,16β-25-tetraol-3-O-β-D-xylopyranosid e gbc-22aDiffractaic acid 地弗地衣酸Digitogenin 洋地黄毒甙Digoxin 地高辛Dihydroartemisinin 二氢青蒿素Dihydrocucurbitacin F-25-acetate 雪胆甲素1,7-Dihydro-3,4-dimethoxyanthoneDihydrotanshinone I 二氢丹参酮I1,8-Dihydroxy Anthraquinone 1,8二羟基蒽醌2,5-Dihydroxybenzoic acid6-Dihydroxybenzoic acid3,4-Dihydroxybenzoic acid3,5-Dimethoxybenzoic acid2.5-Dimethoxybenzaldehyde5,8-Dimethoxy-6,7-dimethoxyflavone 5,8-二羟基二甲氧基黄酮β,β-Dimethylacrylalkannin β,β-二甲基丙烯欧紫草素N,N'-Dimethyldauricine IodideO,O-Dimethyldaurisoline3,5-Dimethoxybenzaldehyde2,5-Dimethoxybenzoic acid4',7-dimethoxyisoflavone 4',7-二甲基异黄酮7,4'-Di-O-hydroxymethylpuerarin7,4'-Di-o-methylpuerarin4'-methoxy-3',5,7-trihydroxyflavone 4'-甲氧基-3',5,7-三羟基黄酮4'-o-methoxycarbonylmethylene-puerarin5-methoxygenistin-7-o-glucoside 5-甲氧基染料木素-7-O-葡甙Diphylloside ADiphylloside BDiphylloside CDipsacus saponin IX 续断皂甙IXDipsacus saponin X 续断皂甙XDioscin 薯蓣皂甙Diosgenin 薯蓣皂甙元Docetaxel 多西紫杉醇n-Docosane 正-二十二烷Doesahexaenoic acid (DHA) 二十二碳六烯酸Cis-4,7,10,13,16,19-Doesahexaenoic acid ethyl ester 二十二碳六烯酸乙酯L-Dopa L-多巴Dracoalban 血竭素高氯酸盐p-Dracorhodin Perochlorate 血竭素高氯酸盐,对二甲氨基苯甲醛Dragamine HbrDulcite 卫矛醇,甜醇Dulcitol 卫矛醇,甜醇Dulcose 卫矛醇,甜醇Eburicoic acid 齿孔酸Eburicolic acid 齿孔酸β-Ecdysone β-脱皮激素Ecdysterone β-脱皮激素Echinacoside 松果菊苷Effusanin AEffusanin BEffusanin ECis-5,8,11,14,17-Eicosapentaenoic acid(EPA) 二十五碳烯酸Cis-5,8,11,14,17-Eicosapentaenoic acid ethyl ester 二十五碳烯酸甲酯α-Elemene α-榄香烯β-Elemene β-榄香烯δ-Elemene δ-榄香烯Eleutheroside B 刺五加甙BEllagic acid 鞣花酸,胡颓子酸Emodin 大黄素Emodin monomethyl ether 大黄素甲醚Eonurine 益母草碱L-Ephedrine hydrochloride L-盐酸麻黄碱(-)-Epicatechin (EC) 表儿茶素(-)-Epicatechin gallate (ECG)20-Epieratamine(-)-Epigallocatechin (EGC) 表没食子酸儿茶素(-)-Epigallocatechin gallate(EGCG) 表没食子儿茶素没食子酸酯8-Epiloganin 8-表番木鳖碱8-Epiloganic acid 8-表番木鳖酸Epimedin AEpimedin BEpimedin CEpimedosideEpimedoside AEpimedoside BEpimedoside CEpimedoside DEpimedoside EEpimedokoreanoside IEpimedokoreanoside II7-EpiphlomiolEpitriptolideErgometrini Maleats 马来酸麦角新碱Ergonovine Maleats 马来酸麦角新碱Ergosterol 麦角甾醇Erychroside 桂竹糖芥甙Erycib alkaloid II 丁公藤乙素Erythromycin 红霉素Esculetin 七叶树甙元Esculin 七叶树甙Estradiol 雌二醇(炔雌醇?)Etepholic lin 光千金藤定碱4-Ethoxybenzaldehyde2-Ethoxybenzoic acidEthoxychelerthrine 乙氧基白屈菜红碱Ethyl cinnamate 肉桂酸乙酯7-Ethyl camptothecin 7-乙基喜树碱7-Ethyl-10-Hydroxy camptothecin 7-乙基-10-羟基喜树碱Ethyl-p-methoxycinnamate 对甲氧基苯乙酯Etoposide(α-tipe) 足叶乙甙Etoposide 足叶乙甙Eucalyptole 桉油精Eugenol 丁香酚Euhorbiasteroid 续随二萜醇Euonine 雷公藤新碱EuphrosideEvodiamine 吴茱萸碱Evodin 吴茱萸内酯,柠檬苦素Excisanin A香茶菜甲素Excisanin B 香茶菜乙素EzochasmanineFangchinoline 防己诺林碱Fargesin 辛夷脂素Farrerol 杜鹃素Ferulic acid 阿魏酸Fibrauretin 大黄藤素FlavoneFormononetin 刺芒柄花素Forsythiaside 连翘酯甙Forsythin 连翘苷,连翘甙Forsythingenin 连翘酯素Forsythinol 连翘醇Forsythoside A连翘苷,连翘甙Forsythoside C 连翘甙(连翘苷) CForsythoside D 连翘甙(连翘苷) DFranchetine 大度乌碱Fritillarine 贝母乙素,贝母宁碱,去氢贝母碱,浙贝乙素,贝母碱乙,贝母乙碱Fucosterol 岩光甾醇Fumalic acid 阿魏酸Fumalic acid methyl etherFumalic acid monosodium saltFumarine 原阿片碱Gallic acid 没食子酸3-O-galloyl-(-)epicatechin(GEC)6'-O-Galloyl-homoarbutin 6'-O-没食子酰基高熊果甙2”-O-Galloyl-hyperin 2”-O-没食子酰基金丝桃甙Gamabufalin 日蟾毒它灵Ganolactone 灵芝内酯Gastrodin 天麻素α-Gas trodin α-天麻素β-Gastrodin β-天麻素Geniposide 栀子苷,栀子甙,京尼平甙,去羟基栀子甙Geniposidic acid 栀子酸Genistein 染料木素,染料木甙元, 染料木质素Genistein-8-c-apiosyl-(1-6)glucoside 大豆甙元8-c-芹菜糖基(1-6)葡萄糖甙Genistin 染料木甙,GentianidinGentianine 龙胆(宁)碱,秦艽碱甲Gentiopicrin 龙胆苦甙Gentiopicroside 龙胆苦甙Ginkgetin 银杏双黄酮,银杏黄素,白果双黄酮,银杏亭Ginkgolides(90%) 银杏总内酯Ginkgolide A银杏内酯 AGinkgolide B 银杏内酯 BGinkgolide C 银杏内酯 CGinkgolide J 银杏内酯JGingerol 姜辣素Ginnalin AGinsenoside Rb1 (CAS# 41753-43-9) 人参皂甙Rb1 Ginsenoside Rb2 人参皂甙Rb2Ginsenoside Rb3 (CAS#68403-26-8) 人参皂甙Rb3 Ginsenoside Rc (CAS# 11021-14-0) 人参皂甙Rc Ginsenoside Rd (CAS# 52705-93-87) 人参皂甙Rd Ginsenoside Re (CAS# 51542-56-4) 人参皂甙Re Ginsenoside Rf 人参皂甙RfGinsenoside Rg1 (CAS# 22427-39-0) 人参皂甙Rg1 R,S-Ginsenoside Rg2 R,S-人参皂甙Rg2S-Ginsenoside Rg3 S-人参皂甙Rg3Ginsenoside Rh1 人参皂甙Rh1S-Ginsenoside Rh2 S-人参皂甙Rh2Ginsenoside Ro 人参皂甙RoGinsenoside RT5 人参皂甙RT5D-GlucoseGlycine 甘氨酸GlycitinGlycocholate sodium 牛胆酸钠Glycocholic acid 甘胆酸Glycyrrhizic acid 甘草酸,甘草皂甙,甘草甜素Glycyrrhizin 甘草酸,甘草皂甙,甘草甜素Glycyrrhetinic acid 甘草次酸18β-Glycyrrhetinic acid methyl ester 18β-甘草次酸甲酯Glycyrrhizinic acid monoammonium salt 甘草酸单铵盐Glycyrrhizinic acid monopotassium salt 甘草酸单钾盐18β-Glycyrrhetinic acid 18β-甘草次酸Gomisin A(Schisandrol B) 五味子醇乙, 五味子醇B Gomisin B(Schisantherin B) 五味子酯乙Gomisin C(Schisantherin A) 五味子酯甲Guanosine 鸟苷Guayewuanine A瓜叶乌头碱 AGuayewuanine B 瓜叶乌头碱 BGypenoside XLIV 绞股蓝皂甙XLIVHarmaline 骆驼蓬碱Harmine 哈尔明Harpagoside 玄生甙,钩果草甙Harringtonine 三尖杉酯碱,哈林通碱Harringtonolide 高三尖杉酯碱HederageninHelenin (Alantolactone) 土木香内酯Helicid 豆腐果甙Hematorylin 苏木素Hematin chloride 氯高铁血红素Hemin 血红素HemslegadinumHeparin sodiam3,3’,4’,5,6,7,8-Heptamethoxyflavone 3,3’,4’,5,6,7,8-七甲氧基黄酮Hesperidin 橙皮甙Heteratisine 异氢异叶乌头素HetisineHetisinonen-Hexadecane 正-十六烷HomoarbutinHomoharringtonine 高三尖杉酯碱Honokiol 和厚朴酚Houttugnin 鱼腥草素Human chorio gonadofropin (HCG)Human menopausal gonadotropin (HMG)Huperzine A石杉碱甲Hydrastine 北美黄连碱p- Hydroxyacetophenone 对羟基苯乙酮4'-Hydroxyacetophenone 4’-对羟基苯乙酮5-Hydroxyacetylproponic acid4-HydroxybenzaldehydeP-Hydroxybenzoic acid 对羟基苯甲酸Hydroxyevodiamin 羟基吴茱萸碱3-Hydroxy-4-methoxybenzaldehyde3-Hydroxy-4-methoxybenzoic acid2-Hydroxy-3-methoxybenzoic acid4-Hydroxy-3-methoxybenzoic acid5-Hydroxy-4'-methoxyflavone-7-β-rutinoside 5-羟基-4'甲氧基黄酮-7-芸香甙10-Hydroxy-camptothecin 10-羟基喜树碱ω-Hydroxy-Δ2-decenoic acid ω-羟基-Δ2-葵烯酸,王浆酸10-Hydroxydecenoic acid 10-羟基葵烯酸10-Hydroxydecylenic acid 10-羟基-Δ2-葵烯酸,王浆酸5-hydroxy-7,4'-dimethoxyflavanone1-Hydroxy-3,4-dimethoxyxanthone-O-β-D-glucophranosideHydroxyevodiamine 羟基吴茱萸碱5-Hydroxyflavone7-HydroxyflavoneHydroxyrenifolin2α-Hydroxypanaxidiol 2α-羟基人参二醇12-Hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial 12-羟基断松香烷8,11,13三烯6,7二醛1-Hydroxy-2,3,4,5-tetramethoxyxanthone1-Hydroxy-2,3,4,7-tetramethoxyxanthone4-Hydroxybenzaldehyde3-Hydroxy-4-methoxybenzaldehyde3-Hydroxy-4-methoxybenzoic acid2-Hydroxy-3-methoxybenzoic acid4-Hydroxy-3-methoxybenzoic acid16-HydroxytriptolideHydroxyursolic acid 羟基熊果酸Hyoscin 东莨菪碱HyoscyamineHypaconitine 下乌头碱,次乌头碱, 次乌碱Hypaphorine 下箴刺桐碱Hypericin 金丝桃素Hyperin 金丝桃苷,金丝桃甙,田基黄甙,海棠因,槲皮素-3-半乳糖甙Hyperoside 金丝桃苷,金丝桃甙,田基黄甙,海棠因,槲皮素-3-半乳糖甙HypolideHypocrellin A竹红菌甲素Icariin 淫羊藿甙IcaritinIcariside I 淫羊藿黄酮次苷IIcariside II 淫羊藿黄酮次苷IIIcariside-3-o-rhamnosideIkarisoside AIkarisoside BIkarisoside CIkarisoside DIkarisoside EIkarisoside FImperialine 西贝碱Imperatorin 欧前胡素Indaconitone 印乌碱Indigotin 靛兰, 靛蓝Indirubin 靛玉红Inosine 肌苷,肌甙Inositol 肌醇Ipriflavone 伊普黄酮Isatin 靛玉红Isoaconitine 紫草乌碱乙Isoalantolactone 异土木香内酯D-Isoascorbic acid D-异抗坏血酸Isoastragaloside II 异黄芪皂甙IIIsoatisineIsobergaptenIsobiflorin 异双花母草素Isocolumbind-Isocorydine 异紫堇定, d-异紫堇定碱Isocupressic acid 异柏油酸IsodonalIsoferulic acid 异阿魏酸Isofraxidin 异秦皮定IsoginkgetinIsoimperatorin 异欧前胡素Isoliensinine 异莲心碱Isoliquiritigenin 异甘草素Isoliquiritin 异甘草甙Isomangiferin 异芒果甙Isonicotinoylhydrazine 异烟酰肼Isonicotinic acid 异烟酸Isosafrole 异黄樟油素Isoquinoline 异喹啉IsopicropodophylloneIsopimpinellin 异茴芹内酯Isopsoralen 异补骨酯素Isoquercitrin 异槲皮甙,异槲皮素,罗布麻甲素Isorhamnetin 异鼠李素Isosteviol 异甜菊醇IsotetrandrineIsoneotriptophenolideIsopropyl myristate 肉豆蔻酸异丙酯Istaubulib AJatrorrhizine chloride 盐酸药根碱Jujuboside A酸枣仁皂甙 AJujuboside B 酸枣仁皂甙 BKadsurinKaempferitrinKaempferol 山奈酚,山奈素,山奈黄素,山奈黄酮醇,四氢基黄酮,崁非醇,猫眼草素I,白蕊草素III,Kaempferol-3-O-β-D-glucopyranosyl-β-D-glucopyranosideKaempferol-4'-methyl etherKaranjin 干华豆晶 4KirilowprotenKopsamineKopsanineKorepimedoside AKuliansu 苦楝素Kumujian AKumujian BKumujian DKumujian GLamalbidLamiridosideLappacontineLasiokaurinLathyrol 千金子二萜醇Laurate ethyl 月桂酸乙酯Laurate methyl 月桂酸甲酯Laurate sodium 月桂酸钠Lauric acid 月桂酸LentinanLeurocristine (VCR)Levonorgestrel 左炔诺孕酮Liensinine 莲心碱Ligustilide 藁本内酯Limonin 吴茱萸内酯,柠檬苦素Linoleic acid 亚油酸,r-亚麻酸Liquiritigenin 甘草素Liquiritin 甘草甙Lithocholic acid 石胆酸Liwuaconitine 丽乌碱Lobeline chlorideLoganin 番木鳖甙,马钱素,马钱子甙Longistyline A木豆芪 A Longtouaconitine ALupenyl acetate 乙酰羽扇豆醇酯Lupeol 羽扇豆醇酯Lupeol palmitale 棕榈酰羽扇豆醇酯Luteolin 木樨草素Luteolin-7-O-glucoside 木樨草素-7-O-葡萄糖甙Lycoctonine 牛扁碱Lycoramine HBr 氢溴酸石蒜胺Lycorine 石蒜碱Lycorine HBr 氢溴酸石蒜碱Lysionotin 岩豆素Macleyine 原阿片碱Macrocalin A大萼香茶菜甲素Macrocalin B 大萼香茶菜乙素Macrocalin C 大萼香茶菜丙素Madecassoside 羟基积雪草甙Madecassic acid 羟基积雪草酸丹参酚酸BMagnesium Lithospermate B 丹参酸B镁Magnoflorine 木兰花碱Magnoline 木兰脂素Magnolol 厚朴酚Mangiferin 芒果甙,杧果甙Mannitol 甘露醇D-Mannose 甘露糖Maoecrystal A毛萼晶甲Maoecrystal B 毛萼晶乙Maoecrystal C 毛萼晶丙Maoecrystal D 毛萼晶丁Maytanperline 美登普林Matrine 苦参碱Menthol 薄荷脑Mesaconitine 中乌碱,中乌头碱,新乌头碱,美沙乌头碱,新乌碱Metallothionein4-Methoxybenzaldehyde3-Methoxybenzoic acidP-Methoxycinnamic acid 对甲氧基肉桂酸10-methoxymedicarpin 10-甲氧基美迪紫檀素8-Methoxypsoralen 8-甲氧基补骨脂素4-Methoxysalicylaldehyde 4-甲氧基水杨醛Methoytanshinone 次甲丹参酮5-Methoxytryptamine6-Methyl-5,7-dimethoxyflavone 6-甲基-5,7-二甲氧基黄酮Methylene tanshinquinone 次甲丹参醌Methyl ferulateMethylophiopogonanone A麦冬高异黄酮AMethy-3-aminosalicylate 3-氨基水杨酸甲酯Methy-5-aminosalicylate 5-氨基水杨酸甲酯N-Methylcantharidin 甲基斑蟊素O-Methyldauricine 甲基北豆根碱,甲基蝙蝠葛碱, 甲基山豆根碱Methylhesperidine 甲基陈皮甙Methyl linolenate 次亚麻酸甲酯N-Methyl-N-(4-methoxylphenyethyl)-cinnamamideMethyl Nonyl Ketone(2-Undecanone) 甲基正任酮Methyl Salicylata 水杨酸甲酯3'-Methyoxy-puerarin 3`-甲氧基葛根素Miltirone 次甲丹参醌Mifepristone 米非司酮MiscantuosideMogroside IIE 罗汉果甙IIEMogroside III 罗汉果甙IIIMogroside IV 罗汉果甙IVMogroside V 罗汉果甙VMonocrotaline 农吉利碱,野百合碱,猪屎豆碱Monolupine(Anagyrine) 臭豆碱,安那吉碱,安纳基林,Monotropein 水晶兰甙Morroniside 莫诺甙MorusinMuscone 麝香酮MycosMyristaldehyde 肉豆蔻醛Myristic acid 肉豆蔻酸NardosinolNardosinonNaringenin 柚皮素,柑桔素Naringin 柚皮甙,柑桔甙Narumicin INeferine 甲基莲心碱NeriifolinNeoandrographolide 新穿心莲内酯,穿心莲丙素,穿心莲新甙, 新穿心莲内酯Neo-houttuyninum 新鱼腥草素NeolineNeotriptophenolideNevadensin 石吊兰素NicotineNimbecetin 山奈酚,山奈素,山奈黄素,山奈黄酮醇,四氢基黄酮,崁非醇,猫眼草素I,白蕊草素III, NitidineNitogenin 薯蓣皂甙元9-Nitrocamptothecin 9-硝基喜树碱9-Nitro-10-Hydroxy camptothecin 9-硝基-10-羟基喜树碱10-NonacosanolNoradranabineNorgestrel 炔诺孕酮Notoginsenoside R1 三七皂甙R1Notoginsenoside RC 三七皂甙 COleanolic acid 齐墩果酸,石竹素Olanolic acid-3-O-α-L-rhamnopyran-osyl(1-2)-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl(1-4)- β-D-glucopyranosyl(1-6) - β-D- glucopyranosyl ester gbc-34Olanolic acid-3-O-β-D- glucopyranosyl(1-3)-α-L-rhamnopyran-osyl(1-2)-α-L-arabinopyranosyl-28-O-α- L-rhamnopyranosyl(1-4)-β-D-glucopyranosyl(1-6)- β-D-glucopyranosyl ester gbc-35Ombuoside 商陆甙Ophiopogonin A麦冬皂苷AOrcinolOridonin 东凌草素Oroxylin A木蝴蝶素Orthosphenic acid 雷公藤三萜酸Osthol 蛇床子素Oxymatrine 氧化苦参碱Oxysophorcarpine 氧化槐果碱Pachymaran 茯苓多糖Pachymic acid 茯苓酸Paclitaxel 紫杉醇Paeoniflorin 芍药甙Paeonol 丹皮酚Palmitale 棕榈酸Palmatine HCL 盐酸巴马亭,盐酸巴马汀,盐酸掌叶防己碱Panaxadiol 人参二醇Panaxatriol 人参三醇Papaverine HCl 盐酸罂粟碱ParvifolisidePatehouli aleohal 百秋李醇Pedunculoside II 具栖冬青甙β-Peltatin-glucoside β-足叶草脂素甙β-Peltatin-A-methyl ether β-足叶草脂素A早醚Peimine 贝母碱,贝母甲素,浙贝甲素,贝母碱甲,贝母甲碱Peiminine 贝母乙素,贝母宁碱,去氢贝母碱,浙贝乙素,贝母碱乙,贝母乙碱Pentadecanone-2 十五烷酮-2PeruvosidePhadodendrol 杜鹃醇Phaseolin 菜豆甙元1-phenyl-2,4-hexadiyn-1-oneN-Phenyl-2-naphthylamine N-苯基-2-萘胺Piceatannol-3’-O-β-D-glucopyranosidePhillyrin 连翘苷,连翘甙Phloyoside IIPhododendrolPhyscion 大黄素甲醚Phytolaccoside EPhytolaccoside GPiceatannolPiceatannol-3'-0-β-D-glucopyranosidePiceatannol-4'-0-β-D-glucopyranosidePicroetoposidePicroetoposide hydroxy acidPicropodophyllotaxinPilocarpine hydrochloride 毛果云香碱盐酸盐Pimpinollin 虎耳草素Pinitol 松醇Pinostrobin 球松素Piperine 胡椒碱PlantarenalosidePlatypetaloside APlumbagin 矾松素Podocarpusflavone 罗汉松双黄酮BPodophyllotoxin 鬼臼毒素Podophyllotoxin glucosidePodophyllotoxonePolydatin 虎杖甙,白藜芦醇甙Polystachoside 蓼属甙Ponticin 土大黄甙(素)Populnetin 山奈酚,山奈素,山奈黄素,山奈黄酮醇,四氢基黄酮,崁非醇,猫眼草素I,白蕊草素III, Populin 白杨甙Praeruptorin A白花前胡甲素Praeruptorin B 白花前胡乙素Praeruptorin C 白花前胡丙素Praeruptorin D 白花前胡丁素Praeruptorin E 白花前胡甲素Praeruptorin F 白花前胡甲素Pregnanediol 孕二醇Progeserone 孕烯醇酮Precasin 相思豆碱ProcesterolProtocatechuic acid 原儿茶酸Protocatechualdehyde 原二茶醛Protopanaxadiol 原人参二醇Protopanaxatriol 原人参三醇Protopine 原阿片碱Pseud aconitine 伪乌碱Pseudo ephedrine 伪麻黄碱d-Pseudu-ephedrine hydrochloride盐酸伪麻黄碱Pseudo ginsenoside F11 拟人参皂甙F11Pseudo ginsenoside Rt5 拟人参皂甙Rt5Pseudo laric acid B 土荆皮乙酸Pseudo lycorine 伪石蒜碱PseudophedrinePseudo protopine 伪原阿片碱Psoralen 补骨酯素Puerarin 葛根素Pyrogallic acid 焦性没食子酸PyrogallolQingdanone 青黛酮Qinghaosu I 青蒿甲素Qinghaosu II 青蒿乙素Qinghaosu III 青蒿丙素QingyangshenggeninQuebrachitolQuercetin 槲皮素Quercetin-3-O-xyloglucoside 槲皮素-3-O-木糖葡萄糖甙Quercetin-3- galactoside 槲皮素-3-半乳糖甙,金丝桃甙,田基黄甙,海棠因Quercitrin 槲皮甙,槲皮苷4-Quinazolone 4-喹唑酮[4(3H)-quinazolinone] 4(3H)-喹唑酮[2,4[1H,3H]-Quinazolinedione] 2,4(1H,3H)-喹唑二酮Quinic acid 喹啉酸Quinidine 喹啉丁Quinine 喹啉Quinsetrol 炔雌醚Rasthorin A细锥香茶菜甲素Rabdocetsin B 细锥香茶菜乙素Rabdocetsin C 细锥香茶菜丙素Rabdocetsin D 细锥香茶菜丁素Rabdocetsin E 细锥香茶菜戊素Rabdoforrestin A紫萼香茶菜甲素Rabdophyllin G 大叶庚Rabdophyllin H 大叶辛Rabdosin C 香茶菜素 CReducing arteannuim 还原青蒿素Renifolin 肾叶驴蹄草甙Reserpine 利血平Resibufogenin 脂蟾毒配基,酯蟾毒配基Resveratrol 白藜芦醇Resveratrol-4’-O-β-D-(6’-O-galloyl)glucopyranosideResveratrol 3-O-β-D-glucoside2"-Rhamnosylicarisoside II2"-Rhamnosylikarisoside ARhamnoluteun 山奈酚,山奈素,山奈黄素,山奈黄酮醇,四氢基黄酮,崁非醇,猫眼草素I,白蕊草素III,2"-O-Rhamnosylscoparin 2"-O-鼠李糖扫帚黄酮Rhaponticin 土大黄甙(素)Rhapontin 土大黄甙(素)Rheic acidRhein 大黄酸RheosmineRhodininRhodioloside 红景天甙RhodiosinRhododendrin 白色杜鹃素Rhombinin(Anagyrine) 臭豆碱,安那吉碱,安纳基林,Rhynchophylline 钩藤碱Robigenin 山奈酚,山奈素,山奈黄素,山奈黄酮醇,四氢基黄酮,崁非醇,猫眼草素I,白蕊草素III,Rorifone 焊菜素Rosavin 肉桂醇甙,洛塞维,酪萨维Rosmarinic acid 迷迭香酸, 罗丹酚酸Rotenone 鱼藤酮Rotundinum 延胡索碱乙,罗通定,四氢巴马亭Rubescensin (A) 东凌草素Rutaecarpine 吴茱萸次碱Rutin 芦丁,芸香甙Sagittatoside A箭藿苷ASagittatoside B 箭藿苷BSagittatoside C 箭藿苷CSagittatoside D 箭藿苷DSaikosaponin A柴胡皂甙 A Saikosaponin b1 柴胡皂甙b1 Saikosaponin b2 柴胡皂甙b2 Saikosaponin C 柴胡皂甙 C Saikosaponin D 柴胡皂甙 DSaikogenin a 柴胡皂甙元 aSaikogenin d 柴胡皂甙元 dSaikoside a 柴胡皂甙 aSaikoside c 柴胡皂甙cSaikoside d 柴胡皂甙 dSalicylic acid methyl esterSalicin 水杨甙,水杨素Salylic acid 水杨酸Salicylate ethyl 水杨酸乙酯Salicylate methyl 水杨酸甲酯;冬青油Salicylate Isomyl 水杨酸异戊酯Salicylate phenyl 水杨酸苯酯Salicylate eserine 水杨酸毒扁豆碱Salicylate sodium 水杨酸钠Salicylate ammonium 水杨酸铵Salicylaldehyde 水杨酸醛Salicylanlide 水杨酰苯胺Salicylamide 水杨酰胺Salidroside 红景天甙Salsolinol 去甲猪毛菜碱Salvianic acid 丹参酸甲Sandaracopimaric acid 山达海松酸Sanguinarine hydrochloride 盐酸血根碱Santonin 山道年Sarsasapogenin 菝契皂甙元,洋菝契皂甙元Sciadopitysin 金松双黄酮Schisantherin A五味子内酯甲Schisandrin 五味子醇甲,五味子素,五味子醇Aγ-Schisandrin γ-五味子素, 五味子素B,五味子乙素Schisandrin B γ-五味子素, 五味子素B,五味子乙素Schizandrin B γ-五味子素, 五味子素B,五味子乙素Schizandrin 五味子醇甲,五味子素,五味子醇A Schizandrol 五味子醇Schisadrol A五味子醇甲,五味子素,五味子醇A Scoparone 滨蒿内酯Scopolamine HBr 氢溴酸东莨菪碱Scopoletin 东莨菪素,东莨菪内酯Scopolin 东莨菪甙ScoulerineScphalotaxine 三尖杉新碱SculpolamineScutellarein 野黄芩素,高黄芩素,野黄芩黄素Scutellarin 灯盏花乙素,野黄芩甙,高黄芩甙Securinine 一叶秋碱Securinine HNO3 硝酸一叶秋碱Sennoside A番泻甙 ASennoside B 番泻甙 BSepervirenoside ASepervirenoside BSesamin 芝麻脂素, 芝麻素SesamosideShanzhiside methyl esterShikimic acid 莽草酸Shikonin 左旋紫草素Shionone 紫菀酮Sibiricine 西伯利亚延胡索碱Silybin 水飞蓟宾Silydianin 异水飞蓟素Silymarin 水飞蓟素Sinapine bisulfae 硫酸芥子碱Sinoacutine 青风藤碱,华防己碱Sinomenine hydrochorolide 盐酸青藤碱Sipeimine 西贝素β-Sitosterol β-谷甾醇Sitosterol-3-O-β-D-glucopyransideSkimmianine 茵芋碱Smilagenin 菝葜皂甙元Solamargine 奥洲边茄碱Solanesol 茄尼醇Solanocupsin 毛叶冬珊瑚甙Solasonin 奥洲茄碱Sophocarpidine 苦参碱Sophocarpine 槐果碱Sophoridine 槐定碱Sophorine 金雀花碱,野靛碱,金雀儿碱,金莲花碱Soyasapogenol A大豆甾醇A,大豆皂甙元 ASoyasapogenol B 大豆甾醇B,大豆皂甙元 BSoyasapogenol C 大豆甾醇C,大豆皂甙元CSoyasapogenol D 大豆甾醇D,大豆皂甙元DSoyasapogenol E 大豆甾醇E,大豆皂甙元ESoyasaponin I 大豆皂甙ISoyasaponin 大豆皂甙Sparteine (CAS:6160-12-9) 鹰爪豆碱,无叶豆碱Spegatrine 斯配加春α-Spinasterol α-波菜甾醇Squamotatin BStachydrine hydrichloride 盐酸水苏碱Stachyose 水苏糖Stephanine 千金藤碱Steviobioside 甜菊醇B甙Steviol 甜菊醇Steviol methylester 甜菊醇甲酯Stevioside 甜菊甙,甜菊糖Stigmasterol 豆甾醇StrctosidineStrychnine 士的宁,番木鳖碱StwephanineSulfate of polysaccharide 多糖硫酸酯Super-Houttuyninum 高鱼腥草素Sweroside 当药苦甙,獐牙菜甙Swertiamain 獐牙菜苦甙Swertianol 当药醇Swertianolin 当药醇甙Sylvatesminsynephrine 辛弗林Syrinngic acid 丁香酸Syringin 紫丁香甙,祖师麻丙素,救必应乙素,救必应甙甲,五加甙B, 刺五加甙B Tabernaemontanine HBrTalatisamine 塔拉萨敏,塔拉乌头胺Tannic acid 丹宁酸Tanshinone I 丹参酮ITanshinone II A丹参酮IIATanshinone II B 丹参酮IIBTaraxasterol 蒲公英甾醇Taraxerol 蒲公英赛醇Taraxerol acetate 蒲公英赛醇乙酸酯Taraxerone 蒲公英甾酮, BC-01Taurine 牛磺酸Taurocholic acid sodium salt 牛磺胆酸,甘牛胆酸钠Taurocholic acid (Sodium) 牛磺胆酸钠Tauroursodesoxycholic acid 牛磺熊去氧胆酸Taxol 紫杉醇Tayettin 万寿菊甙Tenyposide 潜尼泊甙Terpine hydrate 水合萜二醇Terpinenol-4 松油醇-4n-Tetradecane 正-十四烷(+)Tetrahydropalmatine 延胡索碱乙,四氢巴马亭,四氢巴马汀,延胡索乙素, 颅痛定L-Tetrahydropalmatine 左旋四氢巴马亭,左旋四氢巴马汀,左旋延胡索乙素, Tetrodotoxin (TTX) 河豚毒素2,3,5.4'-Tetra-hydroxystilbene-2-o-β-D-glucoside 四羟基氐甙5,8,3'5'-tetrahydroxyflavanone3',4',5,7-Tetrahydroxyflavone-3-β-rytinoside 3',4',5,7-四羟基黄酮-3-β-芸香甙Tetrandrine 粉防己碱,粉防己甲素Tetrandrine 苦味酸盐粉防己碱,粉防己甲素Thalidasine 唐松草新碱Theaflavin 茶黄素Theaflavin -3-G 茶黄素单没食子酸酯Theaflavin -3’-G 茶黄素单没食子酸酯Theaflavin -3,3’-DG 茶黄素双没食子酸酯Theobromine 可可碱Teophyline 茶碱Thermopsine 黄华碱,野决明碱Trans-podophyllic acidThevetin A黄夹甙 AThevetin B 黄夹甙 BThymol 百里酚Tibolone 替勃龙Timosaponin A3 知母皂甙A3Toddaberine 飞龙掌血内酯Toddaline 盐酸白屈菜红碱P-Toluic acid 对甲苯甲酸Toosendanin (Azedarachin) 川楝素,苦楝素Trans-communic acid 顺式璎柏酸Trans-podophyllic acidTremulacine 特里杨甙Tremulodin 2”-苯甲酰水杨甙α-Trepineol α-松油醇1-Triacontanol 正三十烷醇TrichodesmineTrichodesanthin 天花粉蛋白Tridecanone-2 十三烷酮-23,3',6-trimethoxy-4',5-dihydroxyflavone 大青黄酮甙元TripchlororideTripdiolide 雷公藤乙素Triptodiolide 雷公藤内酯二醇Tripterine 雷公藤红素TripterofordinTripterolideTriptofordin ATriptofordin BTriptofordin C1Triptofordin C2Triptofordin ETriptofordin F-1Triptofordin F-2Triptofordin F-3Triptofordin F-4Triptofordin D-1Triptofordin D-2Triptolide 雷公藤甲素,雷公藤内酯醇TriptolidenolTriptonide 雷公藤内酯酮Triptonolide 雷酚酮内酯Triptonoterpene 雷酚萜,雷酚萜甲醚Triptonoterpene methyl etherTriptonoterpenolTriptophenolide 雷酚内酯,山海棠素Triptophenolide methyl etherTriptotriterpenic acid A雷公藤三萜酸 A Triptotriterpenic acid B 雷公藤三萜酸 B Triptotriterpenic acid C 雷公藤三萜酸C Triptriolide 雷酚内酯醇Tryptantrin 青黛酮TubercurineTubeimuside I 土贝母甙甲Tumulosic acid 土莫酸Ulexine 金雀花碱,野靛碱,金雀儿碱,金莲花碱Umbelliferone 伞形花内酯Undecanine-2 十一烷酮-2Ursodesoxycholic acid 熊去氧胆酸Ursolic acid 熊果酸,乌苏酸,乌索酸。

芦笋文献翻译

芦笋文献翻译

倍半萜烯内酯小说石竹烯类型从芦笋falcatus(绝壁。

);结构说明和HUVECs抗血管生成活动Raza Murad Ghalib将军a、*、Rokiah Hashim Othman Sulaiman a、b、赛义德·哈桑·梅迪了Arto Valkonen b,1,Kari Rissanen b,1,Srecko r .诉、穆罕默德·特里伏诺维奇。

b . Khadeer Ahamed d、阿明·马利克·阿卜杜勒·马吉德·沙赫d原Kawamura e芦笋falcatus(绝壁。

)是一种传统的药用附着的灌木属于Asparagaceae家族。

工厂分布式农作物在南非、斯威士兰、莫桑比克和一些部分东亚国家。

茎和叶捣碎和作为一个新鲜的泥敷在肿胀。

这种植物被用于中药2000多年来治疗的癌症。

植物有动态的药理等属性具有抗菌、抗炎、解热、镇咳、防腐剂,利尿、祛痰剂,神经的,催涎剂,增进食欲,神经兴奋剂补剂。

它是内服治疗喂养方案配芦笋提取物抑制的进程对乙酰氨基酚诱导的肝损伤[4]。

2。

结果与讨论2.1。

化学得到的化合物作为透明晶体。

这个分子式被确定为C15H20O3(六度未饱和)通过分析13 c 和1 h NMR数据在接合和部门的结果(表1),这个结论进一步EIeMS和HReESIeMS确认。

13 c NMR谱显示15个碳组成,HMBC HSQC交办,和部门的实验共振2 CH3、5 CH2,3和5 c CH。

在1 h NMR和13 c NMR光谱的复合,一个质子信号d 6.84(1 h,d,h 5)和四个碳信号[d 171.61(技术),136.01(c - 4),105.43(c 6),147.08(c - 5)],观察这提示存在g羟基一,b不饱和g 内酯与额外的替代在b和g头寸。

一个一个的存在,bunsaturated克内酯进一步依托强有力的吸收1705 cm - 1,必须在1760 cm - 1,但由于存在强烈的分子间OeH / O]C氢键(图3),IR值降低。

食品工艺学课件

食品工艺学课件

⾷品⼯艺学课件Processing of fruitsInstructor: mingfeng zheng(郑明锋) phd.Email:vanheng@/doc/bca037d13186bceb19e8bb68.htmlCell: 138********注意:课件全部根据⽼师提供的ppt整理,在编号上可能会有些问题,所以⼤家将就着看,祝⼤家考试顺利。

Chapter one:introductionFruit quality and preprocessingObjectsThrough the introduction, the students knowThe relationship between quality of fruit and the processed product,The relationship between composition of fruit and the processed product,Quality attributes of fresh fruits, and quality measurementspreprocessing methods and technologies1.1 classification of fruitsFruits are commonly classified by growing region as follows. Temperate zone, subtropical, and tropical. Growing region and environmental conditions specific to each regionsignificantly affect fruit quality. Examples of fruit grown in each region are listed below:1) temperate zone fruits2) subtropical fruits3) tropical fruits(1) temperate zone fruitsPome fruits(仁果类): apple, asian pear (nashi), european pear, quince榅桲果Stone fruits: apricot杏, cherry, nectarine, peach, plumSmall fruits and berries: grape (european and american types), strawberry, raspberry, blueberry, blackberry, cranberry (2) subtropical fruitsCitrus fruits: grapefruit, lemon, lime, orange, pummelo, tangerine, and mandarinNoncitrus fruits: avocado, cherimaya, fig, kiwifruit, olive, pomegranate(3) tropical fruitsMajor tropical fruits: banana, mango, papaya, pineappleMinor tropical fruits: carambola, cashew apple, durian, guava,longan, lychee, mangosteen, passion fruit, rambutan1.2 quality of raw materialsThe quality of processed fruit products depends on their quality at the start of processing; How maturity at harvest, Harvesting methods,Post harvest handling proceduresMaintenance in fresh fruits between harvest and process initiation.Quality attributes of fresh fruitsAppearance、exture factors、flavor components、nutritional quality、safety factorsAppearance factorsSize、shape、color、freedom from defects and decay.Texture factorsFirmness, crispness, juiciness.Flavor componentsSweetness, sourness (acidity), astringency, (收敛),bitterness, aroma, off-flavors,Nutritional qualityFruit's content of vitamins (a and c are the most important in fruits), minerals, dietary fiber, carbohydrates, proteins. Safety factorsResidues of pesticides, presence of heavy metals, mycotoxins produced by certain species of fungi, microbial contamination.1.3 losses in fresh fruits after harvastWater loss,Physical injuries,physiological breakdown, decayLoss of acidity, flavor, color, and nutritive valueFactors influence fruit qualityIn the orchard,During transportation,Throughout the handling system (sorting, sizing, ripening, and storage).The total time between harvesting and processingMinimizing the delays throughout the post harvest handling system greatly reduces finality loss, especially in highly perishable fruits such as strawberries, blackberries, apricots, and cherries.1.4 contribution of fruits to human nutritionEnergy (calories)VitaminsMineralsDietary fiberThe us. Department of agriculture and other organizations currently encourage consumers to participate in the "five a day" program which focuses on consumption of five servings of either fruit or vegetables each day.Energy (calories)(1) carbohydrates: banana, breadfruit, raisin葡萄⼲(2) proteins & amino acids: nuts, dried apricot and fig(3) fats. Avocado, olive, nutsFruits typically contain between 10% and 25% carbohydrates, a small amount (less than1.0%) of proteins, and a very small amount (less than 0.5 %) of fat. Carbohydrates, sugars,and starches are broken down to co2, water, and energy during metabolism. Carbohydrates and fats provide most of the calories the body requires for heat and energy.Vitamins(1) fresh fruits and vegetables contribute about 91% of vitamin c, 48% of vitamin a, 27% of vitamin b6, 17% of thiamin硫胺(维⽣素b1) to diet.(2) the following fruits are important contributors (based on their vitamin content and the amount consumed) to the supply of indicated vitamins in the u.s. Diet:*vitamin a: apricot, peach, cherry, orange, watermelon, cantaloupe*vitamin c: strawberry, orange, grapefruit, banana, apple, cantaloupe* niacin烟酸: peach, banana, orange, apricot"*riboflavin核黄素: banana, peach, orange, apple* thiamin: orange, banana, grapefruit, appleMinerals(1) fresh fruits and vegetables contribute about 26% of the magnesium镁and 19% of the iron to the u.s. Diet.(2) the following fruits are important contributors to the supply of indicated minerals in the us. Diet:* potassium钾: banana, peach, orange, apple* phosphorus磷: banana, orange, peach, raisin, fig*calcium: tangerine, grapefruit, orange* iron: strawberry, banana, apple, orangeDietary fiber(1) all fruits and nuts contribute to the dietary fiber in the diet. Dietary fiber consists of cellulose, hemicellulose, lignin⽊质素, and pectic substances, which are derived primarily from fruit cell walls and skin.(2) the dietary fiber content of fruits ranges from 0.5-1.5% (fresh weight basis).(3) dietary fiber plays an important role in relieving constipation by increasing water-holding capacity of feces. Its consumption is also linked to decreased incidence of cardiovascular disease, diverticulosis, and colon cancer.factors influefncing composition and quality of fruitsPreharvest factors(1) genetic: selection of cultivars, differences in raw fruit composition, durability, and response to processing. Fruit cultivars grown for fresh market sale will not be the optimal cultivars for processing.(2) climatic: temperature, light, wind--climatic factors may have a strong influence on nutritional quality of fruits. Light intensity significantly affects vitamin concentration, and temperature influences transpiration rate, which will affect mineral uptake and metabolism. ?(3) cultural practices: soil type, soil nutrient and water supply, pruning修剪, thinning, pest control-fertilizer addition may significantly affect the mineral content of fruit.1. 5 maturity at harvest and harvesting methodMaturity at harvest is one of the primary factors affecting fruit composition, quality, and storage life. Although most fruits reach peak eating quality when harvested fully ripe, they are usually picked mature, but not ripe, to decrease mechanical damage during postharvest handling. Harvesting may also mechanically damage fruit; therefore, choice of harvest methodshould allow for maintenance of quality.Postharvest factors1) environmental,2) handling methods,3) time period between harvesting and consumption(1) environmentalTemperature, relative humidity, atmospheric composition,(2) handling methodsPostharvest handling systems involve the channels through which harvested fruit reaches the processing facility or consumer. Handling methods should be chosen such that they maintain fruit quality and avoid delays.(3) time period between harvesting and consumptionDelays between harvesting and cooling or processing may result in direct losses (due to water loss and decay) and indirect losses (decrease in flavor and nutritional quality).Fruit maturity, ripening, and quality relationshipsMaturity at harvest is the most important factor that determines storage life and final fruit quality. Immature fruits are of inferior quality when ripened. Overripe fruits are likely to become soft and with insipid flavor soon after harvest. Fruits picked either too early or too late in the season are more susceptible to physiological disorders and have a shorter storage life than those picked at mid-season.Maturity and ripeningIn general, fruits become sweeter, more colorful, and softer as they mature.Some fruits are usually picked mature but unripe so that they can withstand the postharvest handling system when shipped long distances. Most currently used maturity indices are based on a compromise between those indices that would ensure the best eating quality to the consumer and those that provide the needed flexibility in transportation and marketing.Carbohydrates(碳⽔化合物)Carbohydrates : fresh fruits vary greatly in their carbohydrate content, with a general range being between 10% and 25%;. The texture, taste, and food value of a fresh fruit is related to its carbohydrate content. Sucrose, glucose, and fructose are the primary sugars found in fruits.Fructose is sweeter than sucrose, and sucrose is sweeter than glucose.Starch is converted to sugar as the fruits mature and ripen.Proteins(蛋⽩质)Fruits contain less than 1% protein (as opposed to 9-20% protein in nuts such as almond, and walnut). Changes in the level and activity of proteins resulting from permeability changes in cell membranes may be involved in chilling injury. Enzymes, which catalyze metabolic processes in fruits, are proteins that are important in the reactions involved in fruit ripening and senescence.Enzymes in fruits:(Organic acids(有机酸)Organic acids are important intermediate products of metabolism. The krebs (tca) cycle is the main channel for the oxidation of organic acids in living cells, and it provides the energy required for maintenance of cell integrity. Organic acids aremetabolized into manyconstituents, including amino acids, which are the building blocks of proteins.Citric acid、malic acid、tartaric acid、oxalic acidPigments(⾊素)Pigments undergo many changes during the maturation and ripening of fruits.(1) loss of chlorophyll (green color), which is influenced by ph changes, oxidative conditions, and chlorophyllase action(2) synthesis and/or revelation of carotenoids (yellow and orange colors)(3) development of anthocyanins (red, blue, and purple colors.Beta-carotene is a precursor to vitamin a. Carotenoids are very stable and remain intact in fruit tissues, even when extensive senescence has occurred.Phenolic compounds(酚类化合物)Total phenolic content is higher in immature fruits than in mature fruits and is the main substrate involved in enzymatic browning of cut, or otherwise damaged, fruit tissues when exposed to air.Enzymatic browning(酶促褐变)Enzymatic browning occurs due to the oxidation of phenolic compounds and is mediated, in the presence of o2, by the enzyme polyphenoloxidase (ppo). The initial product of oxidation is usually o-quinone, which is highly unstable and undergoes polymerization to yield brown pigments of higher molecular weight. Polyphenoloxidase catalyzes the following tworeactions:Volatiles(挥发性)Volatiles are responsible for the characteristic aroma of fruits. They are present in extremely small quantities (c <100µg/g fresh wt.).Volatile compounds are largely esters(酯), alcohols, acids, aldehydes(醛), an d ketones (low-molecular weight compounds).VitaminsThe water-soluble vitamins includeVitamin c,Thiamin硫胺(维⽣素b1),Riboflavin核黄素,Niacin烟酸, vitamin b6,Folacin叶酸, vitamin b12, biotin维⽣素h. Fat soluble vitamins include vitamins a, d, e, and k.Fat-soluble vitamins are less susceptible to postharvest losses.Vitamin cAscorbic acid is most sensitive to destruction when the commodity is subjected to adverse handling and storage conditions. Losses are enhanced by extended storage, highertemperatures, low relative humidity, physical damage, and chilling injury. Postharvest losses in vitamins a and b are usually much smaller than losses in vitamin c.1.7 biological factors involved in postharvest deterioration (变坏) of fruits ?Respiration (呼吸作⽤)Ethylene productionTranspiration (蒸腾作⽤)Physiological disordersPhysical damagePathological breakdownRespirationStored organic materials (carbohydrates, proteins, fats) are broken down into simple end products with a release of energy. Oxygen (o2) is used in this process, and carbon dioxide (co2) is produced.The loss of stored food reserves in the commodity during respiration hastens senescence as the reserves that provide energy to maintain the commodity's living status are exhausted. ?Food value (energy value) for the consumer is lost; it has reduced flavor quality, with sweetness especially being lost; and salable dry weight is lost (especially important for commodities destined for dehydration). The energy released as heat.Ethylene productionEthylene, the simplest of the organic compounds affecting the physiological processes of plants, is produced by all tissues of higher plants. As a plant hormone, ethylene regulates many aspects of growth development, and senescence and is physiologically active in traceamounts (less than 0.1 ppm).Transpiration or water lossWater loss is the main cause of deterioration because it results not only direct quantitative.Losses (loss of salable weight) hut also in loss of its appearance, loss of cripsness, andjuiciness), and nutritional quality.The dermal system (outer protective coverings) governs the regulation of water loss by the commodity.Physiological disorders(1) freezing injury :usually results in immediate collapse of the tissues and total loss.(2) chilling injury when fruits (mainly those of tropical and subtropical origin) are held at temperatures above their freezing point and below 5-15℃, depending on the commodity. ?(3) heat injury results from exposure to direct sunlight or to excessively high temperatures.Symptoms include surface scalding, uneven ripening, excessive softening, and desiccation. ?(4) very low (<1%) oxygen and/or elevated (>20%) carbon dioxide concentration can result in physiological breakdown of all fruits.Physical damageVarious types of physical damage (surface injuries, impact bruising, vibration bruising, etc.) Are major contributors to deterioration. Mechanical injuries are not only unsightly, but also accelerate water loss, stimulate higher respiration and ethylene production rates, and favor decay incidence.Pathological breakdownDecay is one of the most common or apparent causes of deterioration; however, attack by many microorganisms usually follows mechanical injury or physiological breakdown, which allows entry to the microorganism. Pathogens can infect healthy tissues and become the primary cause of deterioration.Environmental factors influencing deterioration of fruits(影响⽔果变坏的环境因素)Temperature,Relative humidity,Air movement,Atmospheric composition,Ethylene,Harvesting procedures Postharvest handling proceduresDumping、Sorting、Sizing、Cooling、Storage、RipeningDumping:Fresh fruits should be handled with care throughout the postharvest handling system in order to minimize mechanical injuries. Dumping in water or in flotation tanks should be used for fruits. If dry dumping systems are used, they should be well padded bruising. Sorting:Manual sorting is usually carried out to eliminate fruit exhibiting defects or decay. For some fruits, it may also be necessary to sort the fruit into two or more classes of maturity or ripeness.Mechanical sorters, which operate on the basis of color, soluble solids, moisture, or fat content, are being implemented and may greatly reduce time and labor requirements. Sizing:In some cases, sizing the fruits into two or more size categories may be required before processing. Sizing can be done mechanically on the basis of fruit dimension or by weight.Mechanical sizing can be a major source of physical damage to the fruit if the machines are not adequately padded and adjusted to the minimum possible fruit drop heights Ripening:Ripening before processing may be required for certain fruits (banana, kiwifruit, mango, papaya, peach, pear, plum, melon) that are picked mature but unripe. Ethylene treatment can be used to obtain faster and more uniform ripening. The optimum temperature range for ripening is 15-25℃and, within this range, the higher the temperature, the faster the ripening. Relative humidity should be maintained between 90% and 95 % during ripening. Cooling:Cooling is utilized to remove field heat and lower the fresh fruit's temperature to near its optimum storage temperature. Cooling can be done using cold water (hydrocooling) or cold air (forced-air cooling or "pressure cooling"). Highly perishable fruits, such as strawberries, bush berries, and apricots, should be cooled to near 4℃within six hours of harvest. Other fruits should be cooled to their optimum temperature within twelve hours of harvest. Storage:Short-term or long-term storage of fresh fruits may be needed before processing to regulate the product flow and extend the processing season. The relative humidity in the storage facility should be kept between 90% and 95%.To reduce decay, elevated c02 (15-20%) may be added to the atmosphere within pallet covers for strawberries, bush berries, and cherries, and sulfur dioxide (200 ppm) fumigation may be used on grapes.1.8 quality measurementsMany quality measurements can be made before a fruit crop is picked in order to determine if proper maturity or degree of ripeness has developed.ColourColour may be measured with instruments or by comparing the colour of fruit on the tree with standard picture charts. TextureTexture may be measured by compression by hand or by simple type of plungers.Soluble solidsAs fruit mature on the tree its concentration of juice solids, which are mostly sugars, changes. The concentration of soluble solids in the juice can be estimated with arefractometer or a hydrometer液体⽐重计.Acid contentThe acid content of fruit changes with maturity and affects flavour. Acid concentration can be measured by a simple chemical titration on the fruit juice. But for many fruits the tartness and flavour are really affected by the ratio of sugar to acid. Sugar to acid ratioIn describing the taste of tartness of several fruits and fruit juices, the term "sugar to acid ratio" or "brix to acid ratio" are commonly used. The higher the brix the greater the sugar concentration in the juice; the higher the "brix to acid ratio" the sweeter and lees tart is the juice.1.9 preprocessing1.9.1 harvestingThe above and other measurements, plus experience, indicate when fruit is ready for harvesting and subsequent processing.1.9.2 reception - quality and quantity1.9.3 temporary storage before processing1.9.4 washingHarvested fruit is washed to remove soil, micro-organisms and pesticide residues.Fruit washing is a mandatory processing step; it would be wise to eliminate spoiled fruit before washing in order to avoid the pollution of washing tools and/or equipment and the contamination of fruit during washing.1.9.5 sortingFruit sorting covers two main separate processing operations:Removal of damaged fruit and any foreign bodies (which might have been left behind after washing);Qualitative sorting based on organoleptic criteria and maturity stage.Mechanical sorting for size is usually not done at the preliminary stage. The most important initial sorting is for variety and maturity.1.9.6 trimming and peeling (skin removal)This processing step aims at removing the parts of the fruit which are either not edible or difficult to digest especially the skin.Up to now the industrial peeling of fruit and vegetables was performed by three procedures: Mechanically;By using water steam;Chemically; this method consists in treating fruit and vegetables by dipping them in a caustic soda solution at a temperature of 90 to 100°c; the concentration of this solution as well asthe dipping or immersion time varying according to each specific case.1.9.7 cuttingThis step is performed according to the specific requirements of the fruit processing technology.1.9.8 blanchingA brief heat treatment to vegetables some fruits to inactivate oxidative enzyme systems such as catalase, peroxidase, polyphenoloxidase, ascorbic acid oxidase, and lipoxygenase. ?When the unblanched tissue is disrupted or bruised and exposed to air, these enzymes come in contact with substrates causing softening, discoloration, and the production of off flavors. ?It is most often standard practice to blanch fruits in order to prevent quality deterioration. ?Although the primary purpose of blanching is enzyme inactivation.There are several other benefits blanching initially cleanses the product;Decreases the microbial load,Preheats the product before processing.Softens the fruit, facilitates compact packing in the can.Expell intercellular gases in the raw fruitImproved heat transfer during heat processing.Water blanching is generally of the immersion type or spray type as the product moves on a conveyor.Steam blanching often involves belt or chain conveyors upon which the product moves through a tunnel containing live steam.adequacy of blanching is usually based on inactivation of one of the heat resistant enzymes (peroxidase or polyphenol oxidase).During the blanching process, it is imperative that certain enzymes that have the potential to cause flavour and textural changes be inactiviated. The process involves a brief heattreatment applied to most vegetables and also to some fruits in order to inactivate oxidative enzyme system such as catalase, peroxidase, polyphenoloxidase,ascorbic acid oxidase, and lipoxygenase.When unblanched tissue is disrupted or bruised and exposed to air,these enzymes come in contact with substrate causing softening,discoloration, and the production of off-flavours.Since this action can potentially occur during the period prior to heat processing, it is most often standard practice to blanch fruits in order to prevent quality deterioration.1.9.9 ascorbic/citric acid dipAscorbic acid or vitamin c minimises fruit oxidation primarily by acting as an antioxidant and itself becoming oxidised in preference to catechol⼉茶酚-tannin compounds.It has been found that increased acidity also helps retard oxidative colour changes and so ascorbic acid plus citric acid may be used together. Citric acid further reacts with (chelates) metal ions thus removing these catalysts of oxidation from the system.1.9.10 sulphur dioxide treatmentSulphur dioxide may function in several ways:Sulphur dioxide is an enzyme poison against common oxidising enzymes;It also has antioxidant properties; i.e., it is an oxygen acceptor (as is ascorbic acid);Further so2 minimises non enzymatic maillard type browning by reacting with aldehyde醛groups of sugars so that they are no longer free to combine with amino acids;Sulphur dioxide also interferes with microbial growth.In many fruit processing pre-treatments two factors must be considered:Sulphur dioxide must be given time to penetrate the fruit tissues;So2 must not be used in excess because it has a characteristic unpleasant taste and odour, and international food laws limit the so2 content of fruit products, especially of those which are consumer oriented (e.g. Except semi-processed products oriented to further industrial utilisation).5.2.11 sugar syrupSugar syrup addition is one of the oldest methods of minimising oxidation.Sugar syrup minimises oxidation by coating the fruit and thereby preventing contact withatmospheric oxygen.Sugar syrup also offers some protection against loss of volatile 挥发性的fruit esters 酯and itcontributes sweet taste to otherwise tart fruits.It is common today to dissolve ascorbic acid and citric acid in the sugar syrup for addedeffect or to include sugar syrup after an so 2 treatment.QuestionsWhat factors influence the quality of fruits after harvest?How to maintain the fruit in good quality before the processing begin?第⼀节果蔬原料特性新鲜果蔬原料的特点 ? 果蔬原料的化学成分原料的化学成分与加⼯的关系1.新鲜果蔬原料的特点易腐性、季节性、区域性2.果蔬中的化学成分(chemical composition in fruits and vegetables )3.化学成分与加⼯的关系(relation between chemical composition and processing )3.1 ⽔分(water)果蔬中⽔的含量:⼤多数在80%以上,含⽔量⾼的如冬⽠(wax gourd)可达96%以上。

生半夏的英文和拉丁文

生半夏的英文和拉丁文

生半夏的英文和拉丁文**English Content:****Introduction**Pinellia ternata, commonly known as Sheng Ban Xia in Chinese medicine, holds a significant place in thetraditional Chinese pharmacopoeia. Its use spans across various therapeutic areas, making it a versatile herb inthe hands of experienced practitioners. However, its importance extends beyond the boundaries of Chinese culture, as its scientific nomenclature and pharmacologicalproperties have garnered interest from the global medical community. This article aims to delve into the English and Latin nomenclature of Pinellia ternata, tracing itshistorical context and scientific significance.**The English Nomenclature of Pinellia ternata**In the Western pharmaceutical world, Pinellia ternatais often referred to as "Rhizoma Pinelliae Ternatae" or simply "Pinellia". This nomenclature follows theInternational Code of Nomenclature for algae, fungi, and plants (ICN), which governs the naming of plant species globally. The binomial nomenclature used for Pinellia ternata consists of two parts: the genus name "Pinellia" and the species name "ternata".The genus name "Pinellia" is derived from the French botanist Pierre Joseph Redoute de la Bretonne, who first described the plant in 1799. The species name "ternata" refers to the plant's characteristic leaf arrangement, which appears in three rows or tiers. This nomenclature system ensures consistency and clarity in communication among botanists and pharmacists worldwide.**The Latin Nomenclature of Pinellia ternata**In the Latin nomenclature, Pinellia ternata is referred to as "Pinellia ternata (Thunb.) Breitenbach". Here, "Pinellia" remains the same as in the English nomenclature, representing the genus. The species name, however, is followed by the authority citation, indicating the taxonomist who first formally described the species.Carl Peter Thunberg, a Swedish botanist, was the first to scientifically describe Pinellia ternata in his work"Flora Japonica" in 1784. Subsequently, German botanist Friedrich Breitenbach provided a more detailed taxonomic description in 1891. By citing these authorities, the Latin nomenclature acknowledges their contributions to the taxonomy of Pinellia ternata.**Pharmacological Properties and Applications**Beyond nomenclature, Pinellia ternata's pharmacological properties have garnered interest from the global medical community. It is known for its anti-inflammatory, analgesic, and anti-tumor activities, among others. These properties have been studied and validated through scientific research, furthering its application in modern medicine.**Conclusion**Pinellia ternata, with its rich history and diverse pharmacological properties, is not just a herb in the Chinese pharmacopoeia; it is a globally recognizedmedicinal plant. Its English and Latin nomenclature, reflecting both its botanical classification and historical context, is a testament to the plant's importance in the global pharmaceutical landscape. As research on Pinelliaternata continues, its therapeutic potential and global impact are expected to grow.**中文内容:****生半夏的英语与拉丁文探究****引言**生半夏,中药中常称为半夏,在中国药典中占据重要地位。

采用聚苯乙烯纳米复合涂料改善包装纸抗菌性能

采用聚苯乙烯纳米复合涂料改善包装纸抗菌性能

以聚苯乙烯、二氧化钛纳米颗粒以及银纳米颗粒等为原料制备聚苯乙烯纳米复合涂料,用5%或10%的聚苯乙烯纳米复合涂料对稻草浆制备的包装纸进行涂布,涂布纸的透气度、抗张强度、吸水性以及阻隔性能均得到改善;对绿脓杆菌、金黄色葡萄球菌、念珠菌等细菌有很好的抑菌效果。

用Gellan胶和乙酸钙脱羧基后可制得高刚性的Gellan水凝胶。

Gellan水凝胶具有特殊的流变性和成膜性,将其用于古籍典藏纸张的清洁,可有效去除纸张中的杂物,并避免对纸张造成破坏。

Gellan水凝胶清洁法安全有效,可替代传统的水浸泡清洁法。

泡沫涂布是指将纳米颜料颗粒以泡沫形式涂布到原纸表面,涂布量一般为0.3~2.0 g/m2,涂层厚度仅为1μm甚至更小,以纳米二氧化硅为颜料进行泡沫涂布,可以明显改变成纸张表面特性,使纸张亲水性增强、光泽度略有下降。

泡沫涂布技术可少用或不用胶黏剂,并显著减少涂料用量。

采用聚苯乙烯纳米复合涂料改善包装纸抗菌性能Gellan水凝胶用于古纸清洁处理纳米二氧化硅泡沫涂布技术硫酸盐法制浆木素制备碳纤维近日,Sodra、Innventia与另外7家机构共同进行了一项由欧盟资助的研究课题,即以硫酸盐法制浆木素为原料制备碳纤维,并将其用于碳纤维增强塑料复合材料的生产。

该项研究的目标是以比现有方法更低的成本生产性能更好的碳纤维增强塑料复合材料。

木素是制备碳纤维的主要原料,通过调整制备碳纤维的原料、生产工艺及生产技术,使生产的碳纤维增强塑料复合材料可作为轻型材料用于汽车行业,替代传统的重型材料。

该项研究由隶属瑞典RISE研究院的Innventia部门主导并协调实施。

Innventia部门同Chalmers理工大学及行业伙伴共同研发了LignoBoost木素提取工艺,而纯木素是生产碳纤维的主要原料。

Innventia提取出的优质木素,更适用于碳纤维生产及其他应用(如活性炭、电池和黏合剂),并与该项研究的参与者Swerea SICOMP进行合作,这2个研究机构的研究领域覆盖了从浆厂到成品复合材料的整个产业链。

创建酿酒酵母细胞工厂发酵生产羽扇豆醇

创建酿酒酵母细胞工厂发酵生产羽扇豆醇

创建酿酒酵母细胞工厂发酵生产羽扇豆醇羽扇豆醇、桦木酸等羽扇豆型三萜化合物具有抗HIV、抗肿瘤等多种生物学活性,其中羽扇豆醇为这类化合物的基本前体。

为了实现羽扇豆烷型三萜的异源发酵法生产,研究首先运用高通量同源重组法在酿酒酵母中进行萜类甲羟戊酸(MV A)途径的一步法调控,以提高三萜通用前体鲨烯的供给;在进一步工作中,拟南芥来源的羽扇豆醇合成酶基因(AtLUP)被整入三萜底盘菌株中实现羽扇豆醇酵母人工细胞工厂的创建。

结果表明该实验能一次完成MV A途径的7个基因的整合,组装总长度达到20kb,同时多倍化MV A途径能显著提高鲨烯产量约500倍,达到35400 mg·L-1;AtLUP基因在染色体上整合后获得的工程菌NK2LUP在摇瓶中发酵能生产823 mg·L-1羽扇豆醇。

该研究可为在酵母中实施大规模生物合成途径组装提供技术支持,同时为进一步获高产羽扇豆烷型三萜的人工酵母细胞提供了重要基础。

标签:三萜;羽扇豆醇;合成生物学;酿酒酵母羽扇豆烷型(lupanetype)三萜是一类药用植物中微量合成的五环三萜类次生代谢物,主要包括羽扇豆醇(lupeol)、桦木酸(betulinic acid)和相应的衍生物[1]。

其中,羽扇豆醇是这类化合物生物合成的基本前体物质。

在植物细胞中,它可以在P450氧化酶的催化作用下发生C28位氧化,依次转化成桦木醇、桦木醛并最终氧化成桦木酸[24]。

1995年Pisha等[5]发现了桦木酸具有较高选择性的抗黑色素瘤活性后,其出色的抗HIV活性也被人们发现[67]。

目前,桦木酸和桦木酸衍生物Bevirimat已作为抗黑色素瘤药物或抗HIV的候选药物进入临床研究阶段[8],然而,桦木酸在桦木中的含量只有0025%[9],新的资源途径迫切需要解决。

酿酒酵母Saccharomyces cerevisiae是一种生物安全的模式真核生物,其遗传背景清晰,遗传改造策略及发酵方法成熟,已被广泛应用于构建生产青蒿素[10],人参皂苷[1112],番茄红素[13]和β胡萝卜素[14]等天然萜类活性物质的底盘工程菌株。

双翅目的学术英语

双翅目的学术英语

双翅目的学术英语The Diptera, a diverse order of insects commonly known as true flies, offers a rich field of study for entomologistsand biologists alike. With over 120,000 described species,they are second only to the beetles in terms of species diversity. The term "Diptera" is derived from the Greek words "di-" meaning two and "ptera" meaning wings, reflecting the characteristic feature of this order, where the insects possess only a single pair of functional wings.The fore-wings of Diptera are typically large and membranous, adapted for flying, while the hind-wings have evolved into halteres, which are small, club-shapedstructures that function as gyroscopes to aid in flightstability and maneuverability. This unique adaptation is a testament to the evolutionary success of the order.Academic research on Diptera is extensive and multifaceted. It encompasses taxonomy, ecology, behavior, physiology, and genetics. Studies on the life cycles of flies, such as the well-known housefly, provide insights into metamorphosis, with stages including egg, larva, pupa, and adult. The larval stage, or maggot, is often the subject of research due to its significant role in decomposition and nutrient cycling in ecosystems.In addition to their ecological importance, Diptera are also of medical and agricultural significance. Many speciesare vectors for diseases, such as mosquitoes transmitting malaria, dengue, and Zika virus. Research on these vectors is crucial for understanding disease transmission and developing control strategies.The genetic studies of Diptera have been pivotal in advancing our understanding of genetics and development. The fruit fly, Drosophila melanogaster, is a model organism in genetics research due to its short life cycle, ease of breeding, and well-characterized genome.Furthermore, the study of Diptera can contribute to the development of new technologies. For instance, the蝇眼复眼结构 has inspired the creation of artificial compound eyes for use in cameras and sensors. The study of their flight mechanics has also influenced the design of small, agile drones.In conclusion, the academic study of Diptera is a multidisciplinary endeavor that not only enhances our knowledge of the natural world but also has practical applications in medicine, agriculture, and technology. As research continues, we can expect to uncover more about the fascinating world of true flies and their myriadcontributions to our planet.。

镰刀菌YL2_产纤维素酶液体发酵工艺优化

镰刀菌YL2_产纤维素酶液体发酵工艺优化

79--加工贮藏•检测分析 引用格式:郭建军,王 通,吴庆华,等. 镰刀菌YL2产纤维素酶液体发酵工艺优化[J]. 湖南农业科学,2023(11):79-86. DOI:DOI:10.16498/ki.hnnykx.2023.011.015纤维素是由D-葡萄糖基通过β-1,4-苷键联结而成的线状高分子量碳水化合物[1],广泛分布于自然界,如林木[2]、种植业废弃物[3]和食草动物粪便[4]等都含有大量纤维素,是一种易获取且廉价的可再生资源。

将天然的纤维素物质降解为葡萄糖,进而转化为生物燃料以及其他高附加值产品[5-6],对于人类的可持续发展具有重要意义。

目前,自然界含纤维素材料的利用大多通过物理或化学手段进行预处理使其结构和性能发生改变[7-9],如酸或碱浸泡、蒸汽爆破等,但这些处理方式效率较低、能耗较大、污染较严重[10];而若能使用纤维素酶进行降解[11],既环保又高效,但是成本较高,耗时较长[12]。

纤维素酶是能将纤维素水解为葡萄糖的复合酶的总称[13],包括多种内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶[14],现已广泛应用于动物饲料、酿造[15]、果汁与蔬菜汁加工[16]、粮食加工、中草药有效成分提取[17]、纺织[18]、洗涤剂和造纸等生产领域。

由于天然纤维素分子链内或链间存在大量氢键,导致其形成了髙结晶度的结构[19],从而具有较高的机械强度和化学稳定性[20],难以被分解利用。

天然的纤维素酶产生菌产酶活性低[21]、酶系组分不完全是纤维素酶不能被广泛利用的主要原因[22]。

因此,发酵生产高活性的纤维素酶具有重要的现实意义。

目前研究较多的产纤维素酶微生物多是真菌,真菌产生的纤维素酶具有产酶量大、酶活性高和酶系组成丰富合理等优点[23],同时分泌的胞外酶易于分离提纯和工业生产放大[24]。

笔者以课题组实验室筛选保镰刀菌YL2产纤维素酶液体发酵工艺优化郭建军1,王 通1,吴庆华2,曾 静1,袁 林1(1. 江西省科学院微生物研究所,江西 南昌 330096;2. 临川区连城乡便民服务中心,江西抚州 344117)摘 要:为提高镰刀菌YL2发酵产纤维素酶的效率,采用Plackett-Burman 试验设计和响应面法设计优化了镰刀菌YL2产纤维素酶的发酵工艺,确定该菌种的最适产酶培养基及最优产酶条件。

疟疾教学PPT课件

疟疾教学PPT课件
骨髓涂片
血清学检查
ELISA查抗体:用于流行病学检查
诊断
流行病学资料
是否到过疟疾流行区,近期有无输血史
临床表现
典型:间歇性寒战、高热与大量出汗
实验室检查
血涂片/骨髓涂片吉姆萨染色:疟原虫阳性可确诊
诊断性治疗
鉴别诊断
一般疟疾
与败血症、伤寒、钩端螺旋体病、胆道 感染、尿路感染等多种发热疾病相鉴别
脑型疟
• 随着成批红细胞破裂、释放出裂殖子同时, 亦伴随诱生多种细胞因子及代谢产物入血, 引起临床寒战、高热、继之大汗的典型症状。
发病机制
• 反复发作或重复感染后获得一定免疫力,此 时虽有小量疟原虫增殖,可无疟疾发作的临 床症状,成为带疟原虫者。
发病机制
• 严重程度主要取决于原虫血症的数量
恶性疟原虫:任何年龄的红细胞 106/ mm3 间日疟和卵形疟原虫:幼稚红细胞 ≤25000/mm3 三日疟:衰老的红细胞 ≤10000/mm3
则较高,其热型呈不规则,常无明显的缓解间歇 期;有明显贫血,可凶险发作。(微血管堵塞)
- 脑:脑型疟 - 肾 : 溶 血 性 尿 毒 综 合 征 ( hemolytic syndrome),亦称黑尿热(black water fever) - 肺:非心源性肺水肿 - 肠道:腹痛
临床表现
脑型疟
• 恶性疟的严重临床类型,偶见于间日疟 • 与微血管堵塞、低血糖及细胞因子有关 • 主要的临床表现为头痛、发热,常出现不
– 外周血和骨髓 –脾 –肝 –脑 –肾 –肺
临床表现
潜伏期
间日疟及卵形疟:1315天 三日疟:2430天 恶性疟:712天
临床表现
典型发作
• 寒战期:突发,持续20~60分钟 • 高热期:体温迅速上升,通常可达40℃以上,

腐乳制作作文英语

腐乳制作作文英语

腐乳制作作文英语Fermented tofu, a delicacy born from ancient Chinese culinary traditions. Imagine a humble block of tofu, left to ferment in a mixture of brine and various seasonings. The result? A pungent, creamy concoction that titillates the taste buds like no other. It's a flavor explosion that leaves you craving more, with its complex umami profile and distinctive aroma.In the heart of bustling Chinatown markets, you'll find vendors peddling their prized jars of fermented tofu. The sight alone is enough to intrigue even the most skeptical of palates. Those little cubes, swimming in their savory marinade, beckon you with promises of culinary adventure.But the journey to perfecting fermented tofu is not for the faint of heart. It requires patience, precision, and a keen sense of experimentation. Each batch is a labor of love, as artisans carefully monitor the fermentation process, adjusting the ingredients and conditions toachieve that elusive balance of flavors.Legend has it that fermented tofu was discovered by accident, a serendipitous culinary mishap that forever changed the course of gastronomy. Perhaps it was aforgotten batch of tofu left to its own devices, slowly transforming into something extraordinary. Or maybe it was a stroke of genius by an intrepid cook, daring to defy convention in pursuit of culinary greatness.Regardless of its origin story, fermented tofu has earned its place as a beloved staple in Chinese cuisine. Whether slathered on steamed buns, stir-fried with vegetables, or enjoyed on its own as a savory snack, it never fails to delight and surprise with its bold flavors and rich history.So the next time you find yourself perusing the aisles of your local Asian market, keep an eye out for that unassuming jar of fermented tofu. Who knows? It might just be the start of your own culinary adventure, a journey into the fascinating world of fermentation and flavor.。

食用菌专业英语

食用菌专业英语

⾷⽤菌专业英语[原创]⾷⽤菌专业术语中英对照1 主题内容与适⽤范围本标准规定了⾷⽤菌形态、⽣理、遗传、育种、栽培、⽣产、加⼯、商品贸易等⽅⾯有关的中英⽂术语,适⽤于⾷⽤菌科研、教学、⽣产、贸易等领域。

2 术语及定义2.1 概述2.1.1 ⾷⽤菌edible fungus指可供⾷⽤的⼀些真菌。

多数为担⼦菌,如蘑菇、⾹菇、草菇、⽜肝菌等。

少数为⼦囊菌,如⽺肚菌、块菌等。

2.1.2 药⽤菌medicinal fungus指有药效价值的⼀些真菌。

如灵芝、茯苓、雷丸、蜜环菌等。

2.1.3 真菌fungus为⼀类营异养⽣活,不进⾏光合作⽤;具有真核细胞;营养体为单细胞或丝状;细胞壁含有⼏丁质或纤维素;具有⽆性和有性繁殖特征的菌体。

2.1.4 菇mushroom泛指伞菌类或⽜肝菌类的⼦实体。

2.1.5 胶质菌gelatinous fungus泛指⼦实体属胶质的菌类。

如⽊⽿、银⽿等。

2.1.6 草腐菌straw rotting fungus⽣长在腐草类上的菌类。

如蘑菇、草菇等。

2.1.7 ⽊腐菌wood rotting fungus⽣长在腐⽊上的菌类。

如⾹菇、⾦针菇等。

2.1.8 担⼦菌basidiomycete指有性孢⼦外⽣在担⼦上的菌类。

如蘑菇、⾹菇等。

2.1.9 ⼦囊菌ascomycete指有性孢⼦着⽣在⼦囊内的菌类。

如⽺肚菌、块菌等。

2.1.10 伞菌agaric伞菌⽬伞菌科担⼦菌的俗名。

2.1.11 霉菌mould腐⽣在各种基物上的除细菌以外的丝状及粉状体的微⼩真菌。

2.1.12 放线菌actinomycete分枝丝状的单细胞原核⽣物。

2.1.13 酵母菌yeast营出芽繁殖的单细胞真菌。

2.1.14 细菌bacterium以裂殖⽅式繁殖的单细胞原核⽣物。

2.1.15 病毒virus专性寄⽣的核酸蛋⽩质⼤分⼦,只能在寄主细胞内依靠寄主的代谢系统进⾏繁殖。

2.1.16 微⽣物microorganism微⼩或超微⼩个体结构的⼩⽣物。

eubacterium xylanophilum分类 -回复

eubacterium xylanophilum分类 -回复

eubacterium xylanophilum分类-回复Eubacterium xylanophilum(木聚糖爱好者变形菌)是一种革兰氏阳性、非芽孢形成、副单增生菌,是一种广泛存在于土壤、瘿只和被动物肠道中的厌氧细菌。

它是一种极其适应于富含木质纤维素的环境的菌种,其能够以木质纤维素为唯一碳源生存繁殖。

本文将详细介绍Eubacterium xylanophilum的分类、特征和生物学意义。

Eubacterium xylanophilum属于变形菌门、科、属的一员。

其分类定位可以追溯到20世纪70年代,当时科学家利用生化和形态学特征对该菌进行了初步分类。

其后,随着分子生物学技术的发展,研究者们通过对其16S rRNA基因序列进行分析,进一步确定了Eubacterium xylanophilum的分类地位。

Eubacterium xylanophilum菌体呈杆状,无芽孢形成。

其细胞壁主要由肽聚糖和多肽组成。

虽然Eubacterium xylanophilum是革兰氏阳性细菌,但其细胞壁的厚度较薄,与其他革兰氏阳性菌有所不同。

此外,与其他变形菌一样,Eubacterium xylanophilum是厌氧菌,需要在无氧条件下生长繁殖。

Eubacterium xylanophilum作为一种木质纤维素降解菌,具有突出的生物学意义。

木质纤维素是地球上最丰富的有机碳源之一,其由纤维素、半纤维素和木质素等多种复杂的化合物组成。

然而,木质纤维素的降解对于大多数生物来说是一项极具挑战性的任务。

Eubacterium xylanophilum通过其独特的酶系统和代谢途径,能够高效地将木质纤维素降解为可利用的简单糖类。

研究者们通过对Eubacterium xylanophilum的基因组进行测序,发现其具有丰富的木质纤维素降解相关基因,如木聚糖酶和半纤维素酶。

这些酶能够将木质纤维素分解为低聚糖和单糖,在细胞内被进一步代谢为能量和细胞生物合成所需的物质。

果蝇突变型

果蝇突变型

果蝇突变型遗传研究需要有各种具有对比性质的差异显现出来,无人才有可能对其进行遗传研究。

古典遗传学透过门德尔氏利用豌豆的七对外表型性状,发现了开启近代遗传研究的两大定律,后继的摩尔根氏利用果蝇大量的外型变异,将遗传学的研究再推前一大步。

本网页介绍本研究室保存的果蝇材料,这些材料的遗传组成在世代间透过人为保护控制而维持不变,成为所谓的品系(lines 或称为stocks),可供作各项杂交操作,以探讨相关的遗传性状及行为。

以下台湾大学农艺系一个研究室保存的品系(Drosophila melanogaster)果蝇属双翅目的昆虫,与其它目别的昆虫不同处是其它目别的昆虫具有两对翅膀,也就是有四支翅膀,双翅目的昆虫只具有一对,也就是两支翅膀,原因是另外的一对翅膀退化成为平衡棒。

果蝇雌雄外形判别体型大小,雌果蝇(下图左侧)大于雄果蝇(下图右侧)腹部体节数目:雌果蝇6节,腹部底部为产卵管,呈现圆锥状凸出。

雄果蝇4节,腹部底部为交尾器,呈现黑色圆形外观。

雄果蝇在前肢先端第二节具有性梳果蝇外表型态身体颜色野生型:灰色,符号为 + ;突变型:黄色体色 yellow body color 符号为 y眼睛颜色野生型:red 眼睛颜色为砖红色, 符号为 + ;突变型:白色 white 眼睛颜色为白色,符号为 w朱红色:vermilion 眼睛颜色呈现亮红朱色,符号为 v ;墨黑色:sepia 眼睛颜色呈现墨黑色,符号为 se眼睛形状野生形:饱满圆形 符号 + ;棒状型:Bar 组成复眼的小眼数目减少,造成眼睛外框变大,符号 B翅膀形状野生型:翅膀呈圆卵型,静止时平放交叉重迭,长度约为腹部长度的两倍符号为+ ;迷你型miniature 翅膀长度缩短,约略盖过腹部尾部,符号m卷翅型,Curly 翅膀卷曲,尾端上翘,符号Cy;残翅型,vestigial 翅膀退化残缺不全,符号vg 。

粗短翅型,dumpy ,翅膀缩短呈三角形,符号 dp ;外开翅型,Dichaete 翅膀平放时无法重迭,符号 D翅膀横隔脉野生型,具有横隔脉,符号 +;突变型,crossveinless 缺横隔脉,符号 cv刚毛 Bristle野生型,头胸部以及复眼的周围具有平直,先端略弯的长型粗黑硬毛,符号 + ;突变型,短刚毛, stubble 刚毛缩短变粗,符号 Sb分叉刚毛,forked 刚毛先端分叉弯曲,符号 f ;。

通过合成生物学的方式对利福霉素进行骨架挖掘、结构优化以及后修饰探究

通过合成生物学的方式对利福霉素进行骨架挖掘、结构优化以及后修饰探究

通过合成生物学的方式对利福霉素进行骨架挖掘、结构优化以及后修饰探究结核病作为全球性的难题,到目前为止仍然是全球前十位死因之一,由于艾滋病和耐药结核杆菌的全球蔓延,结核病防治工作任重而道远。

利福霉素的半合成衍生物利福平、利福喷汀和利福布汀对结核病的疗效突出,一直以来是临床治疗结核病、麻风病以及与艾滋相关的结核杆菌感染的一线药物。

然而,近年来由于其广泛的临床使用,结核分枝杆菌逐渐对其产生了耐药性,因此,发现或者合成抗耐药结核分枝杆菌的利福霉素衍生物也就迫在眉睫。

特别是,自从1957年利福霉素被发现以来,其生物合成途径和机理仍然大多停留在假说阶段。

本学位论文主要从以下三方面开展利福霉素生物合成研究,以丰富利福霉素的结构多样性,获得可供活性筛选的利福霉素衍生物。

首先对利福霉素高产菌株A.mediterranei S699在YMG琼脂平板上进行了大量发酵,分离得到11个化合物,包括6个新化合物(1-6)。

其中,利福霉素糖苷1(rifamycinoside A)和2(rifamycinoside B)的聚酮骨架代表了利福霉素安莎链的一种新颖断裂方式。

化合物6和8显示出潜在的鼠伤寒沙门菌Ⅲ型分泌系统(T3SS)抑制活性,可用于抗革兰氏阴性菌感染药物的开发。

此外,化合物6还能够诱导人结肠癌HCT116细胞的G2/M期阻滞和DNA损伤。

其次对利福霉素聚酮链延伸单元和延伸数目进行了改造,期望合成具有较长支链或者缩环的利福霉素衍生物。

但是可能由于利福霉素本身释放机理的特殊性,从这些模块替换或者模块融合突变株中只获得了一系列提前释放的线性聚酮。

然而,通过一系列模块融合以及点突变实验结果证明了聚酮延伸过程中保留KS-AT linker的重要性和以KR-ACP linker进行模块融合的可行性,从而进一步加深了对安莎聚酮结构改造的认识。

最后对利福霉素生物合成中特殊的后修饰过程进行了探究,包括从proansamycin X到rifamycin W的形成过程,Rif-Orf5负责催化的rifamycin W 骨架断裂机理,Rif-Orf19负责催化的萘环形成机理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORIGINAL PAPERProduction of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived SolventJean Marcel R.Gallo •David M.Alonso •Max A.Mellmer •Jher Hau Yeap •Hui Chin Wong •James A.DumesicPublished online:29June 2013ÓSpringer Science+Business Media New York 2013Abstract The production of furfural from the C 5mono-saccharides xylose,arabinose and ribose,as well as from real biomass (corn fiber),was studied using H-Beta zeolite as catalyst in a monophasic system with the biomass-derived solvent,gamma-valerolactone.Due to the combination of Brønsted and Lewis acid sites on this catalyst (Brøn-sted:Lewis ratio =1.66),H-Beta acts as a bifunctional catalyst,being able to isomerize (Lewis acid)and dehydrate (Brønsted acid)monosaccharides.The combination of Lewis and Brønsted acid functionality of H-Beta was shown to be effective for the isomerization of xylose and arabinose,followed by dehydration.While no advantages were found in the conversion of xylose,higher furfural yields were achieved from arabinose,using H-Beta,73%,compared to sulfuric acid (44%)and Mordenite (49%).The furfural yields from corn fiber for H-Beta,H-Mordenite and sulfuric acid were 62,44,and 55%,respectively,showing that H-Beta is particularly effective for conversion of this bio-mass feedstock composed of 45wt%hemicellulose,of which 66%is xylose and 33%arabinose.Keywords Furfural ÁXylose ÁArabinose ÁCorn fiber ÁBeta zeolite ÁBifunctional catalyst1IntroductionLignocellulosic biomass has shown to be an efficient source of carbon for the production of chemicals and fuels,and thisrenewable resource is a promising alternative to petroleum.Furfural is the most commonly produced industrial chemical derived from lignocellulosic biomass,with an annual produc-tion [200,000ton [1].Due to its flexibility in the production of chemicals and fuels,furfural has been considered to be one of the top value-added chemicals from biomass [2,3].For instance,furfural can be converted by hydrogenation into 2-methyltetrahydrofuran and 2-methylfuran,two additives for gasoline.Furthermore,aldol condensation of furfural and ace-tone followed by hydrogenation leads to high yields of liquid alkanes,which are appropriate for transportation fuels [4].Furfural is typically produced in one step by acid-cata-lyzed dehydration of C 5sugars,such as xylose.The eco-nomic viability and sustainability of the process plays a key role in the production of chemicals and fuels from biomass.Some of the problems in the commercial production of furfural from biomass arise from the low overall concen-tration of hemicellulose (*25%)[5]in most biomass sources,and the dependence of the process on mineral acid catalysts,which cannot be recovered and are typically neutralized,thereby adding to processing cost and com-plicating furfural purification steps.Moreover,this process leads to moderate to low furfural yields (e.g.,\50%)[6]due to the presence of degradation reactions (resinification,condensation and fragmentation),requiring large amounts of lignocellulosic biomass to produce furfural.Several methods have been proposed in the literature to increase furfural yields.For example,Dumesic and co-workers [7]proposed the use of a biphasic system consisting of an acidified aqueous layer and 2-sec-butylphenol as organic extracting layer,achieving furfural yields of 78%while facilitating product separation and allowing the reuse of the catalytic layer [8].The substitution of homogeneous cat-alysts by solid acid catalysts would represent an important advance for economically viable conversion of theJ.M.R.Gallo ÁD.M.Alonso ÁM.A.Mellmer ÁJ.H.Yeap ÁH.C.Wong ÁJ.A.Dumesic (&)Department of Chemical and Biological Engineering,University of Wisconsin-Madison,Madison,WI 53706,USA e-mail:dumesic@Top Catal (2013)56:1775–1781DOI 10.1007/s11244-013-0113-3hemicellulosic fraction of biomass.Promising results using heterogeneous catalysts have been recently ing MCM-22and its delaminated counterpart ITQ-2in a biphasic water–toluene system,xylose was dehydrated to furfural with 71%yield[9].Using a similar solvent system,H-Beta zeolite showed poor selectivity to furfural(54%),while a composite consisting of the same zeolite incorporated in the mesoporous scaffold of TUD-1enhanced the furfural yields to74%[10]. Mesoporous molecular sieves containing organosulfonic acid have also shown promising results,reaching furfural yields of 68%in a biphasic water–toluene solvent system[11]and 74%in DMSO[12];however,this class of materials is known to have low hydrothermal stability[13].Cornfiber is a promising source of biomass for pro-duction of furfural,in view of its high hemicellulose con-tent.In particular,cornfiber is obtained from the processing of corn grain by wet-milling processes[14],and the hemicellulose content has been found to be between30 and57%[15].Typically,xylose accounts for more than 90%of the C5monosaccharides;however,in cornfiber, arabinose is responsible for around34%of the monosac-charide composition[15].While the literature for produc-tion of furfural from xylose is extensive,the conversion of arabinose has not been investigated in detail.H-Beta zeolite contains high loadings of weak Lewis acid sites[16],in addition to Brønsted acid sites,allowing it to act as both a Lewis and Brønsted acid catalyst[17].It has been shown previously that Lewis acids are able to isomerize glucose and xylose to the more reactive isomers,fructose and xylulose,respectively.In the case of glucose,isomerization followed by dehydration has been shown to lead to5-hy-droxymethylfurfural in high yields.For xylose,the effect of isomerization has shown to improve furfural yield only when homogeneous catalysts are used[18].Isomerization of arab-inose followed by dehydration to produce furfural has not been studied and could be a promising route to obtain furfural with high selectivities.In this work,we investigate the per-formance of H-Beta in the conversion of xylose,arabinose and cornfiber.The results obtained with H-Beta are compared with sulfuric acid,the catalyst typically used for hemicellu-lose conversion,and H-Mordenite,which was recently shown to be an outstanding catalyst for xylose dehydration[19]. Finally,we hope that this work can be considered to be an example of the research approach championed by Professor Umit Ozkan:addressing important problems in heteroge-neous catalysis while generating fundamental principles and elucidating factors controlling catalyst performance.2ExperimentalXylose(Sigma-Aldrich[99%),arabinose(Sigma-Aldrich [98%),ribose(Sigma-Aldrich[99%)and cornfiber (Grain Processing Corporation)were used directly without pretreatment.Sulfuric acid(Fluka0.5mol L-1standard solution)was used to prepare the solutions of homogeneous catalysts.Mordenite(Zeolyst SiO2/Al2O3=20)and Zeo-lite Beta(Zeolyst SiO2/Al2O3=25)were purchased in the ammonium form and converted to the proton form by calcination in air for5h at500°C(1°C min-1).For reaction kinetics experiments using sugars,0.472g of a20wt%aqueous solution of monosaccharide,and 3.528g of gamma-valerolactone(GVL)were added in 10mL thick-walled glass reactors.For conversion of corn fiber,the reactor was loaded with0.14g of cornfiber, 0.400g of water,and3.600g of GVL.To each reactor, 0.150g of H-Mordenite or H-Beta or the amount of sul-furic acid needed to make a0.05mol L-1solution was added.The reactors were placed in an oil bath at145or 160°C and stirred at700rpm.Reactors were removed from the oil bath at specific reaction times and cooled by flowing compressed air.The liquid was analyzed to quan-tify reactants and products by HPLC[Waters2695system with a Bio-Rad Aminex HPX-87H column,RI410detector (monosaccharides)and a UV detector(furfural)].The continuous experiments using H-Beta as catalyst and xylose as feedstock were performed in aflow reactor operating in an up-flow configuration.The reactor(stain-less steel6.35mm OD)was loaded with H-Beta catalyst held between two end plugs of silica granules and quartz wool.The tubular reactor wasfitted inside of an aluminum block and placed within an insulated furnace(Applied Test Systems).Bed temperature was monitored at the reactor wall using a Type K thermocouple(Omega)and controlled using a16A series programmable temperature controller (Love Controls).The tubular reactor was heated using a heating tape(OMEGA)and insulated with glass wool tape. The feed to theflow reactor system was introduced into the reactor using an HPLC pump(Lab Alliance,Series I). Liquid samples were analyzed using an HPLC(Waters 2695system with a Bio-Rad Aminex HPX-87H column and a RI410detector).3Results and DiscussionRecently,Dumesic and co-workers[19]have reported that the use of GVL as a solvent presents several advantages in the production of furfural from xylose using Brønsted acid catalysts.In particular,xylose dehydration reactions occur faster in GVL than in water,which minimizes degradation products,and furfural is thus obtained at high yields ([70%)using monophasic systems.As shown in Fig.1, using a mixture of10wt%water in GVL as solvent,furfural can be produced from xylose in high yields([80%)with short reaction times(15min)using low concentrations ofsulfuric acid (0.05mol L -1);however,when other C 5sug-ars are used,such as arabinose and ribose,the furfural yields are significantly lower (\55%).Table 1reveals that while arabinose and ribose showed similar reaction rate values,xylose undergoes up to 2times higher sugar conversion rate and 2.5times higher furfural production rate when using sulfuric acid.Sulfuric acid is the catalyst typically used for dehydra-tion of sugars,and it is efficient for conversion of glucose to levulinic acid [20],fructose to 5-hydroxymethylfurfural [21]and xylose to furfural [19].However,as shown in Fig.1and Table 1,sulfuric acid is not an efficient catalyst for dehydration of arabinose and ribose,which can be detrimental to the production of furfural from biomass sources with high arabinose content such as corn fibers.Therefore,the use of a simple Brønsted acid is not suffi-cient to convert arabinose and ribose to furfural in high yields.Previous reports have shown that combination of a Lewis acid and a Brønsted acid can be beneficial for sugar conversion reactions.For example,glucose is converted to 5-hydroxymethylfurfural in low yields in the presence of mineral acids;however,when a Lewis acid,such as AlCl 3,is added to the reaction,the yields increase significantly [8].Recently,Lobo and co-workers [22]have proposed that by using a combination of Lewis acid and Brønstedacid catalysts,xylose is first isomerized to xylulose and lyxose,which are subsequently dehydrated to furfural.Accordingly,the rate of xylulose dehydration is higher compared to xylose,allowing for a decrease in the reaction temperature [22];however,the furfural yields in this sys-tem were lower than 15%.A recent report has investigated the role of Lewis and Brønsted acid sites in furfural pro-duction using zirconium phosphate,SiO 2–Al 2O 3,WO X /ZrO 2,gamma-alumina,and HY zeolite as catalysts.Fur-fural selectivity was shown to increase with an increase in the Brønsted to Lewis acid site ratio of the catalyst [23].In contrast,Abu-Omar and co-workers [18]have shown that in a biphasic system using AlCl 3as Lewis acid and HCl as Brønsted acid,xylose or lignocellulosic biomass can be converted to furfural with yields around 60%.The prob-lem with this biphasic system is that the organic layers extract part of the homogeneous catalysts,making the product separation complicated [8].To our knowledge,no studies have been carried out on the conversion of arabinose in the presence of a combi-nation of Lewis and Brønsted acids.This approach could be an alternative option to achieve high furfural yields from these sugars.Therefore,we investigated a heterogeneous catalyst containing both Lewis and Brønsted acid func-tionality,with the hope that this system could achieve performance similar to the homogeneous AlCl 3/HCl cata-lyst system.As mentioned previously,H-Beta zeolite can act as both a Lewis and Brønsted acid catalyst,and this material was thus a candidate for this study.In order to study the efficiency of H-Beta for the production of furfural from C 5sugars,this catalyst was used in the conversion of xylose,arabinose and ribose,as shown in Fig.2.As seen in Fig.2and Table 2,when H-Beta is used as the catalyst,the yields for furfural are similar using any of the C 5monosaccharides as paring the results in Figs.1and 2,it can be seen that using xylose as feed,furfural can be produced with 87%yield using sulfuric acid as the catalyst,while 71%yield is obtained using H-Beta.However,H-Beta appears to be significantly more selective for production of furfural using arabinose or ribose as feed,reaching furfural yields around 73and 72%,respectively,compared to *44and 54%furfural yields using sulfuric acid (Table 1).The reason for the improved behavior of H-Beta could be due to the Lewis acid sites being able to isomerize arabinose and ribose into ribulose which could increase the selectivity tofurfural.Fig.1Furfural yields obtained using 2wt%monosaccharide in GVL containing 10wt%water as solvent and 0.05M sulfuric acid as catalyst at 170°CTable 1C 5sugar conversion rate and furfural production rate using 2wt%monosaccharide in GVL containing 10wt%water as solvent and 0.05M sulfuric acid at 170°CCatalyst Feed C 5sugar conversion rate (mmol mL -1h -1)Maximum furfural yield (%)Furfural production rate (mmol mL -1h -1)H 2SO 4Xylose 1.1870.77Arabinose 0.5440.29Ribose0.6540.26In order to better understand the effect of H-Beta in the production of furfural,a reaction kinetic study was carried out using the two most abundant C 5isomers present in biomass,i.e.,xylose and arabinose.Figure 3a–d shows the conversion of xylose and arabinose at 145and 160°C using H-Beta as catalyst and GVL with 10wt%water as solvent.As seen in Fig.3a–d,in the presence of H-Beta,xylose is isomerized to xylulose and lyxose,while arabinose is isomerized to ribulose and ribose.These results are in accordance with previous literature studying the isomeri-zation of monosaccharides in the presence of solid Lewis acid catalysts [24].Our analytical technique did not allow for component separation of xylulose from lyxose and ribulose from ribose;therefore,they were quantified as mixtures.In the conversion of xylose at 145°C,it can be seen (Fig.3a)that in the first minutes of reaction,xylose isom-erization is the predominant reaction and the dehydration reaction becomes more evident when the concentration of the xylulose ?lyxose is higher.At 160°C (Fig.3b),95%of xylose and its isomers were converted within 60min of reaction time with a furfural selectivity of 75%.In the conversion of arabinose at 145°C (Fig.3c),furfural and a mixture of ribulose and ribose were formed concomitantly,presenting similar concentrations at 10min of reaction.At 160°C (Fig.3d),99%of the monosaccharides were con-verted within 60min with 74%selectivity to furfural.For both xylose and arabinose,after complete conversion of the monosaccharides at 160°C (Fig.3b,d),the reaction was prolonged for additional 60min with no significant reduc-tion of furfural concentration,indicating that furfural is stable under these reaction conditions.The combination of Lewis acid and Brønsted acid sites in H-Beta seems to make an effective bifunctional catalyst for isomerization followed by dehydration.Previous stud-ies using a combination of solid Lewis and Brønsted acids,such as Sn-Beta/Amberlyst-70and Sn-Beta/HCl,led to low furfural yields [22,25].Apparently,the synergistic effect of Lewis and Brønsted acid sites in the H-Beta pores allows for more selective conversion of C 5sugars.Furthermore,it has been previously shown that strong solid Lewis acids can lead to the formation of degradation products from xylose and furfural [19,23].The presence of weak Lewis sites in H-Beta can be an advantage,since they are suffi-ciently strong for sugar isomerization,but apparently are not as active to produce degradation products.Moreover,since the solvent contains 10%water,it appears that these sites are also water-resistant,a characteristic present in few Lewis acid materials.In a recent work,zeolites and solid catalysts containing organosulfonic acid were shown to be highly selective for the production of furfural from xylose [19].Zeolites are promising catalysts because carbon deposits typically formed in conversion of sugars can be removed by calci-nation.Therefore,the performance of two zeolites (H-Beta and H-Mordenite)was compared to sulfuric acid,the cat-alyst typically employed for furfural production,Fig.4a–b.The Brønsted to Lewis acid ratio for the commercial cat-alysts used in this work is 1.66for H-Beta and 4.66for H-Mordenite [26].As shown in Fig.4a,furfural is produced more rapidly from xylose using both sulfuric acid and H-Beta,compared to slower production using H-Mordenite.However,in all cases,high yields of furfural ([70%)are obtained.Table 3shows the turnover frequencies (TOF)for sugar dehydration and furfural production.H-Beta is more active than H-Mordenite (2times)and sulfuric acid (5.5times)when normalizing the rate by the total number of acid sites,and the TOF over H-Beta is 2.8and 8.8timeshigherFig.2Furfural yields obtained using 2wt%monosaccharide in GVL containing 10wt%water as solvent and 3.75wt%H-Beta at 160°CTable 2C 5sugar conversion rate and furfural production rate using 2wt%monosaccharide GVL containing 10wt%water as solvent and 3.75wt%H-Beta at 160°CCatalyst Feed C 5sugar conversion rate (mmol mL -1h -1)Maximum furfural yield (%)Furfural production rate (mmol mL -1h -1)H-BetaXylose 0.46710.27Arabinose 0.50730.34Ribose0.38720.26compared to H-Mordenite and sulfuric acid,respectively,if only the Brønsted acid sites are considered.These data are in agreement with previous results that show the dehy-dration of xylulose is faster compared to xylose [22].For the conversion of arabinose,a high furfural yield (73%)was obtained using H-Beta zeolite as the catalyst,while furfural yields below 50%were obtained using sulfuric acid or H-Mordenite.In this case,thedifferencesFig.3Conversion of xylose at a 145°C and b 160°C,and conversion of arabinose at c 145°C and d 160°C using 3.75wt%H-Beta as catalyst,2wt%monosaccharide and GVL containing 10wt%water assolventFig.4Dehydration of a xylose and b arabinose at 160°C using 0.05M sulfuric acid,3.75wt%H-Mordenite and 3.75wt%H-Beta as catalysts,2wt%monosaccharide and GVL containing 10wt%water as solventin TOF are even higher,and the rate of furfural production per acid site is one order of magnitude faster using H-Beta compared with H-Mordenite and sulfuric acid.Therefore, while the use of a bifunctional Lewis and Brønsted acid catalyst does not improve the furfural yield from xylose,it seems to be required for the rapid conversion of arabinose. Further studies must be carried out to understand this behavior;however,the higher rate achieved by the com-bination of Lewis and Brønsted acidity might be related to the formation of xylulose,which is known to have a lower dehydration activation energy compared to xylose.In view of the results in Fig.4,it can be concluded that for a biomass feedstock in which the hemicellulose fraction is composed primarily of xylose,both H-Mordenite and H-Beta would be promising catalysts for production of furfural;however,if arabinose is also present,then H-Beta would be the most appropriate catalyst.In order to test this hypothesis,cornfiber was used as feedstock.Cornfiber (hulls or bran)is obtained from the processing of corn grain by wet-milling processes[14],and analysis revealed a loading of45wt%of C5sugars,comprised of66%xylose and33%arabinose.A problem with using solid catalysts is that they are limited to the conversion of soluble feedstock, representing a drawback compared to the commercial pro-cess that used mineral acids and lignocellulosic feeds. Dumesic and co-workers[20]have recently reported that GVL is capable of solubilizing biomass(cellulose),allowing for the conversion of this feedstock to levulinic acid cata-lyzed by solid acids.Therefore,the use of GVL as solvent opens new opportunities for the conversion of soluble and insoluble biomass feedstocks,taking the process to another level towards cost-effectiveness and sustainability.Figure5shows the production of furfural from corn fiber using sulfuric acid,H-Mordenite,and H-Beta as cat-alysts and using GVL containing10wt%water as solvent. As seen in Fig.5,production of furfural using sulfuric acid is slightly faster compared to ing sulfuric acid, the maximum furfural yield is obtained at30min(55%).Using H-Beta,62%furfural yield is obtained at120min, and the furfural yield is stable for ing H-Mordenite,the maximum yield(44%)is reached at 180min.In the case of cornfiber,the furfural production is slower using solid catalysts,as the cornfiber needs to be dissolved in the GVL[27,28].Importantly,H-Beta led to the highest furfural yields,showing the importance of the combination of Lewis acid and Brønsted acid for the conversion of an arabinose-rich feedstock.Finally,we have conducted experiments to study the stability of H-Beta in aflow reactor.Figure6shows that high yields of furfural([70%)can be achieved thefirst 20h time-on-stream(100%xylose conversion);however, the catalyst deactivates slowly and yields around50%are achieved after120h(75%xylose conversion).The activity could not be restored upon calcination in air,and further experiments concerning the stability and regenera-bility of the catalyst need to be done,mostly in presence of real feeds.Table3Turnover frequencies for C5monosaccharide conversion and furfural production over sulfuric acid,H-Mordenite and H-Beta at160°C using GVL containing10wt%water as solventCatalyst Brønsted sites(mmol g-1)[26]Lewis sites(mmol g-1)[26]Xylose as feed Arabinose as feedC5sugar TOF10-4(s-1)Furfural TOF10-4(s-1)C5sugar TOF10-4(s-1)Furfural TOF10-4(s-1)TotalsitesBronstedsitesTotalsitesBronstedsitesTotalsitesBronstedsitesTotalsitesBronstedsitesH-Beta0.2690.16258.092.941.566.575.0120.250.581.0 H-Mordenite0.3310.07127.633.618.822.825.731.2 6.17.4Sulfuric acid 20.4–10.510.58.48.4 6.2 6.2 4.14.1Fig.5Conversion of cornfiber at160°C using0.05M sulfuric acid,3.75wt%H-Mordenite and3.75wt%H-Beta as catalysts and GVLcontaining10wt%water as solvent.3.75wt%cornfiber4ConclusionsWe have achieved high furfural yields from xylose,arab-inose,and ribose of 71,73,and 72%,respectively,using H-Beta zeolite as a catalyst in a monophasic system with the biomass-derived solvent,GVL.H-Beta has shown to be a better catalyst than sulfuric acid in the conversion of arabinose and ribose to furfural,while sulfuric acid is better for the dehydration of xylose.Due to the combina-tion of Lewis and Brønsted acid sites in H-Beta,the con-version of sugars catalyzed by this zeolite follows a mechanism different from that observed for predominantly Brønsted acid catalysts,such as sulfuric acid and H-Mordenite.In the presence of H-Beta,xylose is isom-erized to xylulose and lyxose and arabinose to ribulose and ribose,followed by dehydration to furfural.Corn fiber,composed of 45wt%C 5sugars,of which 66%is xylose and 33%arabinose,was also used as feedstock,and fur-fural yields for H-Beta,H-Mordenite and sulfuric acid were equal to 62,55and 44%,respectively.Accordingly,H-Beta appears to be an appropriate catalyst for biomass feedstocks high in arabinose content;however,if the hemicellulose fraction is composed primarily of xylose,both H-Mordenite and H-Beta appear to be promising catalysts.Acknowledgments This work was supported in part by the U.S.Department of Energy Office of Basic Energy Sciences,and by the DOEGreat Lakes Bioenergy Research Center ( ),which is supported by the U.S.Department of Energy,Office of Science,Office of Biological and Environmental Research,through Cooperative Agreement DE-FC02-07ER64494between The Board of Regents of the University of Wisconsin System and the U.S.Department of Energy.References1.Dutta S,De S,Saha B,Alam MI (2012)Catal Sci Technol 2:2025–20362.Bozell JJ,Petersen GR (2010)Green Chem 12:539–5543.Werpy TA,Petersen G (2004)Top value added chemicals from biomass 2004.U.S.Department of Energy,Washington,DC 4.Huber GW,Chheda JN,Barrett CJ,Dumesic JA (2005)Science 308:1446–14505.Rinaldi R,Schuth F (2009)Energy Environ Sci 2:610–6266.Binder JB,Blank JJ,Cefali AV,Raines RT (2010)ChemSus Chem 3:1268–12727.Gurbuz EI,Wettstein SG,Dumesic JA (2012)ChemSusChem 5:383–3878.Pagan-Torres YJ,Wang TF,Gallo JMR,Shanks BH,Dumesic JA (2012)ACS Catal 2:930–9349.Antunes MM,Lima S,Fernandes A,Pillinger M,Ribeiro MF,Valente AA (2012)Appl Catal A 417:243–25210.Lima S,Antunes MM,Fernandes A,Pillinger M,Ribeiro MF,Valente AA (2010)Appl Catal A 388:141–14811.Shi XJ,Wu YL,Yi HF,Rui G,Li PP,Yang MD,Wang GH(2011)Energies 4:669–68412.Dias AS,Pillinger M,Valente AA (2005)J Catal 229:414–42313.Tucker MH,Crisci AJ,Wigington BN,Phadke N,Alamillo R,Zhang J,Scott SL,Dumesic JA (2012)ACS Catal 2:1865–187614.Hespell RB (1998)J Agric Food Chem 46:2615–261915.Doner LW,Hicks KB (1997)Cereal Chem 74:176–18116.Lonyi F,Valyon J (2001)Thermochim Acta 373:53–5717.Wakayama T,Matsuhashi H (2005)J Mol Catal A 239:32–4018.Yang Y,Hu CW,Abu-Omar MM (2012)ChemSusChem5:405–41019.Gurbuz EI,Gallo JM,Alonso DM,Wettstein SG,Lim WY,Dumesic JA (2013)Angew Chem 52:1270–127420.Alonso DM,Gallo JMR,Mellmer M,Wettstein S,Dumesic JA(2012)Catal Sci Technol 3:927–93121.Roman-Leshkov Y,Chheda JN,Dumesic JA (2006)Science312:1933–193722.Choudhary V,Pinar AB,Sandler SI,Vlachos DG,Lobo RF(2011)ACS Catal 1:1724–172823.Weingarten R,Tompsett GA,Conner WC,Huber GW (2011)JCatal 279:174–18224.Holm MS,Pagan-Torres YJ,Saravanamurugan S,Riisager A,Dumesic JA,Taarning E (2012)Green Chem 14:702–70625.Choudhary V,Sandler SI,Vlachos DG (2012)ACS Catal2:2022–202826.Kubicka D,Kumar N,Maki-Arvela P,Tiitta M,Niemi V,KarhuH,Sami T,Murzin DY (2004)J Catal 227:313–32727.Wettstein SG,Alonso DM,Chong YX,Dumesic JA (2012)Energy Environ Sci 5:8199–820328.Alonso DM,Wettstein SG,Mellmer MA,Gurbuz EI,Dumesic JA(2013)Energy Environ Sci6:76–80Fig.6Furfural yield in a continuous flow reactor.2wt%xylose in GVL with 10wt%water as solvent.160°C,13atm,WHSV =0.24h -1。

相关文档
最新文档